
Performance Analysis of Real­time Task
Scheduling in Cloud System

Sampa Sahoo

Department of Computer Science and Engineering
National Institute of Technology Rourkela

Performance Analysis of Real­time Task
Scheduling in Cloud System

Dissertation submitted in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

in

Computer Science and Engineering

by

Sampa Sahoo
(Roll Number: 514CS1013)

based on research carried out

under the supervision of

Dr. Bibhudatta Sahoo

and

Dr. Ashok Kumar Turuk

September, 2020

Department of Computer Science and Engineering
National Institute of Technology Rourkela

Department of Computer Science and Engineering
National Institute of Technology Rourkela

September, 2020

Certificate of Examination

Roll Number: 514CS1013
Name: Sampa Sahoo
Title of Dissertation: Performance Analysis of Real­time Task Scheduling in Cloud System

We the below signed, after checking the dissertation mentioned above and the official record
book (s) of the student, hereby state our approval of the dissertation submitted in partial
fulfillment of the requirements of the degree of Doctor of Philosophy in Computer Science
and Engineering at National Institute of Technology Rourkela. We are satisfied with the
volume, quality, correctness, and originality of the work.

Ashok Kumar Turuk Bibhudatta Sahoo
Co­Supervisor Principal Supervisor

Pabitra Mohan Khilar Siba Sankar Mohapatra
Member, DSC Member, DSC

Debiprasad Priyabrata Acharya Deo Prakash Vidyarthi
Member, DSC External Examiner

Santanu Kumar Rath Ashok Kumar Turuk
Chairperson, DSC Head of the Department

Department of Computer Science and Engineering
National Institute of Technology Rourkela

Dr. Bibhudatta Sahoo

Dr. Ashok Kumar Turuk

September, 2020

Supervisors’ Certificate

This is to certify that the work presented in the dissertation entitled Performance
Analysis of Real­time Task Scheduling in Cloud System submitted by Sampa Sahoo, Roll
Number 514CS1013, is a record of original research carried out by her under our supervision
and guidance in partial fulfillment of the requirements of the degree ofDoctor of Philosophy
in Computer Science and Engineering. Neither this dissertation nor any part of it has been
submitted earlier for any degree or diploma to any institute or university in India or abroad.

Dr. Ashok Kumar Turuk Dr. Bibhudatta Sahoo

Dedication

This dissertation is dedicated to my family members, and friends, who had encouraged me
to pursue my dreams and finish my dissertation.

Signature

Declaration of Originality

I, Sampa Sahoo, Roll Number 514CS1013 hereby declare that this dissertation entitled
Performance Analysis of Real­time Task Scheduling in Cloud System presents my original
work carried out as a doctoral student of NIT Rourkela and, to the best of my knowledge,
contains no material previously published or written by another person, nor any material
presented by me for the award of any degree or diploma of NIT Rourkela or any other
institution. Any contribution made to this research by others, with whom I have worked
at NIT Rourkela or elsewhere, is explicitly acknowledged in the dissertation. Works of
other authors cited in this dissertation have been duly acknowledged under the sections
“Reference” or “Bibliography”. I have also submitted my original research records to the
scrutiny committee for evaluation of my dissertation.

I am fully aware that in case of any non­compliance detected in future, the Senate of NIT
Rourkela may withdraw the degree awarded to me on the basis of the present dissertation.

September, 2020
NIT Rourkela

Sampa Sahoo

Acknowledgment

Ph.D. is a once­in­a­lifetime opportunity and experience. It is tough at times and may seem
like an eternity, but it experiences us a lot, and I am delighted that I have had a chance to
complete it. It would not have happened without all those people who helped me along
the way. First of all, I would like to thank my supervisor, Dr. Bibhudatta Sahoo, and
co­supervisor Dr. Ashok Kumar Turuk, who has allowed me to undertake a Ph.D. and
provided with invaluable guidance and advice throughout my Ph.D. candidature. I want to
express my gratitude to the Ph.D. scrutiny committee members, Dr. S.K. Rath, Dr. P.M.
Khillar, Dr. S.S. Mohapatra, and Dr. D.P. Acharya for their constructive comments and
suggestions on improving my work. My sincere regard to all my teachers who taught me in
the Department of CSE, National Institute of Technology Rourkela.

I would also like to thank all the past and current members of the Cloud Computing
Research Laboratory, NIT Rourkela. In particular, I thank Sambit Kumar Mishra, Kshira
Sagar Sahoo, Shreeya Swagatika Sahoo, and Dibya Sundar Das for their friendship and help
during my Ph.D. I thank the external examiners for their excellent reviews and suggestions
on improving this thesis.

I am heartily thankful to my parents for their support and encouragement at all times.
Eventually, I thank all my friends and well­wishers who have directly or indirectly helped
me in this journey of doctoral research.

NIT Rourkela
Sampa Sahoo

Roll Number: 514CS1013

Abstract

Cloud computing is becoming an important computing paradigm due to its cost­efficiency,
scalability, availability, and high resource utilization. Applications like financial
transactions, health­care, scientific workflows, video streaming, Internet of Things (IoT),
etc. with their real­time nature, need provisioning of cloud resources to guarantee
timeliness and high availability. The Cloud Service Providers (CSPs) must support sufficient
cloud resources to satisfy the demand from these real­time applications. Meanwhile,
the ever­growing demand from applications forces CSPs to deploy more and more cloud
resources, which consumes a considerable amount of energy. The high energy consumption
affects the environment and other metrics like execution cost, makespan, and reliability
of the cloud system. Hence, it necessitates employing some techniques to reduce cloud
systems’ energy consumption and make it energy­efficient along with other performance
metrics like reliability, execution cost, makespan, etc. Real­time task scheduling is one of
the methods to achieve energy­efficiency in the cloud system. Moreover, heterogeneous
computing environments and application timing constraints add complexity to the real­time
task scheduling. Therefore, the study of a cloud system’s performance is necessary for
real­time applications to ensure Quality of Service (QoS), defined in terms of energy
consumption, makespan, execution cost, reliability, etc.

First, an Energy and Cost Aware task scheduling (ECA) algorithm based on the TOPSIS
analysis method is proposed to reduce energy consumption and execution cost. Here, a
scoring value is calculated for a VM based on its energy consumption and execution cost to
execute a task. Then, a VM with the best score in terms of energy usage and execution cost
is selected.

Next, a Learning Automata (LA)­based scheduling (LAS) algorithm is proposed to
minimize energy consumption and makespan. It is a reinforcement­based method where
the action, i.e., assignment of a task to a VM, is penalized if it contributes to scheduling
objective degradation and rewarded if the action is suitable to improve scheduling objective.
The above process is continued for a fixed number of iterations, and the actions with the best
reward value are added in the scheduling decision.

Then, a game theory based scheduling algorithm is proposed to enhance system
performance where energy consumption and reliability are considered as the performance
metrics. The bi­objective scheduling algorithm is modeled as a non­cooperative scheduling
game, named Real­time Task Scheduling Game (RTSG). The solution or Nash Equilibrium

vii

of RTSG is presented using a Vickery auction mechanism. The proposed solution is
compared with a cooperative game based solution and an auction­based approach.

Finally, a fault­tolerant scheduling algorithm is presented, taking into account
energy consumption and reliability. First, an acceptance test mechanism is designed
considering schedulability and response time failure to detect VM failure. A reliability and
energy­aware fault­tolerant scheduling algorithm, REO, is proposed using the PB concept
and BB overlapping technique. The performance metrics used for comparison of algorithms
include Success Ratio, makespan, and total energy consumption. The outcomes of the
simulation results signify the usefulness and effectiveness of the proposed algorithms for
studying real­time task scheduling performance.

Keywords: Cloud Computing; Energy; Execution cost;Makespan; Real­time Task.

Contents

Certificate of Examination ii

Supervisors’ Certificate iii

Dedication iv

Declaration of Originality v

Acknowledgment vi

Abstract vii

List of Figures xiii

List of Tables xv

List of Algorithms xvi

List of Abbreviations xvii

List of Symbols xix

1 Introduction 1
1.1 Overview . 1
1.2 Motivation of the Work . 2
1.3 Objective of the Work . 3
1.4 Methodology Used . 4

1.4.1 Queuing Theory . 4
1.4.2 Multi Objective Decision Making Method 4
1.4.3 Reinforcement Learning . 5
1.4.4 Game Theory . 5
1.4.5 Primary­Backup Approach . 6

1.5 Performance Evaluation . 6
1.5.1 Simulation Environment . 6
1.5.2 Performance Metrics . 7

ix

1.6 Thesis Organization . 7

2 Literature Survey 9
2.1 Introduction . 9
2.2 Cloud System Model . 10

2.2.1 VM Model . 11
2.2.2 Task Model . 11
2.2.3 Scheduling Framework . 12
2.2.4 Energy Model . 12
2.2.5 Cost Model . 13
2.2.6 Reliability Model . 13
2.2.7 Analytical Model . 14

2.3 Real­time Task Scheduling . 17
2.3.1 Energy­aware Scheduling . 17
2.3.2 Cost­aware Scheduling . 18
2.3.3 Makespan­aware Scheduling . 19
2.3.4 Use of Learning Automata­based Approach 20
2.3.5 Fault­tolerant Task Scheduling . 20
2.3.6 Use of Game Theory . 22
2.3.7 Outcome of the Survey . 23

2.4 Summary . 24

3 VM Scoring based Scheduling Algorithm 25
3.1 Introduction . 25

3.1.1 Scheduling Framework . 26
3.2 Energy and Cost Aware (ECA) Scheduling Algorithm 26
3.3 Performance Evaluation . 30

3.3.1 Simulation Setting . 31
3.3.2 Impact of Task Heterogeneity on System Performance 31
3.3.3 Impact of VM Heterogeneity on System Performance 32
3.3.4 Impact of VM Count on System Performance 33
3.3.5 Impact of Task Count on System Performance 33
3.3.6 Impact of Arrival Rate on System Performance 34
3.3.7 Impact of Deadline Variation on System Performance 35

3.4 Summary . 35

4 Learning Automata­based Scheduling Algorithm 36
4.1 Introduction . 36

4.1.1 Learning Automata . 37
4.2 Learning Automata­based Scheduling (LAS) Framework 38

x

4.2.1 Learning Automata Model . 39
4.3 Learning Automata­based Scheduling (LAS) Algorithm 40

4.3.1 Example . 44
4.4 Performance Evaluation . 48

4.4.1 Simulation Settings . 48
4.4.2 Impact of Task Heterogeneity on System Performance 49
4.4.3 Impact of VM Heterogeneity on System Performance 50
4.4.4 Impact of VM Count on System Performance 51
4.4.5 Impact of Task Count on System Performance 51
4.4.6 Impact of Arrival Rate on System Performance 52
4.4.7 Impact of Deadline Variation on System Performance 53
4.4.8 Comparison . 53

4.5 Summary . 54

5 Game Theory based Scheduling Approach 55
5.1 Introduction . 55

5.1.1 Generalized Game model . 56
5.2 Game Theory based Scheduling Framework 56
5.3 Real­time Task Scheduling Game (RTSG) Model 57

5.3.1 Nash Equilibrium based on Auction Mechanism 59
5.4 Performance Evaluation . 62

5.4.1 Simulation Setting . 63
5.4.2 Impact of Task Heterogeneity on System Performance 64
5.4.3 Impact of VM Heterogeneity on System Performance 64
5.4.4 Impact of VM Count on System Performance 65
5.4.5 Impact of Task Count on System Performance 65
5.4.6 Impact of Arrival Rate on System Performance 66
5.4.7 Impact of Deadline Variation on System Performance 67

5.5 Summary . 68

6 Primary­Backup based Fault­tolerant Scheduling Algorithm 69
6.1 Introduction . 69
6.2 Primary­Backup based Scheduling Framework 70

6.2.1 Task Model . 71
6.2.2 Fault Model . 72

6.3 Fault­tolerant Scheduling Algorithm . 73
6.3.1 Backup­Backup Overlapping . 73
6.3.2 Scheduling Strategy . 75

6.4 Performance Evaluation . 82
6.4.1 Simulation Framework . 82

xi

6.4.2 Simulation Setting . 82
6.4.3 Impact of Task Heterogeneity on System Performance 83
6.4.4 Impact of VM Heterogeneity on System Performance 84
6.4.5 Impact of VM Count on System Performance 85
6.4.6 Impact of Task Count on System Performance 85
6.4.7 Impact of Arrival Rate on System Performance 86
6.4.8 Impact of Deadline Variation on System Performance 87

6.5 Summary . 87

7 Conclusions and Future Directions 88
7.1 Contributions . 88

7.1.1 VM Scoring based Approach . 88
7.1.2 Learning Automata­based Approach 88
7.1.3 Game Theory based Approach . 89
7.1.4 Primary­Backup based Approach 89
7.1.5 Summary . 89

7.2 Future Research Directions . 90

References 91

Dissemination 99

xii

List of Figures

1.1 Simulation Framework . 7

2.1 Taxonomy of Real­time Task Scheduling 10
2.2 Generalized Real­time Task Scheduling Framework 12
2.3 Analytical Model of a Cloud System . 15
2.4 CTMC Model ofM/M/2/4 . 15

3.1 VM Scoring based Real­time Task Scheduling Framework 26
3.2 Flowchart of ECA Scheduling Algorithm 27
3.3 Impact of Task Heterogeneity on System Performance 32
3.4 Impact of VM Heterogeneity on System Performance 32
3.5 Impact of VM Count on System Performance 33
3.6 Impact of Task Count on System Performance 34
3.7 Impact of Arrival Rate on System Performance 34
3.8 Impact of Deadline Variation on System Performance 35

4.1 Relationship Between Learning Automata and its Environment 37
4.2 LA­based Real­time Task Scheduling Framework 38
4.3 Proposed VLA Model . 39
4.4 Flowchart for LAS . 41
4.5 An Example for LAS . 45
4.6 Cost Metric variation . 49
4.7 Impact of Task Heterogeneity on System Performance 50
4.8 Impact of VM Heterogeneity on System Performance 50
4.9 Impact of VM Count on System Performance 51
4.10 Impact of Task Count on System Performance 52
4.11 Impact of Arrival Rate on System Performance 52
4.12 Impact of Deadline Variation on System Performance 53

5.1 Game Theory based Real­time Task Scheduling Framework 57
5.2 Flowchart of RTSG Model based Scheduling 59

xiii

5.3 Impact of Task Heterogeneity on System Performance 64
5.4 Impact of VM Heterogeneity on System Performance 65
5.5 Impact of VM Count on System Performance 66
5.6 Impact of Task Count on System Performance 66
5.7 Impact of Arrival Rate on System Performance 67
5.8 Impact of Deadline Variation on System Performance 67

6.1 Primary­Backup based Fault­tolerant Real­time Task Scheduling Framework 70
6.2 Overlapping of Two Passive Backup Copies 74
6.3 Overlapping of Passive and Active Backup Copies (Case 2) 75
6.4 Overlapping of Active and Passive Backup Copies with Earliest Start Time 75
6.5 Flowchart of Primary Copy Scheduling 77
6.6 Flowchart of Backup Copy Scheduling . 78
6.7 Block Diagram of Fault­tolerant Simulation Framework 83
6.8 Impact of Task Heterogeneity on System Performance 84
6.9 Impact of VM Heterogeneity on System Performance 84
6.10 Impact of VM Count on System Performance 85
6.11 Impact of Task Count on System Performance 86
6.12 Impact of Arrival Rate on System Performance 86
6.13 Impact of Deadline Variation on System Performance 87

xiv

List of Tables

2.1 Queuing Model Used by Researchers . 14

3.1 Parameters for Simulation Studies . 31

4.1 Parameters for Simulation Studies . 48
4.2 Comparison with ECA (VM Count) . 53
4.3 Comparison with ECA (Task Count) . 54
4.4 Comparison with ECA (Arrival Rate) . 54
4.5 Comparison with ECA (Deadline) . 54

5.1 Parameters for Simulation Studies . 63

6.1 Parameters for Simulation Studies . 83

xv

List of Algorithms

3.1 : Sched_tsk (ftji , tkdli) . 28
3.2 : Energy and Cost Aware (ECA) Algorithm 29
4.1 : Mat_Gen (T ,V , k1) . 40
4.2 : Cal_Cost_Metric (ζ) . 42
4.3 : Sched_tsk(ftji , tkdli) . 42
4.4 : Action_Decision (T ,V , k1) . 43
4.5 : Learning Automata­based Scheduling (LAS) Algorithm 44
5.1 : Real­time Task Scheduling Game (RTSG) 60
5.2 : Nash_sol (T , V , U) . 60
5.3 : Sche_tsk (ftji , tkdli) . 60
5.4 : Pot_vm_sel (U , T ,V) . 61
5.5 : Winner_det (b,R) . 62
6.1 : RT (P_tki, vmj) . 76
6.2 : P_Sched_tsk (P_ftji , tkdli) . 76
6.3 : B_Sched_tsk (B_stki , tkdli) . 76
6.4 : A_Test (vmj) . 79
6.5 : P_sch (P_tki, vmj) . 80
6.6 : Synch (P_tki, stat(v(P_tki))) . 81
6.7 : B_Sch (B_tki, vmk) . 81

xvi

List of Abbreviations

Abbreviation Meaning
AWS Amazon Web Service
ACO Ant Colony Optimization
AEAP As Early As Possible
ALAP As Late As Possible
BB Backup­Backup
B Byte
CSP Cloud Service Provider
CTMC Continuous Time Markov Chain
DaaS Data­as­a­Service
DES Discrete Event Simulation
DVFS Dynamic Voltage Frequency Scaling
ETC Expected Time to Compute
GA Genetic Algorithm
I Number of Instructions

INF Infinity
ICT Information Communications Technology
IaaS Infrastructure­as­a­Service
IDS Intrusion Detection System
LA Learning Automata

MTBF Mean­Time­Between­Failure
MB Mega Byte
MCT Minimum Completion Time
MET Minimum Execution Time
MI Million Instruction
MIPS Million Instructions Per Second
MCDM Multi­Criteria Decision Making
MODM Multi­Objective Decision Making
MOGA Multi­Objective Genetic Algorithm

xvii

Abbreviation Meaning
NE Nash Equilibrium
PSO Particle Swarm Optimization
PM Physical Machine
PaaS Platform­as­a­Service
PB Primary­Backup
QoE Quality of Experience
QoS Quality of Service
SLA Service Level Agreement
SAW Simple Additive Weighting
SaaS Software­as­a­Service

TOPSIS Technique for Order Preference by Similarity to the Ideal solution
VM Virtual Machine

xviii

List of Symbols

Symbol Description
pi Action probability vector corresponding to αi

αi Action set of Ai

δ Aggregate energy consumption
λ Arrival rate of task
tkari Arrival time of ith task
B_tki Backup copy of tki
bji Bid value for tki by vmj

dji Binary variable indicating whether tki met deadline on vmj or not
tkdli Deadline of ith task

P_esti Earliest start time of P_tki
P_efti Earliest finish time of P_tki
ξaj Energy consumed by vmj in active state
ξij Energy consumed by vmj in idle state
etji Expected execution time of tki on VM vmj

P_etji Expected execution time of P_tki on vmj

B_etji Expected execution time of B_tki on vmj

ecji Execution cost of tki on vmj

vmec
j Execution cost of jth VM per time unit

vmfr
j Failure rate of jth VM

ftji Finish time of tki on vmj

P_ftji Finish time of P_tki on vmj

b_ftji Finish time of B_tki on vmj

tki ith task
vm+

id Ideal VM
vmj jth VM
plj jth player

xix

Symbol Description
B_lsti Latest start time of B_tki
B_lfti Latest finish time of B_tki
Ai Learning automata associated with tki
L Learning or Reinforcement algorithm
τ Makespan

vm−
id Negative ideal VM

vmrel
j Overall reliability of vmj

vmscore
p Overall score of a VM
φ Penalty constant

P_tki Primary copy of tki
vmrel

j Reliability of jth VM
relji Reliability of tki on vmj

ϕ Reward constant
Rj

i Reward for executing tki on vmj

tkszi Size of ith task
vmsp

j Speed of jth VM
stji Start time of tki on vmj

P_stji Start time of P_tki on vmj

B_stji Start time of B_tki on vmj

sji Strategy of player plj
ψj Task allocation strategy space for player vmj

T Task set
ϱj Total energy consumption by vmj

ec Total execution cost
µj Total execution time
uji Utility value for executing tki on vmj

V VM set

xx

Chapter 1

Introduction

1.1 Overview

Cloud computing refers to delivering the application, hardware, and system software stored
in data centers as a service in a pay­per­use pricing basis over the Internet. Virtualization is
the key technology behind the cloud that creates an illusion of infinite computing resources.
Cloud computing can also be viewed as a large scale distributed computing paradigm
driven by the economy of scale and provides an abstracted, virtualized, scalable, managed
computing power, storage, and platforms as a service to users on­demand over the Internet.
Further, cloud­based services like Software­as­a­Service (SaaS), Platform­as­a­Service
(PaaS), and Infrastructure­as­a­Service (IaaS) intend to extend support for a wide range
of applications. SaaS is a software delivery process that allows access to software via
a subscription model, whereas, in PaaS, software, and hardware needed for application
development is delivered through the Internet. In IaaS, computational resources are provided
to users in the form of a lease. When viewed from an organizational perspective, cloud
services can be deployed in the following ways:

• Public cloud allows cloud services offered by the Cloud Service Provider (CSP)
available to anyone who wants to use or procure them.

