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Abstract 

In the current scenario, most of the researcher try to prepared novel and cost-effective 

nanomaterials for wastewater treatment especially discharge from industrial and domestic water, 

drinking water and contaminated water. A worldwide growing population is one of the major 

sources of water pollution. The overall thesis demonstrates an extensive view of the use of 

nanomaterials in water purification using functionalized iron oxide nanomaterials by adsorption 

of inorganic and organic contaminants.   

In the present work, we have prepared iron oxide nanoparticles (Fe3O4) and iron oxide-based 

nanomaterials such as Fe3O4-TSPED-Tryptophan, Fe3O4-GG, Fe3O4-APTES-EDTA and GO-

Fe3O4-APTES of various morphology using precipitation methods. The synthesized 

nanomaterials were analyzed using FT-IR, XRD, TEM, FE-SEM, VSM, BET surface area, TGA, 

Zeta potential, Raman and UV-Vis Spectroscopy techniques and were used as effective 

adsorbent towards heavy metal ions and organic dyes from aqueous solution.                     

In the first project, we use amino acid (Tryptophan) functionalized iron oxide nanomaterial and 

TSPED act as a linking agent in between them. The results revealed that the Fe3O4-TSPED-

Tryptophan shows greater affinity towards Congo Red (CR) dye adsorption and antibacterial 

properties. The adsorption efficacy of the dye is assessed by varying various parameters such as 

pH, dye concentration, adsorbent dose and time. The adsorption isotherm is found to follow 

Langmuir isotherm model and the rate of adsorption well fitted to pseudo-second-order kinetics. 

We further checked the antibacterial activity of the dye against gram-negative (Escherichia coli) 

and gram-positive (Bacillus subtilis) bacterial strain. FTT nanocomposite responds positively 

towards antibacterial activity.  

In the same direction, the second project, functionalized Guar-gum (GG) on the surface of iron 

oxide (Fe3O4) nanoparticles were synthesized via conventional co-precipitation method. The 

efficiency of the nanocomposite was investigated towards the adsorption of different dyes such 

Congo red (CR), Malachite green (MG), Methylene blue (MeB), Methyl orange (MO), 

Eriochrome Black T (EBT), Methyl blue (MB) and Rhodamine B (Rhb). Among which CR dye 

shows adsorption efficiency of 97% using the prepared nanocomposite. The presence of -NH2 in 

the CR dye is responsible for the efficient adsorption, as it easily forms hydrogen bonding with 
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the surface hydroxyl group of Fe3O4-GG. The optimum condition for dye removal efficiency 

using Fe3O4-GG has been investigated by varying different factors such as the influence of pH, 

the initial concentration of dye, adsorbent dose and influence of contact time. Moreover, the 

adsorption procedure was studied with various adsorption isotherms (Langmuir, Freundlich, 

Temkin, Dubinin-Radushkevich, and Elovich isotherm). Among all isotherm model, Langmuir 

isotherm model is best fit for CR adsorption.  The CR dye adsorption limit was found to be, 

qm=60.24 mg/g. The dye adsorption rate follows the pseudo-second-order kinetic model.  

For the removal of inorganic contaminants, in the third project advancement of an efficient and 

cost-effective method for heavy metal removal from contaminated water utilizing Fe3O4-APTES-

EDTA nanocomposite, a productive reusable adsorbent, is explained in this study. The novel 

Fe3O4-APTES-EDTA nanocomposite was prepared by three-step process such as (a) firstly 

Fe3O4 nanoparticle was prepared by chemical co-precipitation method, (b) secondly, the silane 

coating on the surface of magnetic Fe3O4 cores using linking agent APTES was done which 

provide amino group (–NH2) for linking with the EDTA molecule and (c) finally, EDTA 

molecules functions as inclusion sites and a selective containers for trapping different heavy 

metal ions. Fe3O4-APTES-EDTAis found to be a good adsorbent for Pb
2+

, Cd
2+

, Ni
2+

, Co
2+

 and 

Cu
2+

 removal with a higher adsorption capacity. The maximum adsorption capacity of Pb
2+

, 

Cd
2+

, Ni
2+

, Co
2+

, Cu
2+

 are found to be 11.31, 13.88, 7.64, 4.86 and 78.67 mg/g, respectively. The 

adsorption and desorption cycle was studied for five cycles with minimal loss of efficiency. 

In the fourth project, amino silane magnetic nanocomposite decorated on graphene oxide (GO-

Fe3O4-APTES) was successfully prepared by organic transformation reaction followed by co-

precipitation method. GO-Fe3O4-APTES material was highly selective for Chromium (VI) 

removal from aqueous solution. About 91 % of Chromium (VI) was removed at pH 3, 160 rpm 

of shaking speed, 0.3 g/L of adsorbent dose and 10 hours of contact time. The adsorption process 

of Chromium (VI) on GO-Fe3O4-APTES follows Pseudo-second-order kinetic and Langmuir 

isotherm model because of the high correlation coefficient value (R
2
=0.99). The maximum 

adsorption capacity (qm) of GO-Fe3O4-APTES was observed at 60.53 mg/g. The synthesized 

material was desorbed with 0.5 M NaOH and recycled up to five cycles. After five cycles, the 

removal efficiency of chromium (VI) possesses high efficacy towards-Fe3O4-APTES. 

Mechanistically, adsorption of Chromium (VI) follows strong electrostatic attraction between 

adsorbate and adsorbent. GO-Fe3O4-APTES has potential adsorbent for the adsorption of 
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chromium (VI) in wastewater treatment. Furthermore, the Fe3O4-APTES were tested for 

antibacterial properties against gram-negative (Escherichia coli) and gram-positive (Bacillus 

subtilis) bacterial strain. The synthesized material responds positively towards antibacterial 

activity.     

Kew Words: Organic dye, Heavy metals, Antibacterial activity, Adsorption, Iron oxide 

nanoparticle, Nanocomposite materials. 
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Chapter 1 

Introduction 

 
Chapter summary 

In this chapter, we focused on the water contamination and its environmental effects followed 

by their purification process. The overall thesis emphasizes about inorganic and organic 

contaminants and the source of these contaminants along with and their effects on the health 

of aquatic life. Due to hazardous effect of these contaminants, it is necessary to remove them 

with the available methods. The various removal techniques are discussed in details using 

synthesized iron oxide-based nanocomposite. Furthermore, the antibacterial activity of 

synthesized iron oxide-based magnetic nanomaterials was thorley investigated. 

1.1 Research motivation 

The worldwide demand for freshwater is increasing due to population growth. Out of the total 

available water, 2.7 % is freshwater while remaining 97.3 % of water remains in ocean. This 

2.7 % freshwater was contributed by groundwater, river, lakes, polar, ice and glacier 

(distribution graph is presented in Fig. 1)[1]. In the current scenario, lots of industries are 

coming up to make our life simpler but we are missing ‘how to utilize the wastewater from 

the industries in better way’ and in addition to that, we are dispensing industrial effluents into 

the water bodies, which in later stage affect the drinking water sources[2]. Per day, around 2 

million tons of chemicals, industrial waste and agricultural wastes are being disposed into 

water system[3]. In literature, it has been reported that due to water-related contamination, 

every day more than 14000 people lose their life [4]. From literature survey we know that the 

higher percentage of diseases is caused by use of polluted water and around 500 children 

below the age of five die due to diarrhea only. According to Central Pollution and Control 

Board (CPPB) of India, 80 % of drinking water comes from river but half of the river in India 

is polluted and not suitable for drinking purposes. In India two rivers Ganga and Yamuna are 

now being added in the list of top 10 dirtiest rivers in the world [5]. Waste water contains 

several toxic contaminants like organic dyes, heavy metal ions, inorganic compounds, 

pesticides, pharmaceutical waste and many other complex compounds [6-8]. Among all toxic 

substances heavy metals and dyes are highly carcinogenic. Thus, it is necessary to prevent the 

harmful effects of toxic substances and keep the environment safe and improve the human 

living condition. The present work focuses on the novel synthesis of magnetic materials for 

remediation of water pollutants before discharging into water bodies.     
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Figure 1.1 Distribution of water bodies on Earth. 

1.2 Background of water pollution 

Environmental pollution is a serious problem because of developing technology and 

industrialization. It is the preamble of toxic or poisonous substances into the natural 

environment. The same can also be defined as the discharge of unwanted materials, overuse, 

misuse, and mismanagement of natural resources in the environment to fulfill the ever-

growing need and greed of human activities. The pollution levels are high in developed cities 

because of large population, which produces more contaminated water with inadequate waste 

management. Now, the time has come to implement necessary steps to address these 

environmental issues. The Environmental Protection Agency, scientific communities and 

countries across world are thinking about developing technology towards the eradication of 

environmental pollution. Environmental pollution arises at various levels; soil, water, air, 

radioactive, sound, thermal, light, etc. Every type of pollution has two sources of occurrence; 

the non-point and point sources. The non-point sources are hard to control, whereas the point 

sources are easy to identify, monitor and control. Among all environmental pollutions, water 

pollution is of greater interest, as water is the backbone of life and pure water is the elixir of 
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life. Furthermore, water is universal liquid and it is equally essential for all living organisms 

on Earth. Water pollution affects surface water such as lakes, rivers, and oceans. Polluted 

water is analyzed for the presence of chemical, physical and biological substances that 

interfere with the quality of water and renders it unsuitable for drinking purpose. We know 

that freshwater is colorless, odorless and transparent but the symptoms of polluted water are 

basically bad taste or smell. However, some water pollutants are invisible and have no smell 

or taste such as chemicals like’s pesticides and pathogenic micro-organism are mixed with 

freshwater but at later stage it affects living organism. We can’t use contaminated water for 

drinking, washing or agriculture purpose because it can affect our body in various ways, 

depending on the concentration and type of pollutant. For biological pollutants main groups 

are bacteria, viruses and protozoa are affecting the freshwater. Chemically, water pollution is 

due to heavy metals, pesticides, colouring substances, organic chemicals, fertilizers etc. Some 

major water pollutants and their sources are shown in Table1.1. 

Table1.1 Major water pollutants and its sources. 

Category Pollutants Sources 

Organic  Dyes, pesticides, plastic, phenol and it's 

derivative,  detergents, oil, gasoline, 

etc. 

Industries, sewage, agriculture, 

household 

Inorganic heavy metals, salts, fluoride, nitrate, 

sulphate, etc. 

Industrial effluents, household, 

surface runoff, agriculture, 

sewage 

Bio Bacteria, viruses, parasites, etc.  Sewage, pharmaceuticals, human 

and animal excreta 

Radioactive 

materials  

Uranium, thorium, cesium, iodine, 

radon, etc. 

Mining and processing of ores 

power plant, weapons 

production, natural resources.  

 

1.3 Inorganic pollutant in water and its sources 

The inorganic contamination present in water bodies creates a serious environmental concern 

in current time. Among inorganic pollutant, heavy metals, trace elements, acids, inorganic 

salts, cyanide, sulphate, etc. have gained attention, due to their toxic nature. These are non-

biodegradable and hence persist in environment for longer time period. The major sources of 

inorganic pollutant released into environmental segment are domestic and agricultural wastes 

along with industrial effluent. The most toxic common inorganic pollutants are discussed 

below. 
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Metals: The amount of metal present in water depends on the sources of water. The 

concentration of various metals depends on the type of mining units, industrial units, and 

agricultural practices. Heavy metals are metallic element having comparatively high specific 

gravity and high density, almost five times greater than the specific gravity of water[9, 10]. 

The list of toxic heavy metals includes Mercury (specific gravity 13.54), Arsenic (5.7), 

Chromium (7.19), Cadmium (8.65), Zinc (7.13), Cobalt (8.74), Nickel (8.8), Lead (11.35) 

and Iron (7.9), etc.[11, 12] These toxic inorganic metals are divided into three categories such 

as precious metals (like Pt, Au, Ag, Pd, Ru, etc.), radioactive metals (like Th, U, Am, Ra, 

etc.) and carcinogenic metals (As, Hg, Cr, Zn, Co, Ni, Cu, Cd etc.). Heavy metals enter into 

our body via drinking water, air, and food. Some metals like selenium, copper, and zinc are 

important in trace quantities to maintain the vital metabolic processes in humans; however if 

the concentration increases it shows reverse effect on living organism.  

Fluorides: Fluorine is the most reactive and highly electronegative element in the periodic 

table. Fluorides originate from different minerals like fluorspar (CaF2), Fluorapatite 

(Ca5(PO4)3F) sellaite (MgF2) and cryolite (Na3AlF6). They are basically found in rocks, soil, 

plants, animals and human beings. Many industries such as ceramic production, brick and 

iron factories, electroplating, aluminum, smelters, semiconductor manufacturing, and 

beryllium extraction plants are highly responsible for fluorides contamination in surface 

water[13]. Almost, 10 to 1000 mg/L of fluoride contaminants are present in industrial 

wastewater. According to WHO guideline, 1.5 mg/L is the permissible limit of fluoride in 

drinking water, it exceeds the limit, then it is harmful to live organisms. It is reported that 

more than 200 million people consume drinking water with fluoride concentration beyond the 

permissible limit[14]. Fluoride contamination creates multiple effects on human health 

including arthritis, mottling of teeth, neurological disorder, embrittlement of bones, thyroid 

disorder, and it also interferes with DNA synthesis, gastro-intestinal tract, carbohydrates, 

lipids, vitamins, proteins and mineral metabolism[15].  

Sulfate: It is another inorganic pollutant present in water that is caused as a result of leaching 

from sulfur deposits in Earth’s crust and other human activities. The permissible limit of 

sulfate in drinking water is 250 mg/L.  

Nitrate: Nitrate pollutant enters the water via fertilizers and from human or animal wastes. 

The concentration level of nitrate in drinking water is 45 mg/L. Beyond the permissible limit 

it causes methemoglobinemia (blue baby disease)[16]. Table 1.2 shows widely observed 

toxic inorganic pollutant and their permissible limit[17]. 
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Table 1.2 The maximum contamination levels of toxic inorganic pollutants.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Inorganic contaminants mainly arise from the industrial effluent discharged by industries 

dealing with electronic equipment manufacturing, electroplating, and chemical processing 

plants. Figure 1.3 represents some of the common industrial units releasing toxic metal ions 

into water.  

Paper mills and Fertilizer industries are release effluents such as various cyanides, ammonia, 

alkalies, and heavy metals into the water bodies[18]. Additionally, the considerable amount 

of heavy metal ions is originated from wastewater of various dyes and pigment industries, 

metal cleaning, galvanometry, leather and mining industries, which further improve the 

environmental contamination. A different inorganic pollutant and their sources are 

represented in Table 1.3. Among all represented inorganic pollutant arsenic, lead. chromium, 

mercury, cobalt, Nickel, copper are extremely carcinogenic heavy metals of widespread use 

in many industries. In current time, heavy metal pollution is important issue towards 

ecological consequence. 

1.3.1 Health hazardous of inorganic pollutants. 

Elements such as iron, copper, cobalt, manganese, zinc, and molybdenum play a key role in 

living organism. However, they are toxic at higher concentration. Inorganic contaminants are 

Heavy metals Water permissible limits (mg/L) 

Arsenic 0.010 

Mercury 0.002 

Chromium 0.100 

Nickel 0.100 

Cobalt 0.002 

Thallium 0.002 

Nitrate 1.000 

Cyanide 0.200 

Barium 2.000 

Beryllium 0.004 

Antimony 0.006 

Fluoride 1.500 

Asbestos 0.010 

Nitrite 1.000 

Selenium 0.050 



 

6 
 

non-biodegradable so it can easily enter into the bodies because of their high solubility in 

water and later stage it creates health problem in living system[19-21]. Some toxic metals and 

their impacts are summarized in the Table 1.4. Excessive consumption of heavy metal 

contaminants creates a number of illness such as kidney damage, liver damage, brain 

disorders, diarrhea, lungs damage, nausea, renal dysfunctions, damaged central nervous 

system and cancer[22]. Thus, it is important to control metal-contaminated effluents before 

they are discharged into aquatic systems[23].       

Figure 1.2 Sources of water pollution (Graphic Courtesy: Central Pollution Control Board 

India) 

1.3.2 Removal methods available for inorganic contaminants from water 

Several removal methods have been reported to reduce the load of inorganic contaminants 

present in water and to make it suitable for human use and consumption. The important 

methods and techniques employed are reverse osmosis, ion-exchange, chemical precipitation, 

bio-sorption, coagulation and flocculation, phytoremediation, adsorption, etc.[24]. The 

general criteria of all the techniques are described briefly.   

1.3.2.1 Reverse osmosis process 

In reverse osmosis (RO), the solute molecules are separated from solution through a semi-

permeable membrane using pressure, which retains the solute on one side while the solvent 

molecules are passed to the other side (Figure. 1.3)[25]. The semi-permeable membranes are 
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generally based on synthetic and natural polymers (polysulfone, polyamide, cellulose, 

cellulose acetate, etc.). For removal of inorganic pollutants, reverse osmosis process is 

considered as potential technique where the pollutants are separated by semi-permeable 

membrane at a high pressure (i.e. greater than osmotic pressure) caused by the solutes present 

in polluted water. RO is one of the most useful methods for water purification, it has some 

limitations like cost-effectiveness, drinking water obtained after reverse osmosis treatment is 

devoid of useful minerals, membranes are clogged after prolonged use and, hence, it requires 

periodical replacement.  

Table 1.3 Common sources releasing inorganic contaminants into water 

Contaminates Sources 

Arsenic Automobile exhaust/industrial dust, wood preservatives, dyes, etc. 

Lead Petrol based materials, leaded gasoline, pesticides, mobile batteries, etc.  

Chromium Electroplating industry petrol refining, textile manufacturing, leather, 

tanning, pulp processing unit, etc. 

Cadmium Batteries, pesticides, electroplating industries, polyvinyl, copper refineries, 

phosphate fertilizers, paint pigments, detergents, refining petroleum 

products, etc.    

Mercury Electric/Light bulb, leather, tanning, wood preservatives, thermometers, 

ointments, paint, etc. 

Cobalt the power plant, nuclear reactor, etc 

Nickel Batteries, electroplating industries, etc. 

Copper Waste incinerators, coal-fired power stations, sewage treatment process, 

metal production, agricultural chemicals, etc. 

Fluorides Semiconductor processing, pharmaceuticals, ceramic production, fluoride  

 

1.3.2.2 Ion-exchange  

The ion-exchange process involves the reversible chemical reactions for removal of inorganic 

contaminants from wastewater by replacing them with other similarly charged ions[26]. 

Some positively and negatively charged inorganic pollutants are exchanged with ions held by 

electrostatic forces on the exchange resin (Figure 1.4). Ion-exchange resins are very small 

polymer matrix. Based on their functional groups attached on polymer matrix, the ion 

exchange resins are classified as two types such as cation and anion exchange resins. In a 

cation exchange process, positively charged pollutants are replaced with positively charged 

ion-exchange resin surface. Similarly, in anion-exchange process, negatively charged 
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pollutants are replaced with negatively charged ion-exchange matrix. Typically, the exchange 

medium consists of solute phase (synthetic resin or zeolites) having a transportable ion 

attached to an immovable functional of base or acid group. Transportable ions are exchanged 

with solid ions having greater attraction towards functional group. Inorganic pollutants like 

mercury, chromium, arsenic, nitrate, etc. can be removed by anion resins.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.3 Schematic illustration of the removal of inorganic water contaminates by reverse 

osmosis process. (Graphic Courtesy: Water products) 

Advantages of ion exchange process include easy removal of contaminants (anions and 

cations) from wastewater, recovery of materials from industrial waste, capability to handle 

hazardous wastes, etc. However, the limitations are ion-exchange resin cannot for the diet 

requiring low sodium intake because ion-exchange resin-treated water that contains sodium, 

it cannot remove biological pollutants and organic compound, high cost and partial removal 

of certain ions.         

1.3.2.3 Chemical precipitation 

Chemical precipitation technique is widely used for separation of inorganic contaminants 

from wastewater. In this process some precipitant such as lime, alum, iron salts and other 

organic polymers are converted to soluble carcinogenic ions and transferred as insoluble solid 

phase[27]. However, the treated contaminated water is unable to meet the permissible limit 

for inorganic pollutants for drinking purpose as per different agencies like US EPA, WHO, 



 

9 
 

etc. Thus, it is necessary for subsequent treatments using different physio-chemical process to 

improve the quality of drinking water by remembering the precipitate which produces the 

greater amount of sludge containing harmful compounds, which make it unsuitable for 

wastewater treatment.    

Table 1.4 List of some inorganic contaminants and their health problems. 

Inorganic contaminants Diseases 

Arsenic Gastrointestinal upsets, dermatitis, muscle cramps, , bronchitis, 

convulsions, etc. 

Lead Acute or chronic damage to the nervous system, effects on the 

kidneys, anemia, gastrointestinal tract, joints and reproductive system, 

weight loss, headache, fatigue, cognitive dysfunction and decreased 

coordination, nerve conductions, memory loss, etc. 

Cadmium Renal dysfunction, Hypertension or high blood pressure, lung cancer, 

lung disease, osteomalacia, liver damage,  osteoporosis, shortened 

lifespan, etc. 

Mercury Depression, anxiety, confusion, irritability, fatigue, insecurity, etc. 

Chromium Eye irritation, asthma, liver damage, perforated eardrums, respiratory 

irritation, edema, pulmonary congestion, upper abdominal pain, 

respiratory cancer, nose irritation, etc.   

Cobalt Effects on the lungs, including asthma, pneumonia, and wheezing. 

Nickel Dermatitis (a type of skin rash), hand eczema, effects in their blood 

(increased red blood cells), kidneys (increased protein in the urine), 

chronic bronchitis, reduced lung function, and lung cancer and nasal 

sinus 

Copper Nausea, diarrhea, Brain damage, chest pain, irritation of the 

respiratory tract and kidney problem, etc.   

Fluorides Thyroid, dementia, dental, diabetes, skeletal and sometimes 

neurological disorder etc.  

 

1.3.2.4 Bio-sorption 

The bio-sorption process involves the use of biological systems such as bacteria, algae, 

yeasts, and fungi to accumulate inorganic pollutants from contaminated water through 

Physico-chemical pathways[28, 29]. The limitation of bio-sorption process is longer time for 

removal of waste from contaminated water.   
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Figure 1.4 Removal of inorganic contaminates using ion-exchange process. 

1.3.2.5 Coagulation and flocculation  

Coagulation and flocculation are physical techniques used to purify contaminated water. The 

method includes filtration followed by sedimentation to separate inorganic pollutant from 

wastewater (Figure 1.5)[30-32]. Coagulation is a chemical process and flocculation is a 

physical process; however, coagulation involves the neutralization of charge while 

flocculation does not involve any such process. Many coagulants such as iron and aluminum 

salts are widely used in wastewater treatment. This removal technique is effective for 

inorganic impurities by charge neutralization of particles. This method has two major 

limitations like continuous supply of huge chemicals and operational cost is too high. 

1.3.2.6 Phytoremediation 

Phytoremediation is an environmentally friendly media that uses living plants to separate 

pollutants from water sources as shown in (Figure 1.6)[33, 34]. Though, it is a greener way to 

remove inorganic pollutants from wastewater. Two major limitations of this process involve 

longer time for removal of inorganic pollutants and regeneration of the plants for further use. 

1.3.2.7 Adsorption 

The adsorption process is a prominent technique for removal of inorganic pollutants from 

contaminated water. In this process, solid phase is used as adsorbent to separate solid from 

aqueous phase (Figure 1.7)[23, 35-37].  The substance which adsorbs the solid medium is 

called adsorbate and on which it is being adsorbed is called adsorbent. Among all removal 

processes, adsorption is prominent due to low cost, no sludge formation, high removal 

efficiency, simple to handle and safe operation. In this process, the adsorbent can recycle by 

suitable desorption process for re-use. Some parameters affect the adsorption process such as 
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type of adsorbent and adsorbate, amount of adsorbent, initial adsorbate concentration, 

temperature, pH of the solution and other impurities in the solution. The parameters which 

affect the removal efficiency of inorganic pollutants can be optimized for the best 

performance. The adsorbate attaches onto the adsorbent surface via two different ways such 

as physical adsorption (physisorption) and chemical adsorption (chemisorption) 

 

 

. 

 

 

 

 

Figure 1.5 Coagulation process for removal of inorganic contaminants.  

 
 

 

 

 

 

 

 

Figure 1.6 Phytoremediation process for removal of inorganic contaminants. (Graphic 

Courtesy: National Institute for Biotechnology and Genetic Engineering) 

 

In the physisorption process, weak Vander wall interaction occurs between adsorbate and 

adsorbent surface. Depending upon the nature of adsorbent, the adsorbent surface is 

monolayer or multilayer. Physisorption is a very fast process that means interaction between  
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adsorbent and adsorbate requires very less activation energy i.e. 5-20 kJ/mol[38]. In 

chemisorption process, a strong chemical bond or strong force of attraction is involved 

between adsorbate and adsorbent. The strong chemical bonding is due to electrostatic 

interaction, ion exchange, chelation, complex formation, etc. Here, high amount of energy 

(i.e. 40-400 kJ/mole) is required to break the chemical bond between adsorbate and adsorbent 

surface. 

1.3.3 Materials available for removal of inorganic contaminants 

Adsorbents play an important role in the removal of inorganic contaminants. Some of 

materials such as zeolite, activated carbon, activated alumina, metal oxide, iron oxide, silica, 

clay, etc. have been already reported as an adsorbent for removing inorganic 

contaminants[39-45]. However, the adsorbent used in heavy metal removal depends on 

various parameters such as selectivity, adsorption capacity, non-toxicity, adsorption kinetics 

reusability and regeneration, and low operational cost. The preparation of adsorbents is an 

interesting research field to explore. Looking towards the advantages of adsorption processes 

the nanocomposite based adsorbents are in demand because of their uniform pore size 

distribution, high surface area, high pore volume, high thermal stability, and mechanistic 

properties.     

1.4 Organic pollutant in water    

In water pollution, organic contaminants are playing a vital role as inorganic contaminates.  