• In Private cloud, cloud services or computing resources are provisioned over private
IT infrastructure for the dedicated use by a particular organization.

• Hybrid cloud is designed, taking into account the benefits of both private and public
clouds.

Cloud computing advantages lead to hosting real­time applications like healthcare
systems, video streaming, financial transaction system, IoT, etc. These applications need
a timely (within a deadline) response to a request and computational correctness. As these
applications need a timely response, depending on their nature (whether emergent or not),
the cloud system decides whether to expand or shrink the count on cloud resources. For
instance, a task of a healthcare application demands guarantees of timeliness strictly, whereas
applications like video streaming can withstand some relaxation in time constraints. To

1

Chapter 1 Introduction

satisfy the need for time­constrained applications, a CSP must provide a sufficient number
of cloud resources. Meanwhile, the evergrowing demand of applications forces a CSP to
deploy more and more cloud resources. This increasing number of cloud resources in a
cloud data center consumes a huge amount of energy [1, 2]. Following facts attribute to the
reasons for high energy consumption in cloud data centers:

• Some computing resources are inevitably idle during different time slots, which indeed
lowers resource utilization and raises idle energy consumption. In [1–3] low utilization
of computing resources is affirmed as one of the crucial elements contributing to
high energy consumption. Moreover, a study presented in [1, 4] shows that average
resource utilization in a cloud system is not more than 30%. Still, the energy used by
idle resources is at least 60− 70% of peak energy.

• Sometimes, cloud resources are over­provisioned to meet the worst­case user demand.
The significantly higher number of resources reservation, in turn, increases energy
consumption. Besides, inefficient and improper resource scheduling leads to the
selection of Virtual Machines (VMs) that will cause high energy consumption while
ensuring Quality of Service (QoS) demand (e.g., deadline) of the applications.

There is high energy consumption for increased resource utilization, whereas the absence
of a cost factor in scheduling decisions may lead to high operational costs. However,
reducing energy consumption increases the makespan and leads to user dissatisfaction.
Besides, the reliability of the system is affected by high energy consumption [1, 5]. An
unreliable cloud system with a higher probability of resource failures inevitably results in
more interruption of running VMs, which implies a reduction in the performance of cloud
services [6]. In this context, a fault­tolerant strategy helps guarantee the reliability of the
cloud system [5, 7].

1.2 Motivation of the Work

A report presented in [2, 8] states that data centers consume 1.5% of global electric energy
in the year 2010, which will be doubled by 2020 if current trends continue. Another
study reported in [9] states that “the computing resources in cloud consumes 55% energy
while the remaining energy is consumed by other support systems such as cooling, power
supply, etc.”. Further, high energy consumption not only affects the environment but also
lowers the system reliability [1], and increases operating costs [10]. According to [1] the
Arrhenius life­stress model, “for every 10oC increase in temperature, the failure rate of
electronic devices rises by a factor of two,” hence affecting the reliability of the system.
Efficient fault­tolerance mechanisms can enhance the reliability of the cloud. Despite
several advantages, the cloud resources incur a high failure probability due to the increased
functionality and complexity of a large system. Further, the use of inexpensive commodity

2

Chapter 1 Introduction

hardware adds to the cause of resource failure. Faults in the cloud are inevitable, and the
report presented in [11, 12] states that “8% of VMs encounter errors at run time”. A study
reported in [13] says that “cloud consisting of servers with Mean­Time­Between­Failure
(MTBF) of 30 years fails at least once in a day.” Hence, the cloud needs to provide a
computing resource with high fault­tolerant capability, which enhances the reliability of
the cloud system. The study presented in [10] says that “about 50% management budget
of Amazon’s data center is used for powering and cooling physical servers”. The execution
cost is also an indispensable contributor to the operating cost of the system. Therefore,
the execution cost must be considered while generating a solution for improved system
performance. Moreover, there is a trade­off between energy consumed and execution
time, as a faster execution implies a higher energy consumption [9]. Hence, it is hugely
requisite to employ some means to lessen the cloud system’s energy consumption and make
it energy­efficient along with other performance metrics like reliability, execution cost,
makespan, etc.

1.3 Objective of the Work

There are several ways to reduce energy consumption in the cloud system: use of low
power processor architectures or Dynamic Voltage Frequency Scaling (DVFS) [14, 15],
VM consolidation, and energy­efficient task scheduling policies, etc. This thesis addresses
the scheduling of real­time tasks to minimize energy consumption in the cloud system.
Real­time task scheduling problems can be defined as follows: for a given set of VMs
and tasks, obtain the best mapping of a task to VM such that deadline constraint is
met. Further, this mapping should optimize system performance metrics, such as energy
consumption, makespan, etc. Task scheduling is a widely used method by researchers
to minimize the cloud system’s energy consumption but is more challenging when it
becomes multi­objective. For instance, to reduce the energy consumption and execution cost
simultaneously, the scheduler must make the best possible decision; otherwise, reducing
energy consumption may lead to a rise in execution cost or vice­versa. Furthermore,
heterogeneous computing environments and deadline constraints of applications add to the
complexity of scheduling. In this thesis, scheduling algorithms are proposed to solve the
multi­objective real­time task scheduling problem in a heterogeneous cloud system. The
objective of the thesis are enumerated below:

• Proposed a VM scoring based scheduling algorithm to minimize energy consumption
and execution cost.

• Proposed a reinforcement based scheduling algorithm to reduce energy consumption
and makespan.

3

Chapter 1 Introduction

• Addressed a bi­objective scheduling problem where optimization of energy
consumption and reliability are two objectives.

• Proposed a fault­tolerant scheduling algorithm taking into account energy
consumption and reliability.

Different methodologies used to achieve the objectives are discussed in the next section.

1.4 Methodology Used

Various methods used in this thesis to solve the multi­objective real­time task scheduling
problem are discussed below.

1.4.1 Queuing Theory

Queuing theory is widely used to model and study the performance and QoS of various
Information Communications Technology (ICT) systems [16, 17]. The mathematical study
of waiting in line examines the arrival process, service process, number of servers, etc. The
use of probabilistic distributions like Poisson and Exponential allows modeling complex
phenomena of waiting in line as a simple mathematical equation that can be used to analyze
a system’s behavior. The efficient use of queuing theory leads to better staffing solutions,
reduces customer waiting time, and finds its applications in scheduling, customer service,
etc.

1.4.2 Multi Objective Decision Making Method

Multi­Objective Decision Making (MODM) or Multi­Criteria Decision Making (MCDM)
refers to making decisions in the presence of multiple, usually conflicting objectives or
criteria [18, 19]. It can also be defined as the method of choosing the best alternative from
a set of decision alternatives. The necessary steps of MODM are: (i) list system evaluation
criteria and generate alternatives based on these criteria, (ii) apply one of the multiple criteria
analysis method, (iii) one of the alternatives is referred to as optimal (solution). Amongmany
MODM techniques, Max­Min, Max­Max, Simple Additive Weighting (SAW), Technique
for Order Preference by Similarity to the Ideal Solution (TOPSIS) are the most frequently
used methods [19]. In the Max­Min and Max­Max technique, alternatives are selected by
its weakest attribute and best attribute, respectively. SAW method uses the product of the
normalized value of criteria and weight (importance) of the criteria to select the alternative
with the highest criteria as the preferred one. In the TOPSIS method, an alternative is
preferable, which is closest to the ideal solution and farthest from the negative ideal solution.
The TOPSIS method is simple and maintains the same number of steps, regardless of
problem size. Thus makes it an efficient decision making tool. Hence the TOPSIS analysis

4

Chapter 1 Introduction

method is appropriate for the real­time task scheduling problem that involves finding the
best ⟨task, V M⟩ pair.

1.4.3 Reinforcement Learning

Reinforcement learning is a technique where an agent learns behavior through trial and
error interactions with a dynamic environment. Based on how the learning process
is implemented, reinforcement learning can be classified as follows: probability vector
algorithm, associative algorithm, and learning with delayed reinforcement [20]. The
probability vector algorithm uses action probability and reinforcement signals from the
environment to select an optimal action for finding a solution, e.g., Learning Automata
(LA). In LA, a process starts with a stochastic policy that selects actions randomly in the
beginning. The probability of choosing an action is updated based on the environment’s
feedback until optimal action is found. The associative algorithm takes both reinforcement
signal value and internal state to find a solution, e.g., neural net architecture. In learning with
delayed reinforcement, an agent receives an evaluation of its behavior following the entire
sequence of steps and is solved using dynamic programming variations, e.g., Q­learning.
Agents in Q­learning choose action either by higher Q­value (exploitation) or by action
randomly (exploration). Hence, reinforcement learning­based methods can be employed
in real­time task scheduling to generate optimal task attribution policies. Further, learning
methods help to get long­term system’s performance improvement as an agent adapts itself
with environmental conditions and unsteady requests.

1.4.4 Game Theory

Game theory can be viewed as a tool to analyze the introduction among decision­makers with
conflicting objectives [21]. A game can be cooperative where players cooperate to reach the
goal or non­cooperative where players work independently without the information about
other players’ strategies. Auctions are a type of game where bidders strategically select the
best bid. Different types of auctions are: English auction, Dutch auction, the first­price
sealed­bid auction, and second­price sealed­bid auction or Vickery auction [22, 23]. Both
English and Dutch auction are iterative, and price signals are continuously being fed back
to the bidders. The first and second­price sealed­bid auctions are a single round auction,
where bidders submit a sealed bid, and the bidder with the highest bid is selected as the
winner. In the first­price sealed­bid auction, the winner pays the bid price itself whereas, in
the second­price sealed­bid, the winner pays the price of the second­highest bid. According
to the revenue equivalence theorem, even though the auction mechanism varies from each
other, they yield the same expected revenue for the auctioneer when one item is being sold
[24]. A Vickery auction or second­price sealed­bid auction allocates an item to the bidder
who values it the most. Hence, Vickery auction for task scheduling can be justified, as it is

5

Chapter 1 Introduction

employed to find the best VM for a task. Nash Equilibrium (NE) is a concept used in game
theory where every player chooses their best strategy and hence helps to get an optimal
outcome of a game. Like game theory, a task scheduling problem involves decision makers
(e.g., task or VM) to obtain the best mapping between task and VM. Further, NE points can
be considered the best scheduling decision possible for tasks and VMs.

1.4.5 Primary­Backup Approach

Two popular techniques used to support fault­tolerant scheduling is resubmission and
replication. Resubmission usually leads to a long finish time for tasks andmay cause missing
the task’s deadline [25]. Whereas in replication, multiple copies of a task are allocated to
different resources to ensure task completion before its deadline. It is noteworthy that two
copies of replication can realize the balance between fault­tolerance and resource utilization.
Two copy replication, i.e., Primary­Backup (PB)model, is widely used by researchers. In the
PBmodel, two copies of one task run on two different VMs, and an acceptance test is used to
check the correctness of results [5, 25–28]. If VM with the primary copy failed, the backup
copy of the task is still running on another VM to ensure the task’s successful completion
within the deadline. The backup copy can be active or passive. A task’s backup copy is
executed in a passive backup copy scheme, only if its primary copy fails. It needs larger
laxity, which is the gap between the deadline and finish time of the primary copy of a task
so that backup copy can finish its execution before the task’s deadline. In the active backup
scheme, primaries and backup copies are executed simultaneously. Besides, to improve
system schedulability and resource utilization, the overlappingmethod is employed in the PB
model. Backup­Backup (BB) overlapping and PB overlapping are two popular overlapping
techniques. In BB overlapping, multiple distinct backup copies are overlapped in a single
computing resource whereas, in PB overlapping, primary copies are overlapped with backup
copies of another task.

1.5 Performance Evaluation

This section presents the design of simulation environment and performance metrics used to
evaluate the algorithms.

1.5.1 Simulation Environment

This thesis employs a Discrete Event Simulation (DES) method to evaluate the proposed
algorithms. Execution of real­time application with timing constraint and numerous
requirements (e.g., energy, cost, etc.) on real cloud infrastructure is time­consuming and
costly. Thus, a DES is employed to evaluate the algorithm, allowing us to experiment
and control various metrics to assess the algorithms under multiple scenarios effectively.

6

Chapter 1 Introduction

Figure 1.1 shows the simulation framework that consists of a task generator, task scheduler,
and VM pool. Different components are added to the scheduler component based on the
needs of the proposed approach. A task generator is designed to generate real­time tasks
where task arrival follows the Poisson distribution. VM pool consists of a finite set of VMs
and represents a cloud environment for task scheduling. Task scheduler uses scheduling
mechanisms (algorithms) and various constraints to map a task to an appropriate VM in
the VM pool. The development of IT infrastructure and applications make task and VM
heterogeneity obvious in the cloud system. Different scenarios are considered varying arrival
rate, deadline, task and VM count, task, and VM heterogeneity to show the effectiveness of
proposed algorithms.

Task
Generator

Task
Generator

Task
Generator

Task
Generator
VM Pool

Task
Scheduler

Task
Generator

Set of
<task, VM >

pair

Figure 1.1: Simulation Framework

1.5.2 Performance Metrics

The metrics considered to evaluate the performance of the algorithm are Success Ratio (SR),
total energy consumption (δ), and makespan (τ). The Success Ratio is defined as the ratio
between the number of tasks meet the deadline by the total number of tasks. Total energy
consumption is defined as the summation of energy consumed during the execution of all
tasks in the system. Makespan is defined as the total execution time of all the tasks in the
system.

1.6 Thesis Organization

The thesis is organized into seven Chapters. Contributions of each Chapter are summarized
below:
Chapter 1 presents the objective, methodology used, and structure of the thesis.
Chapter 2 outlines cloud system model and a brief review of real­time task scheduling in
the cloud system.
Chapter 3 proposes a VM scoring based scheduling algorithm using the TOPSIS analysis
method for real­time tasks to minimize energy consumption and execution cost.
InChapter 4, the Learning Automata (LA)­based scheduling algorithm is introduced for the
real­time task to reduce energy consumption and makespan.
In Chapter 5, the game theory is applied to find a solution of bi­objective (minimization

7

of energy consumption while ensuring high reliability) real­time task scheduling problem in
the cloud system.
In Chapter 6, Primary­Backup (PB) based fault­tolerant scheduling algorithm is presented
for real­time tasks taking into account energy consumption and reliability.
Chapter 7 concludes the thesis by highlighting the contributions made in the thesis and the
future scope of the work.

Chapter 2

Literature Survey

2.1 Introduction

Cloud computing manages a variety of virtualized resources, which makes the scheduler a
significant component. The scheduler uses scheduling algorithms to allocate VM to execute
a task. There exist various types of scheduling based on the task type, such as non­real­time
and real­time. This thesis has focused only on real­time task scheduling. The basic idea
of real­time task scheduling is to enhance system performance while guaranteeing timing
constraints. Figure 2.1 shows the taxonomy of real­time task scheduling, as considered
by various researchers. Depending on the architecture type, real­time scheduling can be
classified as centralized and decentralized. In centralized approach, scheduling decision is
made by a central entity like cloud scheduler, whereas in decentralized approach, scheduling
decision is distributed among nodes participating in the system. Depending on scheduling
technique, real­time task scheduling can be classified as heuristic based, metaheuristic based,
reinforcement learning based, and game theory based. Heuristic technique is an approach to
problem­solving where the solution is generated by exploiting the heuristic. The obtained
solution may not be optimal but sufficient to reach the goal. It is a problem specific
approach, and its performance relies on the effectiveness of heuristic. Min­Min, Max­Min,
list scheduling, etc. are well­known heuristic techniques. Metaheuristic technique imitates
a natural, physical, or biological principle resembling a search or an optimization process. It
is a problem independent approach. The Metaheuristic technique produces near­optimal
solutions but may take more execution time due to the absence of a convergence point.
Genetic Algorithm (GA)([29]), [30],[31], Particle Swarm Optimization (PSO) ([32],[33])
, etc. are popularly used metaheuristic techniques. In reinforcement learning based method
([34] [35]), scheduling decision is made by continuously interacting with the environment
(e.g., cloud system) that gives a reinforcement value for each of the action (e.g., mapping of
a task to a VM) until the best decision possible for a problem is not found.

Game theory can be viewed as ‘games of strategy’ where players interact according to
a particular strategy to obtain the optimal strategy that maximizes or minimizes its payoff.
In a game­theoretic task scheduling problem ([36] [37]), the machine or users can act as a
player or strategy, and the payoff can be represented by makespan or execution cost, etc.

9

Chapter 2 Literature Survey

Centralized

Decentralized

Architecture
Type

Heuristic based

Metaheuristic based

Scheduling
Technique

Reinforcement Learning based

Game Theory based

Energy-aware

Cost-aware
Performance
Metric based

Reliability-aware

Makespan-aware

Fault-tolerance aware

Multi-objective

Objective
based

Single-objective

Immediate Mode

Mode of
Operation

Batch Mode

Real-time Task
Scheduling

Figure 2.1: Taxonomy of Real­time Task Scheduling

Here, the players can interact cooperatively or non­cooperatively to minimize its payoff
(e.g., makespan). The outcome of the game is considered as a solution to the scheduling
problem. Based on the metrics used to measure the performance of the system, the task
scheduling algorithms can also be categorized as energy­aware ([1],[15]), cost­aware([10],
[7]), makespan­aware([38], [39]), fault­tolerance aware ([11], [13]), etc. Further, task
scheduling algorithms can be designed to optimize only a single performance metric or
multiple performance metrics. Based on the number of performance metrics used in task
scheduling algorithms’ objective, it can be single­objective or multi­objective. Similarly,
the mode of operation divides a task scheduling algorithm as a batch mode or immediate
mode. Ready to execute tasks are scheduled in batch mode, whereas tasks are scheduled as
soon as they arrive in immediate mode. Minimum Execution Time (MET) and Minimum
Completion Time (MCT) are batch mode algorithms, whereas Min­Min, Max­Min, etc. are
immediate mode scheduling algorithms.

2.2 Cloud System Model

This section details the various models used in this work, which include the VMmodel, task
model, scheduling framework, analytical model, energy model, cost model, and reliability
model.

10

Chapter 2 Literature Survey

2.2.1 VMModel

The heterogeneous cloud environment is defined by the set V = {vm1, vm2, ..., vmm},
where vmj ∈ V is characterized by following attributes:

− Processing capacity or speed vmsp
j which is measured in terms of Million Instructions

Per Second (MIPS),

− Execution cost vmec
j per time unit,

− Failure rate vmfr
j ,

2.2.2 Task Model

Let T = {tk1, tk2, ..., tkn} be the set of independent tasks that arrive dynamically at a
particular instant. Each task, tki ∈ T , has the following attributes:

− Arrival time tkari ,

− Task size tkszi which is measured in terms of Million Instruction (MI) or Mega Byte
(MB). MI of the task can be calculated using formula specified in [40] as: MI = tskszr
in MB * (Number of Instruction (I) / Byte (B)),

− Task deadline tkdli .

Let etji is the expected execution time of task tki on VM vmj and is known before the
execution. It is computed as:

etji =
tkszi
vmsp

j

. (2.1)

It is considered that a new task tki is affixed to the end of previously allocated tasks on that
VM. Let, etji represents an element of Expected Time to Compute (ETC) matrix, where
i = {1, 2, ..., n} and j = {1, 2, ...,m}. The start time stji for tki onVM vmj can be estimated
as:

stji = max{ftjq, tkari }. (2.2)

Equation 2.2 says that, new task tki can start on vmj either after the completion of previously
assigned task tkq or just after the arrival, whichever is later. It is updated after each task
execution on vmj . The finish time ftji of tki on vmj can be calculated as:

ftji = stji + etji . (2.3)

The finish time indicates whether a task’s deadline can be guaranteed or not. Let dji is the
indicator used to show whether a task tki executing on vmj met its deadline or not (Equation
2.4).

dji =

0 if ftji > tkdli

1 if ftji ≤ tkdli

(2.4)

11

Chapter 2 Literature Survey

2.2.3 Scheduling Framework

A generalized real­time task scheduling framework is shown in Figure 2.2. A user request

tk1

vm1 vm2 vmm

Scheduler

tk2

tkn

. . .

Cloud Environment User Task

Task

Task

Queue

.

.

.

Figure 2.2: Generalized Real­time Task Scheduling Framework

is appended to the task priority queue. The scheduler removes a task from the queue and
decides when and where the task to be executed. This decision is made, taking into account
the scheduling algorithm and the availability of VMs in the cloud system.

2.2.4 Energy Model

The execution environment, cooling system, and power conditioning are the main
contributors to energy consumption in the cloud system. The execution environment consists
of VM and is the basis of the energy model used in this thesis. In general, the energy
consumed by a VM depends on its state. Usually, a VM can be in active state or idle state.
It is assumed that a VM is said to be in active state when it is executing a task; otherwise, it
is idle. A study presented in [3, 4, 35] says that in the idle state, a VM consumes [60− 70]%
of energy consumed in the active state.

Let, the total energy consumed by VM vmj is ϱj , which can be expressed as:

ϱj = (ξaj + ξij)× vm
sp
j , (2.5)

where ξaj and ξij are energy consumed by vmj in active and idle state respectively. Let, the
total execution time (µj) of all tasks assigned to vmj is

µj =
n∑

i=1

X j
i × ft

j
i , (2.6)

where binary indicator X j
i = 1 if tki is assigned to vmj , or X j

i = 0 otherwise. Makespan
(τ) is defined as the maximum execution time among all the VMs in the system, and it is
expressed as:

τ = max(µj). (2.7)

12

Chapter 2 Literature Survey

Now, the active and idle state energy consumption of vmj can be computed as:

ξaj = µj × σj, (2.8)

ξij = (τ − µj)× 0.6× σj, (2.9)

where σj = 10−8 × (vmsp
j)2 Joules/MI [3, 41, 42]. The total energy consumption (δ) of the

cloud system is evaluated as Equation 2.10 and measured in Joules.

δ =
m∑
j=1

ϱj (2.10)

2.2.5 Cost Model

Popular cloud service providers like Amazon Web Service (AWS), Google, and Azure use
pay­per­second billing scheme [43], which is the basis of the cost model used in this thesis.
The heterogeneity of tasks and VM causes different execution cost for the same task on
different VMs. Let, ecji is the execution cost of a task tki on VM vmj per time unit (Seconds)
and is calculated as:

ecji = vmec
j × et

j
i . (2.11)

The total execution cost of a cloud system is formulated in Equation 2.12 and measured in
the cost unit ($).

ec =
m∑
j=1

n∑
i=1

ecji ×X
j
i (2.12)

2.2.6 Reliability Model

The reliability of a cloud system can be assessed through the probability of successfully
executing all the incoming tasks at a particular instant. The reliability model assists the cloud
scheduler in mapping tasks on the cloud infrastructure and helps to achieve fault­tolerance.
Reliability of a task tki on vmj , (relji) is defined as the product of failure rate vm

fr
j of vmj

and execution time tki on vmj , i.e., etji . Mathematically, it can be written as:

relji = e−vmfr
j ×etji×X j

i . (2.13)

So, the overall reliability of vmj is computed as:

vmrel
j = relji ×

∏
tkk on vmj

reljk. (2.14)

With an increase in execution time (i.e., VM use), the chances of VM failure increases.
Hence, the reliability of the cloud system decreases gradually.

13

Chapter 2 Literature Survey

2.2.7 Analytical Model

Queuing theory is widely used to model and study the performance, and QoS of various
ICT systems [16, 17]. An analytical model based on a queuing system is used to study the
proposed heterogeneous cloud system’s behavior. In this context, Li et al. [10] introduced a
cost­efficient scheduling technique for the cloud system modeled asM/GI/1/PS to meet
the response time and deadline constraints. Kafhali et al. [16] presented an analytical
queuing model to show the dynamic behavior of fog nodes in the IoT environment. Khazaei
et al. [44] used aM/G/m/m+r queuing system tomodel a cloud computing center and find
the probability of blocking new request, the probability of immediate service to a request,
etc. Further, a queuing theory­based model is employed in [45] to assure QoS in terms of
response time.

Table 2.1: Queuing Model Used by Researchers

Research works Queuing Model Working
Environment

Li et al. [10] M/GI/1/PS Heterogeneous

Kafhali et al. [16] M/m/n/K Homogeneous

Khazaei et al. [44] M/G/m/m + r Homogeneous

Vilaplana, et al. [45] M/M/1 andM/M/m Homogeneous

Bruneo [46] Task Arrival : Poisson
distribution, Service time
: Exponential distribution

Homogeneous

Liu et al. [47] M/G/1 Heterogeneous

Zhang et al. [48] M/G/1 Homogeneous

Mei et al. [49] M/M/n/n Homogeneous

Fan et al. [50] Task Arrival : Poisson
distribution, Service time
: Exponential distribution

Heterogeneous

Bruneo in [46] presented a stochastic reward net­based analytical model for analyzing
an IaaS cloud system’s behavior. The queuing model is adopted by Liu et al. [47] to
study the performance of cloud services with resource sharing among VMs in the cloud
system. Zhang et al. [48] used the Stackelberg game concept to analyze the pricing and
resource allocation problem in a three­tier IoT fog network. Mei et al. [49] realized a cloud
system as a M/M/n/n multiserver queuing system, and address the profit maximization
problem. The authors in [50] designed an application­aware workload allocation scheme
for minimizing the response time of IoT application requests on the cloud. Khazaei et
al. [51] used an analytical model to study the complexity of the cloud computing system.
Ghosh et al. [52] developed a stochastic analytical model for performance quantification
of IaaS cloud. An analytical model is presented in [53] to estimate the performances of
deadline­based services in a heterogeneous cloud system. Table 2.1 shows the list of the
queuing model and environment considered by researchers for modeling the cloud system.
Most researchers modeled a cloud system with Poisson task arrival, exponential service

14

Chapter 2 Literature Survey

time, and homogeneous working environment. As the arrival of tasks to the cloud system

.

.

.

vm1

vm2

vmm

λ

Task
Queue

k

µv1

µv2

µvm

µ

Cloud
System

Figure 2.3: Analytical Model of a Cloud System

is independent of one another, the reasonable assumption is that the task arrival follows a
Poisson distribution. It is assumed that the arrival rate of an individual task (λr) follows
a Poisson distribution and the aggregate arrival rate λ is also Poisson distributed (given in
Equation 2.15).

λ =
n∑

r=1

λr (2.15)

It is assumed that the service rate of tasks on a VM is exponentially distributed with an
aggregate value of µvj (i.e., vmsp

j). So, the service time or execution time (et
j
i) of a task on a

VM also follows an exponential distribution. Hence, this research’s cloud system is modeled
as a M/M/m/k multi­process queuing system, as shown in Figure 2.3. A multi­process
system is defined as the system with one arrival entrance, waiting queue, and one exit point
but can execute more than one task simultaneously. The third parameter, m of the queuing
system, indicates the number of VMs in the cloud system. The maximum number of tasks
possible in the multi­process system is denoted by the fourth parameter, k, of the queuing
system. It signifies the length (or size) of the queuing system’s task queue (or buffer). Each

µv1 µv2

µv2 µv1

µv1 + µv2 µv1 + µv2

λ λλλ

λλ

Figure 2.4: CTMC Model ofM/M/2/4

VM can be modeled by a M/M/1 queuing system and the whole cloud system can be

15

Chapter 2 Literature Survey

considered as one M/M/m/k queue or m number of M/M/1 queues with finite queue
length. A Continuous Time Markov Chain (CTMC) model of cloud system with 2 VMs and
4 tasks, i.e., M/M/2/4 is shown in Figure 2.4. Let, µv1 > µv2. The state of the CTMC
model corresponds to the number of tasks to be serviced by two VMs. Let S0 indicates state
(0, 0), i.e., no VM is executing a task. S1 represents (0, 1) or (1, 0), i.e., either vm1 or vm2

is executing a task. S2 denotes state (1, 1) that shows both VMs are executing a task. S3 and
S4 represents state (2, 1) and (3, 1) respectively.

By solving time reversibility equations, the limiting or blocking probabilities is generated
for the system. Time reversibility equation for S0 is shown in Equation 2.16.

λπ0 = (µv1 + µv2)π1 =⇒ π1 =

(
λ

µv1 + µv2

)
π0 (2.16)

Similarly, Equation 2.17 shows the time reversibility equation for state S1.

λπ1 = (µv1 + µv2)π2 =⇒ π2 =

(
λ

µv1 + µv2

)2

π0 (2.17)

Equation 2.18 is derived by generalizing Equation 2.17 form number of VMs and k number
of tasks.

πi =

(
λ

µv1 + µv2 + ...+ µvm

)i

π0 =

(
λ

µt

)i

π0, (2.18)

where i = 0, 1, 2, ..., k and µt =
c∑

j=1

µvj .

To preserve the law of probability, the sum of probabilities of having number of tasks
starting from 0 to k must be one. This is shown in Equation 2.19 as:

k∑
i=0

πi = 1. (2.19)

Let, σ = λ
µt
. Putting σ value in Equation 2.18 and solving Equation 2.19, Equation 2.20 is

formulated.[
1 + σ + ...+ σk

]
π0 = 1 =⇒

[
1− σk+1

1− σ

]
π0 = 1 =⇒ π0 =

1− σ
1− σk+1

(2.20)

The blocking probability or limiting probability πk indicates that, there are k number of tasks
being processed in theM/M/m/k queuing system. It is computed in Equation 2.21 as:

πk = σk

[
1− σ

1− σk+1

]
. (2.21)

A new task will have to wait if there are more than m number of tasks in the system. Thus

16

Chapter 2 Literature Survey

the number of tasks in the waiting queue (ηq) is calculated as:

ηq =
k∑

i=m+1

(i−m)πi =
σm

1− σk+1

[
σ − (k + 1)σk+1 + kσk+2

1− σ

]
. (2.22)

Similarly, the total number of tasks in the system (queue + service) is computed as:

ηs =
k∑

i=1

iπi =
σ − (k + 1)σk+1 + kσk+2

(1− σ)(1− σk+1)
. (2.23)

Now the average waiting time (ωtr) and response time (Υtr) can be calculated as:

ωtr =
ηq
λ
, (2.24)

Υtr =
ηs
λ
. (2.25)

The proposed analytical model is used in simulation to analyze the performance of different
task scheduling algorithms.

2.3 Real­time Task Scheduling

This section discusses various task scheduling algorithms, specifically focusing on the
real­time task.

2.3.1 Energy­aware Scheduling

Energy conservation in cloud computing is receiving a great deal of attention among
the research community, and efficient scheduling methods have been overwhelmingly
investigated. Zhu et al. [1] proposed a rolling horizon optimization policy­based scheduling
algorithm, EARH, to conserve energy in the virtualized cloud. Chen et al. [2] presented
an Energy­efficient Online Scheduling Algorithm (EONS) to achieve energy­efficiency and
better resource utilization for real­time workflows in the cloud data center. Authors in [3]
have presented a metaheuristic based approach to reduce energy consumption and makespan
in a cloud­based fog environment. Gao et al. [4] proposed the “Guided Migrate and Pack”
(GMaP) scheduling framework based onVMmigration tomaximize energy­efficiencywhile
reducing Service Level Agreement (SLA) violation due to deadline miss. To save energy,
the authors in [14] have presented EEVS, an energy­efficient algorithm using the DVFS
technique where first, they find the optimal performance­power ratio of Physical Machine
(PM) and then assign VM to PM with the highest ratio. Authors in [15] have used the
DVFS technique to develop an energy­efficient algorithm with monetary cost constraints
for workflows in the cloud system. Chen et al. [54] have proposed an energy­efficient
reactive scheduling algorithm, ERECT, using the DVFS technique to minimize energy
consumption. Shi and Jang [41] proposed a probabilistic scheduling algorithm to reduce

17

Chapter 2 Literature Survey

energy consumption in the mobile cloud.
Juarez et al. [9] and Li [55] have proposed a heuristic to reduce energy consumption

and execution time for parallel tasks in the cloud environment. Zhang et al. [56]
have used historical scheduling information for the pre­creation of VMs to improve the
performance and execution of a real­time task. Yassa et al. [32] used DVFS and PSO
techniques to optimize makespan, cost, and energy for workflow scheduling. In [57], a
dynamic VM consolidation technique is used to realize energy­efficiency in the cloud data
center without committing SLA violations. Xing et al. [58] have utilized VM migration
and resource fairness concept to optimize energy usage for IoT applications in the cloud
environment. A greedy scheduling algorithm named Most Energy­Efficient First (MESF)
presented in [59] saves energy by assigning a task to the most efficient server based on
energy profile. Koodziej et al. [29] have employed the DVFS model and GA for solving
energy­aware scheduling problems in the computational grid. In [60], authors have proposed
a heterogeneity aware resource management system called HARMONY to decrease the total
energy consumption and performance penalty in a cloud environment. DVFS technique
is used in [2][61] to find the trade­off between performance and energy­efficiency. The
work presented in [62] minimizes energy consumption by turning off the most effective
processor in the cloud system from an energy­saving perspective. Researchers in [63]
have presented a routing protocol considering hop distance, temperature, and energy for
implanted biosensor networks to reduce packet delivery latency. Quang­Hung et al. [30]
have proposed a GA based VM allocation scheme to minimize the total energy consumption
of computing servers. In [64], authors have proposed a VM placement method to minimize
power consumption while enhancing resource utilization. Arroba et al. [65] have proposed
power and thermal­aware strategies for optimizing cooling and computing efficiency in the
cloud data center.

2.3.2 Cost­aware Scheduling

The cost factor also plays a vital role in the task schedule to evaluate a cloud system’s
performance, but a few works have taken this into account. Li et al. [10] proposed an
algorithm named CEAS using the DVFS technique to reduce execution cost and energy
consumption of scientific workflows in the cloud. Pham et al. [7] proposed Cost­Makespan
aware Scheduling (CMaS) algorithm to handle the trade­off between performance and cost
while executing IoT applications. Zhang et al. [38] introduced Energy and Deadline Aware
with Non­Migration Scheduling (EDA­NMS) algorithm to minimize energy consumption
and cost. Hu et al. [39] presented time and cost­efficient Flutter scheduling algorithm
for big data processing in geo­distributed cloud data centers. Cai et al. [66] presented
the Delay­based Dynamic Scheduling (DDS) algorithm to reduce resource renting cost of
workflow execution in the cloud. Garg et al. [67] proposed MaxCTT, SuffCTT, and
MinCTT scheduling algorithms to optimize the trade­off between execution time and cost.

18

Chapter 2 Literature Survey

An Energy­aware Stochastic Task Scheduling algorithm (ESTS) is presented in [68] to
maximize the guaranteed confidence probabilities under deadline and energy consumption
budget constraints in a heterogeneous computing system. Poola et al. [69] presented a
robust scheduling algorithm for workflows, which reduces makespan and cost. A regression
model is used by researchers in [70] for provisioning cloud resources to find the trade­off
between cost­saving and QoS requirements. Chen et al. [34] considered the uncertainty
of task execution time and data transfer time in their scheduling algorithm to optimize
service renting cost for workflows in the cloud. Guo et al. [33] proposed the Cost­Effective
Fault­Tolerant scheduling algorithm (CEFT) using the PSO technique for real­time tasks
in the cloud system. Alkhanak et al. [71] presented an analysis of existing approaches
to solve the problem of cost optimization in Scientific WorkFlow Scheduling (SWFS). In
[72], authors employed dynamic programming and greedy concept to reduce execution cost
under timing constraints. Zheng et al. [73] proposed theMapReduceApplication Scheduling
Algorithm (MASA) to reduce data analysis costs while minimizing SLA violations.

2.3.3 Makespan­aware Scheduling

Zhang et al. [38] used Bayes classifier to classify tasks based on historical scheduling
data. They proposed a two­stage scheduling scheme and evaluated its performance using
makespan, waiting time, and VM utilization. Hu et al. [39] designed a task scheduling
algorithm to minimize completion time and network cost of big data processing jobs in
geo­distributed data centers. Poola et al. [69] proposed a scheduling policy to minimize
makespan and cost for scientific workflowswhile achieving fault­tolerance. Panda et al. [74]
proposed scheduling techniques based on min­max and median­max to reduce makespan
while improving average cloud utilization in a multi­cloud environment. Stavrinides et al.
[75] used the Earliest Deadline First (EDF) and best fit theory to guarantee applications’
execution within deadline constraint while reducing makespan and cost charged to the user.
Sahoo et al. [76] proposed EDF based algorithm using Best Fit, Worst Fit, and First Fit
concept to optimize guarantee ratio, VM utilization, and throughput while guaranteeing
deadline constraint. Su and Wang [77] used the Pareto dominance concept to select a VM
to achieve cost efficiency and makespan minimization. Rehman et al. [31] proposed a
Multi­Objective Genetic Algorithm (MOGA) approach to minimize makespan under budget
and time constraint. The authors in [78] introduced big data analytics framework using the
Fuzzy inference system to reduce the processing time of high­frequency data stream. In
[79] researchers have provided a solution to the sensor deployment and scheduling problem
considering network lifetime in the wireless sensor network.

19

Chapter 2 Literature Survey

2.3.4 Use of Learning Automata­based Approach

Learning Automata (LA) theory is appropriate for the environment, which is dynamic,
complex, and there is a large number of uncertainties like cloud environment, computer
networks, etc. [34]. Sahoo et al. [35] used the LA concept for real­time task execution
that minimizes energy consumption and makespan in a cloud environment. Narendra et al.
[80] presented a survey in the area of learning automata. Their study mainly focused on the
norms and behavior of LA, reinforcement, or learning schemes, the convergence of learning
algorithms, and several automata’ interaction. Various applications of LA are also discussed,
like parameter optimization and decisionmaking. Authors in [81] discussed howLAbehaves
with a changing number of actions. Misra et al. [82] proposed an LA­based framework
to improve the performance of QoS­enabled cloud services concerning response time and
speed­up. Rezvanian et al. [83] used LA to find the solution of theminimum vertex­covering
problem in a stochastic graph. Ranjbari et al. [84] proposed an algorithm based on
LA to detect the overloaded Physical Machine. The prevention from Physical Machine
overload reduces VM migration count and helps consolidate VMs, which minimizes energy
consumption. In [85], authors have employed LA theory to develop a prediction model for
cloud resource usage. An LA­based ranking algorithm is introduced in [86], where a learning
automaton ranks the search documents based on user feedback. Venkataramana et al. [87]
proposed LA­based task assignment architecture for a heterogeneous computing system to
achieve load balancing and minimum total execution time. Authors in [88] used the LA
concept to minimize the energy consumption in a heterogeneous cloud environment.

2.3.5 Fault­tolerant Task Scheduling

Cloud experiences failures and performance fluctuations when executing tasks. This
generates the need for a high fault­tolerant cloud environment, which can be
achieved through an efficient fault­tolerant scheduling algorithm. Han et al. [11]
presented a scheduling algorithm named ARCHER for hybrid real­time tasks integrating
Primary­Backup concept and checkpoint strategies to achieve a balance between
fault­tolerance and resource utilization in the cloud. Yan et al. [13] employed both
resubmission and replication strategies to achieve fault­tolerance and efficient resource
utilization. Li et al. [55] proposed a failure aware energy­efficient scheduling algorithm
for the cloud data center considering computing and cooling energy, and the reliability of
servers. Xie et al. [89] proposed a QFEC fault­tolerant scheduling algorithm with minimum
execution costs while satisfying the reliability constraint of workflows. But this scheme
uses multiple replicas of a task and doesn’t consider overlapping technique. Zhang et al.
[38] proposed a Support Vector Machine (SVM)­grid based online fault detection model to
improve the system performance. Zhu et al. [28] developed a fault­tolerant task scheduling
method using the Primary­Backup concept along with overlapping mechanism and VM

20

Chapter 2 Literature Survey

migration for real­time workflows in the cloud. Latiff et al. [90] introduced a league
championship based scheduling mechanism to reduce the task execution failure rate. Zhu et
al. [25] proposed a Service­Aware fault­tolerant scheduling algorithm using the Overlapping
technique, SAO, to improve resource utilization and schedulability. Wang et al. [5] proposed
an elastic resource provisioningmechanism taking into account Backup­Backup overlapping
and VM migration to ensure both fault­tolerance and high resource utilization in clouds.

Ding et al. [91] used the Primary­Backup model and resource migration approach to
achieve fault­tolerance and high resource utilization. Ghosh et al. [92] achieves a high
acceptance ratio by the integration of overloading and deallocation techniques. Further,
some works have been done in fault detection of components in the cloud system. Smara
et al. [93] construct a fail­silent cloud module to detect transient fault and response time
failure in the cloud system. Gabel et al. [94] used proactive approach to identify machines
with latent faults. Bui et al. [95] proposed a fuzzy logic based algorithm and prediction
technique to identify faults occurring in the IaaS system. Nimkar et al. [96] proposed
security framework for federated IaaS cloud. The authors in [97] proposed a fault­tolerant
strategy to ensure the reliability and real­time requirement of a cloud application. Qiu et
al. [6] used queuing theory and the Bayesian approach to evaluate the correlated metrics:
reliability, performance, and power consumption of cloud service. Wen et al. [98] used an
entropy­based method to quantify the most reliable cloud and then optimize the deployment
of workflow in terms of entropy and monetary cost. Xiao et al. [99] proposed a heuristic
approach that assigns each task to a processor with maximum reliability while ensuring
energy constraint. Li et al. [100] proposed Back Propagation (BP) neural network­based
scheduling method to guarantee system performance and reliability, satisfying cost and
deadline constraints. Nik et al. [101] presented a scheduling approach that minimizes
workflow execution cost while ensuring deadline and reliability constraints. Qin and Jiang
et al. [26] used Backup­Backup overlapping and Primary­Backup overlapping to achieve
fault­tolerance while improving the reliability of the heterogeneous system. Zhu et al. [102]
proposed a fault­tolerant scheduling algorithm QAFT to improve reliability, schedulability,
and resource utilization for real­time tasks in heterogeneous clusters. In [103], the authors
have presented a security framework for the Internet of Medical Things (IoMT).

Researchers in [104] employed the Primary­Backup approach to minimize response
time and replication cost while ensuring deadline constraint. Qu et al. [105] presented
a cost­efficient auto­scaling policy according to fault­tolerant semantics using various
spot instances. The authors in [106] presented an energy­aware fault­tolerant scheduling
algorithm using active replication strategy and utilization of energy consumption for decision
making under time and reliability constraint. Sun et al. [107] developed optimal request
scheduling and resource management strategies considering reliability, performance, and
energy consumption simultaneously. Malik et al. [108] presented a reliability assessment
model that helps with scheduling to achieve fault­tolerance in the cloud system. Most

21

Chapter 2 Literature Survey

of the above work discusses techniques to handle a single fault in the system. In this
context, Manimaran et al. [109] designed an algorithm to handle multiple faults at a
time in a multiprocessor system. Further, they used a myopic distance algorithm, flexible
backup overloading, and resource claiming technique to improve the system’s performance.
Al­Omari et al. [110] used dynamic grouping and backup overloading to handle multiple
faults in a real­time multiprocessor system.