Most of the organic pollutants include pesticides, and plant and animal tissues, and are 

usually expected to cause adverse impact on the environment. The trace amount of organic 

contaminant found in water, soil, air, and sometimes in food, which might cause various type 

of environmental problem[46]. The list of organic pollutants includes different dyes such as 

Congo red, malachite green, methyl blue, methyl orange, Rhodamin B, Eriochrome black T, 

etc., and aliphatic compounds (trichloroethylene, chloroform, etc.), chlorinated aromatic 

(chlorobenzene, dichlorobenzene, 4-chlorophenol, etc.), organic solvents and pesticides. Due 

to their vast use, endocrine disruptors (like bisphenol A, atrazine), pharmaceuticals (like 

ibuprofen, flumequine, carbamazepine), synthetic musk and fragrances (like musk xylene and 

galactoside), personal care products (like oxybenzone and parabens), dyes (Congo red, 

malachite green, safranin-O and methylene blue),pesticides (like isoproturon and endosulfan) 

and other toxic substances are found in larger amount in contaminated drinking water and 

surface water[47-49]. Among all substances, most of them are used in our daily life; it is 

difficult to eliminate them. However, it is necessary to control completely, so it is required to 

remove through chemical/physical/mechanical or other processes.  
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1.4.1 Sources of organic contaminants 

There are several ways through which organic pollutants enter into the aquatic systems[50, 

51]. The sources are summarized below: 

 Impurities from wood preservatives 

 Incomplete combustion of fossil fuels. 

 Organic dyes discharged from textile industries. 

 Waste products from cooking food that is discharged from domestic sources. 

 Compounds mobilized by volatilization from the soil. 

 Contaminants discharge from industrial/domestic process. 

 Residues from detergents. 

 Compounds from antibiotics, pharmaceuticals, synthetic steroids, and hormones.  

 Solvents, flame retardants  

 Compounds from the various above groups with endocrine-disrupting potential. 

1.4.2 Health Hazard 

In the current scenario, the environmental effect due to organic contaminants received greater 

attention from researchers worldwide. The contamination of the aquatic life has become an 

important concern because contaminated water creates multiple diseases among aquatic 

animals. Many studies revealed the abnormalities observed in aquatic organisms like 

abnormal ratio of testosterone and estrogen in juvenile alligators and disturb the reproductive 

tissues, sexual abnormalities in fish, etc[52-55].  

1.4.3 Removal technique available for organic contaminants  

There are several techniques available for the treatment of contaminated water. They include 

biological, physical and chemical processes. Most of the removal methods have both 

advantages and disadvantages. A number of processes are not considered for large scale 

purification owing to their high cost, secondary toxic side products, and sludge disposal 

problems, etc. There are several physio-chemical methods available such as filtration, 

electrocoagulation, photocatalytic degradation, ion-exchange, adsorption, membrane 

separation are being used to treat[56, 57]. All removal processes are simple yet they possess 

some limitations like high cost, low removal efficiency, huge amount of sludge production, 

making these removal processes are unsuitable for treating the contaminated water. However, 

a brief description and limitations associated with each physio-chemical processes are 

described below.  

1.4.3.1 Electrocoagulation process 
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Electrocoagulation is an electrochemical method developed for contaminated water 

treatment. It is a simple and reliable process to separate organic pollutants from contaminated 

water[58-62]. In this process a direct current is applied between metal electrodes immersed in 

contaminated water. The metal electrode is made up of aluminum or iron. Electrocoagulation 

process passes through several consecutive steps such as removal of colloidal pollutants on 

coagulants or removal of suspended particles, electrolytic reaction at metal electrode 

surfaces, and formation of wide range of coagulated species in an aqueous phase, which 

further adsorb by flotation or sedimentation process.   

1.4.3.2 Adsorption 

The adsorption process is a prominent method for purifying the contaminated water and 

produces pollutant-free water by removing various kinds of organic contaminants [63-67]. 

This process is economically feasible, effective, eco-friendly and simple to operate. This 

process is advantageous in terms of its hydrophobic interactions for adsorbing organic 

contaminates, especially non-polar contaminants. The efficiency of nano adsorbents is 

usually limited by the active sites, surface area, the lack of selectivity, and the adsorption 

kinetics. Due to lack of advantages, adsorption process is best method for removing both 

organic and inorganic contaminants in wastewater.  

1.4.3.3 Photocatalytic degradation 

Photocatalytic degradation is the advance oxidation method for degradation of organic 

contaminants in wastewater. In photocatalytic degradation, the light energy or photons is to 

create hole (h
+
) and electrons (e

-
), which play a part in redox reactions to degrade the organic 

pollutants[68-70]. This process has some limitations like high temperature, formation of by-

products, long-time period, etc.   

1.4.4 Materials available for removal of organic contaminants 
The removal process is widely used for the treatment of wastewater from organic 

contaminants and received attention from the researchers. In current years, various low-cost 

adsorbents agricultural waste, natural materials, industrial waste, clay minerals, fly ash, metal 

hydroxide sludge, wood powder, etc are available but they have some limitations like 

contaminated binding sites[71-79]. One of the key driving forces for the use of nanoparticle 

in the removal of organic contaminants is its unique physicochemical properties as compared 

to bulk materials. Most of the researchers have great interest to prepare different types of 

activated carbon, metal oxide and graphene-based adsorbents for the removal of organic 

contaminants. A significant volume of researchers showed the inhibition of the aggregation 

produced by highly active nanoparticles. In this direction, the blending of porous 
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nanoparticles and nanocomposites are interesting areas in the field of wastewater treatments. 

The following section deals with bare metal oxide and its functionalization along with its 

synthesis techniques.  

1.5 Bacteria in water pollution 

Water pollution is not only restricted to chemical contamination but also to different 

microorganism and pathogens, which are also capable of polluting the water. A variety of 

sources can contribute to the contamination of water, bacteria is one of them. Biological 

sources of pollution are the crucial components of water pollution[80]. A small amount of 

bacterial contaminants is enough to pollute the entire water body and to make it unhygienic 

for human health.Water contamination by bacteria is a global health issue [81] which leads to 

different water-borne disease like meningitis, hepatitis, gastroenteritis, dysentery, and 

salmonellosis[82].Coliform bacteria (E.coli) is the marker organism to detect the fecal 

contamination of potable water[83]. Presence of E.coli in water indicates the fecal 

contamination[84].E.coli is the extraintestinal pathogenic bacteria which may found in the 

drinking water system due to contamination of water resources[85]. Some other coli form 

bacteria include the member of genera Escherichia, Klebsiella, Enterobacter, and 

Citrobacter.Bacillus subtilis as a water-polluting microorganism was identified in the tap 

water[86].It shows resistance to chromium and sensitive to silver, cadmium, and 

mercury[86]. The presence of B. subtilis is also identified in the surface water in the rivers 

and drinking water sources[87]. Most common treatment method available so far to remove 

bacillus spores are chlorination and filtration.These spores can also be removed by using the 

bipolar electrochemical method [88]. Micrococcus luteus is present in dust, soil, water and as 

human skin flora. Apart from these three bacteria other different micropollutants and 

cyanobacteria are found to be a threat to human health by contaminating drinking water [89]. 

To remove the bacteria from polluted water there is number of techniques which is being 

used are oxidation process, chemical precipitation, filtration, adsorption, and UV irradiation, 

etc[90]Besides these strategies, several nanocomposites material has been discovered which 

have propensity to kill E.coli, B.subtilis and M. luteus.These nanocomposites material are 

implemented in water treatment, for example, micro/mesoporous nanomaterial[91], 

polyoxometalate-modified magnetic nanocomposites material [92], Iron oxide 

nanomaterial[93], biogenic nanomaterial[94], polymer/carbon nanotubes mixed matrix 

membrane[95], charged cellulose nanocrystal[96], mesoporous carbon-based enzyme 

biocatalyst [97], graphene oxide [98], magnetic graphene-based material [99], graphene 

polysulfone mixed matrix[100] and magnetic nanoparticles [101] are already investigated for 

the treatment of water. 
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1.5.1 Nanocomposite material in water purification and its impact on bacteria 

Nanocomposite material with magnetic properties acts as an adsorbent for the removal of the 

different microbial organism. It alters the structure of bacterial cell membrane and sometimes 

it causes the leakage of cytoplasmic contents. It has unique property to inactivate the bacteria. 

These materials are bacteriostatic as well as bactericidal in nature depend on surface 

modification. Graphene-based nanocomposite materials have monolayer of closely packed 

carbon atom which inhibits the growth of microorganism like (E. coli and B. subtilis). 

Bacterial cells eventually died over a period of time when it comes in contact with graphene-

based materials. Three common mechanisms have been identified which causes bacterial 

death such as bacterial membrane stress, oxidative stress and leakage of cytoplasmic contents 

[102]. The most probable mechanism behind the bacterial death is the physical contact of thin 

sheet of graphene (having sharp edge), which pierce the bacterial cell membrane[103] and 

causes the loss in cell membrane integrity. Nanofabrication of graphene-based material with 

iron oxide enhances its propensity to kill the bacteria. Further the oxidative stress on bacteria 

causes the oxidation of lipid, protein and nucleic acid contents and it induces the cell 

membrane destruction and inhibition of cellular growth. Including all these, the generation of 

hydroxyl radicals, superoxide radicals, peroxide radicals and reactive oxygen species disrupt 

the cellular components in bacteria. 

1.6 Background on Nanomaterials 

Nanomaterials include the study of chemical substances or materials with very small scale i.e. 

approximately 1-100 nm[104]. At these sizes, nanomaterials can show unique behaviors 

based on sub-domain (overlapping double layer in fluids and superparamagnetism) or 

quantum phenomena (quantum entanglement, near field-optical methods, electron 

confinement ballistic transport and electron tunneling)[105]. In current scenario, 

nanomaterials considered as one of the advances and interdisciplinary research area in 

bioscience, material engineering, chemistry, physics[106]. Nanomaterials permit unique 

chemical, physical, mechanical, electrical and optical properties to provide wide range as 

compared to conventional materials. Nanomaterials basically used in commercially purpose 

such as drug carries, photocatalysts, fillers, semiconductors, cosmetics, adsorbents, catalysts, 

microelectronics, storage of hydrogen, antifriction coating, energy storage, and much other 

application [107, 108]. Furthermore, nanomaterials have multiple applications in various 

research fields like treatment of wastewater, sensing, and energy production. From literature 

study, we know how the novel nanomaterials can used to address the major wastewater 

treatment[109].  
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In past decades, most of the researcher focused on theoretical and experimental approaches of 

novel synthesis, characterization, and application of various inorganic nanostructures like 

nanocomposite materials, ceramics and metal oxides that have resulted in mature and 

multidisciplinary research field. Among different inorganic nanoparticles, metal oxide has 

very much attention from science and engineering point of view. Duo to the small size and 

higher density, metal oxide nanomaterials demonstrate unique physical and chemical 

properties[110]. Metal oxide has a large application in different fields such as wastewater 

treatment like adsorption and degradation, sensors and catalysis[111].  

1.6.1 Metal Oxide Nanomaterials 

The metal oxide is shown to have several structural geometries with an electronic structure 

with metallic, insulator or semiconductor character because metals are formed various type of 

oxide compounds. Metal oxide has various properties like fuel cells, photoelectrochemical, 

mechanical, magnetic, optical, thermal, optoelectronic, electrochemical, and catalytic 

properties[112]. Metal oxides are small scale nanomaterials, which increase the surface area 

to volume ratio and enhance novel properties, compare to other bulk materials[113]. 

However, metal oxide nanoparticles have been in wide application towards wastewater 

treatment. Some of the metal oxides such as magnesium oxide (MnO2), copper oxide (CuO), 

zirconium oxide (ZrO2), cerium oxide (CeO2), iron oxide (Fe2O3, Fe3O4) and titanium oxide 

(TiO2) have been widely used in waste water treatment and many other purpose.  

1.6.1.1 Iron oxide nanoparticles 

In the current scenario, most of the researcher attracted towards iron oxide nanoparticles  

because of its excellent magnetic character, high surface area compare to volume ratio,  

excellent multivalent oxidation state, character, easy separation from aqueous solution using 

external magnetic field, small size, comparatively low cost, low toxicity and environmental 

friendly nature[114, 115]. The iron oxide has different phases in nature including oxides, 

hydroxides, and oxy-hydroxides. Most of them are FeO, Fe3O4, Fe4O5, Fe4O3, Fe(OH)3, 

FeOOH, polymorphs of Fe2O3 (α-Fe2O3, and γ-Fe2O3) and so on. Among various phases of 

iron oxide, three main phases such as hematite (α-Fe2O3), maghemite (γ-Fe2O3) and 

magnetite (Fe3O4) are charming interest due to their electrical, optical, magnetic properties. 

These phases are practically applicable in optical devices, gas sensing, color imaging, 

magnetic strong media, ferrofluid technology, magnetocaloric refrigerant and drinking water 

treatment [116-118].  Under ambient condition, hematite (α-Fe2O3) possesses stable iron 

oxide but it shows weak magnetic properties or antiferromagnetic in nature because of its n-

type semiconducting properties due to its bandgap 2.3 eV. Hematite has rhombohedral 
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structure, which is the most common form and basically apply in photocatalyst which can 

driven by visible light up to 600 nm[119, 120]. Maghemite (γ-Fe2O3) show magnetic 

properties in all conditions and possess cubic structure with bandgap 2.0 eV[121]. Meghemite 

has large application in the field of electronic devices, fabrication of biocompatible magnetic 

fluids, magnetic resonance imaging, and magnetic recording media. The γ-Fe2O3has 211/3 

Fe
3+

 ions, 32 O
2-

 ions and 21/3 vacancy sites are present. Magnetite (Fe3O4) assumes to have 

cubic spinel structure and exists in two oxidation states with a stoichiometric ratio of Fe
2+

 and 

Fe
3+ 

is 1/2 and hence, shows very interesting properties. Fe3O4 can act as both p-type and n-

type semiconductor with band gap 0.1 eV.  The Fe3O4 have lot of impact on water 

remediation like easy and fast production, high adsorption capacity, easy separation, rapid 

uptake, etc.[122]. The separation of Fe3O4 in aqueous solution is easy by external magnetic 

field after adsorption of toxic substance [123-126]. Therefore, most of the researcher use 

Fe3O4 for removal of inorganic and organic contaminants from wastewater.   

1.6.1.2 Iron oxide based composite materials  

Iron oxide functionalized materials have been found to exhibit unique physicochemical 

properties suitable for many applications such as adsorbent for removal of inorganic and 

organic contaminants, catalyst, magnetic-optical materials, biomedical, sensors, and much 

more application. Compared to bare iron oxide, functionalized iron oxide nanocomposite are 

potential materials towards removal of inorganic and organic contaminants from 

wastewater[127]. Iron oxide has some limitations like low adsorption capacity, slow kinetics, 

and leaching problem in low pH. Therefore, current research has modified some chief, non-

toxic and environmental friendly material on the surface of iron oxide and to make ideal 

adsorbent[128]. This modification is due to increase the active sites of adsorbent and the 

active sites used for high adsorption capacity towards water contamination. 

1.6.1.3 Synthesis route of iron oxide nanoparticles 

The iron oxide nanoparticles are prepared by different physical-chemical and biological 

processes. Among three processes, chemical process is excellent because of bulk material is 

formed with tunable sizes, shapes and desire morphology with effective scientific properties. 

During the synthesis, the researcher always tries to preparer suitable size of monodisperse 

particles not only in experimental condition but also in the purification step likes 

ultracentrifugation, filtration and size exclusion chromatography. So the prepared 

nanoparticles are not containing any homogeneous composition and thereby, increase its 

potential[129]. There are several synthetic methods of iron oxide are available such as 

precipitation, hydrothermal, microemulsion, electrochemical process, sonochemical 
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synthesis, sol-gel method, laser pyrolysis and thermal decomposition process[130-136]. In 

our study we have followed precipitation methods for synthesis of iron oxide nanoparticles 

because of simple operation, large scale production, less time to prepare and good yield. Brief 

description of chemical co-precipitation of iron oxide is as follows.  

1.6.1.4 Precipitation method        

Precipitation method is the simplest way of iron oxide nanoparticles preparation, which 

attracts significant, interest in industries because of inexpensive and cost-effective, 

temperature and bulk production. In precipitation method, precipitation of solids from a 

solution with metal ions is required to pH adjustment. Particle size, shape, and crystallinity of 

the nanoparticles depend on the reaction kinetics. The various parameters are involved in 

precipitation method such as temperature, concentration, the pH of the solution, the mixing 

process and adding of the reactants[137],which can affect the efficiency spherical iron oxide 

(Fe3O4) nanoparticles synthesized by precipitation method using ferrous (Fe
2+

) and ferric 

(Fe
3+)

 ions as a precursor, NH4OH as a precipitation agent and temperature should maintain 

in between 60-100ºC[138]. The successful synthesis of iron oxide follows washing with 

ethanol and distilled water[138]. 

1.6.1.5 Characterization techniques 

Basic techniques such as FT-IR, X-ray photoelectron microscopy, atomic force microscopy 

(AFM), XRD, TEM, FE-SEM, and VSM are used to confirm the formation of Iron oxide 

nanoparticles[139]. Ghoshet al. and the co-workers synthesized magnetite Fe3O4 core-shell 

nanostructure through aqueous route via co-precipitation method[140]. In this synthetic 

method they varied different temperatures but kept the precursor concentration constant. 

They characterized using TEM analysis and found high crystalline spherical magnetite 

particles in the size 8.2-12.5 nm range (Figure 1.7).  Deng et al. synthesized iron oxide in 

magnetite phase by forced hydrolysis method, controlling the oxidation with a nitrogen 

atmosphere. They reported approximately diameter 15 nm and characterized by XRD and 

Mossbauer spectroscopy techniques[141].From XRD analysis, they got 7 intense peaks at 

around 25-70 ºC (Figure 1.8). Since the XRD patterns of magnetite and maghemite have very 

similar, they performed Mossbauer spectroscopy technique to distinguish the oxidation state 

of iron as magnetite contain Fe
+2

 oxidation state and maghemite contain Fe
+2

 and Fe
+3

 

oxidation states. The obtained Mossbauer spectrum data were fitted into two sextets patterns 

corresponding to the Fe
+3

 tetrahedral and octahedral site of iron (Fe
+2

 and Fe
+3

) (hyperfine 

field were 433.6 KOe and 471.3 KOe finally), which corroborates the presence of magnetite. The 

sextets with quadruple splitting, hyperfine field, and isomer shift of one are 0.019 mm/s, 433.6 KOe, 
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and 0.317 mm/s respectively, and the other 0.001 mm/s, 471.3 T, and 0.228 mm/s relative to the iron 

metal, suggesting the existence of two iron with different oxidation states considered as ferrimagnetic 

magnetite (Figure 1.9).  

 

 

 

 

 

 

 

 

 

 

Figure 1.7 TEM image of magnetite (Fe3O4) nanoparticles at different temperature (A) 90 ºC 

with its SAED pattern (B) 75 ºC (C) 33 ºC (D) HR-TEM of 33ºC (Ghosh et al. 2014). 

 

 

 

 

 

 

 

 

 

Figure 1.8 XRD pattern of magnetite nanoparticles (Compeán-Jasso et al., 2008). 
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Figure 1.9 Mossbauer spectrum of magnetite (Compeán-Jasso et al., 2008). 

1.7 Research gap 

At the start of my research work, there was no report on the use of carbohydrate, amino acid, 

and chelating ligand functionalize magnetic nanocomposites for wastewater treatment.  

Though several nanocomposites are investigated for the adsorption of heavy metals and 

organic dyes contaminates, most of them are carcinogenic in nature, less efficient, expensive, 

long time duration, and separation process is too difficult in aqueous solution. In this 

direction number of functionalized materials are invented and use in wastewater treatment. 

However, the carbohydrate, amino acid, and chelating ligand functionalize magnetic 

nanocomposites has not been in detail study for wastewater treatment. So there is a 

knowledge gap existing in this field. Moreover, antibacterial activity has drawn a little 

attention.  

1.8 Research objective 

Keeping the above-mentioned facts in mind, we have tried to develop some functionalized 

novel magnetic adsorbent for wastewater treatment. The main objective of research work is 

as follows: 

1. To synthesize iron oxide nanoparticles via chemical co-precipitation method. 
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2. To synthesize potential adsorbent with active groups like amino acid (Tryptophan), 

carbohydrate (guar-gum), chelating ligand (EDTA) and amino silane (APTES) 

functionalization on the surface of iron oxide nanoparticles. 

3. To characterize the above nanocomposite using techniques such as FT-IR, XRD, FE-

SEM, TEM, Raman spectroscopy, VSM, N2 adsorption-desorption isotherm, Zeta-

potential, UV-visible spectroscopy.  

4. To study the environmental application for heavy metals (Pb
2+

, Cd
2+

, Ni
2+

, Co
2+

, Cr
+6,

 

and Cu
2+

) and organic dye (Congo red) removal from contaminated water. 

5. To check the anti-bacterial activity (Gram-positive and Gram-negative) of the 

synthesized nanocomposite.   

1.9 Overview of the thesis 

Figure 1.10 Overview of the research work. 

This Ph.D. thesis is focused on the synthesis of different functionalizes magnetic 

nanocomposites for removal of heavy metal and organic dye and also check the antibacterial 

activity. The thesis is divided into seven chapters. The present chapter (chapter-1) contains 

the introduction of water pollution as a function of inorganic and organic contaminants 

antibacterial activity and treatment with nanomaterials, nanocomposite materials, metal oxide 

nanoparticles, iron oxide nanoparticles. Chapter-2 represents the materials and experimental 

procedure which are embraced for the synthesis of adsorbent materials. The details of 

analytical technique which are used to confirm the synthesis of adsorbent and removal of 

contaminates are presented briefly. Chapter-3 indicates the application of amine-

functionalized magnetic iron oxide nanoparticles for rapid removal of Congo red dye and its 

antibacterial activity. Chapter-4 represents Guar-gum coated iron oxide nanocomposite as an 
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efficient adsorbent for Congo red dye. Chapter-5 represents an investigation of heavy metals 

(Pb
2+

, Cd
2+

, Ni
2+

, Co
2+,

 and Cu
2+

)adsorption by hexadentate ligand modified magnetic 

nanocomposite. Chapter 6 indicates Surface functionalization of graphene oxide using amino 

silane magnetic nanocomposite for Chromium (VI) removal and bacterial treatment. Chapter 

7 includes conclusion obtained from the above work along with scope of future work.  
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Chapter 2 

Materials and Methods 

Chapter summary 

This chapter illustrates the reagent, chemicals, and other materials are used in the time of 

experimental work.  The total synthetically procedure was conducted during research work 

was Thorley investigated. The detail of all the synthesize materials for removal of organic 

and inorganic contaminants are described. The analytical techniques which are used for 

nanocomposite materials characterization were also discussed in the chapter.  

2.1 Reagent and chemicals  

Sodium hydroxide (NaOH), Lead chloride (PbCl2), cadmium chloride anhydrous 

(CdCl2), L-Tryptophan,Luria Bertani broth and Luria Bertani Agar, Guar-

gum,ethylenediaminetetraacetic acid (C10H16N2O8),sodium fluoride (NaF), Ferrous 

chloride anhydrous,(3-aminopropyl)triethoxysilane (APTES) aqueous ammonia 

solution (NH4OH), Sodium chloride (NaCl) and Thionyl Chloride (SOCl2)were 

purchased from HI media. Copper nitrate pentahydrate (Cu(NO3)2. 5H2O), cobalt 

nitrate (Co(NO3)2) and nickel nitrate (Ni(NO3)2) were purchased from SDFCL 

company. The pH of the solution was preserved by the addition of required amount of 

0.1 M HCl and 0.1 M NaOH.N-[3-(Trimethoxysilyl)propyl]-ethylenediamine 

(TSPED)and 2’7’-Dichlorofluorescindiacetatewas purchased by Sigma Aldrich. 

Congo red (CR) were provided by Central Drug House(P) Ltd. Ferric chloride 

anhydrous, N, N-Dimethyl formamide (DMF) and Methanol (CH3OH) were procured 

from Finar Limited Company. E. coli and B. subtilis (MTCC10110)were obtained 

from the Microbial Type culture collection (MTCC), Chandigarh, India.Triethylamine 

(Et3N) were purchased from SDFCL Company and Ethanol (C2H5OH) was purchased 

from Jiangsu Huaxi International Trade Co. Ltd.Hydrogen chloride (HCl), Sulphuric 

acid (H2SO4), Sodium nitrate (NaNO3), Hydrogen peroxide (H2O2, 30%),1,5-

diphenylcarbazide (DPC), Ethanol (C2H5OH), sodium sulfate (NaSO4) and Acetone 

(CH3COCH3) were purchased from Merck life science (India). sodium carbonate 

(Na2CO3), sodium bicarbonate (NaHCO3) was purchased from Fisher scientific. 

Potassium dichromate (K2Cr2O7) was supplied by Spectrochem, India. Potassium 

permanganate (KMnO4) was supplied from Avra chemical, India. Graphite powder 

was purchased from Loba Chemie, India. All reagents used were of analytical grade 



 

25 
 

and used without any further any purification. All solutions were prepared with 

distilled water. 

2.2 Synthesis of iron oxide (Fe3O4) nanoparticles 

Iron oxide (Fe3O4)was prepared using previously reported chemical co-precipitation method 

with some modification[142]. Briefly, 4 g of anhydrous FeCl2 and 12 g of anhydrous FeCl3 

were dissolved in 50 ml of 0.1 M HCl solution.  Further, the mixture was added slowly to 500 

ml of 1.5 M NH3 solution until reaches pH 11, afterward, stirred for 2 hours at the 

temperature 40 °C. A black precipitate of Fe3O4 magnetic nanoparticle was formed after 

stirring for 2 hours, which was collected by centrifugation and washed three times with 

distilled water and two times with ethanol, and then dried at 60 °C.  

2.3 Synthesis of Fe3O4-TSPED (FT) 

The synthesis of Fe3O4-TSPEDwas done following the previously reported 

method[143]. Freshly prepared 1.77 g of Fe3O4 nanoparticle was dispersed in 200 ml 

of distilled water in a round bottom flask. Then it was allowed for ultrasonication for 

30 minutes followed by the addition of 180 ml of 62 % methanol at room temperature. 