2.3.6 Use of Game Theory

In game theory, a task scheduling game is a game that models a scenario in which multiple
users wish to utilize numerous processing machines (e.g., VM). In this context, Ranganathan
et al. [21] proposed an auction based non­cooperative game to optimize the average
power of a circuit during scheduling in behavioral synthesis. Li et al. [36] presented a
non­cooperative game model for task modeling taking into account reliability value in cloud
system . Yang et al. [37] used a cooperative gamemodel for task scheduling, considering the
reliability of the balanced task. Khan and Ahmad [111] proposed a cooperative game based
solution to handle the real­time task allocation problem in the computational grid considering
minimization of energy consumption and makespan simultaneously. The authors in [112]
used a non­cooperative game to solve the server load balancing problem and VM placement
problem in cloud computing. Li et al. [113] proposed an non­cooperative game theoretic
approach to schedule linear deteriorating jobs in parallel machines. Researchers in [114]
modeled the network selection and resource allocation in wireless access networks as a
non­cooperative congestion game to minimize the selection cost. Further, a mathematical
programming based method is designed to find Nash equilibria and optimize the cost
function. Huu et al. [115] designed the resource allocation model using a combinatorial
auction mechanism to minimize energy consumption in the cloud environment.

Wu et al. [116] used Modified Vickery Auction (MVA) mechanism and Continuous
Double Auction (CDA) mechanism for resource allocation, taking into account procurement
cost. Su et al. [117]developed a Stackelberg game­theoretic resource allocation scheme
for media cloud to achieve high Quality of Experience (QoE) while maximizing the profit.
Ding et al. [118] proposed a reverse online auction based resource allocation where the
multi­attribute bid value is defined based on price, memory, and speed. Wang et al. [119]
proposed a decentralized Multi­Agent (MA) based VM allocation scheme to minimize
energy usage in a cloud system. Authors in [120] presented a Vickery auction based
framework for Data­as­a­Service (DaaS) in cloud computing. Zhou et al. [121] designed the
job scheduling problem in networked manufacturing as an n­person non­cooperative game.
HereNash Equilibrium point is achievedwith the help of GAwhile optimizing themakespan.
Khan and Ahmad [122] compare and analyze non­ cooperative, semi­cooperative, and
cooperative game based resource allocation in grid computing. Das et al. [123] proposed
auction theory based solution approach for resource allocation problem in mobile cloud

22

computing. He et al. [124] proposed a game­theoretic approach to provide service to the
maximum user with minimum overall system cost in an edge computing environment.

2.3.7 Outcome of the Survey

The observations made from the literature study are listed below.

• VM migration, DVFS technique, and other techniques like VM consolidation,
nature­inspired approach, and greedy approach have been well studied separately
by the researchers for saving energy. The diversified strategies and need of the
energy­efficient system allows one to explore different methods to achieve the desired
goal.

• Further, a considerable amount of work has been done considering the benefits of the
LA approach. Only a few of them deal with energy­aware scheduling of independent
real­time tasks in the heterogeneous cloud environment. In this context, an LA concept
is employed to design a scheduling framework for real­time tasks in the heterogeneous
cloud environment. Authors in [87] also presented a task scheduling framework;
however, the main distinction between their work and the proposed approach is
two­fold. First, the absence of the virtualization concept in their work, whereas VM
is the basic computation unit in the proposed work. Second, the proposed work takes
the task’s deadline into account while scheduling, which was not considered in earlier
work.

• The works, as mentioned earlier, either focus on maximizing reliability with
cost (or energy consumption) constraint or make a trade­off between these two
without considering fault­tolerance. Compared with the existing research mentioned
above, this work focuses on optimizing the bi­objective function considering
energy consumption and reliability, and the fault­tolerance approach. The main
distinction between existing researches and the proposed work is two­fold. First,
the Primary­Backup (PB) model with overlapping technique is applied, and cloud
virtualization is exploited to tolerate VM failure. Second, if the primary copy’s
execution is successful, resources reserved for a corresponding backup copy are
reclaimed (deallocation process).

• Most of the research work using game theory takes time, QoS, or monetary profit
as the goal without considering other requirements of cloud environment like energy
consumption, reliability, etc. Unlike the above research, this work proposes a
non­cooperative game model for the bi­objective task scheduling problem, including
the minimization of energy consumption while satisfying reliability constraint.

Chapter 2 Literature Survey

2.4 Summary

This Chapter reviewed the real­time task scheduling algorithm and the proposed cloud
system model. The review is organized based on methods and parameters based measures
used for task scheduling. Further, a list is presented to show the study’s outcome that
point out the issues in existing scheduling approaches and how it is addressed in this thesis.
In the rest of this thesis, a discussion of the proposed scheduling algorithms designed to
address the real­time task scheduling problem in the cloud system is presented. The next
Chapter presents a VM scoring based scheduling algorithm to reduce energy consumption
and execution cost simultaneously.

24

Chapter 3

VM Scoring based Scheduling Algorithm

Abstract:­ The development of large scale data centers containing thousands of computing
resources consumes an enormous amount of energy, which contributes to the huge cost.
Further, the development of computing services and applications demands improved energy
consumption and execution cost. In this regard, this Chapter proposes VM scoring based
Energy and Cost Aware (ECA) real­time task scheduling algorithm based on the TOPSIS
analysis method to minimize the energy consumption and execution cost simultaneously
while ensuring deadline constraint.

3.1 Introduction

The cost incurred in the cloud system can be monetary (e.g., execution cost, communication
cost, storage cost, etc.) and temporal cost (e.g., earliest finish time, data transfer time,
execution time, etc.). The estimated execution cost realizes the cost of processing a task
at the VM and can be measured before scheduling. Besides, it assists the algorithm with
decision making for scheduling real­time tasks. Execution cost is an essential contributor to
operational cost, which can be reduced through cost optimization scheduling methods. The
computing environment consisting of VMs is decided based on the task’s size and other QoS
constraints like a budget, deadline, energy consumption, etc. Each computing environment
has a different specification, which ultimately affects the total cost. Moreover, the energy
conservation problem is receiving increasing attention due to environmental and financial
factors. The rapid development of the computing services and applications demands not
only the optimization of cost through scheduling but also other constraints like energy
consumption, makespan, etc. [71]. Hence the development of a multi­objective scheduling
problem. There are different Multi­Objective Decision Making (MODM) methods to solve
the above mentioned multi­objective scheduling problem. In this context, this work focuses
on developing a scheduling algorithm that minimizes the bi­objective cost function defined
by energy consumption and execution cost. Further, VM selection with the earliest finish
time reduces the total execution time, i.e., makespan.

25

Chapter 3 VM Scoring based Scheduling Algorithm

3.1.1 Scheduling Framework

The VM scoring based real­time task scheduling framework is shown in Figure 3.1.
The scheduling framework consists of two components, namely Schedulability Analyzer,
and Resource Manager, to accomplish the work. The Resource Manager contains two
sub­components Energy Calculator and Cost Calculator. The working of each component

Scheduler

Schedulability Analyzer

Resource Manager

Energy

Calculator

Cost

Calculator

tk1

tk2

tkn

 User Task

Task

Queue

.

.

.
vm1 vm2 vmm

. . .

Cloud Environment

Task

Figure 3.1: VM Scoring based Real­time Task Scheduling Framework

is explained below.
The primary responsibility of Schedulability Analyzer is to check whether an incoming

task can be finished before its deadline or not. Additionally, it informs theResourceManager
if a task’s deadline constraint is difficult to achieve so that new VMs can be added.

ResourceManager is used to generate ⟨task, V M⟩ pair based onAlgorithm 3.2. Besides,
it keeps track of provisioned cloud resources and deals with scalability issues. An Energy
Calculator is used to compute the energy consumed, and a Cost Calculator generates the
execution cost while executing a task on a VM. Both the calculated values are used to select
an appropriate VM for a task.

3.2 Energy and Cost Aware (ECA) Scheduling Algorithm

The flowchart in Figure 3.2 shows the working of the ECA scheduling algorithm. For each
task, a score value considering energy consumption and execution cost is computed for all
VMs in V . Then the VM list is sorted and stored in sort_vm_score. Then y% of VM is
chosen. A VM with the earliest finish time and satisfying deadline constraint is selected to
execute a task. If none of the VM satisfies the task’s deadline constraint, then another y% of
VM is chosen from the sorted list. This process continues until the sorted list is not empty.
If a task can’t be executed with the existing VMs, then a new VM is added to the cloud
environment. The steps for the VM selection process in ECA are discussed below.

Step 1 : In a m × 2 decision matrix D_vm, first column indicates energy consumption and
second column indicates execution cost of a VM while executing a task. Let,
d_vm(i, j) represents an element of D_vm matrix, where i = {1, 2, ...,m} and

26

Chapter 3 VM Scoring based Scheduling Algorithm

Task Set T
VM set V

vm_flag = False

Choose task tki

Compute vm_score of
VMs in V, Sort and store in

sort_vm_score

sort_vm_score ¹ Null

Select y % of VM

Obtain VM with earliest
finish time (say, vmj),
Set vm_flag = True

Add new VMs

Assign tki to vmj

Start

Y

Choose vmj

ft i
j
<= tk

i

dl

?

Y

N

N

T ¹ Null

Y

End
N

Figure 3.2: Flowchart of ECA Scheduling Algorithm

j = {1, 2}. An entry d_vm(1, 1) in D_vm indicate the energy consumption of vm1

whereas d_vm(1, 2) indicate the execution cost in vm1.

Step 2 : As the measuring unit of energy consumption (Joule) and execution cost ($) is
different, a normalization process is employed to obtain a comparable scale. The
normalized decision matrixND_vm is am× 2matrix, where each element (nd_vm)
of matrix is computed as follows:

nd_vm(i, j) =
d_vm(i, j)
n∑

i=1

d_vm(i, j)
× wtj ∀i, j, (3.1)

where wtj is the weight associated with energy consumption and execution cost.

Step 3 : AVMwith the best performance according to energy consumption and execution cost
is chosen as a positive ideal VM, vm+

id. Similarly, a VM with worst performance is

27

Chapter 3 VM Scoring based Scheduling Algorithm

chosen as a negative ideal VM, vm−
id. It is formulated as:

vm+
id = {min(nd_vm(i, 1)),min(nd_vm(i, 2))} = {en+, co+}, (3.2)

vm−
id = {max(nd_vm(i, 1)),max(nd_vm(i, 2))} = {en−, co−}. (3.3)

Step 4 : The Euclidean distance between the potential VM and ideal VMs (vm+
id, vm

−
id) is

computed and its calculation is shown in Equation 3.4 and Equation 3.6 respectively.

β+
vm = [(nd_vm(i, 1)− en+)2 + (nd_vm(i, 2)− co+)2]1/2 (3.4)

β−
vm = [(nd_vm(i, 1)− en−)2 + (nd_vm(i, 2)− co−)2]1/2 (3.5)

Step 5 : The overall score of a VM is computed as:

vmscore
i =

β+
vm

β+
vm + β−

vm

. (3.6)

Algorithm 3.1 : Sched_tsk (ftji , tkdli)
Input: finish time ftji , task deadline tkdli
Output: Decision on deadline miss

1: if ftji ≤ tkdli then
2: return True;
3: else
4: return False;
5: end if

Algorithm 3.2 shows the process of the ECA scheduling algorithm. The working of the
ECA algorithm is discussed below. First, the score of a VM to execute a task is calculated.
Then VMs are sorted using the scoring value (lines 3 ­ 6). The top y% of VMs are selected
and checked if the deadline constraint is met or not with the help of Algorithm 3.1. If the
condition is true, the VM with the earliest finish time is selected; otherwise, the next y% is
selected. This process continues until the sorted VM list is Null (lines 7 ­ 23). If tki can
not be allocated, that means the available VMs cannot satisfy task requirements, so add new
VMs (lines 24 ­ 26). If tki can be allocated, then the VM with the earliest finish time (i.e.,
v(tki)) is selected to execute the task. The matched pair ⟨tki, v(tki)⟩ is stored in SCH. Then,
tki is scheduled and executed at v(tki) (lines 28 ­ 32).

Theorem 3.1. The time complexity of the ECA algorithm is O(nm+nlogn), where n is the
number of tasks, andm is the number of VMs.

Proof. The time complexity to compute a VM’s score for a task isO(m). Hence for n task it
is O(nm). Sorting of VM based on its score takes O(mlogm) time. The time complexity to
find an appropriate VM (i.e., VMwith earliest finish time) isO(nm). For other lines, the time
complexity is O(1). So, the time complexity of ECA algorithm is O(nm) + O(mlogm) +
O(nm) = O(nm+mlogm).

28

Chapter 3 VM Scoring based Scheduling Algorithm

Algorithm 3.2 : Energy and Cost Aware (ECA) Algorithm
Input: Task set T , VM set V
Output: Scheduled pair SCH

1: vm_flag ←− False, vm_alloc←− Null, SCH ←− Null;
2: for each task tki in T do
3: for each VM vmj in V do
4: Compute score of vmj by Equation 3.6 ;
5: end for
6: sort_vm_score ←− sort(vm_score); // vm_score is matrix containing score of a

VM
7: while sort_vm_score ̸= Null do
8: eft←−∞;
9: vm_sel←− top y% of VM in sort_vm_score ;
10: for each vmj in vm_sel do
11: Compute ftji ;
12: if Sched_tsk (ftji , tkdli) == True then
13: vm_flag ←− True;
14: if ftji < eft then
15: eft←− ftji ;
16: vm_alloc←− vmj;
17: end if
18: end if
19: end for
20: if vm_flag == False then
21: vm_sel←− next top y% of VM in sort_vm_score ;
22: end if
23: end while
24: if vm_flag == False then
25: Add new VMs;
26: goto Step 3;
27: end if
28: if vm_flag == True then
29: v(tki)←− vm_alloc;
30: end if
31: SCH ←−< tki, v(tki) >;
32: Assign task tki to v(tki);
33: end for

Lemma 3.1. The execution cost for executing n tasks in the given cloud system having the
m number of VMs is a function of the execution time of tasks on VMs is

m∑
j=1

n∑
i=1

ecji =
m∑
j=1

vmec
j

n∑
i=1

etji ×X
j
i . (3.7)

Proof. Let etjl is the execution time of tkl on vmj , Φl is the time gap between finish time of
tkl and start time of task tkl+1 on vmj . Let, tkl is the task executed by vmj just before the

29

Chapter 3 VM Scoring based Scheduling Algorithm

arrival of task tkl+1 on vmj . Then the number of times vmj is used (Nj) during scheduling
process can be represented as: (etj1 + Φ1, et

j
2 + Φ2, ...). So,

Nj =
∑

(etji + Φj)×X j
i . (3.8)

Assuming Φj has negligible value, Equation 3.8 can be rewritten as:

Nj =
∑

(etji)×X
j
i . (3.9)

So, the total execution cost of tasks on vmj can be computed as:

ecji = vmec
j ×

∑
(etji)×X

j
i . (3.10)

This is true for all the VMs in the cloud system. So, the total execution cost of n tasks onm
VMs can be estimated as:

m∑
j=1

n∑
i=1

ecji =
m∑
j=1

vmec
j

n∑
i=1

etji ×X
j
i . (3.11)

From the Equation 3.11 it can be inferred that the execution cost of a VM mostly depends
on how much time it is being used, i.e., the execution time of tasks on it.

3.3 Performance Evaluation

The simulation approach is preferred as it facilitates the cloud environment for different
scenarios [67]. To show the effect of the ECA algorithm on system performance, it is
compared with EneRgy­Efficient reaCTive (ERECT) [54], and Energy and Deadline Aware
with Non­Migration Scheduling (EDA­NMS) [38] algorithms. The two algorithms used for
comparisons are summarized below.

• ERECT: A task is assigned to an energy efficient VM and operate in optimal frequency
for energy conservation. But, execution cost is not considered for scheduling a task.

• EDA­NMS: This algorithm is designed to reduce energy consumption while
improving tasks’ completion time without VM migration. Here, a task is selected
based on its criticality (i.e., cost of failure). A VM with sufficient capacity is then
selected to complete the task before its deadline, and for energy conservation and
operation cost minimization. They have considered different workload types but
presented limited experimental work (e.g., performance analysis based on task arrival
rate, deadline variation, etc. are missing).

The metrics used to evaluate the performance of algorithms are Success Ratio (SR), total
energy consumption (δ), and makespan (τ).

30

Chapter 3 VM Scoring based Scheduling Algorithm

Table 3.1: Parameters for Simulation Studies

Parameter Value (Fixed) ­(Varied)
Task Count 1000 − (200, 400, 600, 800, 1000)

VM Count 80 − (40, 60, 80, 100)

tsvar 1500 − (500, 1000, 1500, 2000, 2500)

spvar 400 − (200, 400, 600, 800, 1000)

task arrival rate (λ) 0.05 ­ (0.01, 0.03, 0.05, 0.08, 0.1)

baseD 4 ­ (2, 4, 6, 8)

3.3.1 Simulation Setting

The detailed settings and parameters for simulation setup are given as follows.

• Task deadline is set as tkdli = tkari + baseD where baseD is in Uniform distribution
U(4, 8).

• Let task size represents the task heterogeneity. It is uniformly distributed in the range
[tsavg − tsvar] and [tsavg + tsvar] where tsavg is average task size and tsvar is variable
scope taking tsavg = 5000MI as center respectively.

• Let VM speed indicates VM heterogeneity. It is uniformly distributed in the range
[spavg − spvar] and [spavg + spvar] where spavg is average VM speed and spvar is
variable scope taking spavg = 1500 MIPS as center respectively. MIPS and MI are
assumed based on the study found in [125] and [40] respectively.

• The execution cost vmec
j of VM vmj is generated using Uniform distribution

U(0.14, 4.5)$ per time unit as referred in [43].

The values of parameters are listed in Table 3.1. The development of IT infrastructure and
applications make task and VM heterogeneity obvious in the cloud system. In this context,
a set of experiments was conducted to study the effect of task and VM heterogeneity on a
cloud system’s performance.

3.3.2 Impact of Task Heterogeneity on System Performance

Figure 3.3 shows the effect of task heterogeneity on system performance. The task set with
task size near the minimum limit results in short task execution time. Whereas if the task set
contains tasks with task size near the maximum limit, there is long task execution time. The
short execution time and long execution time due to heterogeneous task set contribute to the
makespan. So the makespan, as shown in Figure 3.3a is neither increasing nor decreasing
as it depends on the task heterogeneity. Further, the short execution time allows many tasks
to execute before the deadline, but the long execution time increases the chance of deadline
miss for tasks. Hence the task heterogeneity induces a stable Success Ratio with constant

31

Chapter 3 VM Scoring based Scheduling Algorithm

VM count, as given in Figure 3.3b. The execution of a large number of tasks due to short
execution time contributes to total energy consumption. Besides, the long task execution
time increases VM’s active time and, hence, the total energy consumption. So the simulation
outcome is as shown in Figure 3.3c for total energy consumption. However, the simulation
results confirm that VM selection, with the help of scoring function, helps ECA perform
better than ERECT and EDA­NMS.

500 1000 1500 2000 2500
Average Task Size

0

1000

2000

3000

4000

M
ak

es
p

an
 (

S
ec

o
n

d
)

ECA
ERECT
EDA-NMS

(a) Makespan

500 1000 1500 2000 2500
Average Task Size

0

20

40

60

80

100

S
u

cc
es

s
R

at
io

 (
%

)

ECA
ERECT
EDA-NMS

(b) Success Ratio

500 1000 1500 2000 2500
Average Task Size

0

2

4

6

T
o

ta
l

E
n

er
g

y
 C

o
n

su
m

p
ti

o
n

 (
Jo

u
le

)

106

ECA
ERECT
EDA-NMS

(c) Total Energy Consumption

Figure 3.3: Impact of Task Heterogeneity on System Performance

200 400 600 800 1000
Average VM Speed

0

1000

2000

3000

4000

M
ak

es
p

an
 (

S
ec

o
n

d
)

ECA
ERECT
EDA-NMS

(a) Makespan

200 400 600 800 1000
Average VM Speed

0

20

40

60

80

100

S
u

cc
es

s
R

at
io

 (
%

)

ECA
ERECT
EDA-NMS

(b) Success Ratio

200 400 600 800 1000
Average VM Speed

0

2

4

6

T
o

ta
l

E
n

er
g

y
 C

o
n

su
m

p
ti

o
n

 (
Jo

u
le

)

106

ECA
ERECT
EDA-NMS

(c) Total Energy Consumption

Figure 3.4: Impact of VM Heterogeneity on System Performance

3.3.3 Impact of VM Heterogeneity on System Performance

The simulation results obtained by varying VM speed is depicted in Figure 3.4. A VM
set with high­speed VMs produces short task execution time, and if the VM set contains
low­speed VMs, then there is long task execution time. The short execution time causes
reduced makespan, but the long task execution time results in higher makespan. Hence
the simulation outcome in Figure 3.4a for makespan due to heterogeneous VM set has
variations, but nature is neither increasing nor decreasing for parametric value. The Success
Ratio increases for short execution time and decreases for long execution time. This
is because the short execution time allows a large number of task execution before the

32

Chapter 3 VM Scoring based Scheduling Algorithm

deadline, but the long execution time cause deadline misses for tasks. The stable Success
Ratio, as shown in Figure 3.4b, confirms the effect of VM heterogeneity on it. The
presence of high­speed VM consumes more energy, whereas low­speed VM has less energy
consumption. Therefore small variation in total energy consumption, as shown in Figure
3.4c, is due to the heterogeneous VM set. Moreover, the outcome shows that the VM scoring
method helps ECA perform better than ERECT and EDA­NMS.