The above solution was stirred for 24 hours in the presence of argon atmosphere and 

TSPED was added slowly while stirring, followed by centrifugation at 6000 rpm. Then 

the solution was washed with distilled water until the pH of the water reaches around 

~7. Finally centrifuged at 6000 rpm and dried at 80 ºC for 24 hours. 

2.4 Synthesis of Fe3O4-TSPED-Tryptophan (FTT) 

20 ml of N, N-Dimethyl formamide (DMF) and 0.15 ml of thionyl chloride (SOCl2) 

are taken in a round bottom flask and the solution was stirred followed by addition of 

Tryptophan (400 mg). The stirring was continued under reflux condition for 24 hours 

at room temperature. Fe3O4-TSPED (1 g) and Et3N (0.28 ml) were added to the 

solution and the solution was stirred and kept under reflux condition for 72 hours. The 

solution was centrifuged at 6000 rpm and washed with ethanol and water until the pH 

of the solution becomes 7. Then it was dried at 80 ºC for 24 hours. Synthesis of FTT 

was shown in Figure 2.1. 

2.5 Synthesis of Fe3O4-GG nanocomposite 

Firstly we have taken 250 mg of GG powder and 50 ml of isopropyl alcohol in a round 

bottom flask then continuous stirring for 1 hour under 60 
°
C to facilitate the formation of a 

viscous gel. After the appearance of a completely homogeneous solution, then added 2.0 gm 

of Fe3O4 nanoparticles was stirred for 1h at 60 
°
C under N2 atmosphere then add 0.5 ml 
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glutaraldehyde 25 % was added into the mixture as a crosslinker. After completion of the 

reaction, the pH 9-11 in the solution was adjusted to 1.0 mol/L NaOH. The mixture was 

stirred 3 h and heated 60 
°
C then after followed by washing with distilled water (centrifuged 

at 6,000 rpm for 10 min) to remove any free particles. Finally, the obtained composite was 

dried at 80 
°
C so as to obtain a dry powder of Fe3O4-GG nanocomposite, which was stored in 

desiccators. 

Figure 2.1 Schematic illustration of the synthetic procedure for Fe3O4-TSPED-

Tryptophan nanocomposite 

2.6 Preparation of Fe3O4–APTES nanocomposite. 

The APTES modified Fe3O4 magnetic nanoparticles (FA) was synthesized based on our 

previously established method with small modification[144]. Firstly, a solution mixture was 

prepared using 1gm of Fe3O4 and 100ml of ethanol in a round bottom flask. In order to 

disperse the Fe3O4 nanoparticles, the solution was ultrasonicated for 30 mins. Then the 

resulting dispersion was bubbled with argon gas for 30 min, and then added 1 ml of APTES 

by a syringe under mechanical stirring. The reaction was then maintained at room 

temperature for 24 hours. The reaction was incubated at room temperature for 24 hours. 

Finally, the obtained solid product was collected with the help of a magnet and repeatedly 
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washed with ethanol. The obtained FA nanocomposite was dried in a muffle furnace at 60 ºC 

(Figure 2.2). 

2.7 Preparation of Fe3O4-APTES-EDTA nanocomposites 

APTES modified Fe3O4 (0.5 g) was added to 188 ml (acetic acid /Ethanol) mixture by (1:1 

volume). Next, the freshly 0.3 g EDTA anhydride was added to this mixture and was 

refluxed for 16 hours at 80 °C. Finally, the solid was recovered by vacuum filtration, washed 

with excess acetone and distilled water, and dried at 60 °C. 

 

 

 

 

 

 

Figure 2.2 Schematic illustration of the synthetic procedure for Fe3O4-APTES.  

2.8 Preparation of graphene oxide (GO) 

Graphene oxide (GO) was prepared according to reported work via modified hummers 

method[145]. In a typical synthesis, 1 g of graphite powder was suspended in 25 ml of H2SO4 

(98%) and ultrasonicated for 20 min. After which, 100 mg of NaNO3 was added to the above 

solution and stirred for 34 hours at room temperature. The obtained mixture was kept in an 

ice bath to cool down 5 ºC followed by the slow addition of 3 g of KMnO4with constant 

stirring, by keeping in mind the temperature should not rise above 20 °C. The stirring was 

continued for 4 hours at the same condition. Then the ice bath was removed and kept the 

reacting mixture at room temperature and 250 ml distilled water was added dropwise. The 

stirring was continued for another 45 min and 50 ml of warmed distilled water to terminate 

the reaction 5 ml of H2O2 (30 %) was added dropwise to the contents and stirred for 12 hours. 

Bright yellow color indicates the complete oxidation of graphite to GO. The yellow 

suspension was centrifuged and washed three times with HCl (10 %) to remove the metal 

ions and then several times with distilled water to maintain the pH 7. Then the solution was 

dried at 60° C and grind to get desire GO powder 

2.9 Preparation of GO-Fe3O4-APTES 

Firstly 300 mg of GO powder was dispersed in 20 ml of DMF in 250 ml capacity of round 

bottom flask followed by the addition of 0.25 ml of SOCl2 and the reaction was left to 

proceed for 24 hours with constant stirring at 70 ºC. SOCl2 is a strong reducing agent, it can 

convert less reactive –COOH group of GO into much reactive –COCl group (Figure 2.3a). 
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Solvents like DMF is used for surface coating and it facilitates Vilsmeierh-Haack reaction 

which is used to formylate aromatic compounds are suitable catalyst to speed up the reaction. 

Then 600 mg of Fe3O4-APTES was added to the reacting mixture followed by addition of 10 

ml of DMF and 0.38 ml of Et3N. The temperature of the following mixture was kept up to 

130 ºC, then stirred and refluxed for next 72 hours. In the following method–COCl group  

 

 

 

 

 

 

 

 

 

(a) Preparation of GO-COOH to GO-COCl. 

 

 

 

 

 

 

 

 

 

(b) Preparation of GO- Fe3O4-APTES 

Figure 2.3 Schematically detailed synthetic mechanism of GO-Fe3O4-APTES. 
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react with –NH2 group of Fe3O4-APTES to form an amide bond. The solid residue was 

separated by centrifugation followed by washing using distilled water. The residue was dried 

at 80ºC for 12 hours to form desired product. The detailed synthetic mechanism was 

represented in Figure 2.3. 

2.10 Characterisation techniques 

2.10.1 FTIR spectroscopy 

The FT-IR spectra were carried out to know the functional group present in synthesized 

material and after adsorption. FT-IR spectra of the synthesized nanocomposite were 

performed with KBr discs in the range 4000 to 400 cm
-1

 on Perkin Elmer (95277) FT-IR 

Spectrometer Spectrum RX-I. Nearly 3-4 mg of the sample was mixed completely with 30 

mg dried KBr and made into pallets.  

2.10.2 X-ray powder diffraction (XRD) 

X-ray diffraction (XRD) tells about the various phase, composition, and more information 

about unit cell dimensions of the all prepared materials. XRD measurements   (Rigaku Dmax-

2000 diffractometer using Cu Kα radiation source (λ=0.15418 nm)) with the range of 2θ 

angle10-80º with scanning rate 5º/min.  

2.10.3 Scanning electron microscope (SEM) and energy dispersive X-ray (EDX) 

The surface properties and morphology of the materials were examined using SEM 

microgram (JEOL model JSM-6390LV) and the elemental mapping and composition of the 

materials were explained by corresponding EDX. The synthesized materials were kept on 

carbon tape and coated for 2 min with vacuum current strength of 50 mA. After coating we 

can take required images. 

2.10.4 Field emission scanning electron microscope (FE-SEM)  

FE-SEM technique was also similar to SEM instrument with a difference that it gives a clean 

image. The sample preparation was same as that of sample preparation of SEM instrument. 

The prepared sample was run in FE-SEM instrument (NOVA NANO SEM 450) which was 

operated at setting voltage of 15-20 kilovolts.    

2.10.5 Transmission electron microscope (TEM) 

TEM (HRTEM, JEM-2100, and Japan) microscopic technique was used for the atomic-level 

analysis of materials and was operated at 200 kV. The TEM provides texture, structure, size, 

and shape of the materials. Here the sample was prepared by dispersing the material in 

ethanol for 90 min and the dropped in a carbon-coated grid.  The elemental mapping and 
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composition were studied by EDX analyzer (Oxford INCA) fitted with TEM. Raman 

Spectrometer (LABRAM-010) having the range of wave number 500-2500 cm
-1

 was used to 

get the structural information. 

2.10.6 N2 adsorption-desorption isotherm 

N2 adsorption-desorption technique was used to determine the surface are using 77 K on a 

QuantachromeAutosorb 3-B apparatus (model no-ASIQM0000-4). The Barret-Joyner-

Halenda (BJH) method was to determine the pore size distribution and pore-volume. 

2.10.7 Vibrating Sample Magnetometer (VSM) 

The VSM (VSM-7410) technique was used to test the magnetic properties of iron-based 

materials at room temperature. The material first weight and kept into Teflon then direct 

placing in the instrument for analysis. 

2.10.9 Raman spectrometer  

Raman spectrometer was used to determine the rotational, vibrational, chemical composition 

of the materials and other states in a molecular system. Raman Spectrometer (LABRAM-

010) having the range of wave number 500-2500 cm
-1

. 

2.10.9 Zeta potential  

To determine the surface charge of the prepared materials, Zeta potential measurement was 

investigated. This technique was analyzed by Nano-ZS 90, MALVERN, UK instruments. For 

the study, 1mg of the sample was dispersing in distilled water in a quartz cube container by 

adjusting at different pH (2-12) with the addition of 0.1 M HCl and 0.1 M NaOH. 

2.10.10 UV-visible spectroscopy 

The UV-visible Spectrophotometer (UV-SHIMADZU 2450, Malaysia) was used to 

determine the concentration of Chromium (VI) present in solution by using the method 1, 5-

diphenylcarbazide (DPC) and the concentration of organic dyes in a particular wavelength.  

2.10.11 Atomic adsorption spectroscopy (AAS) 

AAS (Elico SL 176, India) technique was used to analyze the concentration of heavy metal in 

solution. To calibrate the instrument using appropriate concentration prepared from the stock 

solution.    

2.10.12 Fluorescence  

To check the fluorescence intensity of nanomaterials treated bacteria in conjunction with the 

DCFDA dye, Spectrofluorometer, Fluoromax-4 (Horiba Scientific, Japan) with a quartz cell 

having path lengths of 1.0 cm were used. To perform these study bacteria were treated with 



 

31 
 

varying concentrations (10, 20, 40, 80, 160 micrograms per ml) of nanomaterials and 1 

micromolar of DCFDA dye. 

2.10.13 pH analysis 

To maintain different pH of the solution using a digital pH meter (Sartorius Mechatronics 

India Pvt. Ltd). 

2.8.14 Thermogravimetric analysis 

Thermogravimetric analysis or thermal gravimetric analysis is a method of thermal analysis 

in which changes in the weight of a material can be measured either as a function of 

increasing temperature or as a function of time. The thermal behavior of the synthesized 

material was characterized by differential scanning calorimeter and thermogravimetric 

analysis by taking samples of about 7 mg by weight, under nitrogen flow (50 mL min
-1) at 

heating rate of 10 °C min-1, (NETZSCH STA 449C, Germany). 

2.11 Adsorption behavior  

2.11.1 Adsorption kinetics 

To understand the mechanism of adsorption process well on contact time, we investigate 

adsorption kinetics. Three models were introducing to simulate the predictable data such as 

Pseudo first-order kinetic theory, Pseudo second-order kinetic theory, and Intra particle 

diffusion model. 

The Pseudo first-order kinetic equation is expressed as follows. 

                 
   

     
 (2.1) 

Here   = Adsorbed amount of adsorbate at equilibrium concentration (mg/g),   = Adsorbed 

amount of adsorbate at equilibrium time, K1=Pseudo first-order rate constant. The values of 

K1,    and R
2 

were calculated from the slope & intercept of the plot            vs t. 

The Pseudo second-order kinetic equation is expressed as follows. 

 

  
 =

 

    
  + 

 

  
    (2.2) 

Here K2= Pseudo second-order rate constant. The values of   , K2and R
2 

were calculated 

from the slope and intercept of the plot     vs t.  

The intra particle diffusion model is expressed by using the following equation. 

     ×     +C     (2.3) 
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Here kp is the intraparticle diffusion constant (mg/g min
0.5

) and C is the boundary layer 

thickness constant (mg/g). The values of kp, C and R
2
 were calculated from the plot qt vs t

0.5
. 

2.11.2 Adsorption isotherm 

The adsorption isotherm models such as Langmuir, Freundlich, Temkin, Dubinin-

Radushkevic (D-R) and Elovich were selected to define the adsorption process.    

Langmuir isotherm is used for assuming the adsorption of adsorbate on homogeneous planes 

by monolayer adsorption. The mathematical expression for Langmuir isotherm is written as 

follows. 

  

  
= 

 

   
+ 

  

  
     (2.4) 

Here    represents the adsorbate concentration (mg/L) at equilibrium,    is the capacity of  

equilibrium adsorption (mg/g),    is the maximum adsorption capacity (mg/g) and b is the 

Langmuir constant. The values of   , b and R
2
 was calculated by using the slope and 

intercept of the plot 
  

  
 versus    .  

The value of   which is the dimensionless constant can also be considered to know the 

favourability or unfavourability of the process of adsorption.    can be evaluated by using 

the following equation. 

   
 

     
    (2.5) 

The calculated value of    was found to be less than 1 (<1). This designates that the 

adsorption process of adsorbate was favorable for this isotherm. 

Freundlich isotherm is utilized for assuming the adsorption of adsorbate on heterogeneous 

planes by multilayer adsorption. This isotherm model can be expressed as follows, 

    =    +
 

 
       (2.6) 

Here qe is the adsorbed amount of adsorbate per unit weight of adsorbent (mg/g) at 

equilibrium, n is the density of adsorption.    is the concentration of Chromium (VI) in 

solution at equilibrium time (mg/L). The values of   (Freundlich constant), n and R
2
 was 

determined by using the slope and intercept of the plot                   

The electrostatic force of attraction between the adsorbent and the adsorbate were shown by 

Temkin isotherm. The Temkin isotherm is written as follows, 

   =               (2.7) 
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   (2.8) 

Here,    is The Temkin constant which is related to the adsorption of heat,    is the isotherm 

constant, R is the gas constant and T is the absolute temperature. The parameters like 

        
  are evaluated by plotting the graph between   versus     .  

Elovich isotherm model suggested multilayer adsorption. The mathematical expression for 

Elovich isotherm is expressed as follows, which depend on the kinetic principle presuming 

that the adsorption side exponentially increases with adsorption. 

  
  

  
 =       -

  

  
  (2.9) 

Here    is the maximum capacity of adsorption (mg/g), KE is the Elovich constant. The 

values of   ,    and R
2
 was calculated by using the plot between ln(

  

  
) versus   .  

Dubinin- Radushkevic isotherm model is used to express the mechanism of adsorption onto a 

heterogeneous surface with a energy distribution. This isotherm model is fitted in the 

intermediate range of concentrations as well as solute activities. The equation for this model 

is, 

              
  (2.10) 

Here,    is the equilibrium concentration of adsorbate on the adsorbent,    shows the 

saturation capacity of theoretical isotherm,     is the constant for Dubinin-Radushkevich 

model,   is the isotherm constant for the Dubinin-Radushkevich model. 

The value of epsilon (   can be derived by applying the following equation. 

         
 

  
)                  (2.11) 

Here, R is the gas constant and T is the absolute temperature 

The value of E can be computed by using the formula, 

E=
 

      
   (2.12) 
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Chapter 3 

3. Amine functionalized magnetic iron oxide nanoparticles: Synthesis, 

antibacterial activity and rapid removal of Congo red dye 

 

3.1 Introduction 

Disposal of chemical contaminants through wastewater from industries, i.e., paper, plastics, 

cosmetics, leather, pharmaceuticals and textiles which use dyes for colouring their 

products[146, 147], is one of the major problems for aquatic environment, because such 

effluents contain a number of highly toxic and carcinogenic substances such as dye[9, 148-

150]. Dyes usually have complex aromatic molecular structures which make them more 

stable and difficult to biodegrade[151, 152]. Furthermore, many dyes are toxic to several 

microorganisms and may cause direct destruction or inhibition of their catalyst properties. 

Most of the dyes represent acute problems to the ecological system as they considered as 

toxic and they have the carcinogenic properties [153-155]. Dyes can have acute or chronic 

effects on exposure to an organism depending on concentration. The ability of dyes to 

absorb/reflect sunlight entering the water has a drastic impact on the growth of bacteria and 

upsets their biological activity. Dyes in wastewater undergo chemical and biological changes, 

and consume dissolved oxygen from the stream and thereby, destroy aquatic life. Out of 

several dyes, Congo Red (CR)is an anionic or acidic dye and has a wide application which 

includes in the field of aquaculture, commercial fish hatchery and animal husbandry as an 

antifungal therapeutic agent, as well it is used as antiseptic and fungicidal[152, 156-158]. 

Also, CR causes kidney and heart diseases on human health and create disease like 

amyloidosis caused by the accumulation of proteins in the form of abnormal, insoluble fibers, 

known as amyloid fibrils, within the extracellular space in the tissues of the body[159].In the 

international scenario, due to its health hazard concerns, CR is banned in Europe, the United 

States and Canada[160]. 

So far, various physical and chemical treatment methods have been reviewed for the 

removal of dyes such as biological degradation[161], ion exchange, adsorption[162], 

membrane filtration[163], ultra chemical filtration[164], coagulation and flocculation[165], 

etc. However, these treatment processes have their limitations such as high cost, generation of 

toxic sludge, etc. Adsorption has been observed to be better than other different methods for 

wastewater treatment as far as introductory cost, effortlessness for configuration, the  
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simplicity in operation and insensitivity towards hazardous substances. In past decades, the 

various low cost adsorbent such as clay minerals[71, 166], fly ash[167-171], bark wastes[172, 

173], peat[174, 175], industrial waste products[176], wood powder[149, 157], coffee 

grounds[177],metal hydroxide sludge[76], hydrotalcite[178], biodegradable waste[77], 

agricultural waste[78]and dolomitic sorbents[79] are used for removal of dyes from 

wastewater. Along with, a number of non-conventional adsorbents have been reported in the 

literature supporting the removal of CR from aqueous solutions, such as guar-gum coated 

iron oxide nanocomosite[179], chitosan/montmorillonite nanocomposite[180], magnetically 

modified fodder yeast cell[181], chitosan-coated magnetic iron oxide[182], palm kernel seed 

coat[183] and activated carbon (prepared from coir pith, an agricultural solid waste, bamboo 

dust carbon, rice husk carbon coconut shell carbon and straw carbon)[184, 185]. Looking 

towards the biocompatibility and efficiency of the nanocomposites, we designed a 

Fe3O4nanocomposite with a tryptophan covering on the surface using TSPED as a cross-

linker.  

Fe3O4 nanoparticles have several advantages in the field of adsorption. Some of them 

include (a) magnetic separation of contaminate from aqueous solution, (b) high surface area 

and (c) high superparamagnetic behavior. TSPED is selected as the silane-coupling agent that 

provides both hydrophilic and hydrophobic in nature[186]. Silane polymer also increases the 

removal efficiency and plays an important role in the adsorption of dyes[186]. Tryptophan, 

an essential amino acid, is functionalized on FT surface. The coating has no significant effect 

on magnetic properties[187]. Tryptophan contains an active binding site (after binding to 

TSPED) in terms of a protonated amino group, which assumed to play a key role on 

adsorption. Adsorption process using FTT has been preferred for the treatment of dye-

pollutant water due to its simple design and easy operation, less energy intensiveness, not 

affected by toxic substances and high quality of the treated effluents particularly for well-

designed sorption processes. 

In this work, a magnetic nano-adsorbent (Fe3O4-TSPED-Tryptophan) is prepared for 

the adsorption of organic dyes (such as CR) along with its antibacterial activity towards 

gram-negative and positive bacteria. To study the antimicrobial potential of the material, we 

have chosen gram-negative bacteria (Escherichia coli) and gram-positive bacteria (Bacillus 

subtilis) for the screening purpose.Adsorbents possessing antibacterial activity have wide 

application in improving public health.The characteristic properties like solubility, particle 

size, and dispersion rate influence the antibacterial properties[188, 189].Physicochemical 

properties of iron oxide nanoparticles also impart antimicrobial activity[190, 191]. Iron oxide 
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nanoparticle itself has biomedical applications due to its magnetic properties and 

biocompatibility[192].  

3.2 Batch adsorption experiment 

For the adsorption experiments, 100 mg of FTT was added to the 100 ml CR dye solution of 

the desired concentration and pH of dye solution was adjusted with 0.1 N HCl and NaOH 

using pH meter. The mixture was continuously stirred using a magnetic stirrer to reach the 

equilibrium under the desired experimental condition. At 2 min time intervals the adsorbent 

was removed by centrifugation. The supernantsolution was used to determine concentration 

by UV-Visible spectrophotometer at wavelength 500 nm, where the absorbance is maximum. 

The amount of CR dye adsorbed onto FTT was determined by subtracting the final solution 

concentration from the initial of the dye solution. 

%Adsorption = 
     

  
        (3.1) 

And the equilibrium uptake was calculated using Eq. (3.2): 

           
 

 
    (3.2) 

Here qe indicates equilibrium capacity of dye on the adsorbent (mg g
-1

), Ce is equilibrium 

concentration of dye solution (mg L
-1

), C0 indicates initial concentration of dye solution (mg 

L
-1

), V indicates volume of dye solution used (L) and W is the weight of adsorbent (g) used. 

All the batch experiments were carried out in triplicate and results represented as there 

average readings. 

3.3 Antibacterial activity of FTT 

3.3.1 Cultivation of bacteria 

E.coli DH5α and B.Subtilis were grown in LB media at 37 ºC. To observe the impact on 

checking the antibacterial activity bacterial cell suspension were diluted to obtain cell 

samples having 10
6
 to 10

7
cfu/ml. 

3.3.2 Disc diffusion method 

Antibacterial activity of FTT was tested against gram-negative bacteria E.Coli and gram-

positive B. subtilis. Different concentration of FTT (10, 20, 40, 80, 160 µg/ml) were prepared 

for the study. To perform the disc diffusion test E.coli and B. Subtilis bacteria (10
6
 to 

10
7
cfu/ml) were spread on an LB agar plate. The equal-sized disc was dipped in different 

concentration of FTT solution and then placed at Petri plate. Plates were incubated for 12 

hours at 37 ºC and then used to measure the zone of inhibition. 

3.3.3 Concentration and time-dependent antibacterial activity 
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Different concentrations of FTT (10, 20, 40, 80, 160 µg/ml) was reprepared by dispersing in 

LB broth by sonication for 2 hours. Effect of nanoparticle on bacterial growth was checked 

by colony counting method to observe the loss of viability.Bacterial culture of an appropriate 

concentration was further treated with the FTT and incubated for 12 hours at 37 ºC under 120 

rpm shaking speed to observe the time-dependent growth of both the bacteria. At different 

time points we have collected the bacterial cell suspension from the treatment group and 

optical density of the collected cell suspension was measured at 595 nm using the ELISA 

plate reader (Biobase-EL10A Elisa reader, Shandong Co.Ltd). 

3.3.4 Examination of bacterial Cell morphology under FESEM 

To examine the bacterial cell morphology E.coli and B.subtilis cells were treated with 160 

µg/ml of FTT dispersion for 6 hours. One group without the nanoparticles treatment were 

taken as control which only contains bacteria having concentration 10
6 

cfu/ml. The cell 

suspension from the treated as well as the non-treated group was washed with 0.9 % sodium 

chloride to avoid the media component. Cells were further fixed with 4 % paraformaldehyde 

at 4 ºC for overnight. After fixation, it was washed with PBS and then dehydrated by 

sequential exposure to 30, 50, 70, 90, and 100 % alcohol for 15 mins. The dehydrated cells 

were fixed on a clean glass slide which is further sputter-coated with gold for FESEM 

analysis. We have also done the EDX analysis to check the element deposited in the bacterial 

body. 

3.3.5 Assessment of Reactive oxygen species (ROS)generation 

To quantify the amount of ROS produced 1 µM of  2’7’-Dichlorofluorescin diacetate 

(DCFDA) were taken as a fluorescent dye. It penetrates the bacterial cell membrane and 

reacts with the ROS produced inside as well as outside of the cells which impart the green 

fluorescence[193].To carry out the quantification of ROS, both gram-negative and gram-

positive bacteria were treated with different concentration of FTT (10, 20, 40, 80, 160 µg/ml) 

for 8 hours. Afterward the normal cells as well as treated cells were incubated with DCFDA 

dye for 1 hour at 37 ºC and then analyzed under Fluorescence spectrophotometer to check the 

fluorescence intensity. 

3.4 Result and discussion 

3.4.1 Characterisation of magnetic nano adsorbent. 

The surface functionalization on iron oxide nanoparticles is characterized by using Fourier-

transform infrared (FT-IR) spectroscopy. FT-IR spectra of (a) Fe3O4, (b) Fe3O4-TSPED and 

(c) Fe3O4-TSPED-Tryptophan are shown in figure (Figure 3.1). The peak at 583 and 628 cm
-

1
was observed for all three materials; which corresponds to the Fe-O bond of bulk magnetite 
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phase [194-196]. After coating TSPED on the surface of Fe3O4 nanoparticles, the additional 

peak at 983 cm
-1

 assigned to the Si-O-Si groups, 1625 and 3411 cm
-1

 can be ascribed to the 

NH2 bending mode of free NH2 group and N-H stretching vibration, respectively[197, 198]. 

The peaksat2924 and 2862 cm
-1

 (two small adsorption bands) ascribe to the C-H stretching 

vibration. Figure 3.1(c) refers to tryptophan coated FT nanocomposite. The tryptophan 

functionalization is confirmed from the appearance of C-O stretching at 1439 cm
-1

 and 1650 

cm
-1

, which are ascribed to the formation of an amide bond (-NHCO)[199-204].  The peak at 

1127 and 1042 cm
-1

 correspond to the SiO-H and aliphatic C-N stretching. The peak at 983 

cm
-1

is observed in both FT and FTT. From these changes shown in IR spectra, it can be 

reasonably concluded that Fe3O4 nanoparticles have successfully coated with TSPED and 

tryptophan. 

 

 

 

 

 

 

 

 

 

Figure 3.1 FTIR spectra of (a) Fe3O4, (b) Fe3O4-TSPED and (C) Fe3O4-TSPED-Tryptophan. 

The crystal structure of synthesized Fe3O4, FT and FTT were analyzed by XRD (Figure 3.2). 

The XRD pattern of Fe3O4 shows six diffraction lines and the characteristic peaks are 2θ = 

30.3° (220), 35.6° (311), 43.4° (400), 53.4° (422), 57.9° (511), and 62.7° (440), which agree 

well with the XRD pattern of JCPDS file no (65-3107)[203, 205]. The diffraction peaks 

reveal that the Fe3O4 nanoparticles are pure and spinel structure, indicating that the TSPED 

and tryptophan coating does not result in the phase change of Fe3O4[179, 195, 206, 207]. The 

XRD shows high crystallinity of FTT. The average core size can be evaluated from the XRD 

result by Scherrer formula: 
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D=
     

     
 

Where D is the average crystalline diameter, 0.94 is the Scherrer constant, λ is the X-ray 

wavelength, B is the angular line width of half-maximum intensity and Ɵ is the Bragg’s angle 

in degree. Here, the peak (311) with highest intensity was picked to evaluate the particle 

diameter of Fe3O4, FT and FTT, and the D was calculated as25.5 nm, 32.5 nm, and 48.17 nm, 

respectively. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.2 XRD patterns for (a) Fe3O4, (b) Fe3O4-TSPED and (c) Fe3O4-TSPED-Tryptophan. 

The morphology of the FTT nanocomposite was characterized using a transmission electron 

microscope (TEM) (Figure 3.3).TEM images reveal FTT composite are monodisperse and 

has an average size of of47 nm, and spherical in shape(Figure 3.3a). The selected area 

electron diffraction (SAED) pattern of FTT shows the ring-like structure clearly indicating 

the existence of crystalline nature (Figure 3.3b). EDX spectrum of FTT shows the strong 

peaks for Fe, C, O, N and Si (Figure 3.3c). The quantitative analysis indicated the molar 

presence of iron (52.50%), carbon (20.16 %), oxygen (32.65%), nitrogen (3.66 %) and silicon 

(1.21 %) in the nanocomposite. 

The magnetic properties of Fe3O4, FT and FTT were investigated by vibrating sample 

magnetometer (VSM). At room temperature the hysteresis loop of bare Fe3O4,TSPED coated 

Fe3O4 and FTT (Figure3.4) shows superparamagnetic behavior at room temperature with 

negligible remanence and coercivity. The obtained magnetic saturation (Ms) value of Fe3O4, 
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FT and FTT were 71, 52 and 39 emu/g, respectively. The magnetic saturation value FT and 

FTT are significantly smaller than bare Fe3O4nanoparticles.These phenomena may be 

explained by the addition of nonmagnetic substance or high molecular weight of TSPED and 

tryptophan[179, 208, 209]. According to Ma’s study, the magnetic saturation value 

16.3emu/g is enough for magnetic separation from aqueous solution by using an external 

magnetic field [210].This result suggested that FTT could be easily separated and collected 

with a magnetic field. 

Figure 3.3 (a) TEM image of FTT (b) SAED pattern of FTT (c) EDX spectra of FTT 

nanocomposite. 

N2 adsorption/desorption analysis at 77 k was undertaken for Fe3O4, FT and FTT to reveal 

their texture properties. Figure 3.5a shows theN2 adsorption/desorption isotherms of Fe3O4, 

FT and FTT. All three samples exhibit a type IV isotherm, with relative pressure between 0 

and 1, which corresponds to mesoporous structure [211, 212]. The Brunauer-Emmett-Teller 

(BET) specific surface area of Fe3O4, FT and FTT was determined to be 223.83, 216.08, 

138.7 m
2
/g. These results indicate that after coating TSPED and Tryptophan on the surface of 
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Fe3O4, the surface area significantly decreases. This may be because of the large number of 

TSPED and tryptophan which occupy the surface of Fe3O4 nanoparticles and reduces the 

surface area[212, 213]. The pore size distribution was determined by the Barret, Joyner, and 

Halenda (BJH) method using the desorption isotherm, which shown in Figure3.5 (b-d). The 

result indicates that the pore size of Fe3O4, FT and FTT are 1.84, 1.67 and 1.61 nm, 

respectively. The total pore volume of Fe3O4, FT and FTT are 0.439, 0.495 and 0.617 cc/g.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.4 Magnetization curve of Fe3O4, Fe3O4-TSPED, and Fe3O4-TSPED-Tryptophan 

nanocomposite. 

For thermal stability of the nanocomposite, thermogravimetric (TGA) analysis was carried 

out. The typical TGA curve of Fe3O4, FT and FTT is shown in Figure 3.6. The TGA curve of 

Fe3O4 nanoparticles shows a 7.15 % weight loss between 32-150 °C because of physically 

adsorb water, followed by further weight loss around 1.68 % between 150-500 °C,  a slow 

decrease about0.9 % in between 525-600 °C was attributed to loss of moisture which tightly 

bound, and after 600 °C there is no loss of mass was observed. The TGA curve of Fe3O4-

TSPED (FT) indicates weight loss 7.5 % between 34-589 °C, which can be ascribed to the 

escape of physically adsorbed water, the decomposition of amine group, the complete 

oxidation of carbon but in case of FTT, it show a 9.6 % weight loss in between the range 37-

609 °C, which might be due to the decomposition of the amine group and carboxylate group 

of the tryptophan, respectively. Therefore the weight loss in FTT (9.6 %) which is higher than 

FT (7.5 %) verifies that tryptophan was modified successfully on the surface of FT. The DTA 

curve of Fe3O4 showed the presence of an exotherm at 334 °C and 524 °C, whereas FT 

showed the presence of an exotherm at 345 °C and 666 °C and FTT showed at 346 °C and 
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668 °C (Figure A1a) compared to others. The DTA result specifies the loss of water 

molecules and decomposition of organic moiety, respectively. The peaks are shown in DTG 

curve also enlighten the decomposition of constituent organic moieties at specific 

temperature as in Figure A1b. The DTA and DTG curve supports the TGA findings. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.5 (a) N2 adsorption-desorption isotherm of Fe3O4, Fe3O4-TSPED, and Fe3O4-

TSPED-Tryptophan nanocomposite. The pore size distribution of (b) Fe3O4, (c) Fe3O4-

TSPED and (d) Fe3O4-TSPED-Tryptophan. 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.6 TGA curve of Fe3O4, Fe3O4-TSPED, and Fe3O4-TSPED-Tryptophan 

nanocomposite. 
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3.4.2 Impact of the different parameter on adsorption 

Adsorbent dosage is an important parameter in the adsorption process. It significantly 

influences the removal of adsorbate species. The effects of FTT dosage on the adsorption of 

CR were examined at room temperature by varying the amount of adsorbent from 20 mg to 

200 mg, keeping other parameters constant such as dye concentration 60 mg/L, pH 3 and 

time 10 min. The increasing in adsorbent dosage, dye removal efficiency also increases due 

to the higher number of active binding site (Figure 3.7a). With further increase in the 

adsorbent dosage, adsorption capacity (qe) significantly decreases, while the removal 

efficiency of CR shows a steady trend. Also, Fig 7a shows the equilibrium state for CR 

removal efficiency. 

Figure 3.7 (a) Effect of adsorbent dosage on CR adsorption, (b) the removal of CR at 

different concentrations, (c) Effect of time on adsorption of CR and (d) Effect of pH on the 

removal efficiency. 

The effect on adsorption efficiency with initial CR concentrations is shown in Figure 3.7b. 

The concentration of CR dye varied from 40 to 100 mg/L at room temperature, keeping other 

parameters constant such as adsorbent dosage (100 mg), pH (3), time (10min). The removal 

percentage of CR dye which decreases with the increase in CR concentration is depicted in 

Figure 3.7b. This decreasing trend is due to the saturation with the available active binding 
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sites and surface area. From the graph, it is clearly seen that the dye removal efficiency nearly 

same between 40 mg/L and 60 mg/L, but after significantly decreases. The increase in dye 

concentration up to 100 mg/L resulted in increase in adsorption capacity (qe) (from 39.54 

mg/g to 74.01mg/g). 

The removal efficiency of CR dyes from wastewater increases with increase in adsorption 

time (Figure 3.7c). It attained the equilibrium of 99% in10 minutes for CR removal. After 10 

min to 60 min, the removal efficiency was found to be nearly same. Due to comparatively 

larger surface area and abundant active binding sites of the nanocomposite, the rate of 

removal of CR dye is high. Overall, the adsorption capacity (qe) increases with increase in 

time.  

The impact of pH on the removal of CR from aqueous solution was observed in a range of pH 

(3-11), as shown in Figure 3.7d. At neutral pH (around 7), the color of the CR dye is solid 

red, which remains same at alkaline pH (10-11) but the color changes to dark blue at strong 

acidic pH (3-5). In addition, it is observed that the solubility decreases at pH 2 compared to 

higher pH[214]. In the present work, the maximum removal percentage of CR was observed 

at acidic medium (at pH 3) and gradually decreases in basic medium. The CR removal was 

nearly the same over the pH range 3-6, after pH 6 the removal efficiency slightly decreases. 

At pH 3, a significant high electrostatic attraction exists between positive charge surface of 

adsorbent and anionic dye, which makes the strong interaction between them. At higher pH, 

the number of positive sites decreases and negative sites increases, that causes the 

electrostatic repulsion between negative charge adsorbent and anionic dye. Moreover, the 

adsorption capacity (qe) decreases with increase in pH. Furthermore, there was a competition 

between excess of OH¯ ions with anionic dye towards the adsorption sites. It has been 

reported that the solution at a pH below the zero point charge (pHzpc) makes the adsorbent 

surface positive and can interact with the negative charge of the dye in solution. The pHzpc of 

the sample was analyzed by potentiometric titration method (Data not shown). The point of 

zero charges (pHzpc) value of FTT nanocomposite was found to be 6.5. Therefore, below 6.5, 

most of the free amino groups are protonated in the case of FTT samples[215]. The 

protonated amino group of adsorbent are attracted towards the doubly negatively charged 

SO3
-
groups in CR dye molecules. So, an electrostatic interaction plays a vital role in 

adsorption between adsorbent and adsorbate. Including the above mechanism, one can expect 

π-π stacking interactions between aromatic rings of CR and tryptophan. This dispersion 

interaction is also important parameter for CR adsorption as reported earlier[216]. A similar 
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result was reported earlier for the removal of CR on orange peel waste[150], Biogas waste 

slurry [217] and activated carbon [184].  

3.4.3 Adsorption isotherm 

Figure 3.8 (a) Langmuir isotherm plot and (b) Freundlich isotherm plot for CR dye adsorption. 

In this study, we perform Langmuir and Freundlich isotherm model. Both of the above 

isotherms are shown graphically in Figure 3.8 and the isotherm parameters are listed in Table 

3.1.It is clear from Figure3.9 that the Langmuir isotherm data fit better than Freundlich 

isotherm. Besides it can be seen from Table 1 that the value of R
2 

for the Freundlich isotherm 

(R
2
 = 0.96), which is less than of the Langmuir isotherm (R

2
 = 0.99), showing the 

applicability of Langmuir isotherm. Therefore the adsorption of CR dye is regarded as 

monolayer adsorption on the homogeneous surface. The RL value of CR adsorption onto FTT 

is0.0045 for initial concentration of 60 mg/L respectively.Table3.2 shows maximum 

adsorption capacity (qmax) of FTT is 183.15 mg/g for CR, which significantly higher than that 

various adsorbent reported in the literature. From the Freundlich isotherm, the value of n is 

9.11, which represents favorable adsorption. 

Table 3.1 Isotherm parameters for adsorption of CR on Fe3O4-TSPED-Tryptophan 

nanocomposite. 

Langmuir  isotherm Parameter CR 

qm(mg/g) 183.1 

b (mg/g) 3.62 

R
2 

0.99 

Freundlich isotherm parameters CR 

Kf (L/g) 38.1 

n   9.11 

R
2
 0.96 
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3.4.4 Adsorption kinetics 

Figure 3.9 (a) Pseudo-first order model and (b) Pseudo-second order model for CR 

adsorption on Fe3O4-TSPED-Tryptophan nanocomposite. 

Table 3.2 Adsorption capacity (qmax) values for the removal of CR on various adsorbents. 

Adsorbent                                                   qmax(mg/g)                Reference 

M-cell/ Fe3O4/ACCs                     66.09     [218] 

CTS powder            74.73                         [180] 

Bamboo dust carbon          101.9                         [185] 

Ground nut shell carbon         110.8                              [185] 

Magnetically modified fodder yeast cell              49.7                                     [181] 

Chitosan/montmorillonite nanocomposite           54.52                                   [180] 

Activated carbon prepared from coir pith,           6.72               [184] 

an agricultural solid waste 

Chitosan coated magnetic iron oxide                   42.62                                   [182] 

Waste orange peel         22.4               [150] 

Palm Kernel seed Coat                                         66.23                                  [183] 

Fe3O4-GG nanocomposite                                    60.                                      [179] 

Waste red mud          4.05              [219] 

Rice hull ash           171.0                                 [220] 

Fe3O4-TSPED-Tryptophan               183.15                          This Study 
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Figure 3.9 shows the pseudo-first-order and pseudo-second-order kinetic model and the 

parameters are listed in Table 3.3. The linear fits of the kinetics results reflect that pseudo-

second-order model exhibits higher R
2
 value, compared to the pseudo-first-order model. This 

specifies that adsorption kinetics process follows pseudo-second-order kinetics and is 

dependent on the amount of solute adsorbed on the surface of nanocomposite as well as 

amount adsorbed at equilibrium. The above results supported that the adsorption was due to 

chemisorptions which involved valence forces between dye anion and adsorbent. 

Table 3.3 Kinetic model parameters and constant with statistical data. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.10 Reusability test of Fe3O4-TSPED-Tryptophan adsorbent for removal of CR. 

3.4.5 FT-IR and FE-SEM analysis of after adsorption of Congo red dye 

Native FT-IR peaks were already discussed in section 3.1. Figure A2 after CR dye adsorbed 

on FTT, where the peaks were slightly shifted higher with values 584, 633, 984, 1026, 1128, 

1442, 1652 cm
-1

. The shifting of peaks may correspond to the formation of a chemical bond 

between adsorbate and adsorbent. The morphology of FTT before and after adsorption of CR 

is analyzed by FE-SEM and is shown in Figure A3. From the Figure A3a and A3b , before 

adsorption of FTT shows the particles are spherical in shape and homogeneously distributed 

   Pseudo-first-order Pseudo-second-order 

dye 

Concentration 

(Co, 

mg/L) 

qe, exp (mg/ 

g) 

qe, cal 

(mg/g) 

K1 R
2
 qe, cal 

(mg/g) 

K2 R
2
 

Congo Red 60 59.502 5.663 0.3362 0.98 70.42 0.0066 0.99 
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but after adsorption, some aggregation took place on the spherical particle due to the 

attachment of CR dye on the surface of FTT which are shown in Figure A3b. 

3.4.6 Reusability of adsorbent 

The reusability of adsorbent is one of the important parameters of the adsorption process 

from the economy and environmental point of view. To check the desorption study using 

methanol, ethanol, chloroform, and acetone; ethanol was found to be good desorption 

efficiency. The dye loaded on adsorbent was washed with ethanol after that the adsorbent was 

dried using the oven to remove the ethanol. Thus, the used adsorbent could be further used 

for adsorption of CR. As shown in Figure 3.10, five consecutive cycles were examined, after 

five cycles the CR removal efficiency of the adsorbent is 87.2 %. This shows that the high 

regeneration capability of Fe3O4-

TSPED-Tryptophan and its good reusability of CR removal. 

3.4.7Antibacterial activity 

Figure 3.11 (A) Antibacterial activity by disc diffusion method (a) shows the zone of 

inhibition when E.coli treated with the 160 µg/ml of FTT (b,c,d) Shows the zone of inhibition 

when E.coli treated with 80 µg/ml, 40 µg/ml, 20 µg/ml respectively where zone of inhibition 

is not clearly visible. (e) At middle shows the zone of inhibition, when E.coli treated with 

standard drug Gentamicin. (B) Antibacterial activity by disc diffusion method (a) shows the 

zone of inhibition when B.subtilis treated with the 160 µg/ml of FTT (b) Shows the zone of 

inhibition when B. subtilis treated with 80 µg/ml. (c) At middle shows the zone of inhibition, 

when B.subtilis treated with standard drug Gentamicin. 

Disc diffusion method was performed to check the antimicrobial potential of the adsorbent 

material. Cell viability test of E. Coli and B. Subtilis with FTT were done by using the colony 

counting method.Bacterial growth kinetics was studied in presence of the FTT as well as in 

absence. FESEM analysis was done to check the effect of FTT on bacterial cell 
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morphology.EDX analysis was further done to check the element deposited in the bacterial 

body. Concentration and Time-dependent antibacterial activity of nanomaterial was also 

carried out.Antibacterial activity of FTT was determined by the interaction of E.coli and B. 

subtilis with the FTT by using a varying range of the concentration. To determine its 

propensity of killing bacteria, disc diffusion assay has been performed and antibacterial 

activity was observed at concentration 160 µg/ml and 80 µg/ml. We have observed the clear 

zone of inhibition at the concentration 160 µg/ml for FTT in E.coli and B.Subtilis (shown in 

Figure 3.11). 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.12 Graph representing the antibacterial activity of FTT with varying concentration 

against, E.coli and B. subtilis by showing the percentage loss in bacterial cell viability.  

Figure 3.13 Growth kinetics of (a) E.coli and (b) B. subtilis in presence as well as the 

absence of FTT. The experiment performed in triplicate and the result showed as the Mean ± 

SEM.  
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Zone of Inhibition also observed at 80 µg/ml but it was not clear. At low concentration zone 

of inhibition was not predominantly seen. Concentration-dependent activity of FTT was again 

examined by colony counting method, maximum inhibition observed at 160 µg/ml and it 

gradually decreases with decreasing concentration (shown in Figure 3.12).Bacterial growth 

kinetics were studied in presence as well as the absence of FTT (Figure3.13).We found that 

the stationary phase in bacterial growth can be observed at an early stage when bacteria 

treated with FTT at concentration 160 µg/ml.Bacterial growth inhibition is shown in the 

curve in comparison to control one.Production of reactive oxygen species due to oxidative 

stress induced by FTT is considered as the possible mechanism behind the antibacterial 

activity of FTT. To quantify the amount of ROS generated in the influence of FTT is 

measured by an assay employing the use of DCFDA dye is followed. DCFDA have the 

potential to penetrate the bacterial cell membrane and then gets hydrolyzed inside bacteria. 

The hydrolyzed product gives the green fluorescence in presence of reactive oxygen species 

like singlet oxygen, superoxide radical, hydroxyl radical, peroxide and hydroperoxide 

radical.The fluorescence intensity is directly proportional to the presence of reactive oxygen 

species.More the amount of ROS, more the fluorescence intensity.The concentration-

dependent effect of FTT on ROS generation in E.coli and B.subtilis has been depicted in  

Figure 3.14 Fe3O4-TSPED-Tryptophyan induced ROS generation in (a) E.coli and (b) B. 

subtilis. Fluorescence intensity shows the ROS generation at different concentration of 

Fe3O4-TSPED-Tryptophan. Higher fluorescence intensity indicates the excess generation of 

ROS.   

Figure3.14 ROS production could also be observed in the absence of FTT treatment but it is 

less prominent in comparison to the treated one. Bacterial death was further characterized by 

alteration in normal morphology of bacteria which was done by FE-SEM shown in (Figure 

A4 and Figure A5), EDX analysis was also done, by which we detected the presence of 

silicon and iron in the bacterial body.We have chosen tryptophan as a coating material to 



 

51 
 

modify the surface properties of iron oxide nanoparticle, which inflect the functional group 

and surface potential of the material.The amino group of tryptophan has a strong binding 

affinity toward the paramagnetic FTT by the help of hydrogen bonding or electrostatic force 

of interaction between the molecules.This tryptophan tagged FTT comprises of the carboxylic 

group which carries OH group which directly interact with the water molecule by hydrogen 

binding force of interaction to form the colloidal dispersion of FTT. 

This colloidal dispersion facilitates the interaction with the bacteria. Substantial interaction 

also increases ROS production due to iron oxide[221]. It is well known that tryptophan is 

found in its zwitterions form which imparts the positive or negative surface potential which 

supports the Coulomb repulsion among the iron oxide nanoparticle which again enhances 

dispersivity of particles[222].It is already reported that the iron oxide is capable of inducing 

the reactive oxygen species (ROS) generation which increases the oxidative stress[223, 224] 

and then bacterial death. The electrostatic force of interaction with bacteria also alters 

membrane integrity [225]. The above-shown result has shown that the current nanoparticles 

have the potential to kill bacteria in dose-dependent as well as concentration-dependent 

manner. 

3.5 Summary 

In summary, we report the increased adsorption efficiency and antibacterial properties of FTT 

nanocomposite. The FTT nanocomposite was successfully prepared using the simple and 

economic method and further analyzed to confirm the chemical and physical structure. When 

employed as Nanoadsorbent, FTT nanocomposites were found with increase adsorption 

efficiency as compared to alone Fe3O4 and FT. The adsorption of Congo red onto FTT 

nanocomposites followed pseudo-second-order kinetics and Langmuir model of adsorption 

isotherm. The maximum adsorption capacity (qmax) for FTT nanocomposite was calculated as 

183.15 mg/g which was quite significant. In addition FTT nanocomposites were examined or 

better antimicrobial activity towards E. coils and B. subtilis. Further understanding the 

mechanism of cell death, FE-SEM micrographs were captured and ROS generation was 

observed. To further investigate the toxicity profile of FTT, In vivo studies need to be 

performed. Surface chemistry and magnetic properties of FTT strongly support its 

distribution profile to get interact with the bacteria.Thus, with excellent adsorption capacity 

and adequate antibacterial properties, such nanocomposites are truly a potential and 

promising adsorbent in the future water treatment and purification. 
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Chapter 4 

4. Guar-gum coated iron oxide nanocomposite as an efficient adsorbent for 

Congo red dye 

 

4.1 Introduction 

Nowadays the disposal of dyes and organic contaminants generated from the industries are 

the major source of water pollution that became a worldwide environmental concern. 

Industries such as paper, printing, cosmetics, plastics, leather, textile and petroleum release 

different types of dyes into the aquatic environment which causes water pollution[226, 227]. 

These pollutant dyes and organic compounds are reported as toxic, carcinogenic and 

mutagenic in nature. Even with a few dyes discharged into the water system can affect the 

aquatic ecosystem and possess a serious problem to living organisms. Thus the removal of 

dye from the wastewater is necessary and important before it discharged into the 

environment[228]. Most of these dyes are frequently used in various industries such as Congo 

red (CR), Malachite green (MG), Methylene blue (MeB), Methyl orange (MO), Eriochrome 

Black T (EBT), Methyl blue (MB) and Rhodamine B (Rhb), etc. Among them Congo red 

(CR) dye, benzidine-based anionic bis azo dye is most frequently used for various 

applications. This dye is responsible for several diseases like human cancer and a potential 

threat to bioaccumulation and unfavorably susceptible issues[229]. Here, CR has been picked 

as a model dye in view of its complex structure, restricted biodegradability, soundness 

towards the light and high dissolvability in watery arrangement[230], so it is required to 

remove them during treatment. Till date, most of the techniques such as 

photodegradation[231], adsorption[232], solvent extraction[233], coagulation[234], 

membrane filtration[235], oxidizing agents[236], are used to take off poisonous chemicals 

from the dissolved aqueous solution. Among these, adsorption is a classical technique, 

because of its efficiency, economy and high level of effectiveness[237]. 

In past decades, the various low-cost adsorbent such as palm kernel seed coat[238], 

magnetic alginate beads[239], chitosan[240], bagasse fly ash[241], clay mineral[71], 

biodegradable waste[242], agricultural waste[78] and industrial waste products[243]have 

effective adsorbent for adsorption of carcinogenic dyes from different water body. A number 

of literature has also been reported towards the adsorption of Congo red on various adsorbent  
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surfaces. Moreover, Kannan and Meenakshısundaram have used activated carbon for removal 

of congo red[244]. Additionally, biogas waste has also been employed for the removal of 

congo red from aqueous solution[245].During the past decade, iron oxide has attracted much 

attention due to its wide range of applications such as biosensor development[246], 

biomedical engineering[247], drug delivery[248],  bioseparation technologies[249]and other 

developments. Among various applications, iron oxides have frequently used as adsorbent 

because of its several advantages like low cost, extensive availability, good adsorption 

capacity and thermal stability[250, 251]. Moreover, Fe3O4 have large specific surface areas, 

reactive surfaces and easy magnetic separation after adsorption process. Therefore the Fe3O4 

nanoparticles can be a good selection for the adsorption of different dyes.The adsorption 

capacity of theFe3O4 nanoparticle can be further improved by modifying it with various 

polysaccharides. There is some literature available where polysaccharides modified magnetic 

nanoparticles have been reported such as adsorption of reactive black dye using modified 

with graphite oxide magnetic chitosan nanocomposite[252], cobalt ferrite/activated carbon/ 

alginate composite beads for adsorption of methyl blue[253], removal of methylene blue dye 

using chitosan-g-poly (acrylic acid)/vermiculite hydrogel composites[254] etc. 