3.3.4 Impact of VM Count on System Performance

Figure 3.5 shows the effect of VM count on system performance. An addition in VM count
reduces the total execution time as many tasks get executed in different VMs simultaneously.
Hence the simulation result shown in Figure 3.5a for makespan decreases with an increase
in VM count. Further, the large VM set allows many tasks to complete execution before the
deadline causing a rise in Success Ratio as given in Figure 3.5b. The successful execution
of many tasks due to an increase in VM count results in a higher active time of VM. Further,
idle VM’s presence due to a large VM set contributes to the idle energy consumption. Hence
the total energy consumption, as shown in Figure 3.5c, is increasing. The simulation results
show that the use of scoring value for VM selection for a task helps ECA perform better than
others.

40 60 80 100
VM Count

0

1000

2000

3000

4000

M
ak

es
p

an
 (

S
ec

o
n

d
)

ECA
ERECT
EDA-NMS

(a) Makespan

40 60 80 100
VM Count

0

20

40

60

80

100

S
u

cc
es

s
R

at
io

 (
%

)

ECA
ERECT
EDA-NMS

(b) Success Ratio

40 60 80 100
VM Count

0

2

4

6

8

T
o

ta
l

E
n

er
g

y
 C

o
n

su
m

p
ti

o
n

 (
Jo

u
le

)

106

ECA
ERECT
EDA-NMS

(c) Total Energy Consumption

Figure 3.5: Impact of VM Count on System Performance

3.3.5 Impact of Task Count on System Performance

Figure 3.6 shows the effect of task count on system performance. An increase in task count
with fixed VM count increases the total execution time, which increases the makespan as
given in Figure 3.6a. As the task count increases, there are chances that some tasks will not
be executed before the deadline. Hence the simulation outcome as given in Figure 3.6b for
Success Ratio decreases with an increase in task count. Further, the addition in task count
with constant VM count increases VM’s active time, which in turn contributes to higher

33

Chapter 3 VM Scoring based Scheduling Algorithm

total energy consumption as given in Figure 3.6c. Figure 3.6, it can be observed that the VM
scoring function helps ECA perform better than ERECT and EDA­NMS.

200 400 600 800 1000
Task Count

0

1000

2000

3000

4000

M
ak

es
p

an
 (

S
ec

o
n

d
)

ECA
ERECT
EDA-NMS

(a) Makespan

200 400 600 800 1000
Task Count

0

20

40

60

80

100

S
u

cc
es

s
R

at
io

 (
%

)

ECA
ERECT
EDA-NMS

(b) Success Ratio

200 400 600 800 1000
Task Count

0

2

4

6

T
o

ta
l

E
n

er
g

y
 C

o
n

su
m

p
ti

o
n

 (
Jo

u
le

)

106

ECA
ERECT
EDA-NMS

(c) Total Energy Consumption

Figure 3.6: Impact of Task Count on System Performance

3.3.6 Impact of Arrival Rate on System Performance

The impact of task arrival rate on system performance is shown in Figure 3.7. The increase in
task arrival rate causes a large number of tasks in a short time. Thus, fewer tasks complete
their execution, causing a decrease in makespan, as shown in Figure 3.7a. Moreover, the
large number of tasks in a short time interval causes fewer tasks to complete their execution
before the deadline, affecting the Success Ratio. Hence, there is a decrease in the Success
Ratio, as given in Figure 3.7b. Furthermore, the less number of task execution causes less
VM active time. Hence a decrease in total energy consumption, as shown in Figure 3.7c.
However, the VM selection, with the help of scoring value, helps ECA to perform better
compared with ERECT and EDA­NMS.

0.02 0.04 0.06 0.08 0.1
Arrival Rate

0

1000

2000

3000

4000

M
ak

es
p

an
 (

S
ec

o
n

d
)

ECA
ERECT
EDA-NMS

(a) Makespan

0.02 0.04 0.06 0.08 0.1
Arrival Rate

0

20

40

60

80

100

S
u

cc
es

s
R

at
io

 (
%

)

ECA
ERECT
EDA-NMS

(b) Success Ratio

0.02 0.04 0.06 0.08 0.1
Arrival Rate

0

2

4

6

8

T
o

ta
l

E
n

er
g

y
 C

o
n

su
m

p
ti

o
n

 (
Jo

u
le

)

106

ECA
ERECT
EDA-NMS

(c) Total Energy Consumption

Figure 3.7: Impact of Arrival Rate on System Performance

34

2 4 6 8
baseD

0

2000

4000

6000
M

ak
es

p
an

 (
S

ec
o

n
d

)

ECA
ERECT
EDA-NMS

(a) Makespan

2 4 6 8
baseD

0

20

40

60

80

100

S
u

cc
es

s
R

at
io

 (
%

)

ECA
ERECT
EDA-NMS

(b) Success Ratio

2 4 6 8
baseD

0

2

4

6

8

T
o

ta
l

E
n

er
g

y
 C

o
n

su
m

p
ti

o
n

 (
Jo

u
le

)

106

ECA
ERECT
EDA-NMS

(c) Total Energy Consumption

Figure 3.8: Impact of Deadline Variation on System Performance

3.3.7 Impact of Deadline Variation on System Performance

This subsection discusses the impact of deadline variation on system performance. Figure
3.8 shows the effect of baseD on system performance. As the baseD increases, a large
set of tasks is executed before the deadline, increasing the total execution time. Hence the
simulation outcome as shown in Figure 3.8a for makespan increases with an increase in
baseD. Further, a task gets more time to finish before its deadline due to a rise in baseD.
So, the Success Ratio increases as given in Figure 3.8b. Besides, VM’s active time increases
due to the execution of many tasks with an increase of baseD. So, there is an increase in
total energy consumption, as shown in Figure 3.8c. Moreover, the use of a scoring function
to select an appropriate ⟨task, V M⟩ pair, helps ECA perform better compared with ERECT
and EDA­NMS.

3.4 Summary

This Chapter discusses a VM scoring based scheduling approach to minimize energy
consumption and execution cost. It is based on the TOPSIS analysis method. Here, a VM
is assigned a score value for a task, and VM with the best score value is selected for that
task execution. ECA’s performance improvement over ERECT for the Success Ratio is
11.8%, for makespan is 8.3%, and for total energy consumption is 8.1%. Similarly, ECA
has an improvement of 12.5% in Success Ratio, 9.7% in makespan and 9.7% in total energy
consumption.

In the next Chapter, a Learning Automata (LA)­based scheduling algorithm is proposed
for real­time tasks to minimize energy consumption and execution cost.

Chapter 4

Learning Automata­based Scheduling
Algorithm

Abstract:­ A cloud data center consisting of thousands of computing resources consumes
a lot of energy. Usually, cloud users anticipate the completion of their tasks as early
as possible. A reinforcement­based method helps to find the best decision by gradually
learning the best action from the working environment. This Chapter discusses the
reinforcement­based learning method known as Learning Automata (LA) in detail, followed
by the proposed LA model and LA­based scheduling framework. The proposed Learning
Automata­based Scheduling (LAS) used to find the best ⟨ task, VM ⟩ pair that reduces energy
consumption and makespan simultaneously in a cloud system.

4.1 Introduction

Cloud computing is a revolutionary paradigm, which uses data centers to provide services
over the Internet. These data centers consume large amounts of energy, whereas a cloud
user demands their tasks to be completed as soon as possible. Makespan is defined as the
maximum completion time or as a finishing time of the latest task in the system. Usually, less
makespan denotes better efficiency of an algorithm. For real­time applications, the finishing
time should not exceed its temporal deadline requirements. The reason for the deadline miss
may be due to prolonged waiting time or insufficient resource allocation. It is necessary
to employ some means to manage multiple and conflicting objectives while minimizing the
overall deadline miss event. In this context, reinforcement learning based techniques like
Learning Automata (LA) is used to generate the best schedule, where the system gradually
learns to perform good actions in response to different environment status. LA’s primary
goal is to select the optimal action from a set of possible actions, similar to it, a real­time task
scheduling problem in the cloud corresponds to choose the best mapping of the task to VM
from a possible mapping set. Further, the reinforcement­based learning scheme with very
little historical information adds LA’s suitability for solving the real­time task scheduling
problem. The LA is best suitable to design real­time task scheduling algorithm due to the
following feature:

36

Chapter 4 Learning Automata­based Scheduling Algorithm

• A reinforcement­based learning scheme penalizes the wrong selection and rewards the
good selection. This learning process helps to select an appropriate VM for a real­time
task.

• The responses from the environment is modeled in the action probability matrix. This
history information is used to make the best decision possible at any instant of time.

• The automaton decides without performing any high time­consuming calculations,
making it suitable for the real­time system.

4.1.1 Learning Automata

Learning automata acts as an adaptive decision­making unit that learns to select the
best action from a set of allowed actions through repeated interaction with an uncertain
environment [80]­[88]. The environment generates a reinforcement signal for each action.
Based on the signal value, the probability distribution over the action set is updated. This
process continues until a stopping criterion (i.e., maximum iteration count or probability
value attained a threshold limit) is reached. The relationship between the environment and
learning automata is shown in Figure 4.1. LA can be classified either as a fixed structure or
variable structure. In Fixed structure LA (FLA), the number of actions is constant over time,
but in Variable structure LA (VLA), the number of actions available changes with time. As
in the cloud, the number of service requests changes over time; a VLA will be appropriate
to model the cloud system for tasks with a deadline.

Environment

Learning

Automata

a β

Figure 4.1: Relationship Between Learning Automata and its Environment

A VLA can be defined by quadruple ⟨P, α, β,L⟩, where α is the set of actions, β is
the set of inputs (or reinforcement signals), P is the set of action probabilities, and L is the
learning or reinforcement algorithm. The learning algorithm is a recurrence relation adopted
to revise the action probability vector. Let α = {α1, α2, ..., αr} and β = {β1, β2, ..., βr},
where r is the number of actions possible by an automaton. Let, αi(k1) ∈ α is the action
taken by automaton Ai and pi(k1) ∈ P is the probability value for action αi(k1) at iteration
k1. The learning algorithm uses reward (ϕ) and penalty (φ) constants to update the action
probabilities. The action probability value is updated using the Equation 4.1 and Equation

37

Chapter 4 Learning Automata­based Scheduling Algorithm

4.2.

pj(k1 + 1) =

pj(k1) + ϕ× (1− pj(k1)) j = i,

(1− ϕ)× pj(k1) ∀j, j ̸= i.
(4.1)

pj(k1 + 1) =

(1− φ)× pj(k1) j = i,

φ
r−1

+ (1− φ)× pj(k1) ∀j, j ̸= i.
(4.2)

Equation 4.1 is used to reward action αi(k1) if it is favorable to the environment and
reinforcement signal βi is set to 0. First part of Equation 4.1 says that increase the probability
of αi(k1) for next iteration if it is favorable whereas decrease the probability of other
actions using second part. Similarly Equation 4.2 is used to penalize action αi(k1) if it
is unfavorable to the environment and βi is set to 1. Equation 4.2 states that decrease the
probability of αi(k1) (first part) while increasing the probability of other actions (second
part) for next iteration. Based on the values of ϕ and φ learning algorithm can be classified
as follows: if ϕ = φ, then it is called linear reward penalty (LR−P) algorithm, if ϕ≫ φ it is
reward­ϵ­penalty (LRϵP), and if φ = 0, it is called reward­inaction (LR−I) algorithm.

4.2 Learning Automata­based Scheduling (LAS)
Framework

The scheduler’s primary purpose is to map a task set to a VM set from the VM pool, such
that energy consumption andmakespan isminimized. The scheduling framework is shown in
Figure 4.2. It consists of the LA Model and LA Table. LA Model is employed to generate the
best scheduling decision possible through the reinforcement learning process and is executed
for a fixed number of iteration. The outcome of each iteration is stored in the LA Table. In
each iteration, the scheduler selects a VM based on its goodness value. The scheduler uses
the outcome of the LAModel after the final iteration for actual execution on the cloud system.

Action Response

Scheduler

LA Model

LA Table

tk1

tk2

tkn

 User Task

Task

Queue

.

.

.

vm1 vm2 vmm

. . .

Cloud Environment

Task

Figure 4.2: LA­based Real­time Task Scheduling Framework

38

Chapter 4 Learning Automata­based Scheduling Algorithm

4.2.1 Learning Automata Model

The proposed VLA model is shown in Figure 4.3. It is assumed that each incoming task is
associated with an automaton. The VM pool realizes the random environment. The VLA is
represented by six­tuple ⟨tki, Ai, αi, pi, βi,L⟩, where tki indicates ith task, Ai is the learning
automaton associated with tki, αi is the action set of Ai, pi is the action probability vector
corresponding to αi, βi is the reinforcement signal from the environment for action αi and
L is the learning algorithm. The action set αi is represented by the probable set of VMs
assignment for a task. Hence, αi = {αj

i |1 ≤ j ≤ m} is the action set of Ai, where α1
i means

task tki is assigned to VM vm1, α2
i means tki is assigned to vm2 and so on. Similarly, action

probability vector pi = {pji |α
j
i ∈ αi}, where p1i is the probability value of action α1

i , p2i is the
probability of action α2

i and so on. At any instant, action with highest probability is chosen,
i.e, αi = {αj

i |p
j
i = max(pi)}. The reinforcement signal βi can have binary values 0 and

1. Let, ω(k1) represents value of the bi­objective minimization equation (Equation 4.5) at
iteration k1.

Learning

Algorithm (L)

. . .

a1 a2 an

b1 bnb2

Assignment (ζ)

A1
AnA2

LA Model Actions

Responses

tk1 tk2 tkn

. . .
 User Task

Cloud
 Environment

LA Table

Scheduler

vm1 vm2 vmm

. . .

Figure 4.3: Proposed VLA Model

The learning algorithm L is defined as follows: If ω(k1) ≤ ω(k1 − 1), then check
whether action αi taken by automatonAi meet the deadline constraint or not. If αi completes
within deadline, set βi = 0, otherwise set βi = 1. This process avoids the possibility of
misinterpretation of favorable output response from the environment as the favorable input

39

Chapter 4 Learning Automata­based Scheduling Algorithm

to a particular automaton. The action probability update equation defined in Equation 4.1
and Equation 4.2 are rewritten for the proposed VLA model as:

pji (k1 + 1) =

p
j
i (k1) + ϕ× (1− pji (k1)) j = i,

(1− ϕ)× pji (k1) ∀j, j ̸= i.
(4.3)

pji (k1 + 1) =

(1− φ)× pji (k1) j = i,

φ
r−1

+ (1− φ)× pji (k1) ∀j, j ̸= i.
(4.4)

If βi = 0, action taken by Ai is rewarded using Equation 4.3 and if βi = 1, action of Ai

is penalized using Equation 4.4. Let pji indicates the goodness value of a VM, and a higher
number for it is preferable.

4.3 Learning Automata­based Scheduling (LAS)
Algorithm

Figure 4.4 shows the overall working of the LAS scheduling algorithm. The algorithm
generates ETC and P matrix and then selects the action with the highest probability and
calculates cost metric value. If the cost metric value of iteration k1 is less than iteration
k1 − 1, check whether the deadline constraint is met or not. If the condition is true, set
βi = 0, else set βi = 1. If βi = 0 action taken by Ai is rewarded, whereas the action of
Ai is penalized. Accordingly, the action probability value is updated. The above process
continues until the maximum iteration count is reached. After that, the task assignment is
done based on action with the highest probability.

The steps of the proposed LAS algorithm are discussed below.

• Initialization: The probability value for every action αj
i ∈ αi for automaton Ai is

set to 1
m
. Let, assignment vector ζ with size 1 × n, represents the action chosen by

each automaton at a particular iteration. The initial value of ω is set to INF , i.e.,
ω(0) = INF .

Algorithm 4.1 : Mat_Gen (T ,V , k1)
Input: Task set T , VM set V , iteration number k1
Output: Matrices ETC, P

1: for each task tki in T do
2: for each VM vmj in V do
3: Calculate etji using Equation 2.1;
4: Set pji = 1

m
;

5: end for
6: end for

40

Chapter 4 Learning Automata­based Scheduling Algorithm

Start

Task set T

VM set V

Iteration count , k1=1

Generate ETC and P

matrix

k1 k_max

k1 > 1 Choose random

action

Choose action with

highest probability in P

N

Y

Compute cost metric

value (w (k1))

(w (k1))

<= (w (k1-1))

?

d

j

i
== 1

Y

N No

Operation

?

Set = 0

N

Y

Set = 1

T Null

Choose tki

== 0
?

Reward action of Ai

Y

N
== 1
?

Penalize action of Ai

Y

N No

Operation

Update action

Probability

N

Y

Assign task to VM

based on action

probability

End

k1=k1+1

Y

N
¹

¹

β i

β i

β i β i

Figure 4.4: Flowchart for LAS

• Matrix Generation: Each row of ETC matrix imitates the action set of automaton
Ai, i = {1, 2, ..., n}. For instance, row 1 shows the set of actions (i.e., αj

1, j =

{1, 2, ...,m}) possible for automaton A1. Similarly, let pji is contained within n ×m
action probability matrix, P . In the first iteration, ζ is formed by randomly selecting
an element from each row of the ETC matrix. In subsequent iterations, an element
having the highest value in each row of P is marked, and ζ is constructed by selecting
the corresponding action in ETC. Pseudo­code to generate ETC and P matrices is
shown in Algorithm 4.1.

• Cost Metric (ω) Calculation: Let, τmax be the maximum allowable makespan,
and δmax be the maximum possible energy consumption of the system. Then, the

41

Chapter 4 Learning Automata­based Scheduling Algorithm

Algorithm 4.2 : Cal_Cost_Metric (ζ)
Input: Assignment vector (ζ)
Output: Cost metric (ω)

1: for each action αj
i ∈ ζ do

2: Compute start time stji and finish time ftji by Equation 2.2 and Equation 2.3
respectively;

3: if Sched_tsk (ftji , tkdli) == True then
4: Set dji = 1;
5: Calculate δ and τ using Equation 2.10 and Equation 2.7 respectively.
6: Obtain ω using Equation 4.5;
7: else
8: Set dji = 0;
9: end if
10: end for

bi­objective minimization problem can be represented as:

ω =
δ

δmax

× x+ τ

τmax

× y, (4.5)

where x, and y are weight associated with δ and τ respectively. Since the elements of
the proposed bi­objective minimization problem have distinct measurement units, the
normalization process is employed to make them comparable ones. The algorithm for

Algorithm 4.3 : Sched_tsk(ftji , tkdli)
Input: finish time ftji , task deadline tkdli
Output: Decision on deadline miss

1: if ftji ≤ tkdli then
2: return True;
3: else
4: return False;
5: end if

cost metric calculation is shown in Algorithm 4.2. The working of Algorithm 4.2 is as
follows: first, the start time and finish time of each action in ζ is computed in line 2.
If finish time of task tki on vmj met its deadline (Algorithm 4.3) then set dji = 1 and
estimate cost metric ω (lines 3 ­ 6). If condition doesn’t hold then set dji = 0. This
also indicates that there is no VM vmj , which can execute tki within its deadline, so
add a new VM.

• Decision based on Action Probabilities: Due to the heterogeneity of tasks and VM,
the action performed by an automaton can be rewarded sometimes, while other times,
the very same action will be penalized. A decision on the action is made based on
action probability value usingAlgorithm 4.4. This process continues until the stopping
criterion is not satisfied. Let θmn and θmx indicates minimum and maximum value

42

Chapter 4 Learning Automata­based Scheduling Algorithm

Algorithm 4.4 : Action_Decision (T ,V , k1)
Input: T ,V , k1, θmn, θmx

Output: Decision on action
1: for each task tki in T do
2: for each VM vmj in V do
3: if pji (k1) ≤ θmn then
4: Deactivate αj

i ;
5: end if
6: if pji (k1) == θmx then
7: Assign tki to vmj;
8: end if
9: end for
10: end for

for action probability pji . This algorithm checks if pji (k1) of action α
j
i is less than

θmn or not. If condition is true then deactivate αj
i for automaton Ai (lines 3 ­ 5). If

pji (k1) = θmx, all the actions except αj
i are deactivated and tki is assigned to vmj .

• Calculation of Constants: The weight constants x and y are set to 0.5, as equal
importance is given to both the metrics. The reward (ϕ) and penalty (φ) parameters
are given the same value.

• Stopping Criteria: The learning process stops when the number of iteration k1 exceeds
the maximum iteration count kmax or pi of all automaton reaches its threshold value,
whichever is earlier.

The overall working of the LAS is shown in Algorithm 4.5. The working of LAS is explained
below. First, the ETC and probability matrix P is generated for a given set of VMs and
tasks. Then, for each iteration, the assignment vector ζ is generated (lines 4 ­ 8). For each
assignment, the cost metric is calculated using Algorithm 4.2. If the cost metric at iteration
k1 is better than the value at iteration k1−1, then check whether task execution is completed
within deadline constraint or not. The reinforcement signal for task’s meeting the deadline
constraint is set to “0”, i.e., βi = 0, whereas for other tasks βi = 1 (lines 12 ­ 16). An
automaton is either rewarded or penalized based on the reinforcement signal (lines 20 ­ 24).
This process continues until the stopping criterion is not satisfied.

Theorem 4.1. The time complexity of the LAS algorithm is O(nm).

Proof. The time complexity of generating ETC and P matrix is O(nm) (Algorithm 4.1).
Generation of assignment vector is O(nm). In Algorithm 4.1, the time complexity for
calculation of task’s start time and finish time is O(nm). Checking if a task meet it’s
deadline or not takes O(nm) time. In Algorithm 4.5, the complexity of reward and penalty
calculation isO(n) and for setting reinforcement signal value the time complexity isO(nm).
In Algorithm 4.4 the time complexity of making decision on action is O(nm). For other
lines, the time complexity is O(1). Hence, the time complexity of LAS algorithm is
O(nm) + kmax(O(nm) +O(nm) +O(nm) +O(n) +O(nm) +O(nm)) = O(nm).

43

Chapter 4 Learning Automata­based Scheduling Algorithm

Algorithm 4.5 : Learning Automata­based Scheduling (LAS) Algorithm
Input: T ,V , k1, kmax

Output: Scheduled pairs ⟨tki, vmj⟩
1: Set k1 = 1;
2: Generate ETC matrix and probability matrix P using Mat_Gen (T ,V , k1);
3: while k1 ≤ kmax do
4: if k1 == 1 then
5: Construct ζ by random selection;
6: else
7: Construct ζ by choosing actions with highest probabilities in P;
8: end if
9: Calculate cost metric using Cal_Cost_Metric (ζ);
10: if ω(k1) ≤ ω(k1 − 1) then
11: for each (tki, vmj) pair in the system do
12: if dji == 1 then
13: Set βi = 0;
14: else
15: Set βi = 1;
16: end if
17: end for
18: end if
19: for each task tki in the system do
20: if βi == 0 then
21: Reward the action taken by Ai using Equation 4.3;
22: else if βi == 1 then
23: Penalize the action chosen by Ai using Equation 4.4;
24: end if
25: end for
26: Make decision on action taken by Ai using Action_Decision (T ,V , k1);
27: Increment k1;
28: end while

4.3.1 Example

The proposed scheduling scheme is explained with an example as shown in Figure 4.5. Let,
there are 5 tasks (n = 5) and 3 numbers of VMs (m = 3) in the cloud system. An automaton
Ai, i = {1, 2, 3, 4, 5} can choose three actions αj

i , j = {1, 2, 3}. Let, kmax = 3.

• Iteration 1: Initial configuration of matrices P and ζ are shown in Figure 4.5(a). Let,
the action set α = {α2

1, α
3
2, α

1
3, α

2
4, α

2
5}. Let, actions α2

1, α3
2, and α2

4 meet the deadline
constraint of respective tasks. But, actions α1

3 and α2
5 fail to do so. Let, the calculated

cost metric value, ω(1) = 20. As ω(1) ≤ ω(0), the reinforcement signal for each
action is {β1 = 0, β2 = 0, β3 = 1, β4 = 0, β5 = 1}. The actions α2

1, α3
2, and α2

4 are

44

Chapter 4 Learning Automata­based Scheduling Algorithm

Task
\VM

vm1 vm2 vm3

tk1 0.33 0.33 0.33

tk2 0.33 0.33 0.33

tk3 0.33 0.33 0.33

tk4 0.33 0.33 0.33

tk5 0.33 0.33 0.33

1 2 3 4 5

vm2 vm3 vm1 vm2 vm2
P = z =

(a) Initial Configuration

Task
\VM

vm1 vm2 vm3

tk1 0.30 0.40 0.30

tk2 0.30 0.30 0.40

tk3 0.30 0.35 0.35

tk4 0.30 0.40 0.30

tk5 0.35 0.30 0.35

1 2 3 4 5

vm2 vm3 vm2 vm2 vm1
P =

z =

(b) Matrices after Iteration 1

Task
\VM

vm1 vm2 vm3

tk1 0.27 0.46 0.27

tk2 0.27 0.27 0.46

tk3 0.27 0.415 0.315

tk4 0.27 0.46 0.27

tk5 0.315 0.32 0.365

1 2 3 4 5

vm2 vm3 vm2 vm2 vm3
P = z =

(c) Matrices after Iteration 2

Task
\VM

vm1 vm2 vm3

tk1 0.243 0.514 0.243

tk2 0.243 0.243 0.514

tk3 0.243 0.4735 0.2835

tk4 0.243 0.514 0.243

tk5 0.2835 0.288 0.4285

1 2 3 4 5

vm2 vm3 vm2 vm2 vm3
P = z =

(d) Final Scheduling Decision

(after Iteration 3)

Figure 4.5: An Example for LAS

rewarded. The action probability of A1 with ϕ = φ = 0.1, is calculated as follows:
p11(2) = (1− ϕ)× p11(1) = 0.9× 0.33 = 0.297 ≃ 0.3,

p21(2) = 0.33 + .1× 0.67 = 0.397 ≃ 0.4,

p31(2) = (1− ϕ)× p31(1) = 0.3.

(4.6)

Similarly, probability value forA2 andA4 are computed. The action probability ofA3

is updated as follows:
p13(2) = (1− φ)× p13(1) = 0.9× 0.33 = 0.297 ≃ 0.3,

p23(2) =
0.1
2
+ .9× p23(1) = 0.347 ≃ 0.35,

p33(2) = 0.35.

(4.7)

Likewise, the probability of A5 is computed. The updated values are shown in Figure

45

Chapter 4 Learning Automata­based Scheduling Algorithm

4.5(b).

• Iteration 2: Let, the action set α = {α2
1, α

3
2, α

2
3, α

2
4, α

1
5}. Let, actions α2

1, α3
2, α2

3 and α2
4

meet the deadline constraint of respective tasks. But, action α1
5 fail to do so. Let, the

calculated cost metric value, ω(2) = 18. As ω(2) ≤ ω(1), the reinforcement signal
for each action is {β1 = 0, β2 = 0, β3 = 0, β4 = 0, β5 = 1}. The action with the
reward is updated as follows:

p11(3) = (1− ϕ)× p11(2) = 0.27,

p21(3) = 0.4 + .1× 0.6 = 0.46,

p31(3) = 0.27.

(4.8)

Similarly, probability value for A2, A3 and A4 are computed. The action probability
of A3 is updated as follows:

p15(3) = 0.9× 0.35 = 0.315,

p25(3) =
0.1
2
+ .9× p23(2) = 0.32,

p35(3) =
0.1
2
+ .9× 0.35 = 0.365.

(4.9)

The updated values are shown in Figure 4.5(c).

• Iteration 3: Let, actions α = {α2
1, α

3
2, α

2
3, α

2
4, α

3
5} meet both cost metric and deadline

constraint. The reinforcement signal for each action is “0”, i.e., {β1 = 0, β2 = 0, β3 =

0, β4 = 0, β5 = 0}. The updated P matrix is shown in Figure 4.5(d). Hence, the final
scheduling decision is ζ = {α2

1, α
3
2, α

2
3, α

2
4, α

3
5}.

Lemma 4.1. To preserve the law of probability measure, the sum of probabilities of actions
possible by an automaton Ai is one. Mathematically, it is expressed as:

m∑
j=1

pji = 1, (4.10)

wherem is the number of actions possible by Ai.

Proof. Let, A1 is the automaton for task tk1 and can choose five actions α1
1, α

2
1, α

3
1, α

4
1, α

5
1

with probabilities p11, p21, p31, p41, p51 respectively. α1
1 means task tk1 is assigned to VM vm1,

α2
1 means task tk1 is assigned to VM vm2 and so on. p11 is the probability of choosing action
α1
1, p21 is the probability of choosing action α2

1 and so on. Let, task tk1 is assigned to VM
vm1. If the action is rewarded, then the action probability is updated according to Equations
4.11, and 4.12.

p11(k1 + 1) = p11(k1) + ϕ× (1− p11(k1)) (4.11)

p2,3,4,51 (k1 + 1) = (1− ϕ)× p2,3,4,51 (k1) (4.12)

p2,3,4,51 is used instead of individual probability p21, p31, p41, p51. Similarly, Equations 4.13, and

46

Chapter 4 Learning Automata­based Scheduling Algorithm

4.14 are used to update action probability for penalty.

p11(k1 + 1) = p11(k1)− φ× (1− p11(k1)) (4.13)

p2,3,4,51 (k1 + 1) = (1− φ)× p2,3,4,51 (k1) + (
φ

4
) (4.14)

Equation 4.15 is generated by reframing Equation 4.11.

p11(k1 + 1) = (1− ϕ)× p11(k1) + ϕ (4.15)

Equation 4.16 shows the results of different k1 values in Equation 4.15.
k1 = 1, p11(2) = (1− ϕ)× p11(1) + ϕ

k1 = 2, p11(3) = (1− ϕ)× p11(2) + ϕ

k1 = 3, p11(4) = (1− ϕ)× p11(3) + ϕ

(4.16)

The solution of Equation 4.16 with substitution method is written in Equation 4.17.

p11(4) = (1− ϕ)3 × p11(1) + ϕ× [1 + (1− ϕ) + (1− ϕ)2] (4.17)

Equation 4.18 is formulated by generalizing Equation 4.17.

p11(k1 + 1) = (1− ϕ)k1+1 × p11(0) + ϕ× [1 + (1− ϕ) + ...+ (1− ϕ)k1]

= (1− ϕ)k1+1 × p11(0) + ϕ×

[
1− (1− ϕ)k1

1− (1− ϕ)

]
(4.18)

For large value of k1, (1 − ϕ)k1 and (1 − ϕ)k1+1 tends to zero. So, the Equation 4.18 is
rewritten as:

p11(k1 + 1) = ϕ×

[
1

1− (1− ϕ)

]
= 1. (4.19)

The results of different k1 values in Equation 4.12 is written in Equation 4.20.
k1 = 1, p2,3,4,51 (2) = (1− ϕ)× p2,3,4,51 (1)

k1 = 2, p2,3,4,51 (3) = (1− ϕ)× p2,3,4,51 (2)

k1 = 3, p2,3,4,51 (4) = (1− ϕ)× p2,3,4,51 (3)

(4.20)

By solving Equation 4.20 with substitution method Equation 4.21 is generated.

p2,3,4,51 (4) = (1− ϕ)3 × p2,3,4,51 (1) (4.21)

Equtaion 4.22 is formulated by generalizing Equation 4.21.

p2,3,4,51 (k1 + 1) = (1− ϕ)k1+1 × p2,3,4,51 (1) = 0 (4.22)

For large value of k1, (1− ϕ)k1+1 tends to 0. Sum of all probabilities is:

5∑
j=1

pj1 = p11(k1 + 1) + p2,3,4,51 (k1 + 1) = 1 + 0 = 1. (4.23)

47

Chapter 4 Learning Automata­based Scheduling Algorithm

Similarly, the penalty Equation 4.13 and Equation 4.14 can be used to prove “sum of all
probabilities is one”.

4.4 Performance Evaluation

To show the effectiveness of Learning Automata­based Scheduling (LAS), it is compared
with two different algorithms, Multi­Heuristic Resource Allocation (MHRA) [9], and
Dynamic Task Scheduling (DTS) [56]. The algorithms for comparisons are summarized
as follows:

MHRA: The two­phase MHRA algorithm is designed to minimize a bi­objective cost
function that includes energy consumption and total execution time. In the first phase, tasks
are ranked based on heuristic rules like the longest processing time first, shortest processing
time first, etc. In the next phase, the best cloud resource is selected that minimizes the
bi­objective cost function.

DTS: It is a two­step process. At first, tasks are classified according to historical
scheduling information. In the next step, the VM of various types is accordingly created.
Then mapping tasks with a VM is performed dynamically. This algorithm considers
makespan but not total energy consumption.

The metrics used to evaluate the performance of the scheduling algorithms LAS,MHRA,
and DTS are the Success Ratio (SR), makespan (τ), and total energy consumption (δ). The

Table 4.1: Parameters for Simulation Studies

Parameter Value (Fixed) ­(Varied)
Task Count 1000 − (200, 400, 600, 800, 1000)

VM Count 80 − (40, 60, 80, 100)

tsvar 1500 − (500, 1000, 1500, 2000, 2500)

spvar 400 − (200, 400, 600, 800, 1000)

task arrival rate (λ) 0.05 ­ (0.01, 0.03, 0.05, 0.08, 0.1)

baseD 4 ­ (2, 4, 6, 8)

values of parameters are listed in Table 4.1.

4.4.1 Simulation Settings

The detailed settings and parameters for simulation are given as follows:

• Task deadline is set as tkdli = tkari + baseD where baseD is in Uniform distribution
U(4, 8).

• Let task size represents the task heterogeneity. It is uniformly distributed in the range
[tsavg − tsvar] and [tsavg + tsvar] where tsavg is average task size and tsvar is variable
scope taking tsavg = 5000MI as center respectively.

48

Chapter 4 Learning Automata­based Scheduling Algorithm

• Let VM speed indicates VM heterogeneity. It is uniformly distributed in the range
[spavg−spvar] and [spavg+spvar]where spavg is average VM speed and spavg = 1500

is variable scope taking spavg as center respectively.

• The reward and penalty constant is set to ϕ = φ = 0.1.

200 400 600 800 1000
Number of Iterations

3

4

5

6

7

8

C
o
st

 M
et

ri
c

106

VM=40
VM=60
VM=80
VM=100

(a) Cost Metric

200 400 600 800 1000
Task Count

0

1

2

3

4

5

6

C
o
st

 M
et

ri
c

106

(b) Cost Metric (VM Count=40)

200 400 600 800 1000
Task Count

0

1

2

3

4

C
o
st

 M
et

ri
c

106

(c) Cost Metric (VM Count=60)

Figure 4.6: Cost Metric variation

A set of experiments were conducted with initial configuration to examine the effect of
the number of iterations on the cost metric. But VM count is varied between [40 − 100] in
the step of 20. The outcome of the experiment is shown in Figure 4.6(a), and it was observed
that after 500 iterations, there is minimal variation in the cost metric value even if the number
of iteration increases significantly. Another experiment was carried out with different values
of reward and penalty constant, and setting the maximum iteration count kmax to 500. From
Figure 4.6(b) and Figure 4.6(c), it can be inferred that the nature of the graph is similar for
different values of ϕ and φ (i.e., ϕ, φ = 0.01, 0.001) even if there is variation in the task
count and VM count. Thus the ϕ and φ values are set to 0.1.

The development of IT infrastructure and applications cause heterogeneous task and VM
to operate in the cloud system. In this context, another set of experiments was performed
to study the effect of task and VM heterogeneity on LAS, MHRA, and DTS. Further, the
system performance is analyzed by varying task count, VM count, arrival rate, and deadline.

4.4.2 Impact of Task Heterogeneity on System Performance

The impact of task heterogeneity on Success Ratio, makespan, and the total energy
consumption is given in Figure 4.7. In all three cases, the nature of the simulation result
is neither increasing nor decreasing. This is because if the task set contains tasks whose task
size is near the minimum limit, the total execution time will be less. Whereas if the task set
contains tasks with task size near the maximum limit, the task has a long execution time.
The short task execution time decreases the makespan; similarly, the long task execution
time gives rise to a higher makespan. So, the task set with task size within the maximum and

49

Chapter 4 Learning Automata­based Scheduling Algorithm

minimum limit has both possibilities, which cause a stable makespan, as shown in Figure
4.7a. The short execution time allows many tasks to complete before the deadline and hence
increase the Success Ratio. But the Success Ratio decreases for a long task execution time
with constant VM count as it increases the chance of deadline miss for a task. Hence there
is a little variation in Figure 4.7b for Success Ratio. Consequently, there is an increase in
energy consumption due to the rise in the number of tasks getting executed. Further, the high
execution time increases VM’s active time, causing an increase in total energy consumption.
Hence the heterogeneous task set gives the simulation outcome, as shown in Figure 4.7c for
total energy consumption. Moreover, it can be seen that the LAS algorithm performs better
over MHRA and DTS.

500 1000 1500 2000 2500
Average Task Size

0

1000

2000

3000

4000

M
ak

es
p

an
 (

S
ec

o
n

d
)

LAS
MHRA
DTS

(a) Makespan

500 1000 1500 2000 2500
Average Task Size

0

20

40

60

80

100

S
u

cc
es

s
R

at
io

 (
%

)

LAS
MHRA
DTS

(b) Success Ratio

500 1000 1500 2000 2500
Average Task Size

0

2

4

6

8

T
o

ta
l

E
n

er
g

y
 C

o
n

su
m

p
ti

o
n

 (
Jo

u
le

)

106

LAS
MHRA
DTS

(c) Total Energy Consumption

Figure 4.7: Impact of Task Heterogeneity on System Performance

200 400 600 800 1000
Average VM Speed

0

1000

2000

3000

4000

M
ak

es
p

an
 (

S
ec

o
n

d
)

LAS
MHRA
DTS

(a) Makespan

200 400 600 800 1000
Average VM Speed

0

20

40

60

80

100

S
u

cc
es

s
R

at
io

 (
%

)

LAS
MHRA
DTS

(b) Success Ratio

200 400 600 800 1000
Average VM Speed

0

2

4

6

T
o

ta
l

E
n

er
g

y
 C

o
n

su
m

p
ti

o
n

 (
Jo

u
le

)

106

LAS
MHRA
DTS

(c) Total Energy Consumption

Figure 4.8: Impact of VM Heterogeneity on System Performance

4.4.3 Impact of VM Heterogeneity on System Performance

Figure 4.8 shows the effect of VM heterogeneity on Success Ratio, makespan, and total
energy consumption. In all three cases, the nature of the simulation result is neither
increasing nor decreasing. This is because the execution time of the task increases if the
VM set contains low­speed VMs. Whereas the VM set with high­speed VMs allows many

50

Chapter 4 Learning Automata­based Scheduling Algorithm

tasks to execute before the deadline due to short execution time. Thus the makespan, as
shown in Figure 4.8a, has little variation due to VM heterogeneity. The short task execution
time results in several numbers of tasks getting executed before the deadline. Hence there
is a rise in the Success Ratio. However, some tasks miss their deadline due to the long task
execution time, which results in a decrease in the Success Ratio. The VM heterogeneity
confirms the outcome, as shown in 4.8b for the Success Ratio. The low­speed VM has less
energy consumption. Further, the use of high­speed VM contributes to an increase in total
energy consumption. Hence the variation in total energy consumption in Figure 4.8c due to
VM heterogeneity is less. Moreover, the outcome shows that the learning process from the
environment helps LAS perform better than MHRA and DTS.

4.4.4 Impact of VM Count on System Performance

The VM count is varied in the range [40 − 100] in the interval of 20. Figure 4.9 shows the
effect of VM count on system performance. The increase in VM count reduces the total
execution time as several tasks can be executed simultaneously on various VMs. Hence the
makespan increases, and the simulation result is given in Figure 4.9a. It is observed from
Figure 4.9b that with an increase in VM count, there is an increase in the Success Ratio.
This is because an increase in VM count allows many tasks to execute within the deadline
constraint, giving rise to a higher Success Ratio. A large number of task execution due to an
addition in VM count increases VM’s active time. Besides, there is an increase in idle energy
consumption due to idle VM in large VM set. So the total energy consumption increases as
given in Figure 4.9c. Besides, it can be found that LA theory helps LAS to improve task
schedulability and performs better compared to MHRA and DTS

40 60 80 100
VM Count

0

1000

2000

3000

4000

M
ak

es
p

an
 (

S
ec

o
n

d
)

LAS
MHRA
DTS

(a) Makespan

40 60 80 100
VM Count

0

20

40

60

80

100

S
u

cc
es

s
R

at
io

 (
%

)

LAS
MHRA
DTS

(b) Success Ratio

40 60 80 100
VM Count

0

2

4

6

8

T
o

ta
l

E
n

er
g

y
 C

o
n

su
m

p
ti

o
n

 (
Jo

u
le

)

106

LAS
MHRA
DTS

(c) Total Energy Consumption

Figure 4.9: Impact of VM Count on System Performance

4.4.5 Impact of Task Count on System Performance

The task count is varied in the range [200− 1000] in the interval of 200. The impact of task
count on system performance is shown in Figure 4.10. The addition in task count increases

51

Chapter 4 Learning Automata­based Scheduling Algorithm

the makespan, as given in Figure 4.10a. This is because an increase in task count with
constant VM count causes a rise in total execution time. Figure 4.10b shows that as the task
count increases, the Success Ratio decreases. The rise in task count increases the chance that
some tasks will not be executed before the deadline and hence a low Success Ratio. Further,
the increase in task count increases the total energy consumption, as shown in Figure 4.10c.
This is because the rise in task count with fixedVMcount raises VM’s active time and, hence,
the total energy consumption. However, VM selection with the learning process helps LAS
perform better than MHRA and DTS.