 

Among all available polysaccharides, Guar gum (GG) is the most important class of 

polysaccharide that can be a promising supporting material for adsorption due to its thermal 

stability and higher solubility. So we have explored the grafting of GG on to the surface of 

Fe3O4 nanoparticles to improve the hydrophilicity of Fe3O4 [255-258]. Therefore, the 

combined properties of both GG and Fe3O4 nanoparticle can be used for adsorption of toxic 

dyes. Till now GG modified Fe3O4 nanoparticle has not been studied thoroughly for the 

adsorption of various toxic dyes. 

 

It is assumed that cross-linking of Fe3O4 nanoparticles with GG occurs via the 3,4-cis-

hydroxy moiety, and thereby the formation of a three-dimensional network responsible for 

the gelation (the mechanism is illustrated in Fig. 1a). Besides of having previous reports on 

the mechanistic points, which says that the active sites of GG are responsible for the cross-

linking with Fe3O4, till date the mechanism is not clear[259]. The author observed that 

entirely two different mechanisms; (a) a condensation reaction of  OH groups on Fe3O4 

nanoparticles and surface OH groups on GG  and (b) An esterification reaction between 

Fe3O4 compounds and a hydroxyl group on GG. These two mechanisms do not impose any 

actual and clear mechanism. Therefore, it is still commonly believed that the formation of 

these nanoparticles only represents an undesired side reaction which actually reduces the 
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activity of the cross-linker[260]. Thus, generally, the cross-linking mechanism is based on the 

ligand exchange reaction between Fe3O4nanoparticles and GG[261]. 

Keeping this in mind our aim is to synthesize an efficient and active GG coated 

Fe3O4nanocompositeadsorbent and to study its activity towards the adsorption of various 

dyes.  The enhanced adsorption efficiency is due to the presence of multiple numbers of 

hydrogen bonding selective binding site of Fe3O4-GG nanocomposite with the CR dye. The 

optimum experimental condition such as pH, contact time, adsorbent dose and initial dye 

concentration was demonstrated in order to give knowledge about adsorption kinetics, 

isotherm, thermodynamics and reusability of the prepared adsorbent (i.e. Fe3O4-GG). The 

present study showed that Fe3O4-GG nanocomposite could perform challenging adsorbent for 

dyes removal at large scale and low cost. 

4.2 Batch adsorption experiment 

CR dye uptake study was performed by using batch adsorption experiment on a magnetic 

stirrer (REMI 5MLH plus, Kolkata, India). An amount of 150 mg of the Fe3O4-GG 

nanocomposite with 100 ml of dye solution of the required concentration was taken in a 250 

ml of conical flask and pH of the solution were adjusted by adding NaOH (0.1M) or HCl 

(0.1M) as required then the mixture was stirred. The concentration of CR dye was analyzed 

by using UV-Vis (SHIMADZU-2450) spectrophotometer by monitoring the absorbance 

(495.7 nm). To get the optimum condition, the experiments were performed by varying 

adsorbent dose 10 mg to 200 mg, initial dye concentration 20 mg/L to 100 mg/L and pH 2 to 

12 and the solutions were taken out at a different time interval during the adsorption. From 

the above experimental data, we get the optimum condition i.e. adsorbent dose of 150 mg, 

dye concentration 60 mg/L at pH 6 shows the highest efficiency in 5 min. Later on, Fe3O4-

GG nanoparticles were separated from the solution by exposing to magnet Shown in Figure 

4.1. 

The percentage of dye removal was calculated using Eq. (4.1) 

Percentage of removal = 
     

  
        (4.1) 

And the equilibrium uptake was calculated using Eq. (4.2): 

           
 

 
      (4.2) 

Where C0 is the initial concentration of the dye (mg/L), Ce is the final dye concentration 

(mg/L), qe is equilibrium adsorption capacity (mg/g), w and V represents the weight of 

adsorbent (g) and the volume of dye solution used (L) respectively. All the batch experiments 
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 were carried out in triplicate and the results represented here are the average readings[262]. 

Figure 4.1 Schematic illustration of the adsorption process for the CR using Fe3O4-GG. 

4.3 Results and discussion  

4.3.1 Characterisation of magnetic nano adsorbent 

Figure 4.2 (A) FT-IR Spectra of (a) Fe3O4 and (b) GG (c) Fe3O4-GG nanocomposite (B) X-ray 

diffraction patterns of (a) Fe3O4 and (b) Fe3O4-GG nanocomposite. 

FTIR spectra of Fe3O4, GG & Fe3O4-GG nanocomposite are presented in Figure 4.2A. In the 

case of Fe3O4, the peak at 569 cm


 relates to Fe-O group[263, 264], whereas GG exhibits the 

characteristic adsorption band at 3383 cm


 due to -OH stretching vibration of the polymer 
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and water involved in hydrogen bonding[265]. The peak observed in the spectra at 800 and 

1200 cm


,represents the highly coupled C-OH and C-O-C stretching mode of polymer back 

bone[266]. The peak 1654 cm


 attribute due to ring stretching of galactose and mannose.The 

weak bands around 770 cm


, indicate the ring stretching and ring deformation of β -D-(1-4) 

and α-D-(1-6) linkages.  The peak at 2897 cm


 and the marked bands at 1059-1033 cm


 

ascribed to C-H stretching and C-O stretching of Guar-gum, which indicated the formation of 

covalent bond between –OH groups of GG and Fe3O4.All these findings suggest that CR on 

Fe3O4-GG is held by chemical activation or chemisorptions[256, 267]. 

To determine the crystal structure and phase purity, theFe3O4 and Fe3O4-GG nanocomposite 

were investigated by X-ray diffractometer shown in Figure 4.2B. The XRD patterns shows 

the  characteristic peaks identified at 2θ =30.09°, 35.42°, 43.05°, 56.94°and 62.51°, which are 

marked by their indices (220), (311), (400), (511), and (440), which agree well with the XRD 

pattern of JCPDS file no (65-3107)respectively[268-270]. The diffraction peaks of Fe3O4 -

GG are similar to the Fe3O4 nanoparticles, which reveal the crystal structure of high purity of 

Fe3O4 is well-maintained after the coating of GG. The average crystallite size was calculated 

using the Debye–Sherrer formula.  

D=
     

     
    (4.3) 

Where D is the average crystalline diameter, 0.94 is the Scherrer constant, λ is the X-ray 

wavelength, B is the angular line width of half-maximum intensity and Ɵ is the Bragg’s angle 

in degree. Here, the (311) peak of the highest intensity was picked out to evaluate the particle 

diameter of Fe3O4 and Fe3O4-GG. The D was calculated to be 4.2 and 6.8 nm, which is 

basically in accordance with the transmission electron micrographs discussed later 

The shape of the nanocomposite was investigated by FE-SEM and results are shown in 

Figure 4.3. Figure 4.3a,b shows that the FE-SEM micrograph of Fe3O4 and Fe3O4-GG 

nanocomposite, which has a nearly uniform and spherical shape with homogeneous 

dispersed. In both micrograph size of the nanoparticles almost same while some smaller and 

bigger size of the nanoparticles is also seen in images. To overcome this problem, later on, 

we are investigating TEM analysis for determining the size of the nanoparticles. In FE-SEM 

analysis, the magnetic nanoparticles were characterized using energy dispersive X-ray (EDX) 

analysis in order to identify the elemental components of the sample. Figure 4.3c shows the 

EDX spectrum of Fe3O4-GG, which shows that various compositions were recorded. The 

effect illustrates strong peaks for Fe, C and O. The quantitative analysis indicated the molar 

presence of carbon (72.81%), oxygen (9.09%) and iron (18.08%) in the nanocomposite. 

Figure 4.3(d-f) shows energy dispersive study Fe3O4-GG nanocomposite indicates the 
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distribution of different element in different colour. That confirms well distributed of the 

element present in the nanocomposite. 

From the TEM analysis, we confirm the particles size and morphology of nanocomposite. 

Figure 4.4 shows the TEM analysis of Fe3O4 nanoparticles and Figure 4.6. Shows GG coated 

Fe3O4 nanocomposite. As we can see from the obtained micrograph, the prepared Fe3O4 

nanoparticles and Fe3O4-GG nanocomposite are spherical in nature and some particles 

agglomerate, which is due to their high density and high specific surface area. The average 

particle size of Fe3O4 is 3.4 nm shown in Figure 4.5 whereas, Figure4.7shows the distribution 

analysis for Fe3O4-GG and found to be 6.1 nm. After coating GG on the surface of Fe3O4, the 

particle size increases, and aggregation of particles reduces. Figure4.4b and Figure 4.6b show 

selected area electron diffraction study (SAED) of Fe3O4 and Fe3O4-GG nanocomposite. In 

both, the case predicts a well-determined set of rings with bright spots. Which indicates both 

Fe3O4 and GG coated Fe3O4 nanocomposites are nanocrystalline in nature[271].Figure4.6c 

shows the Energy-dispersive study (EDS) micrographs of Fe3O4-GG nanocomposite 

indicating the distribution of different elements like carbon, oxygen, and iron. Fig. 

6ddemonstrate the distribution of all the element together and Figure4.6(e-g) shows the 

element maps of Iron (Fe), carbon (C) and oxygen (O) individually. The elemental mapping 

confirms all the elements are well arranged. 

The nitrogen sorption technique was performed to investigate the textural properties of Fe3O4 

nanoparticles and Fe3O4-GG nanocomposite. In this analysis, we found that the BET surface 

area, pore volume and pore size of the Fe3O4 nanoparticles is 220 m
2
/g, 0.99 cm

3
/g& 6.5 nm 

and158 m
2
/g, 0.398 cm

3
/g &15.5 nm for Fe3O4-GG nanocomposite. In Figure 4.8a shows, the 

nanocomposite has type IV isotherm (According to IUPAC classification). As we can see 

from the Table 4.1 the surface area decrease after coating GG on the surface of Fe3O4 

because large number of GG occupy the Fe3O4 nanoparticles surface and lower in surface 

area can attribute the increase in crystal size of the nanoparticles by applying the Scherrer 

formula[272-275]. The result shows the immobilization of GG on the surface of Fe3O4 

nanoparticles. The BET surface area and BJH pore size distribution data confirm our 

prepared nanocomposite having mesoporous in nature and high surface area, these two 

properties having potential application in adsorption.   

The magnetic property of Fe3O4 and Fe3O4-GG nanocomposite were analyzed by vibrating 

sample magnetometer (VSM). Figure4.8b shows the typical room temperature (298K) the 

saturation magnetization curves of bare Fe3O4 nanoparticles and Fe3O4-GG can reach 51.95, 

22.73 emu/g, (magnetic field ±5000 G). As we can see from Figure 4.8b these two samples 
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show no remanence and coercivity. This indicates that the magnetic nanocomposites are 

paramagnetism in nature. However, the magnetic saturation value of the  Fe3O4-GG 

nanocomposite became lower as compare to Fe3O4 nanoparticles, because of its higher 

molecular weight of GG[254]. When an outside magnet was added, the Fe3O4-GG 

nanocomposite was attracted rapidly to the place close to the magnet in a few minutes and the 

solution almost purified (inset in Figure8b). The result suggested that Fe3O4-GG has good 

removal properties and could be easily separated  from aqueous solution by using a magnetic 

field[276] 

 

 

 

 

 

 

 

 

 

 

Figure 4.3 Field emission scanning electron microscopy (FE-SEM) images of (a) Fe3O4, (b) 

Fe3O4-GG  nanocomposite, (c) EDX spectra of Fe3O4-GG  nanocomposite and (d,e.f) EDS 

data of Fe3O4-GG nanocomposite. 

 

Figure 4.4 (a) TEM of Fe3O4 nanoparticles and (b) SAED pattern of Fe3O4 nanoparticles. 
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Figure 4.5 Histogram of the particle size distribution of Fe3O4. 

 

Figure 4.6 (a)TEM image of Fe3O4-GG  nanocomposites, (b) SAED pattern.of Fe3O4-GG  

nanocomposites and (c) EDS mapping analysis of Fe3O4-GG  nanocomposites. 
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Figure 4.7 Histogram of the particle size distribution of Fe3O4-GG nanocomposite. 

Figure 4.8 (a) N2 adsorption-desorption isotherm of Fe3O4, Fe3O4-GG nanocomposite, (b) 

Magnetization curve of Fe3O4, Fe3O4-GG nanocomposite, (c) Zeta potential versus P
H
 of  

Fe3O4, Fe3O4-GG nanocomposite and (d) Preferential adsorption efficiency of different dyes 

on Fe3O4-GG nanoparticles. 
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Table 4.1 BET surface area, pore volume and pore size of Fe3O4 and Fe3O4-GG 

nanocomposite. 

 

Zeta potential measurement as a function of pH has been performed to confirm the surface 

charge properties. The Zeta potential data of Fe3O4 and Fe3O4-GG at different pH is shown in 

Figure4.8c.The Fe3O4 magnetic nanoparticles have a positive charge at lower pH which 

decreases with increase in pH and became negative after its isoelectric point. The isoelectric 

point of the Fe3O4 and Fe3O4-GGnanocomposite are found to be 8.8 and 7.5, respectively.  

4.3.2 Preferential adsorption of different dyes.  

The removal efficiency of various dyes (40 mg/L) by Fe3O4-GG nanocomposite (150 mg 

adsorbent dose) is shown in Figure 4.8d. The observation indicates the preferential adsorption 

of the dyes containing the amino group (-NH2) group such as Congo red (CR), which 

adsorbed with higher efficiency (∼97% for CR) as compared to other available dyes like 

Malachite green (MG) (∼43%), Methylene blue (MeB) (∼11%), Methyl orange (MO) 

(∼5%), Erichrome Black T (EBT) (∼4%), Methyl blue (MB) (∼5%) and Rhodamine B (Rhb) 

(∼4%) on the magnetic nanocomposite surface. Fe3O4-GG nanocomposite contain surface 

hydroxyl group that can be easily bonded to the dyes (i.e., CR and MG) containing –NH2 

group can form hydrogen electrostatic bonding with the surface hydroxyl group of the 

prepared Fe3O4-GG nanocomposite, which leads to improvement of the adsorption efficiency 

of discussed dyes as compare to other dyes, without–NH2 group. The most dominating 

mechanism for adsorption of organic dyes on polymer-coated Fe3O4 nanocomposite surface 

is due to the surface complexation via electrostatic interaction under solution conditions[277, 

278]. 

4.3.3 Impact of different parameters on adsorption 

Five various concentrations i.e. 20, 40, 60, 80, 100 mg/L to examine the effect of the initial 

concentration of CR dye onto adsorbent, and the result obtained at adsorbent dose 150mg, pH 

6 and 25 °C (room temperature) are shown in Figure 4.9a. From this figure, it was observed 

that the percentage removal of CR 20 mg/L and 40 mg/L is approximately same but after 

increasing the concentration of the dye 40 mg/L to 100 mg/L, the removal efficiency 

decreased from 97.45 % to 51.49 % because the numbers of active binding sites were 

    Sample    BET Surface Area (m
2
/g) Pore Volume (cm

3
/g) Pore Size (nm)   

    Fe3O4                     220              0.99            6.5 

    Fe3O4-GG                     158              0.398            15.5 
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saturated and the removal efficiency decrease[279]. The optimum dye concentration was an 

initiate to be 40 mg/L. 

pH assumes as an important parameter to control the removal efficiency of CR dyes by the 

Fe3O4-GG nanocomposite. From Figure4.9b, it is observed that about97.58 % of CR (initial 

concentration 40 mg/L) is removed at pH 6. The isoelectric point of the Fe3O4-GG 

nanocomposite was found to be 7.5. The Fe3O4-GG nanocomposite has positive surface 

charge at pH < 7.5 and electrostatic interaction has occurred between the positive charge 

nanocomposite and negatively charged CR dyes. But pH > 7.5the surface charge becomes 

more negative due to the presence of excess OH
-
 ions on the adsorbent surface as shown in 

the following equation.  

CH2-OH + OH


CH2O

 + H2O 

Hence, there is a repulsive force existing in between the adsorbent surface and the negatively 

charged CR dye resulting in the reduction of the adsorption efficiency. Hence in acidic 

condition, anionic complexes are formed between anionic dye (CR) molecules and the 

cationic polymer functionalized magnetic adsorbent surface. 

The effect of Fe3O4-GG adsorbent dose on the removal of CR dyes from aqueous solution is 

illustrated in Figure 4.9c The maximum CR dye removal efficiency for 40 mg/L solutions are 

61.3 %, 74.2 %, 81.6 %, 97.4 % and 97.5 % with different adsorbent dose 10mg, 50 mg, 

100mg, 150 mg and 200 mg after 5 min, respectively. As shown in the graph the optimum 

adsorbent dose 150 mg, after which it reached equilibrium. The obtained results confirm that 

on increasing the amount of adsorbent dose, dye adsorption efficiency was also increased due 

to the availability of more adsorbent surface area [258, 262]. 

The effect of Fe3O4-GG adsorbent dose on the removal of CR dyes from aqueous solution is 

illustrated in Figure 4.9c The maximum CR dye removal efficiency for 40 mg/L solutions are 

61.3 %, 74.2 %, 81.6 %, 97.4 % and 97.5 % with different adsorbent dose 10 mg, 50 mg, 100 

mg, 150 mg and 200 mg after 5 min, respectively. As shown in the graph the optimum 

adsorbent dose 150 mg, after which it reached equilibrium. The obtained results confirm that 

on increasing the amount of adsorbent dose, dye adsorption efficiency was also increased due 

to the availability of more adsorbent surface area [258, 262]. 

Contact time is one of the essential factors in the design of an economical adsorption system. 

Figure 4.9d reveals that dye uptake initial rate increase sharply with time and attained 

equilibrium (97.5 %) within 5 min for CR dyes. This phenomenon shows that monolayer 
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exposure of dye molecule at the external interface of then a composite is formed during the 

adsorption process. The initial higher rate of removal is due to the larger surface area as well 

as the abundant active binding site of the nanocomposite[280, 281]. After maximum removal, 

the adsorption rate was controlled by the rate of dye transport from external to internal pores 

of the nanocomposite materials. 

Figure 4.9 (a) The removal of CR at different concentrations (b) Effect of pH on the removal 

efficiency. The concentration of the adsorbent was 150 mg and the initial concentration of 

dye solution was 40 mg/L. (c) Effect of adsorbent dosage on adsorption CR. (d) Effect of 

time on adsorption of CR. 

4.3.4 Adsorption Kinetics  

It investigates to understand the mechanism of adsorption process well on contact time. Two 

kinetic models (pseudo-first-order and pseudo-second-order) are illustrated in Figure 4.10 

and the parameters are listed in Table 4.2. The kinetic models well fit with the pseudo-

second-order model because due to higher R
2
 value as compare to pseudo-first-order model. 

Our adsorption process follows pseudo second-order model and is dependent on the amount 

of dye adsorbed on the surface of Fe3O4-GG nanocomposite at equilibrium. Generally, the 

pseudo-first-order is applicable to initial stage of adsorption that’s why this model does not 

well fit with the whole range of contact time[262, 282].From the above the kinetic data, we 
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confirm the adsorption process is due to chemisorptions which involved valence forces 

between dye anion and adsorbent. 

Figure 4.10 Kinetic model parameters of CR on Fe3O4-GG (a) Pseudo first-order kinetic 

model and (b) Pseudo second-order kinetic model. 

Table 4.2 Kinetics parameters for CR dye adsorption on Fe3O4-GG. 

Initial dye concentration (mg/L)   Pseudo 1
st
 kinetic order                 Pseudo 2

nd
 kinetic order        

                                                  qe mg/L         K1           R
2
                  qe mg/L         K2           R

2
 

      40 mg/L                              3.85             0.07        0.95                 5.26            2.71        0.99 

 

4.3.5 Adsorption Isotherm  

Five adsorptions isotherm model, Langmuir, Freundlich, Temkin, D-R plot and Elovich 

isotherm models are illustrated graphically in Figure 4.11 and the isotherm parameters are 

listed in Table 4.3. From the obtained RL value within the range0 to 1, which confirm the 

adsorption process of CR on Fe3O4-GG was favorable at the condition being 

studied.However, the initial concentration increases from 20 to 100 mg/L as the RL value 

decreases (Fig. 11b.). From the Freundlich isotherm, the values of 1/n less than 1 represent 

favorable adsorption[283]. The smaller value of the Temkin constant (B1) suggested that 

adsorption of CR on Fe3O4-GG is favorable. The highest Coefficient of correlation (R
2
) value 

regarded as the well fit of isotherm model. The comparison of coefficients indicates that the 

Langmuir isotherm fit more precisely (R
2
 = 0.98) than the   Freundlich isotherm (R

2
 =0.96), 

Temkin isotherm (R
2
 =0.92) Elovich isotherm (0.91) and Dubinin–Radushkevich isotherm 

(R
2
= 0.97). The Langmuir adsorption isotherm model assumes that monolayer formation in 

between CR on the surface of Fe3O4-GG nanocomposite[284]. 
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Figure 4.11 (a) Langmuir isotherm plot, (b) Effect of the initial concentration for CR 

adsorption on Fe3O4-GG, (c) Freundlich isotherm plot, (d) Temkin isotherm plot (e) Dubinin-

Radushkevich isotherm plot and (f) Elovich isotherm plot of CR on Fe3O4-GG. 

4.3.6 Comparative study of adsorption capacity with different adsorbents 

The comparison study of highest adsorption limit of Fe3O4-GG nanocomposite with reported 

adsorbents has been examined to understand the effectiveness of the prepared nanocomposite 

as an adsorbent for the removal of anionic CR dye from aqueous solution. Table 4.4 reflects 

that qmax of synthesized Fe3O4-GG (60.24 mg/g for CR) is substantially higher than that of 

other reported adsorbents toward CR dye. This result indicates that Fe3O4-GG nanocomposite 

can be considered as a better adsorbent for the uptake of CR dyes from aqueous solution. As 

stated above in Table 4.4, CR has a higher adsorption rate with Palm Kernel seed coating 

material but the disadvantage of the material is that it cannot be regenerated for multiple 

applications. Whereas, overcoming the said disadvantage, our GG-based Fe3O4 

nanocomposite can be regenerated for several cycles with an almost similar efficiency that 

can show in Figure4.8d [182, 239, 285, 286]. 

4.3.7 Regeneration of dye-loaded adsorbent 

The reusability of the nanocomposite (Fe3O4-GG) was loaded with 40 mg/L CR dye solution 

(pH=6) mixed with 150 mg of Fe3O4-GG nanocomposite for 5 min. The dye-loaded sample 

was filtered and dried completely. Afterward, the adsorbent was washed with ethanol and 

several times with deionized water [287]. Five successive adsorption-desorption cycles were 

performed to find out the repeated use of the adsorbent as an efficient adsorbent as shown in 

Figure 4.12. 



 

66 
 

Table 4.3 Isotherm parameters for the adsorption of CR on to Fe3O4-GG at room temperature 

(300 K) and initial dye concentration 40 mg/L 

      Isotherm Model                           Parameters                                                                                                                             

      Langmuir                                     qm (mg/g) = 60.24 

                                                           b (L/mg) = 1.47 

                                                           RL = 0.016 

                                                           R
2
 = 0.99 

      Freundlich                                    Kf = 15.13 

                                                           n = 2.77 

                                                           R
2
 = 0.96 

      Temkin                                         KT (L/mg) = 20.58 

                                                           B1 = 7.373 

                                                           R
2
 = 0.92  

      Dubinin-Radushkevich                qm (mg/g) = 46.08 

                                                            K (mol
2
 K/ J

2
) = -1.1674 × 10

-4
 

                                                            E = 65.93  

                                                            R
2
 = 0.97 

      Elovich                                         KE = 6.63 

                                                            qm = 12.19 

                                                            R
2
 = 0.91 

Table 4.4 Comparison of adsorption efficiency of Fe3O4-GG nanocomposite for removal of 

Congo red dye with different adsorbents. 

Dye                        Adsorbent                                                  qmax (mg/g)              Reference                                    

Congo red         Magnetically modified fodder yeast cell              49.7                            [239] 

Congo red         Chitosan/montmorillonite nanocomposite           54.52                         [281] 

Congo red         Chitosan coated magnetic iron oxide                   42.62                          [182] 

Congo red         Palm Kernel seed Coat                                         66.23                          [286] 

Congo red         Fe3O4-GG nanocomposite                                    60.24               Present Study 



 

67 
 

 

. 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.12 Reusability of the adsorbent 

4.4 Summary 

A simple method has been developed for covalently coating GG on to the surface of Fe3O4 

nanoparticles by using low-toxic and cost-effective precursors. The dye CR was adsorbed in 

much higher amounts as compared to MG, MeB, MO, EBT, MB, and Rhb. The preferential 

adsorption phenomena could attribute to the presence of –NH2 groups present in CR dye, 

which can bind easily with the surface hydroxyl groups of GG coated magnetite 

nanoparticles. The optimum concentration of Fe3O4-GG nanocomposite is 150 mg/L, while 

the initial dye concentration 40 mg/L at pH 6. Due to the paramagnetic behavior of prepared 

nanocomposite, the magnetic adsorbent can be easily separated dye by using a small magnet. 

The result indicates the removal of CR is over 97 %. There are several advantages of the 

nanocomposite plays a crucial role for dye adsorption such as higher surface area, easy 

separation by exposing magnet, hydrodynamic volume, and controlled growth of guar-gum 

coated Fe3O4 nanocomposite as well as multiple numbers of H-bonding sites of 

nanocomposite with dye molecules. The optimum concentration of Fe3O4-GG is 150 mg/L, 

while the initial concentration of CR is 40 mg/L at pH 6.The result indicates the removal of 

CR is over 97 %. In addition, the adsorption capacity can be affected by ionic strength. The 

equilibrium data were found to be better fits with the pseudo-second-order kinetics and 

Langmuir adsorption isotherm model. Finally, the cycling performance of adsorbent 

contributes a significant accomplishment toward sustainable improvement towards the dye-

polluted water. 
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Chapter 5 

5. An investigation of heavy metals adsorption by hexadentate ligand 

modified magnetic nanocomposite. 