200 400 600 800 1000
Task Count

0

1000

2000

3000

M
ak

es
p

an
 (

S
ec

o
n

d
)

LAS
MHRA
DTS

(a) Makespan

200 400 600 800 1000
Task Count

0

20

40

60

80

100
S

u
cc

es
s

R
at

io
 (

%
)

LAS
MHRA
DTS

(b) Success Ratio

200 400 600 800 1000
Task Count

0

2

4

6

T
o

ta
l

E
n

er
g

y
 C

o
n

su
m

p
ti

o
n

 (
Jo

u
le

)

106

LAS
MHRA
DTS

(c) Total Energy Consumption

Figure 4.10: Impact of Task Count on System Performance

0.02 0.04 0.06 0.08 0.1
Arrival Rate

0

1000

2000

3000

4000

M
ak

es
p

an
 (

S
ec

o
n

d
)

LAS
MHRA
DTS

(a) Makespan

0.02 0.04 0.06 0.08 0.1
Arrival Rate

0

20

40

60

80

100

S
u

cc
es

s
R

at
io

 (
%

)

LAS
MHRA
DTS

(b) Success Ratio

0.02 0.04 0.06 0.08 0.1
Arrival Rate

0

2

4

6

8

T
o

ta
l

E
n

er
g

y
 C

o
n

su
m

p
ti

o
n

 (
Jo

u
le

)

106

LAS
MHRA
DTS

(c) Total Energy Consumption

Figure 4.11: Impact of Arrival Rate on System Performance

4.4.6 Impact of Arrival Rate on System Performance

Figure 4.12 shows the effect of task arrival rate on system performance. The (λ) value is
varied from 0.01 to 0.1with step 0.02 to analyze the system performance by task arrival rate.
There is a large set of tasks in a short time due to the increase in task arrival rate. Figure
4.11a, it can be observed that the large task set in a small time interval allows fewer tasks
to get executed, resulting in shorter total execution time and hence a decrease in makespan.
Further, the increase in the task arrival rate causes a decrease in the Success Ratio, as given

52

Chapter 4 Learning Automata­based Scheduling Algorithm

in Figure 4.11b. This is because fewer tasks completed execution before the deadline due
to high task count in a short time. Furthermore, the less number of task execution causes
a reduction in total energy consumption, as shown in Figure 4.11c due to less VM active
time. Besides, the simulation outcomes confirm that the selection of ⟨task, V M⟩ pair with
the help of the learning process, helps LAS perform better than MHRA and DTS.

2 4 6 8
baseD

0

1000

2000

3000

4000

5000

M
ak

es
p

an
 (

S
ec

o
n

d
)

LAS
MHRA
DTS

(a) Makespan

2 4 6 8
baseD

0

20

40

60

80

100

S
u

cc
es

s
R

at
io

 (
%

)

LAS
MHRA
DTS

(b) Success Ratio

2 4 6 8
baseD

0

2

4

6

8

T
o

ta
l

E
n

er
g

y
 C

o
n

su
m

p
ti

o
n

 (
Jo

u
le

)

106

LAS
MHRA
DTS

(c) Total Energy Consumption

Figure 4.12: Impact of Deadline Variation on System Performance

4.4.7 Impact of Deadline Variation on System Performance

The impact of deadline variation on system performance, as shown in Figure 4.12, is studied
by varying the baseD value in the range [2−8]. It is observed from Figure 4.12a and Figure
4.12b that the increase in baseD causes an increase in the makespan and Success Ratio.
This is because of a large number of tasks execution before the deadline due to an increase
of baseD. The total energy consumption also increases as given in Figure 4.12c because of
the large set of tasks execution raises the active time of VM. However, the learning process
from the environment allows LAS to perform better in comparison with MHRA and DTS.

Table 4.2: Comparison with ECA (VM Count)

ECA LAS
SR 90 91.5
Makespan 3100 3000
Total Energy Consumption 5.29× 106 5.20× 106

4.4.8 Comparison

Table 4.2 to Table 4.5 shows the comparison of LAS with ECA (Chapter 3) algorithm
considering different scenarios. The comparison shows that LAS performs better in most
of the scenarios but in some cases ECA shows better result.

53

Table 4.3: Comparison with ECA (Task Count)

ECA LAS
SR 90 91
Makespan 3260.4 3160.4
Total Energy Consumption 5.29× 106 5.09× 106

Table 4.4: Comparison with ECA (Arrival Rate)

ECA LAS
SR 95 94
Makespan 3237.9 3239
Total Energy Consumption 5.85× 106 5.85× 106

4.5 Summary

In this Chapter, a bi­objective scheduling algorithm for real­time tasks is proposed.
The objective of proposed scheduling is to minimize energy consumption and makespan
simultaneously. To realize the goals, an LA­based method that works on the principle
of reinforcement learning is employed. First, an LA­based scheduling framework is
proposed, and then an enabling LAS scheduling algorithm is presented. The experimental
outcomes implied that the learning process from the environment helps LAS achieve
better performance than MHRA and DTS. Compared to MHRA, the proposed LAS has
an improvement of 11.3% in Success Ratio, 8.6% in makespan, and 9.0% in total energy
consumption. Similarly, LAS has an improvement of 11.1% in Success Ratio, 10.0% in
makespan, and 10.0% in total energy consumption over DTS.

In the next Chapter, a game theory based scheduling algorithm is presented.

Table 4.5: Comparison with ECA (Deadline)

ECA LAS
SR 91 92.5
Makespan 4190.1 3508
Total Energy Consumption 7.35× 106 6.59× 106

Chapter 5

Game Theory based Scheduling
Approach

Abstract:­ The development of a large number of data centers increases the cloud system’s
energy consumption and affects system reliability. In this Chapter, a Real­time Task
Scheduling Game (RTSG) framework is developed to solve allocating a real­time task
to a self­aware and non­cooperative VM environment. At first, a non­cooperative task
scheduling game model is designed to address the conflicting scheduling objectives,i.e.,
minimum energy consumption while satisfying reliability and deadline constraint. After
that, a Vickery auction­based framework is introduced to find the Nash Equilibrium (NE)
point representing the best ⟨task, V M⟩ combination of the RTSG game.

5.1 Introduction

The evolution of cloud computing facilitates the development of many data centers, which
allows applications with varying demands like no deadline miss, minimum execution
cost and energy consumption, etc. to operate in a virtualized environment. But, rapid
development increases the energy consumption of the cloud system. Besides, the reliability
of the system is affected by high energy consumption [1, 5]. The availability of a system
is usually considered to be a factor in its reliability. It plays a vital role in the migration
of critical data and applications to the cloud, maintaining user satisfaction, and avoiding
revenue loss due to SLA violation penalties. With a heterogeneous and uncertain working
environment, a cloud scheduler faces a challenge in deciding the best operational conditions
for energy usage and reliability. The decision problem becomes even complicated for
real­time tasks due to timing constraints. Further, multiple VMs present in the cloud
environment compete for real­time tasks and decide based on their self­interest without
sharing knowledge with other VMs so that the scheduling objective is optimized. In this
context, game theory and auction theory help find the best ⟨task, V M⟩ combination, that
meets the scheduling objective.

55

Chapter 5 Game Theory based Scheduling Approach

5.1.1 Generalized Game model

The game theory based scheduling algorithm is designed considering a generalized game
theory model discussed in [21, 22, 36, 37, 112, 121]. The game model that is adopted has
the following characteristics:

• a set of participants called players.

• each player has set of strategies which, specifies how player will behave or act.

• for each strategies, each player receives a utility value. The value indicates the
willingness of a player to perform an action.

• a strategy sji is a best response by a player plj to a choice of strategies
(sj1, s

j
2, ..., s

j
i−1, s

j
i+1, ..., s

j
n) by all the other players if

uji (s
j
1, s

j
2, ..., s

j
i−1, s

j
i , s

j
i+1, ..., s

j
n) ≥ uji (s

j
1, s

j
2, ..., s

j
i−1, s

j′

i , s
j
i+1, ..., s

j
n) (5.1)

for all other possible strategies sj
′

i available to player plj . Here, uji is the utility value
received by plj for strategy sji .

• a Nash Equilibrium (NE) point, consists of each players best response to all the others
is considered as a solution of a game.

5.2 Game Theory based Scheduling Framework

The main objective is to execute more tasks within timing constraints while optimizing
reliability and energy consumption. A utility function uji defined in terms of reliability and
energy consumption of a task tki on a VM vmj is used to represent the scheduling objective.
It is formulated in Equation 5.2.

uji = w1×
vmrel

j

rel_max
+ w2× ϱj

e_max
(5.2)

Besides, uji is the estimated weighted sum value for executing task tki on VM vmj . Let,
rel_max and e_max are the maximum reliability and energy consumption possible in
a cloud system. Both the values are used in the expression to normalize the respective
quantities. Let U is a m × n matrix which contains uji . The scheduler wants to optimize
the sum of utility values of all the VMs in the system. Mathematically, it is expressed in
Equation 5.3.

optimize

m∑
j=1

n∑
i=1

uji ×X
j
i (5.3)

The game theory based real­time task scheduling framework shown in Figure 5.1
includes the Schedulability Analyzer, Decision Maker, and Resource Manager component.

56

Chapter 5 Game Theory based Scheduling Approach

The Schedulability Analyzer handles the task queue and places the task with the earliest
deadline at the head of the queue. Further, this component is used to check whether a task’s
deadline can be met or not. If the Schedulability Analyzer fails to find a suitable VM for a
task, it asks the Resource Manager to add more VMs. Despite scaling up the VMs, if the
Schedulability Analyzer fails to find an appropriate VM; then, the task gets rejected. The

tk1

vm1 vm2 vmm

Scheduler

tk2

tkn

. . .

Cloud Environment User Task

Task

Task
Queue

.

.

.

Schedulability
Analyzer

Decision Maker

Resource Manager

Energy

Calculator

Reliability
Calculator

Potential
VM

Selector

Winner
Selector

Figure 5.1: Game Theory based Real­time Task Scheduling Framework

Decision Maker uses the auction based approach to find a suitable VM for a task so that the
scheduling objective is optimized. It consists of a Potential agent/player/VM Selector and
Winner Selector sub­components. The Potential VM Selector unit uses the task’s deadline,
estimated finish time of all the tasks, and status of VM in the cloud environment to select
VMs that can ensure the deadline requirement of a task. These potential VMs submit bids
for a task defined by a utility function. The bids of the VMs are given as input to theWinner
Selector unit. TheWinner Selector unit decides a VMas awinner among potential candidates
based on auction rules, i.e., the second­price sealed­bid. In the second­price sealed­bid, a
VM will have to pay the amount equal to the second­best bid value.

5.3 Real­time Task Scheduling Game (RTSG) Model

The proposed bi­objective real­time task scheduling problem is formulated as a
non­cooperative game. The outcome of the game is considered as a solution to the scheduling
problem. The Real­time Task Scheduling Game (RTSG) model is described by 7­tuple
⟨sche,V , T , ψ,U , sw,R⟩ where,

• sche is the game host or scheduler.

• Each VM vmj ∈ V is modeled as a player for executing a task, where V represents
set ofm players.

• T represents set of n tasks.

• ψ is the task allocation strategy space for all players, i.e., ψ = ψ1 × ψ2 × ... × ψm,
where each element ψj is the strategy space of player vmj . ψj = {sji |i = 1, 2, ...n},
where sji denotes that task tki is allocated to VM vmj .

57

Chapter 5 Game Theory based Scheduling Approach

• Each element uji of U is used to compute VM specific utility value u′
j . It’s calculation

is represented in Equation 5.4.

u
′

j =
n∑

i=1

uji ×X
j
i (5.4)

where binary indicator X j
i = 1 if tki is assigned to vmj , or X j

i = 0 otherwise. The
value indicates the benefit, vmj can gain if strategy sji is chosen by it to execute tki.

• The overall goal of the scheduler is represented as social welfare (sw) and is estimated
in Equation 5.5.

sw =
m∑
j=1

u
′

j (5.5)

• R = {R1, R2, ..., Rn} be the set of rewards. The rewards can be non­monetary (e.g.
score, ranking) or monetary (e.g. profit) quantity. Here, a non­monetary quantity is
used for reward. Rj

i ∈ Ri indicates reward or score for executing tki task on VM vmj .
It is computed in Equation 5.6.

Rj
i =

1

γtk
dl
i −ftji

, (5.6)

where γ ≤ 1 but γ ̸= 0. The VM vmj with large Rj
i value is preferable.

Figure 5.2 shows the working of the RTSG model. For each task, a utility value (uji) is
computed for all VMs in V . Energy consumption and reliability are taken into account while
calculating the utility value. Further, finish time ftji is also calculated. If the finish time is
less than task deadline tkdli , then the bid (b

j
i) by VM vmj is set as uji otherwise it is set to−1.

After that sel_vmj is computed. If bji is not equal to −1 then winner VM vmj is selected
and task tki is assigned to vmj . The second­best VM in the winner list is selected, and the
first winner pays an amount equal to alpuk

i .
A scheduler aims to find a task scheduling strategy that optimizes the overall utility value.

The game is played in the following way: the scheduler initializes a set of tasks. Each VM
(or player) simultaneously selects a task that has the best utility for itself. If multiple players
choose the same task, assign the task to one of the competing players, which has the best
utility value. Each VM executes the selected tasks. This process continues until all the
tasks are selected from the task set. Algorithm 5.1 shows the initial step of RTSG. A Nash
Equilibrium of the game is found to confirm that each VM made its best decision towards
the scheduling objective. The challenges faced to find NE point in scheduling game is the
incomplete information (i.e., a VM has incomplete or no information on the individual utility
function of other VMs). Thus, a VM cannot precisely derive other VM’s best strategies to
make its own best response. This is similar to an auction scenario where each bidder would
not share its valuation beforehand. In the process of scheduling decisions, the utility value

58

Chapter 5 Game Theory based Scheduling Approach

Start

Task set T
VM set V

N

Y

Compute sel_vm j

Y

N No

Operation

Compute utility
function value ui

j

ft
i
j

and

ft
i
j

tk
i
dl

<= Set bid b
i
j

= -1

Set bid b
i
j

= ui
j

bi
j
¹ -1

?

Select winner VM vmj

Assign tki to vmj

Compute sw

Find second best
winner VM vmk

Set payment for vmj as alp
ui

k

End

Figure 5.2: Flowchart of RTSG Model based Scheduling

of all participating VMs is not known to each other. Thus a Vickery auction or second­price
sealed­bid based scheduling algorithm is preferred to address this challenge. One of Vickery
auction properties says that “allocate an item to the bidder who values it the most.” Hence,
Vickery auction for the execution of real­time tasks can be justified, as it is employed to find
the best VM for a task with incomplete information.

5.3.1 Nash Equilibrium based on Auction Mechanism

Auctions are a common and simple way of performing resource allocation in a multi­agent
system. The basic rules governing an auction are; bidding for items, determining winning
agents based on certain attributes, and payment made. In an auction, agents can express how
much they want a particular item via their bid, and a central auctioneer (here it is, scheduler)
can make the allocation based on these bids. In this regard, here, each VM is modeled as a

59

Chapter 5 Game Theory based Scheduling Approach

Algorithm 5.1 : Real­time Task Scheduling Game (RTSG)
Input Task set T , VM set V
Output NE_sol

1: for each tki ∈ T do
2: for each vmj ∈ V do
3: Compute utility function value using Equation 5.2;
4: end for
5: end for
6: NE_sol←− Nash_sol (T , V , U);

player bidding for executing the task. Let a VM deploy a process, also known as an agent,
to bid on its behalf. For instance, a process that provides service to VM vmj is called agent
AG(vmj), while the VM vmj is busy executing the task, AG(vmj) may take part in the
bidding process to gather more task for execution. Each agent submits a bid for a task that

Algorithm 5.2 : Nash_sol (T , V , U)
Input: T , V , U ,R
Output: Scheduled list sch

1: b←− Pot_vm_sel (U);
2: sch←−Winner_det (b,R);

is at the head of the task queue. Let the task set T act as the buyers of a bid. An assumption
is made that a task can only be assigned to a single VM at a time. Further, the preference of
a task tki ∈ T for some VMs over others can be specified by a utility value uji . The utility
value (or bid value bji) that agent AG(vmj) derives from task tki can be considered as the
valuation that vmj assigns to tki. Besides, the valuation function reflects the agent’s utility
of owning the given task. The best Nash is the equilibrium with the minimum utility value,
and the worst Nash is the equilibrium with the maximum utility value.

Algorithm 5.3 : Sche_tsk (ftji , tkdli)
Input: finish time ftji , task’s deadline tkdli
Output: Decision on deadline miss

1: if ftji ≤ tkdli then
2: return True;
3: else
4: return False;
5: end if

To select a winner from a potential set of VMs a selection criterion sel_vmj is computed
using Equation 5.7.

sel_vmj =
Rj

i

bji
(5.7)

The selection criterion defined in this way makes the winning chance of a VM sensitive
with the bid value and reward value. Further, Equation 5.7 says that, to increase sel_vmj

60

Chapter 5 Game Theory based Scheduling Approach

value, VM vmj needs to either increase the reward value or decrease the bid value. The
payment payj , to be paid by a VM who won, is computed as alp(uk

i), where uki is the VM’s
bid value which would have won if VM vmj would have lost. The process of reaching

Algorithm 5.4 : Pot_vm_sel (U , T ,V)
Input: T , V , U
Output: bid matrix b

1: for each tki ∈ T do
2: for each vmj ∈ V do
3: Compute ftji using Equation 2.3.
4: if Sche_tsk (ftji , tkdli) == True then
5: bji = uji ;
6: else
7: bji = −1;
8: end if
9: end for
10: end for

the Nash Equilibrium is shown in Algorithm 5.2. The process is discussed with the help of
Algorithm 5.4 and Algorithm 5.5. The working of Algorithm 5.4 is explained below. Each
VM compute the finish time of task tki, and schedulability is checked using Algorithm 5.3.
If the condition holds, each VM bid its utility value as the bid value; otherwise, it is set
to zero. After receiving the VM’s bid value, a winner is selected based on the predefined
criterion using Algorithm 5.5.

The working of Algorithm 5.5 is explained below. The overall process has a two­part,
allocation rule and payment rule. In allocation rule (lines 2 ­ 17), a task is allocated to VM
with the highest sel_vm value. The payment rule (lines 18 ­ 28) decides the payment of payj
to be paid by the winner. The ⟨task, V M⟩ pair present in sch, shows the optimal strategy of
each player resulting in Nash solution of the problem.

Theorem 5.1. The time complexity of RTSG is O(nm).

Proof. The time complexity to compute utility value is O(nm) (see Algorithm 5.1).
Similarly, potential VM selection process need O(nm) time (see Algorithm 5.4). The
time complexity to compute selection criterion value is O(nm). Further, the selection of
winner (best) and second best winner needs O(m) and O(m − 1) time respectively (see
Algorithm 5.5). Rest of the lines time complexity isO(1). So, the time complexity of RTSG
is O(nm)+O(nm)+O(nm)+O(m)+O(m− 1)=O(nm).

Theorem 5.2. The RTSG model has a Nash Equilibrium.

Proof. Using the method of contradiction, it is proved that RTSG has a Nash Equilibrium.
Let, uji and u

j
′

i is the utility value for strategy sji and s
j
′

i of tki respectively. Let, strategy sj
′

i

is in Nash equilibrium. Let, strategy sji is a best response by a VM vmj that earns it more
utility than using the strategy sj

′

i causing violation in Nash equilibrium. But, sj
′

i gives the
maximum utility value making it best response for tki. As sj

′

i makes the best response of

61

Chapter 5 Game Theory based Scheduling Approach

Algorithm 5.5 : Winner_det (b,R)
Input bid matrix b, rewardR, alp
Output Scheduled list sch, payment pay

1: winner_vm←− Null, sch←− Null, sch
′ ←− Null;

2: for each tki ∈ T do
3: for each vmj ∈ V do
4: Compute sel_vmj using Equation 5.7;
5: end for
6: max_sel←− −∞;
7: for each vmj in V do
8: if bji ̸= −1 then
9: if sel_vmj > max_sel then
10: max_sel←− sel_vmj ;
11: winner_vm←− vmj ;
12: end if
13: end if
14: end for
15: Assign tki to winner_vm;
16: Set sch←− sch ∪ ⟨tki, winner_vm⟩;
17: end for
18: Compute social welfare value sw using Equation 5.5;
19: for each vmj ∈ sch do
20: Find new winner winner_vm′ from set V \ {vmj};
21: sch

′ ←− sch
′ ∪ winner_vm′;

22: if sch′ ̸= ϕ then
23: vmk ←− VM with highest sel_vmk value;
24: payj ←− alp(u

k
i);

25: else
26: payj ←− 0;
27: end if
28: end for

vmj , there couldn’t exist any strategy whose utility value will be more than it. Hence, a
contradiction occurs.

Theorem 5.3. There exist at least one Nash equilibrium in RTSG that is a solution in optimal
solution set (Opt_Sol).

Proof. Let, sol∗ is a solution of Opt_Sol and sol0 = sol∗. A solution sol is obtained by
applying RTSG having sw(sol) ≤ sw(sol∗). But, sol∗ has been assumed to be an optimal
solution, sw(sol∗) cannot be further reduced. Hence, sw(sol) = sw(sol∗) and consequently
sol is also an optimal solution. Therefore, it can be concluded that there is at least one Nash
equilibrium that is also a solution in Opt_Sol.

5.4 Performance Evaluation

The proposed approach is compared with the algorithms presented by Yang et al. [37], and
Wang et al. [119]. The algorithms for comparisons are summarized as follows:

62

Chapter 5 Game Theory based Scheduling Approach

• Yang et al. [37]: Authors have used a cooperative game model considering the
reliability of the balanced task for task scheduling in the cloud environment.

• Wang et al. [119]: The authors have designed an auction­based VM allocation
mechanism to enhance energy saving in the cloud system.