 

5.1 Introduction 

Water contamination arises because of the aimless removal of toxic metal ions and organic 

contaminants, which is currently a rising concern in environmental science. For example, 

industrial units based on metallurgical, mining and chemical are the main source of 

wastewater as they discharge toxic entities[9, 288]. For environmental safety, it is required to 

remove these metal contaminants from the toxic contaminated water before releasing into the 

aquatic environment[289]. Disposal of toxic contaminants from the wastewater not only 

protect the environment but also stop in entering the food chains. Up to now, Traditional 

techniques have been developed for the removal of toxic metal ions from wastewater such as 

co-precipitation[290], membrane filtration[291], ion exchange[292], biosorption[293], 

electro-coagulation[294], electrodialysis[295] and adsorption[232]. Among all these 

established, adsorption is a promising process for removal of heavy metals from 

contaminated water. A few adsorbents that have been examined for metal removal including 

activated carbon(AC)[296], zeolite[297], resins[298] and inorganic materials[299, 300]. 

However, these adsorbents have been suffering from demerits like low adsorption capacities 

or low efficiencies. Therefore, a serious effort has been made to seek novel adsorbents and 

acquire new methods with passage of time.  Nanotechnology and nanomaterials have 

gradually been investigated permanently in this aspect.[301-304] The ease of the use of 

nanomaterials are concentrated around improved reactivity, higher surface area and 

sequestration characteristics. So far, an array of nanomaterials are employed in research and 

development and each displaying an unique attribute that have perspective application in the 

purification of industrial discharge, ground water, drinking water and surface water[305]. 

Magnetic nanoparticles particularly Fe3O4 has been in focus due to its magnetic segregation 

properties and potential application in different research areas, such as supercapacitor 

electrode materials[14, 306-313], heavy metal adsorption[314], catalytic oxidation of 

alcohols[315], magnetic carriers for protein separation[316] and wastewater treatment[317-

319]. Moreover, Fe3O4 nanoparticles with different morphologies may show unique physical  

Jitendra Kumar Sahoo, Aniket Kumara, Lipeeka Rout, Juhi Rath, Priyabrat Dash* and 

Harekrushna Sahoo* Separation Science and Technology, 2017, 53, 863-876. 
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and chemical properties, such as a specific surface area and unique lattice plane[320], Still, 

diverse Fe3O4 nanoparticles with miscellaneous morphologies, including sphere, cube, wire, 

tube, polyhedron, core-shell structure, and ring have been synthesized[321-325]. For 

example, Bayou Geng et al. synthesized single-crystalline Fe3O4 nanotubes maneuvering egg 

albumin as a nanoreactor[326], Kok Chung Chin et al. synthesized Fe3O4 nanosheets by 

oxidizing  Fe substrates in a low pH solution on a hot plate[327]. Xiyan Li et al. prepared 

single-crystalline triangular Fe3O4 nano prisms via a hydrothermal route and also porous 

flower-shaped[328]. 

Silica gel, inorganic materials are used for water treatment, which can be modified 

chemosynthetically by incorporating functional groups following silanization method to 

improve its removal efficiency. In addition, other advantages of silica gel are local 

availability, high surface area of about 600 m
2
/g and high thermal resistance[329, 330]. 

Although modified silica gels effectively can remove trace elements such as Cu, Zn, Fe, Cd, 

Pb, and Mn from polluted water[329, 330]. However, all of the silica-bound ligands could not 

reverse the metal binding and the regeneration of spent adsorbent became complicated[331, 

332]. 

Linking agents, for example, ethylene diamine tetraacetic acid (EDTA), are widely 

used as extractive reagents for heavy metals removal[333]. Due to its low cost and strong 

metals linking ability, EDTA has been used to functionalized variety of materials such as 

chitosan[334], mercerized cellulose and sugarcane bagasse[335], polystyrene[336], silica 

gel[337], polyamine composites[338] ker’s yeast biomass[339] and  rice husk[340]. Keeping 

an eye on the above difficulties, in the current study, silica gel was functionalized with metal 

chelating agents such as ethylene diamine tetraacetic acid (EDTA) prior to their use as 

adsorbents. The chelating agents are presumed to have the ability to form stable complex or 

interaction with target metals and reverse the metal-binding after being treated chemically. 

The aim of this study was to investigate the performance of FAE nanocomposite for the 

removal of heavy metal ions (Pb
2+

, Cd
2+

, Ni
2+

, Co
2+,

 and Cu
2+

) from contaminated water. 

Effect of pertinent factors such as adsorbent dosage, pH, contact time and initial metal ions 

concentration were studied.  The Langmuir, Freundlich, Temkin and Elovich models were 

employed to simulate their adsorption isotherm. The adsorption mechanism of metal ions 

removal by adsorbent and reusability of the nanocomposite are also presented. 

5.2 Batch adsorption study 

Batch experiments were carried out at room temperature (25 °C) under the optimum 

condition of all adsorption parameters such as adsorbent dosage, pH, initial heavy metal ions 
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concentration, and contact time. All the experiments were conducted by taking under 

consideration different concentration of heavy metals (Pb
2+

, Cd
2+

, Ni
2+

, Co
2+,

 and Cu
2+

) in a 

series of 200 mL poly-lab plastic bottles fitted with cap. The reaction bottles were incubated 

at 25 ± 5 °C in a thermostatic shaker (SELEC RC5100) at 250 rpm. Adsorbent dose for 

different heavy metals is not constant. Distilled water was used throughout the experiment. 

After adsorption, the adsorbents are separated by External magnetic field. The concentration 

of heavy metals in the residual solution is analyzed by atomic absorption spectroscopy. The 

percentage removal and uptake capacity of heavy metal ions are evaluated by using the 

following equation: 

 

% Adsorption = 
     

  
        (5.1) 

And the equilibrium uptake was calculated using Eq. (5.2): 

 

           
 

 
     (5.2) 

 

Where C0 is the initial concentration of dye solution (mg/L), qe is the equilibrium capacity of 

dye on the adsorbent (mg/g), Ce is the equilibrium concentration of dye solution (mg/L), W is 

the weight of adsorbent (g) used and V is the volume of dye solution used (L). All 

experiments have been done in triplicates and the results are represented as average readings. 

5.3 Results and discussion 

5.3.1 Adsorbent characterizations 

XRD patterns showing the phase purity of Fe3O4, Fe3O4-APTES, and Fe3O4-APTES-EDTA 

nanocomposite are indicated in Figure 5.1A. All detected diffraction are indexed with the 

standard XRD pattern of face-centered cubic (fcc), Fe3O4 (JCPDS no 65-3107), which 

indicates the high purity of Fe3O4. The main peaks for Fe3O4nanoparticles observed at 2θ 

=30.09°, 35.42°, 43.05°, 56.94°, and 62.51°. The diffraction peaks for Fe3O4-APTES and 

Fe3O4-APTES-EDTA are similar to the Fe3O4 nanoparticles, which reveal the crystal 

structure of Fe3O4 is well-maintained after the coating of APTES and EDTA[206, 341, 342]. 

The absence of peaks at 110 (2θ=21.22) and 104 (2θ=33.15) indicate that both goethite and 

hematite  -Fe2O3are not formed in the prepared samples[343].  The XRD pattern for Fe3O4-

APTES and Fe3O4-APTES-EDTA revealed that after coating with APTES and EDTA, the 

phase of Fe3O4 did not change. Moreover, it was identified that the coating process was 

insufficient to seed growth and thus didn’t affect the physical properties of the magnetite 

particles. The XRD data indicated towards high crystallinity of Fe3O4-APTES-EDTA 
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nanocomposite. The average core size can be evaluated from the XRD result by Scherrer 

formula: 

D=
     

     
  5.3 

Where D is the average crystalline diameter, 0.94 is the Scherrer constant, λ is the X-ray 

wavelength, B is the angular line width of half-maximum intensity and Ɵ is the Bragg’s angle 

in degree. Here, the (311) peak of the highest intensity was picked out to evaluate the particle 

diameter of Fe3O4, Fe3O4-APTES, and Fe3O4-APTES-EDTA, and the D was calculated to be 

8.15 nm, 18.24 nm, and 38.17 nm. 

 

Figure 5.1 (A) XRD patterns for (a) Fe3O4,(b) Fe3O4-APTES and (C) Fe3O4-APTES-EDTA 

(B) FTIR spectra of (a) Fe3O4,(b) Fe3O4-APTES and (C) Fe3O4-APTES-EDTA. 

The surface characteristic of a functional group present on Fe3O4 magnetic nanoparticle is 

characterized by using Fourier-transform infrared (FTIR) spectroscopy. Figure 5.1B shows 

the FT-IR spectra of Fe3O4, Fe3O4-APTES, and Fe3O4-APTES-EDTA magnetic 

nanocomposite. In Figure 5.1B,  the strong IR band at 586 cm
−1

is the characteristic 

absorption of Fe-O bond, which confirms that magnetite nanoparticle[342, 344]. In Figure 2b, 

we observe 2925 cm
-1

, 996 cm
-1

,
 
1040 cm

-1
, 1302 cm

-1, 
and 3360 cm

-1 
ascribe to the 

asymmetric stretching vibrations of CH2 in alkyl chain, Si-O-Si group, C-N stretching, Free –

NH2 but after modification EDTA on Fe3O4-APTES (Figure 2c), we observe two new  peaks 

around 1621 cm
-1

 and 2925 cm
-1

 corresponds  C=O stretching vibration of –COOH and  C-H 

stretching respectively, indicating the existence of EDTA [305, 345-351]. From these 

changes shown in IR spectra, it can be reasonably concluded that Fe3O4 nanoparticles have 

been successfully modified with APTES and EDTA. 
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Figure 5.2 TEM of (a) Fe3O4, (b,c) Fe3O4-APTES-EDTA, (d) SAED pattern Fe3O4-APTES-

EDTA and (e) EDX analysis. 

The morphology of the Fe3O4 and Fe3O4-APTES-EDTA is characterized using a transmission 

electron microscope (TEM) presented In Figure 5.2a, it is visualized that Fe3O4 particles are 

monodisperse and average size about 12.15 nm, with an approximately spherical shape. After 

modification with APTES and EDTA, the TEM micrograph as shown in Figure 5.2b and, the 

obtained particle size was found to be 50 nm. Figure 5.2c shows the TEM image of a single 

Fe3O4-APTES-EDTA particle with a core-shell structure. Moreover, the TEM images with 

higher resolutions (Figure 5.2c) reveal that the EDTA coating is relatively rough with sizes of 

20 nm range. From TEM analysis we found that APTES and EDTA coating reduces the 

aggregation and simultaneously improves the particle distribution. In Figure 5.2c, we clearly 

observe there is three-layer of spherical particles we assume that the first layer is Fe3O4 and 

second layer is APTES and the third layer is EDTA. The Selected area electron diffraction 

(SAED) pattern shows the ring-like structure clearly indicates that our composite having 

crystalline nature (Figure 5.2d).  From TEM analysis, the magnetic nanoparticles were 

analyzed using energy dispersive X-ray (EDX) in order to identify the elemental components.  

Figure 5.2(e) display the EDX spectrum of Fe3O4-APTES-EDTA, which shows strong peaks 

for Fe, C, O, Si and N. The quantitative analysis indicated the molar presence of different 

composition i.e. iron (39.83 %), oxygen (35.17 %), carbon (11.37 %), silicon (9.73 %) and 

nitrogen (3.90 %) in the nanocomposite. Figure 5.3 shows the EDS mapping images of 
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Fe3O4-APTES-EDTA nanocomposite indicating the spatial distribution of iron, oxygen, 

silicon, carbon, and nitrogen. Figure 5.3(a) represents the TEM image of the APTES and 

EDTA coated Fe3O4 nanocomposite which is to be analyzed in EDS mapping. Figure 5.3(b) 

displays the elemental mapping of all of different elements together, and Figure 5.3(c–

g) display the elemental analysis of Fe, N, O, C, and Si individually. The elemental mapping 

results show that all elements were well arranged.  

Figure 5.3 EDS mapping of Fe3O4-APTES-EDTA. 

The magnetic properties of Fe3O4, Fe3O4-APTES, and Fe3O4-APTES-EDTA nanocomposite 

are analyzed by Vibrating sample magnetometer (VSM). Figure 5.4Ashows the 

supermagnetization curves of Fe3O4, Fe3O4-APTES, and Fe3O4-APTES-EDTA at room 

temperature with negligible coercivity and remanence. Maximum saturation super 

magnetizations from the hysteresis loop for the Fe3O4, Fe3O4-APTES, and Fe3O4-APTES-

EDTA nanoparticles were 55, 43 and 36 emu/g, respectively.  Although the attachment of 

APTES and EDTA non-magnetic portion resulted in a decline in saturation of 

supermagnetizations in Fe3O4 nanoparticles, the obtained Fe3O4-APTES-EDTA have a 

high saturation supermagnetization of 36 emu/g. According to Ma’s study, a value of 

16.3emu/g supermagnetization is enough for magnetic separation with a magnet from 

solution.[352-356] These imply that Fe3O4-APTES-EDTAadsorbents can be dispersed into 

water solution readily and the magnetic sorbent loaded with analytes can be isolated from 

http://pubs.rsc.org/en/content/articlehtml/2015/NR/C5NR02680F#imgfig4
http://pubs.rsc.org/en/content/articlehtml/2015/NR/C5NR02680F#imgfig4
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the matrix conveniently by using an external magnet. Once the external magnetic field is 

taken away, these sorbents can re-disperse rapidly. 

 

Figure 5.4 (A) Vibrating sample magnetometer (VSM) supermagnetization curves of (a) 

Fe3O4, (b) Fe3O4-APTES and (C) Fe3O4-APTES-EDTA.  (B) N2 adsorption-desorption 

isotherms of (a) Fe3O4, (b) Fe3O4-APTES and (C) Fe3O4-APTES-EDTA. (C) Zeta potential 

of (a) Fe3O4, (b) Fe3O4-APTES and (c) Fe3O4-APTES-EDTA nanocomposite. (D) Reusability 

of the adsorbent. 

Figure 5.4B represents the porous properties of the Fe3O4, Fe3O4-APTES, and Fe3O4-APTES-

EDTAwere studied by N2 adsorption-desorption method. It can be seen that the samples have 

type IV isotherms (as per IUPAC classification). The Brunauer-Emmett-Teller (BET) surface 

area of Fe3O4, Fe3O4-APTES, and Fe3O4-APTES-EDTA was found to be 165, 105 and 67.2 

m
2/

g, respectively. As it can be observed from Table 5.1 that after coating APTES and EDTA 

on the surface of Fe3O4, the surface area decreases that can be attributed to increase in the 

crystal size of the nanoparticles calculated by applying the Scherrer formula.[357]. Then the 

total pore size and volume were determined by the Barret, Joyner, and Halenda (BJH) method 

using desorption isotherms.[358] The result indicates that the Fe3O4, Fe3O4-APTES and 

Fe3O4-APTES-EDTA powder have the total pore volume of 0.195, 0.398 and 0.475 cm
3
/g 

and the total pore sizes were 2.4, 4.6 and 5.2 nm are displayed in Figure 5. The BET specific 

surface area and BJH pore size distribution analysis confirm our nano-composites having 
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mesoporous in nature and these higher surface areas and mesoporous have potential 

application in adsorption. 

Table 5.1 BET surface area pore size and the pore volume of Fe3O4, Fe3O4-APTES, and 

Fe3O4-APTES-EDTAnanocomposite. 

Sample BET Surface Area 

(m
2 

g
-1

) 

Pore Volume (cm
3
 g

-1
) Pore Size (nm) 

Fe3O4-APTES-EDTA 67.2 0.475 5.2 

Fe3O4-APTES 105 0.398 4.6 

Fe3O4 165 0.195 2.4 

 

 

 

 

 

 

 

 

 

 

Figure 5.5 Pore size distribution curves of Fe3O4, Fe3O4-APTES, and Fe3O4-APTES-

EDTAnanocomposite. 

The TGA analysis of Fe3O4 and Fe3O4-APTES-EDTA nanocomposite is done in argon 

atmosphere as shown in Figure 5.6. The TGA curves of Fe3O4nanoparticles show a 3% 

weight loss up to 60-100 °C, followed by a further weight loss around 3.8% at 300 °C, and a 

slow decrease 1.3% in between 600 °C to 800 °C. These indicate loss of moisture, some of it 

more tightly bound. The curve for Fe3O4-APTES-EDTA, three weight loss steps at about 272, 

395 and 610 ºC, as demonstrated in the derivative curve, which can be ascribed to the 

decomposition of an amine group, the decomposition of EDTA and the complete oxidation of 

carbon respectively. The weight percentage of EDTA attached to Fe3O4-APTES can be 
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determined by the difference of initial and final mass of the sample in the TGA curve (Figure. 

5.6) and was approximately 9% of the total mass of Fe3O4-APTES-EDTA. The high fraction 

of EDTA and porous surface structure possible many active binding sites for metal ion 

removal.[359] As a consequence, this nanocomposite can be effectively used for the 

adsorption purpose because a majority of adsorption experiments are mostly carried out 

below 35 °C. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.6 TGA curves of Fe3O4 and Fe3O4-APTES-EDTA. 

Zeta potential measurement as a function of pH has been accomplished to confirm the surface 

charge properties. Figure 5.4c shows that the surface charges of Fe3O4, Fe3O4-APTES, and 

Fe3O4-APTES-EDTA at different pH. The Fe3O4 magnetic nanoparticles have positive 

potential at lower pH (2-5) range and negative potential at higher pH (6-10) range and the 

isoelectric point is 5.3, while the Fe3O4 -APTES and Fe3O4–APTES-EDTA are positively 

charged at lower pH and negatively at higher pH with isoelectric points (IEP) of 5.5 and 5.7, 

respectively. The difference in charge properties can be attributed to the ionization of the 

functional groups, i.e, –COOH and –NH2 at different pH[360].  

5.3.2 Impact of the different parameter on adsorption 

In water treatment, pH is a key operational parameter, as it can influence both the adsorbent 

structure and the distribution of pollutant species. The uptake efficiency in the pH range was 

examined with initial concentrations of 10 mg/L for each heavy metals (Pb
2+

, Cd
2+

, Ni
2+

, 

Co
2+,

 and Cu
2+

).Effect of pH on the adsorption of heavy metals (Pb
2+

, Cd
2+

, Ni
2+

, Co
2+,

 and 

Cu
2+

)  on  FAE nanocomposite shown in Fig. 4(a). The adsorption of heavy metals (Pb
2+

, 

Cd
2+

, Ni
2+

, Co
2+,

 and Cu
2+

) on the FAE nanocomposite surface is a surface reaction. It is well 
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known that the pH plays an important role in the adsorption of particular metal ions onto 

adsorbent surface. The pH of the solutions was varied in between 3 to 10. No significant 

difference in heavy metal removal efficiency was found between pH 3 and 7, because in this 

range heavy metal forms stable complex with EDTA and binds the corresponding metals ions 

(M = Pb
2+

, Cd
2+

, Ni
2+

, Co
2+,

 and Cu
2+

). This can be explained as follows; 

 

  242 )(EDTAMEDTAM     (5.4) 

  )()( 2 HEDTAMHEDTAM     (5.5) 

 

But with increase in pH, the metal hydroxide formation increases and reduce the formation of 

M(EDTA)
2-

 and M(HEDTA)
-
, which leads to decreased the adsorption of metal ions on the 

Fe3O4–APTES-EDTA surface. A similar type of results was observed by Zirino et al[361]. 

As shown in Fig. 4(b), with a rise in the adsorbent dosages, the percentage removal efficiency 

of heavy metal (Pb
2+

, Cd
2+

, Ni
2+

, Co
2+,

 and Cu
2+

) simultaneously increases. This behavior is 

expected as a surge in the amount of sorbent will enhance the number of active binding sites 

and are available for the adsorption and more metal ions will be removed. Since the 

composite possesses functional groups like carboxyl, hydroxyl, amine, and carbonyl, they 

have a vital role in heavy metal adsorption. The removal efficiency of Pb
2+

, Cd
2+

, Ni
2+

, Co
2+

 

and Cu
2+ 

ions for 10mg/L solution are 95%, 96%, 96%,97% and 97% with optimum 

adsorbent dosages 125, 150, 150, 170 and 200 mg respectively. 

The initial metal ion concentrations play a significant effect on their removal from aqueous 

solutions. In Fig. 4(c) shows the removal efficiency of heavy metals (Pb
2+

, Cd
2+

, Ni
2+

, Co
2+

 

and Cu
2+

), which increases from 0.63 to 18.42 mg/L for Pb
2+

, 0.64 to 21.19 for Cd
2+

, 0.46 to 

13.71 for Ni
2+

, 0.53 to 16.16 for Co
2+

 and 0.77 to 26.97 Cu
2+

 when the initial metal ion 

concentration changes from 1 mg/L to 50 mg/L. For the different adsorbent dosage of Fe3O4-

APTES-EDTA, an upsurge in the metal ion concentration indicates a decline in the removal 

efficiency as the number of active binding sites is insufficient to bind metal ion. Higher initial 

metal ion concentrations resulted in higher mass gradient pressures between the aqueous 

solution and nanocomposite, which may provide a driving force in overcoming the mass 

transfer resistance between the aqueous and solid phases[362]. 

The effect of contact time on heavy metal (Pb
2+

, Cd
2+

, Ni
2+

, Co
2+,

 and Cu
2+

)removal from 

aqueous solution is shown in Fig. 4(d). For all heavy metal ions, the optimum maximum 

removal rate is reached at contact time 150 min, 120 min, 120 min, 220 min, and 220 min. At 
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this contact time, the removal rates of Pb
2+

, Cd
2+

, Ni
2+

, Co
2+

 and Cu
2+

 ions reach 98 %, 97 %, 

98 %, 98 %, and 96 %, respectively. Fig. 4(d) depicts the increase in efficiency with change 

in time. This is based on the fact that a large number of vacant active surface sites are 

occupied by the adsorbed metal suggesting the nature of the adsorbent and availability of 

adsorption sites. 

 

Figure 5.7 (a) Effect of pH, (b) Effect of adsorbent dosage, (c) Effect of the initial 

concentration of heavy metal ions and (d) Effect of contact time for heavy metal ions on to 

Fe3O4-APTES-EDTA nanocomposite. 

5.3.3 Adsorption Kinetics 

From First-order kinetics plot, we calculated qe, K1, and the corresponding linear regression 

coefficient of determination R
2
 values are shown in Table 5.2. The low correlation 

coefficients indicate that the pseudo-first-order model does not predict the kinetics of the 

heavy metal ions (Pb
2+

, Cd
2+

, Ni
2+

, Co
2+,

 and Cu
2+

) adsorption on to nanocomposite surface. 

The plot of t/qt versus t (In Figure 5.8b) with second-order kinetics shows a linear 

relationship. Values of K2 is the rate constant of pseudo-second-order adsorption and 

equilibrium adsorption capacity qe and the corresponding linear regression the coefficient of 

determination (R
2
) were calculated from the intercept and slope of the plots[363-365]. The 

coefficient of determination for the second-order kinetics model (R
2
) are greater than 0.99, 
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indicating the applicability of this kinetics equation and the second-order nature of the 

adsorption process of metal ions (Pb
2+

, Cd
2+

, Ni
2+

, Co
2+,

 and Cu
2+

) on to nanocomposite 

surface. Comparing to all the determination coefficients (R
2
) and above analysis, it can be 

concluded that the pseudo-second-order is the more suitable kinetic model for adsorption, 

which also suggests that the adsorption process is controlled by chemical adsorption.  

Figure 5.8 (a) Pseudo-first order and (b) Pseudo-second order kinetic models for heavy metal 

ions adsorption on Fe3O4-APTES-EDTA nanocomposite. 

Table 5.2 Kinetic parameters for heavy metal ions sorption on Fe3O4-APTES-EDTA 

nanocomposite 

   Pseudo-first-order Pseudo-second-order 

Metal 

ions 

(Co, mg 

L
-1

) 

qe, exp 

(mg g
-1

) 

qe, cal 

(mg g
-1

) 

K1 R
2
 qe, cal 

(mg g
-1

) 

K2 R
2
 

Pb
2+

 10 6.57 2.542 0.034 0.95 6.631 0.040 0.99 

Cd
2+ 10 6.54 2.482 0.033 0.88 5.393 0.019 0.99 

Ni
2+ 10 4.91 2.617 0.012 0.95 2.783 0.048 0.99 

Co
2+ 10 5.33 2.617 0.014 0.94 3.369 0.033 0.99 

Cu
2+

 10 7.94 2.791 0.307 0.90 4.076 0.245 0.99 

 

5.3.4 Adsorption isotherm 

The isotherms are shown graphically in Figure 5.9 and the isotherm parameters are listed in 

Table 5.3. From the Freundlich isotherm, the values of 1/n less than 1 represent favourable 

adsorption[366, 367]. The smaller value of the Temkin constant (B1) suggested that 

adsorption of heavy metals on Fe3O4-APTES-EDTA is feasible. The comparison of 

coefficients indicates that the data fits well with Langmuir isotherm (R
2
 = 0.99) than the other 

isotherm model. The basic assumption of the Langmuir adsorption isotherm is based on the 

monolayer coverage of the adsorbate on the surface of adsorbent. Based on this fact, the 

adsorption of heavy metal onto Fe3O4-APTES-EDTA generates a monolayer formation. 
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Figure 5.9 (a) Langmuir isotherm plot, (b) Freundlich isotherm plot, (c) Temkin isotherm plot and 

(d) Elovich isotherm plot for heavy metal ions on to Fe3O4-APTES-EDTA nanocomposite. 

5.3.5 Desorption and reusability 

Regeneration and reusability studies give knowledge regarding the nature of adsorption. The 

regeneration of the adsorbent may be imperative for holding the methodology expenses down 

and recovering the metals extracted from the liquid phase. Desorption experiments were 

performed to validate the mechanism of sorption in three different stripping solutions (pH2, 

pH7, and pH10). Out of three solutions, maximum % desorption was observed in acidic 

environment (pH = 2, 91.21 % for Pb
2+

, 87.18 % for Cd
2+

, 92.07 % for Ni
2+

, 89.87 % for 

Co
2+

 and 94.45 % for Cu
2+

) and minimum % desorption was observed in basic 

environment(pH = 10, 42.54 % for Pb
2+

, 39.61 % for Cd
2+

, 43.25.07 % for Ni
2+

, 41.27 % for 

Co
2+

 and 45.83 % for Cu
2+

). In Figure 5.4D shows that percentage of regeneration occurs at 

pH=2 for heavy metals, respectively on the grounds that under acidic conditions the 

adsorbent surface is protonated by H3O
+
 particles to make conceivable desorption of 

positively charged metal particles from the adsorbent surface. Desorption studies of heavy 

metal ions were studied using 1.0 M HCl. At low pH conditions the surface −OH and 
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−COOH groups become more protonated, becoming positively charged and hence leading to 

desorption of the positively charged ions. The reusability of the adsorbent was studied by 

taking number of cycle (cycles 1–5) in Figure 5.4D. There was small considerable variation 

in adsorption and desorption values until four cycles, after four cycles the removal efficiency 

remains constantly and no difference in desorption capacity is observed during these 

adsorption-desorption cycles. The reusability of the adsorbent was studied with pH 2 aqueous 

solution.  It has been found that 89.12 % for Pb
2+

, 84.57 % for Cd
2+

, 88.43 % for Ni
2+

, 83.91 

% for Co
2+

 and 89.06 % for Cu
2+

 was desorbed after 4th cycle. These results show that 

Fe3O4-APTES-EDTA nanocomposite is very good adsorbent with good adsorption and 

desorption capabilities under acidic pH conditions. The results also confirm the regeneration 

and reusability of the adsorbent by following a simple desorption process. 

Table 5.3 Isotherm parameters for the adsorption of heavy metal on to Fe3O4-APTES-EDTA at room 

temperature (25°C). 

 

Langmuir isotherm Parameter 

 

Pb
2+

 

 

Cd
2+

 

 

Ni
2+

 

 

Co
2+

 

 

Cu
2+

 

 

qm(mg/g) 11.31 13.88 7.64 4.86 78.67 

b (mg/g) 0.58 0.52 0.59 0.27 1.95 

R
2 

0.99 0.99 0.99 0.99 0.99 

Freundlich  isotherm Parameter  

Kf (L/g) 3.952 5.032 2.975 3.935 6.500 

n 1.74 1.94 1.79 2.00 1.86 

R
2
 0.91 0.92 0.93 0.92 0.92 

Temkin  isotherm Parameter 

KT (L/mg) 41.77 34.52 45.80 38.96 31.11 

B1 2.55 2.90 1.82 2.15 3.88 

R
2
 0.93 0.93 0.93 0.91 0.94 

Elovich isotherm Parameter  

KE 3.23 2.03 2.13 7.09 3.34 

qm 5.49 6.45 6.36 6.36 5.98 

R
2
 0.87 0.86 0.93 0.78 0.92 
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5.3.6 Adsorption mechanism  

 

Figure 5.10 Schematic illustration of the synthetic procedure for Fe3O4-APTES-EDTA 

nanocomposite. 

The synthesis of Fe3O4 nanoparticles can introduce a huge amount of −OH functional groups 

onto the surface of the nanoparticle, which induces hydrophilicity in Fe3O4 nanoparticles. The 

synthesis of EDTA functionalized Fe3O4 nanocomposite comprises of two steps, 

schematically represented in Figure 5.10. In first step, the Fe3O4 nanoparticles are made to 

react with APTES in order to deposit amino trialkoxy groups of silane on the surface of the 

Fe3O4 nanoparticles. Following step 1, hydrolysis was performed in which, the alkoxide 

group (-OC2H5) of APTES were replaced by hydroxyl groups to form reactive silanol (-

Si−OH) groups. This silanol functional group condensed with other silanol groups to 

introduce siloxane bonds (Si-O-Si) and generates silane polymer. Then, this polymer coated 

with Fe3O4 nanoparticles is then finally reacted with EDTA which attaches covalently on the 

Fe3O4-APTES surface[368]. EDTA which is attached covalently to particles is possible by 

the formation of amide bonds between the carboxylic acid group of the complexing agent and 

amino groups provided by the APTES coating[369-372]. The metal adsorption on the surface 

of the EDTA functionalized nanocomposite was attributed to columbic forces between the 

positive charge of the heavy metal and the negative charge surface of the adsorbent 

(illustrated in Figure 5.10). Based on the electrostatic interaction between the electron-

donating nature of the oxygen and nitrogen-containing functional groups on the surface of the 
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adsorbent (Lewis base) and the electron-accepting nature of the heavy metal ions (Lewis 

acid), the active interaction between the heavy metal ions such as Pb
2+

, Cd
2+

, Ni
2+

, Co
2+

 and 

Cu
2+

 with the functionalized EDTA molecules play a key role in the overall adsorption 

process and Fe3O4 is used as magnetic separation from aqueous solution and APTES is used 

as cross-linker in between  Fe3O4 and EDTA. 

5.4 Summary  

The inclusion of EDTA groups on the Fe3O4 nanoparticle surface through silanization process 

can significantly increase the adsorption efficiency towards different toxic heavy metals. The 

EDTA modified Fe3O4 nanoparticle is found to be an excellent adsorbent for the removal of 

toxic heavy metals (Pb
2+

, Cd
2+

, Ni
2+

, Co
2+,

 and Cu
2+

) in aqueous solution. Our nanocomposite 

has high surface area and paramagnetic behavior, which made the separation process quite 

easier and magnetically separated under an external magnetic field. The adsorption of heavy 

metal ions by the EDTA functionalize Fe3O4 nanocomposite fits the Langmuir adsorption 

isotherm model and follow pseudo-second order kinetic model. On the other hand, the 

desorption behavior of metals on the FAE nanocomposite surface suggests that the 

nanocomposite high stability and good reusability up to five consecutive cycles. The 

experimental investigations demonstrate Fe3O4-APTES-EDTA nanocomposite as an effective 

adsorbent for removal of toxic heavy metals in moderate concentrations. 
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Chapter 6 

6. Surface functionalization of graphene oxide using amino silane magnetic 

nanocomposite for Cr (VI) removal and bacterial treatment 

 

6.1 Introduction 

The water contamination throughout the world occurs by toxic heavy metals (Cr, As, Pb, Hg, 

and Cd) above their permissible limit are a serious problem for living organism[373]. Among 

various toxic metal ions, Chromium (Cr) is one of the highly toxic heavy metal and often 

discharges to water from wood preservatives, electroplating, textile industries, metal refining 

and plant producing industrial inorganic chemicals and pigments[374, 375]. A very low 

concentration of chromium creates serious health problem like stomach cancer, bronchial 

asthma, kidney damage, anemia, liver damage, and hepatotoxicity in human[376, 377]. 

Chromium exists in water both Chromium (III) and Chromium (VI) states, Chromium (VI) is 

highly contaminant because of high solubility, smaller size and large mobility[378-382]. As 

compare to Chromium (VI), Chromium (III) is less toxic and also used as an essential 

micronutrient for sugar, protein and fat metabolism in mammals[383, 384]. Hence, 

Chromium (VI) can be converted to Chromium (III) as an alternative way to reduce the 

toxicity[385]. In current year, the photocatalytic reduction is considered a prominent method 

to reduce the toxicity of Chromium (VI) to Chromium (III) but their initial and operational 

cost is very high[386]. There are several methods available to remove Chromium from 

contaminated water. Those methods are ion exchange[387, 388], ultra-filtration[389], reverse 

osmosis[390, 391], electro dialysis[392-394], biosorption, adsorption and chemical 

precipitation[395]. Among all the removal methods, adsorption is one of the most commonly 

used methods for Chromium  (VI) removal because of its low cost, less energy, less chemical 

requirement, easy to operate, high regeneration capacity and removal efficiency[396]. A 

number of naturally occurring adsorbents such as almond shells, olive cake, wool, charcoal 

used tyres, cactus leaves, soot, coconut shell charcoal, banana peel, pine needles, sawdust, 

dead fungal biomass, and green algae have been used for the removal of Chromium[397-

400].Among all the naturally available adsorbents, most of them are slow process kinetics 

and have low adsorption capacity. Hence, it is necessary to prepare novel and innovative 

adsorbents useful for both the environment safety and industry.      

Jitendra Kumar Sahoo, Sanjeev Kumar Paikra, Archana Baliarsingh, Debashis Panda, 

Sourav Rath, Monalisa Mishra, Harekrushna Sahoo* (Under Review) 



 

85 
 

Due to high surface-area-to-volume ratio, excellent magnetic character, surface 

property, great biocompatibility, reusability, easy separation by external magnetic field and 

comparatively low cost, iron oxide (Fe3O4) have already been investigated as excellent 

adsorbents for different heavy metal ions[114, 401, 402]. Iron oxide nanoparticle has several 

applications in various research areas such as catalytic oxidation of alcohol[403], magnetic 

carrier for protein separation[404], supercapacitor electrode materials[405-409], wastewater 

treatment[410-412]and heavy metal adsorption[413].In recent years, most of the researchers 

are interested in chemical modify Fe3O4 to enhance their adsorption capacity. Also aerosol-

based iron-carbon nanocomposites synthesized for Chromium (VI) adsorption[414]. Another 

pioneering work shows iron oxide decorated PEDOT:PSS used for cancer biosensor[415]. 

Keeping the above information in mind, we modified Fe3O4on graphene oxide (GO) surface 

using (3-aminopropyl) triethoxysilane (APTES) as a cross-linker.  

GO is very commonly used adsorbent because of high surface area, aromatic sp
2
 

domains and high functionality (containing hydroxyl, epoxy, and carboxyl functional groups) 

and low manufacturing cost that make GO as a potential adsorbent for heavy metal 

adsorption. Many researchers have been focused on the preparations of metal oxide modified 

GO based nano adsorbent for heavy metal removal[416]. Wide ranges of metal oxide 

modified GO such as ZnO-ZnFe2O4 decorated on GO for adsorption of chromium, 

Go/MnFe2O4 magnetic nanohybrids for adsorption of As and Pb from water and nickel 

ferrite, iron and aluminium decorated GO surface for fluoride removal and RGOFe3O4 

nanocomposite for Pb(II), Cr(IV) adsorption[417]. In order to further improve the adsorption 

percentage, current researchers have been interested to synthesize by grafting new functional 

group on GO surface[418]. Apart from this, GO has one limitation in terms of difficulty in 

like no easy separation from aqueous solution. However, separation of adsorbent after 

adsorption from contaminated water still challenging work. To overcome this limitation, iron 

oxide is the best modification on GO surface because of superparamagnetic nature, which can 

be easily separated because of its magnetic nature.  

Metallic nanoparticle on GO matrix has a lot more biomedical importance[419]. The 

antibacterial property of graphene and GO is reported from various studies [420, 421]. 

Graphene sheet acts as a substrate for adhesion of cells or any other microorganism[422]. 

Graphene-based nanomaterial has multifunctional application including photoluminescence, 

cellular imaging, as a vehicle for gene delivery and as a drug carrier for advanced drug 

delivery system[423-425]. Antibacterial activity of graphene nanomaterial is due to loss of 

membrane integrity. The sharp edge of graphene nanosheet damage the cell membrane of 
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bacteria and leads to the leakage of cellular component i.e. RNA or protein contents of 

bacteria[426]. Various physical, as well as a chemical factor of graphene, is responsible for 

its antimicrobial property [427]. Graphenenanocomposite increases the cellular oxidative 

stress which disturbs the metabolic activity in bacteria resulting bacterial cell death[428]. 

Fabrication of silver nanoparticle with graphene oxide acts as a carrier for the efficient 

delivery of the water-insoluble drug into the cells [421, 424, 429-432]. Besides this it’s 

peculiar electrical conductivity and paramagnetic property allows to be used in various 

biomedical application [432, 433]. Chemical modification of graphene sheet can be easily 

dispersed with the polymeric matrix[434]or inorganic material matrix [435]. The smooth 

surface of GO enables the bacteria to adhere to the surface.The oxygen-containing a 

functional group of GO provides a new dimension to trap the radioactive impurity from the 

water [436]. 

Therefore, in this paper we reported Fe3O4-APTES functionalize on GO surface for 

Chromium (VI) removal from aqueous solution by varying the adsorbent dosage, initial 

Chromium (VI) concentration, immersion time and pH, which plays an important role for 

adsorption. To evaluate the experimental data statistical analysis done to make a predict 

model and to test its viability. 

6.2 Adsorption Experiment 

All the batch adsorption experiments were carried out in 200 ml capacity of polypropylene 

bottles by considering the various concentration of Chromium solution. For the adsorption 

studies, 0.3 g of GO-Fe3O4-APTESwas added in 20 mg/L of Chromium solution at pH 3. The 

reaction bottles were shaken using an incubator shaker (RC 5100) at shaking rate 200 rpm at 

room temperature. After 10 hours, the adsorbent was separated out by Whatman-42 (mm) 

filter paper. The remaining concentration of Chromium was analyzed by UV-Visible 

spectrophotometer using 1,5-diphenyl carbazide (DPC) method at the wavelength of 540 

nm[437]. The impact of various parameters like pH (2-12), adsorbent dosage (0.15-0.35 g), 

time (2-10 hours) and room temperature (25°C) influencing the removal of Chromium ion 

was examined separately by keeping the others constant, so as to optimize the adsorption 

process. The adsorbed amount of chromium ion and the removal efficiency (%) was 

determined using the subsequent equations. 

    
     

 
       (6.1) 

                 
     

  
       (6.2) 
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From the above equation,    shows the adsorbed amount of Chromium (VI).    is the initial 

concentration of chromium (VI) (mg/L),   is the final concentration of chromium ion 

(mg/L), V is the volume of Chromium (VI) solution and W is the mass of adsorbent. All 

experiments were repeated for 3 times. 

6.3 Antibacterial activity  

6.3.1 Bacterial culture 

E.coli and B.subtilis were grown in Luria-Bertini (LB) broth. For colony counting purpose 

LB agar was taken and plates were prepared in Petri dishes. 

6.3.2 Antibacterial activity of GO-Fe3O4-APTES 

Assessment of antibacterial activity of GO-Fe3O4-APTES was checked against gram-negative 

bacteria, E.coli and gram-positive bacteria B. subtilis. For the evaluation of antibacterial 

activity both the bacteria were grown in LB broth and an appropriate concentration of 

bacteria was taken for the antimicrobial assay. The bacteria were inoculated on the LB agar 

plate and the antimicrobial activity of GO-Fe3O4-APTES was checked by using the disc 

diffusion method[438]. To check the concentration-dependent activity of GO-Fe3O4-APTES, 

the bacteria (E.coli and B.subtilis) were grown in LB media with different concentration of 

GO-Fe3O4-APTES (10, 20, 40, 80, 160 µg/ml) and then it is incubated for 8 to 12 h at 37 ºC 

at 120 rpm. Bacterial growth was examined by measuring the optical density at 595nm using 

the ELISA plate reader (Bio-base-EL10A Elisa reader) obtained from Bio-based Bio-industry 

(Shandong) Co. Ltd. Bacterial growth kinetics was studied by varying interval of time with 

and without GO-Fe3O4-APTES treatment. 

6.3.3 Analysis of bacterial damage under field emission scanning electron microscopy 

(FE-SEM) 

Bacterial damage was analyzed by field emission scanning electron microscopy (FESEM). 

This experiment helps us to visualize the fine structure of bacterial cells before and after GO-

Fe3O4-APTES treatment. Treated and untreated cells were washed properly with 0.9% 

sodium chloride and then fixed with 4% Paraformaldehyde. After fixation, it was washed 

with phosphate-buffered saline (PBS) and then dehydrated by using graded series (30, 50, 70, 

90 and 100 %) of alcohol. Afterward it was fixed on a clean glass slide and gold sputtering 

was done before taking the images. For detection of different elements deposited in the 

bacterial cells EDX analysis was done. 

6.3.4 Detection of ROS production 
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Assessment of ROS generation by bacteria was check by using the 2,7-Dichlorofluorescin 

diacetate (DCFDA) dye. It is a peroxynitrile indicator which confirms the generation of 

different reactive oxygen species (nitric oxide or hydrogen peroxide)[439]. Bacterial cells 

treated with and without GO-Fe3O4-APTESwere exposed to DCFDA dye(1 µM) and then its 

fluorescence intensity was measured at emission wavelength 529 nm with an excitation of 

495nm by using the fluorescence spectrophotometer. 

6.4. Result and discussion 

6.4.1 Characterisation of the adsorbent 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.1 FT-IR spectra of (a) GO, (b) Fe3O4, (c) Fe3O4-APTES and (d) GO-Fe3O4-APTES. 

In order to study the presence of functional groups in GO-Fe3O4-APTES, FTIR measurement 

was carried out. Figure 6.1 shows the comparison FT-IR data of GO, Fe3O4, Fe3O4-APTES, 

and GO-Fe3O4-APTES. In the spectrum of GO, the presence of peaks at 1051 cm
-1

 (C-O-C 

stretching vibration of epoxide group), 1224 cm
-1

(C-OH), 1384 cm
-1

 (C-O asymmetric 

stretching vibration of carboxylic group), 1615cm
-1

 (C=C in the carbon skeletal network), 

1723 cm
-1

 (C=O stretching vibration of  carboxylic group), 2337 cm
-1

 (CO2), 2849 cm
-1

 (CH 

bending vibration), 2920 cm
-1

 (CH stretching vibration) and the strong peak around 3434 cm
-

1
 can ascribe to the O-H stretching mode of water molecules[440-442]. In the spectrum of 

Fe3O4, the existence of peaks at 441cm
-1
ascribed to the shifting of the υ2 band of the Fe-O 

bond of bulk magnetite, two strong peaks at 583cm
-1

 and 628 cm
-1

ascribe to the presence of 

Fe-O and two peaks at 1622 cm
-1

 and 3431 cm
-1

ascribe to the O-H bending and stretching 

frequency of water molecules[443, 444]. The existence of silica network on Fe3O4 was 
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confirmed by Fe-O-Si bonds, this peak cannot show in the FT-IR spectrum because it appears 

at 584 cm
-1

 and therefore 583 cm
-1 

peak of Fe3O4 overlaps[445, 446].So, the presence of 

silane polymer on Fe3O4was confirmed by the peak at 993 cm
-1

 assign to Si-O-Si groups. The 

two broad peaks at 1627 cm
-1

 and 3413 cm
-1

can be ascribed to NH2 bending mode of free 

NH2 and N-H stretching vibration[447, 448]. Comparing to the FT-IR data of GO and Fe3O4-

APTES with GO-Fe3O4-APTES, the peaks of GO-Fe3O4-APTES are similar with GO and 

Fe3O4-APTES but two new peaks at 1570cm
-1

and 1650 cm
-1

were observed, this peak 

corresponds to N-H bending and amide bond (-NHCO-) formation in between free NH2 

group of Fe3O4-APTES and –COOH group of GO. These observed data were also compared 

with other published data[439, 449-451]. 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.2 X-ray diffraction patterns of (a) GO, (b) Fe3O4, (c) Fe3O4-APTES and (d) GO-

Fe3O4-APTES. 

Figure 6.2 represents the XRD patterns of GO, Fe3O4, Fe3O4-APTES, and GO-Fe3O4-APTES. 

In the XRD peak of GO, the strongest peak at 2θ =11.4º was observed which corresponds to 

(001) crystal plane. This 011 plane can confirm the formation of GO [452].The XRD patterns 

of Fe3O4, Fe3O4-APTES, and GO-Fe3O4-APTES were found to be similar. The crystalline 

peaks at 2θ = 30.3º (220), 35.7º (311), 43.5º (400), 53.9º (422), 57.5º (511) and 63.0º (440) 

corresponds to the structure of Fe3O4 according to the JCPDS no- 019-0629 [453]. The XRD 

patterns of Fe3O4-APTES on GO surface, GO peaks might be absence because Fe3O4-APTES 

nanoparticles decorated on GO surface that prevents the restacking of the GO layer [455].  It 
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can conclude by XRD pattern of the GO-Fe3O4-APTES material that there is no change in the 

characteristic peaks of Fe3O4 after modification of APTES and GO [454, 455]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.3 FE-SEM images of (a) Fe3O4-APTES, (b) GO and (c) GO-Fe3O4-APTES. 

Techniques such as FE-SEM and TEM were used to explore the surface morphology of the 

synthesized material. Figure 6.3a shows the FE-SEM image of the Fe3O4-APTES. It is 

observed that the shape of Fe3O4-APTES was nanosized spherical shape and homogeneously 

distributed. The FE-SEM image of GO (Figure 6.3b) shows the layer type structure. Figure 

6.3c illustrates the FE-SEM image of GO-Fe3O4-APTES, which indicates the formation of 

nanospheres on GO layer. The structure and morphology of Fe3O4-APTES and GO-Fe3O4-

APTES were further examined by TEM analysis. Figure 6.4a shows the TEM image of 

Fe3O4-APTES and Figure 6.4b shows the particle size distribution of Fe3O4-APTES. From 

TEM image, it is clearly seen that the Fe3O4-APTES having fine spherical particles and the 

histogram of Fe3O4-APTES shows the average particle size 8 nm. The average particle size 

was calculated by measuring the diameters of 53 nanoparticles by Image J software.  Figure 

6.4c and 6.4d represent the TEM image of GO-Fe3O4-APTES with various resolutions (200 



 

91 
 

and 100 nm resolution). These images clearly have shown that the 8 nm-sized spherical 

particles are successfully modified on GO layer. The HRTEM image of GO-Fe3O4-APTES 

was given  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.4 (a) TEM image of Fe3O4-APTES, (b) The particle size distribution of Fe3O4-

APTES, (c,d) TEM image of GO-Fe3O4-APTES (200 and100 nm resolution) and (e-g) 

HRTEM micrograph with an interplanar spacing of GO-Fe3O4-APTES. 
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in Figure 6.4e,6.4f and 6.4g, respectively. Figure 6.4eshows two different lattice fringes, 

which ascribe the crystalline nature of GO and Fe3O4-APTES. From Figure 6.4g, we confirm 

the d-spacing 0.344 nm attribute to the (111) lattice plane of Fe3O4. The above results were 

also similar toRD data in JCPDC files for Fe3O4. The SAED patternGO-Fe3O4-APTES is 

shown in Figure 6.5a. The ring-like shape of SAED pattern shows the crystalline nature of 

the material. The elemental mapping (EDS) of GO-Fe3O4-APTES (Figure 6.5(b-h)) 

represents the presence of elements like Fe, C, O, N and Si with different color. Again EDX 

spectrum confirms the synthesized material contains iron (Fe), carbon (C), oxygen (O), 

nitrogen (N) and silicon (Si) elements with 16.4, 65.8, 9,5.4 and 3.4 atomic percentages 

(Figure 6.5i), respectively. The elemental mapping and EDX result shows there is no 

impurity peak found in GO-Fe3O4-APTES material. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.5 (a) SAED pattern of GO-Fe3O4-APTES, (b-h) EDS elemental mapping of GO-

Fe3O4-APTES and (i) EDX spectrum of GO-Fe3O4-APTES.  
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The Raman spectroscopy was carried out to study the structural configuration of GO and GO-

Fe3O4-APTES during the process of adsorption and the data was shown in Figure 6.6. The 

Raman spectrum of GO shows two strong peaks one is D band at 1353 cm
-1

due to the 

disorder of GO arising from imperfection linked with vacancies, amorphous carbon species, 

and grain boundaries and other is G band at 1607 cm
-1

which specifies the E2g phenomenon of 

Sp
2
 hybridized carbon in a 2- dimensional hexagonal lattice[456]. After the modification of 

Fe3O4-APTES on the surface of GO, the intensity of D and G band became higher than 

pristine GO. In case of GO-Fe3O4-APTES, it is observed that two strong bands at 1350 cm
-1

 

and 1588 cm
-1

are found. The D and G band of GO-Fe3O4-APTES was slightly shifted by 3 

cm
-1

 and 19 cm
-1

 as compared to pristine GO. This Raman shift of D and G band for GO-

Fe3O4-APTES sheet demonstrates that the charge transfer occurs between the sheets of GO 

and Fe3O4-APTES. It exhibits a strong interaction between GO and Fe3O4-APTES 

nanocomposite. The intensity ratio ID/IG of GO and GO-Fe3O4-APTES was calculated to be 

1.00 and 1.12, respectively.  However, the intensity ratio ID/IG of GO-Fe3O4-APTES was 

higher than pure GO, which was due to the defects arises by the interaction between Fe3O4-

APTES and GO[457, 458].  

 

 

 

 

 

 

 

 

 

 

Figure 6.6 Raman spectra of (a) GO and (b) GO-Fe3O4-APTES. 

Vibrating sample magnetometer (VSM) analysis was carried out to know the magnetic 

properties of prepared Fe3O4, Fe3O4-APTES, and GO-Fe3O4-APTES. Magnetization curve of 

Fe3O4, Fe3O4-APTES, and GO-Fe3O4-APTES are shown in Figure 6.7. The magnetic 
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saturation (Ms) value of Fe3O4, Fe3O4-APTES, and GO-Fe3O4-APTES are 52.8 emu/g, 47.4 

emu/g, and 30.6 emu/g. The magnetic saturation value decreases, after modifying APTES and 

GO on Fe3O4[452]. These modifications on the surface of Fe3O4 nanoparticles are non-

magnetic and their shielding effect resulted in the decrease of magnetic property of Fe3O4 

nanoparticles. The S-like magnetization of all the samples shows superparamagnetic in nature 

at room temperature because of negligible coercivity and remanence. The right inset of 

Figure 6.7.shows that GO-Fe3O4-APTES is attracted by an external magnet and the clear 

solution can be easily removed pipette. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.7 Hysteresis loop of (a) Fe3O4, (b) Fe3O4-APTES, and (c) GO-Fe3O4-APTES at 

room temperature. The bottom inset: aqueous solution of GO-Fe3O4-APTES (left), separated 

particles of GO-Fe3O4-APTES by an external magnet (right). 

The N2 adsorption-desorption isotherm is carried out to calculate the specific surface area of 

the synthesized material. Figure 6.8 shows BET isotherm plot curve of GO, Fe3O4, and GO-

Fe3O4-APTES. The surface area of GO, Fe3O4, and GO-Fe3O4-APTES was found to be 35.3, 

48.2, and 57.9 m
2
/g respectively. The isotherm curve of GO-Fe3O4-APTES exhibit typical 

type IV with comparatively high surface area. Similar observations were also reported by 

other researcher groups[457, 459]. The surface area of GO-Fe3O4-APTES increases after 

modification of Fe3O4-APTES on GO. The higher surface area is further improving the 

adsorption capacity toward the removal of Chromium (VI) 
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Figure 6.8 N2 adsorption-desorption isotherm of GO, Fe3O4, and GO-Fe3O4-APTES. 

6.4.2 Impact of a different parameter on adsorption 

The initial concentration of Chromium (VI) is one of the most efficient factors on adsorption 

field. Figure 6.9a shows the variation of initial Chromium (VI) concentration from 5 to 70 

mg/L at constant parameters such as adsorbent dosage (0.3 g), pH 3, room temperature (25 

ºC), contact time (10 h) and shaking speed (160 rpm).From this plot we observe the 

Chromium (VI) removal efficiency nearly same from 5 mg/L to 20 mg/L. After 20 mg/L the 

removal efficiency starts to decrease. This occurs due to that at lower concentrations of 

Chromium (VI), the ratio of the initial number of Chromium (IV) ions to the obtainable 

surface area of the adsorbent is high. Although at higher concentrations of Chromium (VI), 

the remaining sites of adsorption become lower and then the percentage of removal efficiency 

of Chromium (VI) decreases which depends on the initial concentration of Chromium (VI). 

Thus 20 mg/L of chromium (VI) concentration was taken as the optimum concentration for 

further experiment. 

Figure 6.9b demonstrates the effect of adsorbent dosage on the removal of Chromium (VI) 

from the aqueous solution. We change the adsorbent dosage from 0.15 to 0.35 g/L by keeping 

other parameters constant such as pH 3, room temperature (25 ºC),contact time (10 h) and 

160 rpm of shaking speed. In this plot we observed that the removal efficiency of Chromium 

(VI) increases by increasing the adsorbent dosage because the number of active binding sites 
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increases by increasing adsorbent dosage [379, 460]. The adsorbent dosage from 0.3 g/L to 

0.35 g/L shows the percentage of the removal efficiency remains same. From the above plot 

it was noticed that the percentage of removal efficiency of Cr (VI) is found to be maximum at 

0.3 g of adsorbent dose. 0.3 g of adsorbent dose was selected as optimum dose for further 

experiments 

Figure 6.9 (a) the removal of Cr (VI) at different concentrations (b) Effect of adsorbent 

dosage on Cr (VI) adsorption (c) Effect of time on adsorption of Cr (VI) and (d) Effect of pH 

on the removal efficiency. 

Among all the parameters contact time is one of the most important factors which affects the 

adsorption capacity of the adsorbent. This is shown in Figure 9c. We varied the contact time 

from 1 to 25 hours by keeping other parameters constant (pH 3,20 mg/L Chromium (VI) 

concentration, adsorbent dose 0.3 g, room temperature (25 ºC) and shaking speed 160 rpm). 

In this plot we observedthat1 to 10 hours of contact time the removal efficiency of Chromium 

(VI) gradually increases. The maximum adsorption of Chromium (VI) occurred at in 10 hours 

to 25 hours of contact time indicating 91 % of removal efficiency. It occurs due to the 

availability of maximum numbers of unoccupied surface sites for adsorption process[461]. 

Thus 10 hours was selected as optimum contact time for further experiments. 
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Figure 6.10 Zeta potential plot of GO-Fe3O4-APTES. 

The effect of pH on the adsorption process is an important parameter and shown in Figure 

6.9d. We varied the pH 3 to 10 by keeping other parameters constant such as room adsorbent 

dose (0.3gm), Initial Chromium (VI) concentration 20 mg/L), temperature (25 ºC),contact 

time (10 hours)and shaking speed (160 rpm). It was observed that at pH 3 the removal 

efficiency was found to be91%. After that it significantly decreases up to 34% at pH 10. In 

acidic medium Chromium (VI) exist as HCrO4
-
, Cr2O7

2-
 and it is found in form ofCrO4

2-
 

above pH 6. Now it is important to find the surface charge of GO-Fe3O4-APTES at different 

pH. Zeta-potential is the best technique to confirm the surface charge of the material. From 

zeta-potential (Figure 6.9) measurement we found that 8.2 is isoelectric point. The GO-

Fe3O4-APTES has positive charge at pH< 8.2, so it favors electrostatic attraction[462]. 

Furthermore, at pH 3 maximum positive charge was observed, that corresponds to strong 

electrostatic attraction between highly positive charged material and negatively charged 

chromium ion. Above pH 3, the positive charge decreases so the removal efficiency 

decreases. Similarly, pH > 8.2 the adsorbent surface becomes negatively charge and hence 

the material repels negative chromium ion ref. At pH < 3, the removal efficiency decreases 

because more H
+
 ions react with Cr2O7

2-
 and HCrO4

-
 forming H2Cr2O7 andH2CrO4 which are 

neutral and could not adsorb[463].  

Shaking speed is one of the most important factors which affect the adsorption capacity of the 

adsorbent. To determine the effect of agitation speed, 80 to 160 rpm of agitation speed was 
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set to check the adsorption efficiency. Figure 6.11 shows that increasing the speed of 

agitation from 80 to 160 rpm, the percentage of Chromium (VI) removal efficiency also 

increases. At 160 rpm of agitation speed maximum adsorption of Chromium (VI) occurs. 

This is caused due to an increase in the intraparticle diffusion and film diffusivity[464]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.11 Effect of shaking speed on the adsorption of Cr (VI) onGO-Fe3O4-APTES. 

6.4.3 Adsorption kinetics 

Figure 6.12 shows the linear form of Pseudo-first-order, Pseudo-second-order and intra-

particle diffusion model for Chromium (VI) adsorption. The computed result which obtained 

from three models is listed in Table 6.1.comparing to the R
2
 value, pseudo-second-order 

kinetics is well fitted with the Chromium (VI) adsorption [465]. Therefore, this result shows 

chemisorptions between adsorbent and adsorbate[466]. Intra-particle diffusion model is the 

best model to identify the adsorption diffusion mechanism. According to this model, if the 

line passing through origin, then the adsorption process is controlled by intra-particle 

diffusion, while if the data exhibit multilinear plot but does not pass through origin, then 

more steps involved the adsorption process [467, 468].Figure 6.12c shows three straight lines 

which indicate more than one steps are involved in the adsorption mechanism. The first 

straight line ascribes to outer surface adsorption that means Chromium (VI) diffuses through 

the solution to the outer adsorbent surface. The middle line corresponds to the gradual 

adsorption reflecting intra-particle diffusion as the rate-limiting step. The final plateau relates 

the equilibrium stage and surface adsorption since the diffusion mechanism starts to slow 
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down and level out[469, 470].From the above results, it could be inferred that the diffusion 

mechanism was involved in the multi adsorption process.  

Figure 6.12 (a) Pseudo first-order kinetic model,(b) Pseudo second-order kinetic model and 

(c) Intraparticle diffusion model for the adsorption of chromium (VI) on GO-Fe3O4-APTES 

Table 6.1 Kinetic parameters for Chromium (VI) adsorption onGO-Fe3O4-APTES powder.  

 

 

 

 

 

 

 

 

 

 

 

Pseudo-First order Kinetics Chromium (VI) 

 

qe(mg/g) 1.956 
K1 (mg/g) 0.0045 

R
2 

0.95 
Pseudo-Second order Kinetics 

qe (mg/g) 6.744 

K2 0.0013 

R
2
 0.99 

Intraparticle diffusion model 

ki (L/mg) 0.106 

C 2.769 

R
2
 0.84 
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6.4.4 Adsorption Isotherm 

Figure 6.13 (a) Langmuir, (b) Freundlich, (c) Temkin, (d) Elovich and (e) Dubinin-

Radushkevich adsorption of Chromium (VI) on GO-Fe3O4-APTES. 

The adsorption isotherm models such as Langmuir, Freundlich,Temkin, Dubinin-

Radushkevic (D-R)and Elovich were selected to define the adsorption process. All isotherm 

models are demonstrated graphically in Figure 6.13 and the isotherm parameters are listed in 

Table 6.2. Among five isotherm models,  Langmuir isotherm model (R
2
=0.99) is more 

appropriate as compared to R
2
 value.The Langmuir isotherm model agrees to the formation of 

monolayer adsorption in between Chromium (VI) on the surface of GO-Fe3O4-APTES. The 

maximum adsorption capacity (qm= 60.53) is higher than other reported adsorbent are shown 

in Table 6.3. The calculated RL value (0.011) within the range between 0 to 1which was 

shown favourable adsorption of Chromium (VI) on GO-Fe3O4-APTES[455]. From 

Freundlich isotherm model it was observed that the value of 1/n is 0.169, which is less than 

1.It Shows favorable adsorption of adsorbate and adsorbent[471].Temkin isotherm model is 

favorable for adsorption of Chromium (VI) because it shows smaller value of Temkin 

constant (B1=1.56)[472].  

6.4.5 Influence of co-existing ion 

The studies on the Chromium (VI) removal were observed in the presence of different ions 

such as Sulphate, Phosphate, carbonate, bicarbonate, fluoride, nitrate, and chloride, which is 

shown in Fig12. The adsorption procedure was carried out in presence of these ions keeping 

other parameters constant i.e. adsorbent dosage 0.3g, initial Chromium (VI) concentration 20 
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mg/L, pH of the solution is 3, shaking speed 160 rpm and an optimum time 10 hours. About 

20 ml of each anion having a concentration of 20 mg/L was added to the polyethylene bottle 

and the adsorption efficiency was measured. Carbonate, fluoride, and phosphate had more 

impact whereas nitrate, chloride, bicarbonate, and sulfate had little impact on the Chromium 

(VI) adsorption. The more changes were observed due to change in solution pH caused by the 

anions. The adsorption capacity of Chromium (VI) increased in the order of chloride > nitrate 

> sulphate > bicarbonate > phosphate > fluoride > carbonate 

Table 6.2 Isotherm parameters for the adsorption of chromium (VI) on to GO-Fe3O4-APTES 

powder at room temperature (25 °C). 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

6.4.6 Reusability of adsorbent 

The primary purpose of reusability is to recover the deleted material. This study is a very 

chief parameter to study the regeneration or effectiveness of the adsorbent. We have noticed 

that at lower pH maximum adsorption of Chromium (VI) occurs. Hence for the reusability 

Langmuir  isotherm Parameter Chromium (VI) 

 

qm(mg/g) 60.53 
b (mg/g) 4.45 

R
2 

0.99 
Freundlich  isotherm Parameter  

Kf (L/g) 8.60 

n 5.88 

R
2
 0.96 

Temkin  isotherm Parameter 

KT (L/mg) 357.66 

B1 1.56 

R
2
 0.90 

Dubbin-Radushkevich isotherm parameter   

qm(mg/g) 12.94 

E 3.05 

R
2 

0.92 

Elovich isotherm Parameter 

KE 236.57 

qm (mg/g) 2.18 

R
2
 0.88 
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study higher pH values were needed. Desorption of Chromium (VI) was conducted by 

washing Chromium (VI) with distilled water and various concentrations of Na2CO3, 

NaHCO3, and NaOH. The desorption efficiency of H2O, Na2CO3and NaOH was noticed to be 

1%, 83%, 74%, and 92% respectively (Figure 6.15a). Hence for the desorption process 0.5 M 

of NaOH solution was used. The plot shows desorption of Chromium (VI) having different 

pH conditions. Some distilled water was used in this experiment to remove undesirable ions 

present on the surface of the adsorbent (Figure 6.15b). From the plot it was noticed that after 

5 cycles, adsorption efficiency decreases up to 51%. This is shown that the reusability of the 

material was highly efficient. 

Table 6.3 Comparison of performance of the proposed method with some previously 

reported Chromium (VI) adsorption systems  

Adsorbent Langmuir 

qmax (mg/g) 

References 

Polyethylenimine facilitated ethyl cellulose  36.8 [473] 

Graphene oxide montmorillonite nanocomposite  12.86 [474] 

Magnetite polyethylenimine-montmorillonite  8.8 [475] 

Activated carbon  3.46 [476] 

Neurosporacrassa(acetic acid pretreated)  15.8 [477] 

Brown coal  50.9 [478] 

Olive oil industry waste  13.9 [479] 

Fucusvesiculosus(brown algae)   42.7 [480] 

 

Ulva lactuca(green algae)  
27.6 [480] 

Ulva spp. (green algae)  30.2 [480] 

Polysiphonia lanosa (red algae)  45.8 [480] 

Palmaria palmate (red algae)  33.8 [480] 

Saccharomyces cerevisiae  32.6 [481] 

Alternantheraphiloxeroides 17.7 [482] 

GO- Fe3O4-APTES 60.53 Present study 
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Figure 6.14 Effect of co-existing anions. 

Figure 6.15 Regeneration and reusability of GO-Fe3O4-APTES. 

6.4.7 Adsorption mechanism 

The FT-IR peak of after adsorption of Chromium (VI) on GO-Fe3O4-APTES material was 

shown in Figure A6. Comparing to the FT-IR data of before and after adsorption of 

chromium (VI), the N-H bending vibration was shifted from 1570 cm
-1

 to 1577 cm
-1

 and –

CO-NH- was shifted from 1650 cm
-1

 to 1664 cm
-1

 with a high intense peak which attributes 

the bonding between the nitrogen and chromium. The presence of one new peak at943 cm
-

1
was ascribing to stretching of Cr-O in CrO7

2-
 groups[438]. These changes in the FT-IR 

spectrum after adsorption shows chromium (VI) successfully adsorb the synthesized material. 

The surface morphology of GO-Fe3O4-APTES was aggregated after adsorption of chromium 
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(VI) (Figure A7a,b). The presence of Chromium on the GO-Fe3O4-APTES was further 

confirmed by EDS analysis. Figure A7c shows the EDS mapping of the material after 

adsorption of chromium (VI). It was clearly seen the chromium adsorbed uniformly on the 

surface of GO-Fe3O4-APTES. Based on the above results, the possible mechanism for 

Chromium (VI) was the protonated amine groups and hydroxyl groups of GO-Fe3O4-APTES 

by electrostatic interaction (Shown in Figure 6.16).  

Figure 6.16 Plausible mechanisms for Chromium (VI) removal. 

6.4.8 Antibacterial activity 

Bactericidal activity of the synthesized material is dependent on the concentration of material 

and concentration of bacterial cell suspension[459]. Our study includes the initial bacterial 

load of of10
6
cfu/ml for interaction with GO-Fe3O4-APTES. Different concentration of GO-

Fe3O4-APTES (10, 20, 40, 80, 160 µg/ml) was treated with bacteria (10
6
cfu/ml) and bacterial 

growth inhibition was assessed. Disc diffusion assay reveals that the GO-Fe3O4-APTES 

shows the antibacterial activity at 160 µg/ml and 80 µg/ml with clear zone of inhibition at 

160 µg/ml but the zone of inhibition is not clearly visible at 20 and 40µg/ml against the E.coli 

and B.subtilis(Figure 6.17). Antibacterial activity of GO-Fe3O4-APTES is dependent on the 

concentration and time of exposure with the bacteria. Assessment of bacterial growth 

inhibition by colony count method has suggested that the GO-Fe3O4-APTES shows the good 

antibacterial activity at 160 µg/ml and its activity decreases gradually with decreasing 

concentration of the material (Figure 6.18). Growth kinetics study of both the bacteria in the 

presence as well as in the absence of GO-Fe3O4-APTESsuggested that the significant growth 

inhibition observed in treated one in comparison to control (Figure 6.19).  
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Figure 6.17 Image (A) shows the antibacterial activity of GO-Fe3O4-APTES against the 

E.coli at concentration 160 µg/ml (a) with a clear zone of inhibition but the zone of inhibition 

is not clearly visible at 80, 40, 20 µg/ml shown in b,c,d respectively. Image (B) shows the 

antibacterial activity of GO-Fe3O4-APTES against B. subtilis at concentration 160 µg/ml (a) 

and 80 µg/ml (b) with clear zone of inhibition but the zone of inhibition is not clearly visible 

at 40, 20 µg/ml shown in c,d respectively. At middle shows the clear zone of inhibition for 

gentamicin against both the bacteria. 

 

 

 

 

 

 

 

 

 

 

Figure 6.18 Shows the Concentration-dependent effect of GO-Fe3O4-APTES, when 10, 20, 

40, 80, 160 µg/ml of GO-Fe3O4-APTES was incubated with E.coli and B. subtilis for 6 hours. 

Percentage viability of bacteria at varying concentration of GO-Fe3O4-APTES was measured.  
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The proposed mechanism of antibacterial activity is supported by an increase in reactive 

oxygen species (ROS) generation at higher concentration 160 µg/ml and it gradually 

decreases with decreasing concentration of the prepared material. To quantify the ROS 

generation the bacteria were treated with DCFDA which react with the ROS and produces the 

green fluorescence which is measured by the Fluorimeter (Figure 6.20). 

Higher the fluorescence intensity higher is the amount of ROS generated from the bacteria in 

presence of GO-Fe3O4-APTES. ROS generated from the bacteria get mixed with the culture 

media which shows the fluorescence in presence of DCFDA. Bacteria show the ROS 

production in stress condition which could be observed in the control batch which is not 

treated with GO-Fe3O4-APTES. FESEM study also reveals the change in membrane integrity 

of bacteria with alteration in its morphology (Figure A8 and A9). 

 

Figure 6.19 Growth of E. coli and B. subtilis in the presence of GO-Fe3O4-APTES at 

concentration 160 and 80 µg/ml in varying interval of time. 

Both gram-positive and gram-negative bacteria show variation in the toxicity with respect to 

GO-Fe3O4-APTES bactericidal activity.In case of gram-negative bacteria (E.coli) 

peptidoglycan layer is protected by an outer layer composed of lipopolysaccharide which 

helps to protect the bacteria from the chemical exposure[483]. Thus the bacterial death was 

less in E.coli in comparison to gram-positive bacteria (B. subtilis). Direct contact of graphene 

material with the bacteria[426] increases oxidative stress[484] as the main mechanism 

responsible for bacterial growth inhibition and including this the iron oxide itself causes the 

increased oxidative stress[485]. Increased oxidative stress is also responsible for the release 

of hydroxyl radical which bind to the carbonyl group of peptide linkage in the bacterial cell 

membrane which distorts the structure of cell membrane[486] (Figure A9b). It is also 

reported that the bacterial cell membrane gets ruptured when it comes in contact with 
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GO[487].The GO binds to the water molecule by the help of carbonyl group and free radical 

sites and thus form the colloidal solution which enhances the easy accessibility of material to 

interact with the bacteria[488, 489]. 

Figure 6.20 GO-Fe3O4-APTES induced ROS generation in (a) E.coli and (b) B. subtilis. 

Fluorescence intensity shows the ROS generation at different concentration of GO-Fe3O4-

APTES. Higher fluorescence intensity indicates the excess generation of ROS.   

6.5 Summary 

Fe3O4-APTES was successfully fabricated on GO through organic transformation reaction 

followed by co-precipitation method. The functionalization, formation, morphology of the 

material, magnetic properties and surface area were characterized by FTIR, XRD, FE-SEM, 

TEM, HRTEM, Raman and BET technique. The synthesized GO-Fe3O4-APTES is a unique 

adsorbent for Chromium (VI). Experimental results revealed that the removal efficiency was 

pH-dependent and higher removal efficiency occurs at pH 3. Pseudo-second-order kinetics 

model was best fit for the adsorption process and shows chemisorptions. Langmuir isotherm 

is best fit for Chromium (VI) adsorption on GO-Fe3O4-APTES with an adsorption capacity of 

60.5 mg/g at room temperature (25ºC).It has shown that the coexisting ions had no significant 

impact on adsorption efficiency. The adsorbed chromium could be effectively washed from 

the adsorbent into the solution using 0.5 M of NaOH. It can be concluded that GO-Fe3O4-

APTES material has got good reusable ability.GO-Fe3O4-APTES has shown inhibitory effect 

on the growth of E.coli and B.subtilis. 
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Chapter 7 

7. Conclusion and Scope of Future Work 

7.1 Conclusion 

In this research work, we have successfully prepared iron oxide and iron oxide-based 

nanomaterials such as Fe3O4-TSPED-Tryptophan, Fe3O4-GG, Fe3O4-APTES-EDTA and GO-

Fe3O4-APTES using precipitation process. The formation, structure, phase, shape, size, 

morphology, surface area, magnetic properties and adsorption studies of the prepared iron 

oxide and iron oxide-based materials have been analysed by various techniques such as: FT-

IR, XRD, TEM, FE-SEM, VSM, BET surface area, TGA, Zeta potential, Raman and UV-Vis 

Spectroscopy techniques. The synthesized nanomaterials were used as adsorbents for toxic 

organic dye (Congo red) and heavy metals (Pb
2+

, Cd
2+

, Ni
2+

, Co
2+

, Cu
2+

, Cr
+6

). The following 

major conclusions have been drawn from this study.  

 Fe3O4 nanoparticles were synthesized using chemical co-precipitation method. The 

advantage of this process is because of the high surface area (approximately 220 

m
2
/g). The synthesized materials were used as effective adsorbents with easy 

separation using an external magnetic field (Ms= 71 emu/g). 

 The Fe3O4-TSPED-Tryptophan was synthesized and used for the removal of Congo 

red dye from aqueous solution. The average particle size was found to be 47 nm with 

surface area 138.7 m
2
/g. The maximum adsorption capacity was observed as 183.15 

mg/g.  

 The Guar-gum coated Fe3O4 nanocomposite was synthesized using glutaraldehyde as 

a cross-linker. The Fe3O4-GG was observed as a novel adsorbent for Congo red dye 

from aqueous solution. The diameter of the nanocomposites was measured as 15 nm 

with high surface area found to be 158 m
2
/g. The maximum adsorption capacity was 

shown as 60.24 mg/g.  

 Fe3O4 nanoparticles modified with hexadentate ligand (EDTA) were synthesized 

using APTES as a cross-linker. The Fe3O4-APTES-EDTA was proved to be a good 

adsorbent for removal of heavy metals (Pb
2+

, Cd
2+

, Ni
2+

, Co
2+

, Cu
2+

) with maximum 

adsorption capacity (qmax) 11.31, 13.88, 7.64, 4.86, 78.67 mg/g. 

 The GO-Fe3O4-APTES was successfully synthesized using organic transformation 

reaction followed by co-precipitation method. The spherical particle of Fe3O4-APTES 

was successfully modified on the graphene oxide layer. The GO-Fe3O4-APTES was 
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experimentally found to be an excellent adsorbent towards Chromium (VI) with 

maximum adsorption capacity (qmax) 60.53 mg/g. 

 All the adsorption process follows Langmuir isotherm model and pseudo-second-

order kinetic model. 

 All the synthesized materials can be reusable and have good maximum adsorption 

capacity compare to other existing adsorbents.  

 Fe3O4-TSPED-Tryptophan and GO-Fe3O4-APTES were tested against Gram-negative 

(E. coil) and Gram-positive (B. subtilis) bacteria to prove their antibacterial 

properties.  

7.2 Scope of Future Work 

Based on the findings of the present work, the following points are considered to be the 

future scope: 

 New and novel magnetic nanomaterials involving other elements will be synthesized 

and subsequently will be applied in adsorption of heavy metals as well as hazardous 

organic pollutants in more and cheaper efficiency.   

 Application of different bio-char (potato peel, green pea peel, red algae, and 

sugarcane baggage) modified magnetic-based iron oxide nanoparticle towards 

wastewater treatment. 

 Along with the heavy metals and organic hazardous contaminants, removal of 

radioactive metals from water bodies will also be carried out by the novel 

nanomaterials.  

 Possible application of the magnetic nanomaterial towards the degradation of organic 

dyes along with their adsorption. 

 Impact of the synthesized nanomaterials on different proteins will be studied with 

respect to the stability, kinetics, and dynamics of the later along with the cytotoxicity 

investigations.  

 Development of a versatile water filter for the removal of inorganic and organic 

contaminants for field application.  
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Appendices 

Figure A1 DTA and DTG curve of Fe3O4, Fe3O4-TSPED and Fe3O4-TSPED-Tryptophan 

 

 

 

 

 

 

 

Figure A2 FT-IR spectrum of FTT after CR adsorption. 

 

 

Figure A3 FE-SEM image of FTT nanocomposite (a) before adsorption and (b) after CR 

adsorption. 
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Figure A4 FE-SEM micrograph showing the alteration in bacterial cell membrane 

morphology where(a) represent the E.coli control image (b) represent the EDX spectrum of 

E.coli surface, in the same way (c) represent the FTT treated E. coli and (d) shows the EDX 

spectrum of FTT treated E.coli.  

Figure A5 FE-SEM micrograph showing the alteration in bacterial cell membrane 

morphology where (a) represent the B.subtilis control image and (b) represent the EDX 

spectrum of bacterial surface (c) represent the FTT treated B. subtilis and (d) shows the EDX 

spectrum of FTT treated B.subtilis. 
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Figure A6 FT-IR spectrum of GO-Fe3O4-APTES after Cr (VI) adsorption. 

 
Figure A7 FE-SEM image of after adsorption of Chromium (VI) (a) 1000 nm, (b) 500 nm 

resolution and (c) EDS mapping. 
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Figure A8 Antibacterial activity of GO-Fe3O4-APTES against E.coli, where (a) is FESEM 

image of E.coli and (b) is the E.coli treated with GO-Fe3O4-APTES, (c) is the EDS analysis 

showing the elements in bacteria and (d) is the element deposited in bacteria after GO-Fe3O4-

APTES treatment.  

Figure A9 Antibacterial activity of GO-Fe3O4-APTES against B. subtilis, where (a) is 

FESEM image of B. subtilis and (b) is the B. subtilis treated with GO-Fe3O4-APTES, (c) is 

the EDS analysis showing the elements in bacteria and (d) is the element deposited in 

bacteria after GO-Fe3O4-APTEStreatment. 
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