The metrics used to evaluate the performance of the algorithm are Success Ratio (SR),
makespan (τ), and total energy consumption (δ). The values of parameters are listed in

Table 5.1: Parameters for Simulation Studies

Parameter Value (Fixed) ­(Varied)
Task Count 1000 − (200, 400, 600, 800, 1000)

VM Count 80 − (40, 60, 80, 100)

tsvar 1500 − (500, 1000, 1500, 2000, 2500)

spvar 400 − (200, 400, 600, 800, 1000)

task arrival rate (λ) 0.05 ­ (0.01, 0.03, 0.05, 0.08, 0.1)

baseD 4 ­ (2, 4, 6, 8)

Table 5.1.

5.4.1 Simulation Setting

The detailed settings and parameters for evaluating the performance of RTSG approach are
as follows.

• Task deadline is set as tkdli = tkari + baseD where baseD is in Uniform distribution
U(4, 8).

• Let task size represents the task heterogeneity. It is uniformly distributed in the range
[tsavg − tsvar] and [tsavg + tsvar] where tsavg is average task size and tsvar is variable
scope taking tsavg = 5000MI as center respectively.

• Let VM speed indicates VM heterogeneity. It is uniformly distributed in the range
[spavg − spvar] and [spavg + spvar] where spavg is average VM speed and spvar is
variable scope taking spavg = 1500MIPS as center respectively.

• The failure rate of VM vmj follows Uniform distribution U(1.0× 10−6, 3.5× 10−6)

per hour [26].

The rapid growth in IT infrastructure and applications allows heterogeneous task and VM
in the cloud system. Hence, a set of simulations is conducted to analyze the effect of task
and VM heterogeneity on system performance. Besides, the simulation results are discussed
to find the impact of task and VM count, arrival rate, and deadline variation in the cloud
system.

63

Chapter 5 Game Theory based Scheduling Approach

5.4.2 Impact of Task Heterogeneity on System Performance

The performance of the cloud system for task heterogeneity is shown in Figure 5.3. The task
set with task size near the minimum limit has a short execution time, whereas task set with
task size near the maximum limit has long task execution time. The short task execution
time reduces the total execution time and hence the makespan. The long task execution time
increases the total execution time and thus the makespan. So, the makespan as given in
Figure 5.3a is stable. Further, the short execution time causes many tasks to complete their
execution before the deadline. This increases the Success Ratio. The long task execution
time causes deadline miss for a task that contributes to the reduced Success Ratio. Hence
the heterogeneous task set causes neither increasing nor decreasing Success Ratio as shown
in Figure 5.3b. The short task execution time reduces VM’s active time, which contributes
to low total energy consumption. Besides, the long task execution time increases VM’s
active time and, hence, the total energy consumption. So, the simulation outcome for total
energy consumption is as shown in Figure 5.3c. However, the use of VM selection criteria
considering reward and bid value helps scheduling with the RTSG model performs better
against approaches presented in Yang et al. and Wang et al..

500 1000 1500 2000 2500
Average Task Size

0

1000

2000

3000

4000

M
ak

es
p

an
 (

S
ec

o
n

d
)

RTSG
Yang et al.[24]
Wang et al.[22]

(a) Makespan

500 1000 1500 2000 2500
Average Task Size

0

20

40

60

80

100

S
u

cc
es

s
R

at
io

 (
%

)

RTSG
Yang et al.[24]
Wang et al.[22]

(b) Success Ratio

500 1000 1500 2000 2500
Average Task Size

0

2

4

6

8
T

o
ta

l
E

n
er

g
y

 C
o

n
su

m
p

ti
o

n
 (

Jo
u

le
)

106

RTSG
Yang et al.[24]
Wang et al.[22]

(c) Total Energy Consumption

Figure 5.3: Impact of Task Heterogeneity on System Performance

5.4.3 Impact of VM Heterogeneity on System Performance

The effect of VM heterogeneity on system performance is shown in Figure 5.4. The
content of the VM set plays a vital role in quantifying system performance. If the VM
set has low­speed VMs, then there is the short task execution time, and if the VM set has
high­speed VMs, the task execution time will be high. Thus makespan decreases for short
task execution time and increases for long task execution time. The simulation result, as
shown in Figure 5.4a, confirms the effect of VM heterogeneity on makespan. Besides, the
short task execution time contributes to a rise in the Success Ratio, as it allows many tasks to
complete execution before the deadline. The long task execution time increases the chance
of a task to miss its deadline, reducing the Success Ratio. So, the Success Ratio due to VM

64

Chapter 5 Game Theory based Scheduling Approach

heterogeneity is as given in Figure 5.4b. The use of high­speed VM causes a rise in total
energy consumption. Further, the total energy consumption is small for low­speed VM.
Hence the total energy consumption is stable for heterogeneous VM set as given in Figure
5.4c. Besides, the simulation outcome shows that the use of reward and bid value in VM
selection causes performance improvement of RTSG compared to approaches presented in
Yang et al. and Wang et al..

200 400 600 800 1000
Average VM Speed

0

1000

2000

3000

4000

M
ak

es
p

an
 (

S
ec

o
n

d
)

RTSG
Yang et al.[24]
Wang et al.[22]

(a) Makespan

200 400 600 800 1000
Average VM Speed

0

20

40

60

80

100

S
u

cc
es

s
R

at
io

 (
%

)

RTSG
Yang et al.[24]
Wang et al.[22]

(b) Success Ratio

200 400 600 800 1000
Average VM Speed

0

2

4

6

8

T
o

ta
l

E
n

er
g

y
 C

o
n

su
m

p
ti

o
n

 (
Jo

u
le

)

106

RTSG
Yang et al.[24]
Wang et al.[22]

(c) Total Energy Consumption

Figure 5.4: Impact of VM Heterogeneity on System Performance

5.4.4 Impact of VM Count on System Performance

The outcome of simulation varying VM count in the range [40 − 100] with a step of 20
is shown in Figure 5.5. A large number of tasks get executed on different VMs within
deadline constraints simultaneously because of VM count addition. The total execution time
is small and hence a decrease in makespan, as shown in Figure 5.5a. As many tasks getting
executed before the deadline, the Success Ratio increases with an increase in VM count. The
simulation outcome for the Success Ratio is given in Figure 5.5b. Moreover, the increase in
VM’s active time due to the large task count increases the total energy consumption. Besides,
the idle energy consumption due to the presence of idle VM in large VM set adds to the total
energy consumption. Thus there is an increase in total energy consumption as given in Figure
5.5c. From Figure 5.5, it can be inferred that RTSG has better energy saving, less makespan,
and better Success Ratio as compared to approaches presented in Yang et al. and Wang et
al..

5.4.5 Impact of Task Count on System Performance

Task count’s effect on system performance is analyzed by varying the task count in the range
[200− 1000] in the interval of 200. From Figure 5.6a, it can be observed that the increase in
task count increases makespan. This is because the rise to task count with fixed VM count
increases the execution time of tasks. Further, the chance of deadline miss of a task increases
with an increase in task count and constant VM count. Hence the Success Ratio decreases,

65

Chapter 5 Game Theory based Scheduling Approach

40 60 80 100
VM Count

0

1000

2000

3000

4000
M

ak
es

p
an

 (
S

ec
o

n
d

)

RTSG
Yang et al.[24]
Wang et al.[22]

(a) Makespan

40 60 80 100
VM Count

0

20

40

60

80

100

S
u

c
c
e

s
s
 R

a
ti
o

 (
%

)

RTSG
Yang et al.[24]
Wang et al.[22]

(b) Success Ratio

40 60 80 100
VM Count

0

2

4

6

8

T
o

ta
l

E
n

er
g

y
 C

o
n

su
m

p
ti

o
n

 (
Jo

u
le

)

106

RTSG
Yang et al.[24]
Wang et al.[22]

(c) Total Energy Consumption

Figure 5.5: Impact of VM Count on System Performance

as given in Figure 5.6b. The increase in task count increases VM’s active time, and thus
there is a rise in total energy consumption. The simulation outcome, as given in Figure 5.6c
for total energy consumption, confirms the claim. It can be seen from Figure 5.6 that the VM
selection considering reward and bid value in RTSG allows it to have improved performance
in comparison with approaches presented in Yang et al. and Wang et al..

200 400 600 800 1000
Task Count

0

1000

2000

3000

4000

M
ak

es
p

an
 (

S
ec

o
n

d
)

RTSG
Yang et al.[24]
Wang et al.[22]

(a) Makespan

200 400 600 800 1000
Task Count

0

20

40

60

80

100

S
u

cc
es

s
R

at
io

 (
%

)

RTSG
Yang et al.[24]
Wang et al.[22]

(b) Success Ratio

200 400 600 800 1000
Task Count

0

2

4

6

T
o

ta
l

E
n

er
g

y
 C

o
n

su
m

p
ti

o
n

 (
Jo

u
le

)
106

RTSG
Yang et al.[24]
Wang et al.[22]

(c) Total Energy Consumption

Figure 5.6: Impact of Task Count on System Performance

5.4.6 Impact of Arrival Rate on System Performance

The arrival rate (λ) value is varied from 0.01 to 0.1with step 0.02. As given in Figure 5.7, the
simulation outcomes show the effect of arrival rate on system performance. There are many
tasks within a short time due to an increase in the arrival rate. So, very few tasks complete
its execution, which in turn decreases the makespan. Figure 5.7a shows the effect of the
arrival rate on the makespan. The presence of many tasks in a short time duration allows
fewer tasks to complete execution before the deadline. Hence there is a decrease in Success
Ratio, as given in Figure 5.7b. Further, there is a decrease in total energy consumption as
given in Figure 5.7c because only a small set of tasks complete their execution due to high
task count in a short time. However, RTSG has improved system performance in terms of

66

Chapter 5 Game Theory based Scheduling Approach

makespan, total energy consumption, and Success Ratio compared to approaches presented
in Yang et al. and Wang et al..

0.02 0.04 0.06 0.08 0.1
Arrival Rate

0

1000

2000

3000

4000

M
ak

es
p

an
 (

S
ec

o
n

d
)

RTSG
Yang et al.[24]
Wang et al.[22]

(a) Makespan

0.02 0.04 0.06 0.08 0.1
Arrival Rate

0

20

40

60

80

100

S
u

cc
es

s
R

at
io

 (
%

)

RTSG
Yang et al.[24]
Wang et al.[22]

(b) Success Ratio

0.02 0.04 0.06 0.08 0.1
Arrival Rate

0

2

4

6

8

T
o

ta
l

E
n

er
g

y
 C

o
n

su
m

p
ti

o
n

 (
Jo

u
le

)

106

RTSG
Yang et al.[24]
Wang et al.[22]

(c) Total Energy Consumption

Figure 5.7: Impact of Arrival Rate on System Performance

5.4.7 Impact of Deadline Variation on System Performance

The baseD value is set in the range [2 − 8]. The makespan and Success Ratio, as given
in Figure 5.8a and Figure 5.8b, increases, as a large number of tasks complete execution
before the deadline due to a rise in baseD. Further, the increase in baseD allows many
tasks to complete execution, which increases the active time of VM. Thus, as shown in
Figure 5.8c for total energy consumption, the simulation outcome increases with an increase
of baseD. Figure 5.8, it can be observed that reward and bid value­based VM selection
in RTSG help achieve better performance in terms of makespan, Success Ratio, and total
energy consumption compared to others.

2 4 6 8
baseD

0

2000

4000

6000

M
ak

es
p

an
 (

S
ec

o
n

d
)

RTSG
Yang et al.[24]
Wang et al.[22]

(a) Makespan

2 4 6 8
baseD

0

20

40

60

80

100

S
u

cc
es

s
R

at
io

 (
%

)

RTSG
Yang et al.[24]
Wang et al.[22]

(b) Success Ratio

2 4 6 8
baseD

0

2

4

6

8

T
o

ta
l

E
n

er
g

y
 C

o
n

su
m

p
ti

o
n

 (
Jo

u
le

)

106

RTSG
Yang et al.[24]
Wang et al.[22]

(c) Total Energy Consumption

Figure 5.8: Impact of Deadline Variation on System Performance

67

5.5 Summary

This Chapter proposed bi­objective scheduling for real­time tasks in the cloud system. The
objectives that are considered for optimization are energy consumption and reliability. Game
theory and auction theory are considered to optimize the stated objective. The proposed
scheduling is first represented as a non­cooperative game, and then the Vickery auction
theory is applied to find the Nash Equilibrium. The result is the best scheduling possible
for a set of tasks. The experimental outcomes implied that the proposed game theory based
approach performs better than the existing algorithms by Yang et al. and Wang et al.. The
performance improvement of RTSG compared to work presented by Yang et al. is 11.2% in
Success Ratio, 9.1% in makespan, and 8.5% in total energy consumption. Compared to the
work of Wang et al., the proposed RTSG has an improvement of 11.7% in Success Ratio,
9.8% in makespan, and 9.4% in total energy consumption.

In the next Chapter, a Primary­Backup (PB) based fault­tolerant scheduling algorithm is
presented.

Chapter 6

Primary­Backup based Fault­tolerant
Scheduling Algorithm

Abstract:­ Some applications that are moving to the cloud, demand both timing and
functional correctness despite the presence of failure. It becomes more cumbersome for
real­time applications that need fulfillment of deadline requirements, even in the presence
of VM failure. In this regard, a fault­tolerant strategy helps to achieve scheduling objectives
while satisfying deadline constraints. Further, the detection of a fault in a VM is an essential
process in a fault­tolerant mechanism. This Chapter presents an acceptance test­based
method to detect VM failure. Besides, a fault­tolerant scheduling algorithm is proposed
using the Primary­Backup and BB overlapping method to optimize energy consumption
while satisfying deadline and reliability constraints.

6.1 Introduction

The cloud supported by virtualized data centers creates an illusion of unlimited cloud
resources to users and allows elastic provisioning based on user’s demand. But, an unreliable
cloud system with a higher probability of resource failures inevitably results in more
interruption of running VMs, which implies a reduction in the performance of the cloud
service [6]. In this context, a fault­tolerant strategy helps guarantee the reliability of the cloud
system [5, 7]. The two copy replication Primary­Backup (PB) is widely used by researchers
to design fault­tolerant strategy [5, 25–28]. Further, Primary­Backup (PB) overlapping and
Backup­Backup (BB) overlapping is used to improve resource utilization. An essential
aspect of the fault­tolerant strategy is detecting a fault in the components (e.g., VM, PM,
etc.) of the cloud system. The fault detection also plays a significant role in maintaining the
reliability requirements of the cloud system. The most popular failure detection strategies
are acceptance tests, intrusion detection, and heartbeat/pinging [38, 93]. Intrusion detection
is based on behavior observation of the component, and an alarm is raised whenever a
component shows abnormal behavior. Heartbeat/pinging is based on keep­alive message
strategies. Any unusual behavior due to software faults or transient hardware faults or
resource time failure is detected in the acceptance test strategy, then a failure alarm/ message
is raised. Acceptance criteria are defined based on functional correctness and completeness,

69

Chapter 6 Primary­Backup based Fault­tolerant Scheduling Algorithm

timeliness, and performance. The acceptance test validates VM’s final results’ correctness
and ensures that they do not lead to disastrous consequences. The failure detection accuracy
depends on monitoring process architecture, i.e., centralized Intrusion Detection System
(IDS), partially distributed (heartbeat), or distributed (acceptance test). In the acceptance test
strategy, the monitor and monitored components are present in the same unit, thus reduces
the false alarm rate. Additionally, the accuracy of failure alarm in acceptance strategy is
high compared to IDS and heartbeat [93]. Another advantage of the acceptance test is cloud
architecture­independent implementation making the approach scalable.

6.2 Primary­Backup based Scheduling Framework

This work aims to execute more tasks within timing constraints (deadline) and achieve
fault­tolerance while optimizing reliability and energy consumption. The representation and
calculation of the scheduling objective are similar to one that is defined in Section 5.2 but
with added fault­tolerance features.

The fault­tolerant scheduling framework shown in Figure 6.1 consists of a Backup
Controller, Schedulability Analyzer, and a Resource Manager. Along with the generation
of a mapping between task and VM, the Resource Manager gather status information of
VM that includes the execution status of the scheduled task, availability of VM, etc. The
Resource Manager decides whether to run a backup copy or not.

Scheduler

Schedulability

Analyzer
Backup

Controller

Resource Manager

Task

Status
Information

Reliability

Cntroller

Energy

Calculator

Status

Manager

tk1

tk2

tkn

 User Task

Task

Queue

.

.

.

vm1 vm2 vmm

. . .

Cloud Environment

Figure 6.1: Primary­Backup based Fault­tolerant Real­time Task Scheduling Framework

The Backup Controller first produces a backup copy of a task and then delivers both
primary and backup copies to the Schedulability Analyzer.

The Schedulability Analyzer is used to check whether a task can be finished before
the deadline or not. This decision helps to map a real­time task to an appropriate VM.
If Schedulability Analyzer fails to find a suitable VM for a task, it informs the Resource
Manager to add new VMs. Despite the addition of new VMs, if a mapping can’t be found
to ensure the task’s deadline, the task gets rejected.

Resource Manager consists of three sub­components: Reliability Controller, Energy
calculator, and Status Manager. The Reliability Controller is used to compute the reliability,
and the Energy Calculator unit calculates the energy usage of a VM while executing a

70

Chapter 6 Primary­Backup based Fault­tolerant Scheduling Algorithm

task. Further, the values obtained are used in the scheduling process while guaranteeing
fault­tolerance. The Status Manager computes and stores the VM’s state information in
the VM Status Table (VST). The information in VST is used for VM fault detection and
management. The fault detection is carried out after the execution of the primary copy.
If the execution of the primary copy of a task is successful, then the information is sent to
the Backup Controller, which in turn deallocates the resources fromVM, running the backup
copy of the task. On the other hand, if execution fails, then theBackup Controller is informed
to execute a backup copy of the task to achieve fault­tolerance.

6.2.1 Task Model

As Primary­Backup concept is used for fault­tolerant scheduling scheme, it is assumed that
each task tki has two copies, i.e., P_tki (primary) and B_tki (backup). Both primary and
backup copies have same task attributes, but executed on different VMs. Let, P_stji and
P_ftji are the start time and finish time of P_tki on VM vmj . For a backup copy,B_stji and
B_ftji indicates the start time and finish time, respectively. Let, P_esti and P_efti are the
earliest start time and finish time of primary copy whereas, B_lsti and B_lfti are the latest
start time and finish time of the backup copy. v(P_tki) and v(B_tki) represent the VMs
where P_tki and B_tki are allocated respectively. Let, P_etji and B_et

j
i are the expected

execution time of primary and backup copy of task tki on VM vmj respectively.

Definition 6.1. The earliest start time P_esti for P_tki is computed as:

P_stji = max(P_ftji , tk
ar
i), (6.1)

P_esti = min(P_stji) 1 ≤ j ≤ m. (6.2)

Definition 6.2. The earliest finish time P_efti for P_tki is computed as:

P_efti = P_esti + P_etji . (6.3)

Definition 6.3. The latest start time B_lsti for B_tki is obtained as follows:

B_stji = tkdli −B_et
j
i , (6.4)

B_lsti = max(B_stji) 1 ≤ j ≤ m. (6.5)

Equation 6.4 states that the start time of B_tki can be delayed by at most (tkdli −B_et
j
i).

Definition 6.4. The latest finish time B_lfti of B_tki is at most task’s deadline tkdli . It is
represented as:

B_lfti = tkdli . (6.6)

Definition 6.5. The relative interval between tkdli and P_ftji determines whether scheduling
of task tki on vmj is non fault­tolerant or fault­tolerant. It is assumed that deadline miss
indicates schedulability failure. Let,

SLj
i = tkdli − P_ft

j
i . (6.7)

71

Chapter 6 Primary­Backup based Fault­tolerant Scheduling Algorithm

Case 1: If SLj
i < 0 then P_ftji will exceed the deadline tkdli making the schedule non

fault­tolerant.
Case 2: If SLj

i ≥ 0 then task can be completed before its deadline making the schedule
fault­tolerant.
If all VMs in cloud system are non fault­tolerant for task tki then the scheduler should add
new VM.

Theorem 6.1. Let, v(P_tki) = vmj and v(B_tki) = vmk. The overall reliability of a task
tki with primary (P_tki) and backup (B_tki) replica is

R(tki) = e−vmfr
j ×P_Xj

i ×P_etji + e−vmfr
k ×B_Xj

i ×B_etji − e−vmfr
j ×P_Xj

i ×P_etji−vmfr
k ×B_Xj

i ×B_etji ,
(6.8)

where P_Xj
i andB_X

j
i are binary indicators showing if P_tki orB_tki is assigned to vmj

or not respectively.

Proof. The reliability of P_tki executed on VM vmj without failure is computed as:

rp = e−vmfr
j ×P_Xj

i ×P_etji . (6.9)

If execution of P_tki is not successful then backup copy B_tki is executed. The reliability
of B_tki executed on vmk is

rb = e−vmfr
k ×B_Xj

i ×B_etji . (6.10)

In the presence of failure the overall reliability of task tki is

R(tki) = rp+rb(1−rp) = e−vmfr
j ×P_Xj

i ×P_etji+e−vmfr
k ×B_Xj

i ×B_etji−e−vmfr
j ×P_Xj

i ×P_etji−vmfr
k ×B_Xj

i ×B_etji .
(6.11)

6.2.2 Fault Model

The fault model used is similar to the model presented in [5, 28, 91], and is summarized as
below:

− The faults can be transient or permanent and assumed to be independent and only
affect a single VM at any time instant,

− If the execution of the primary copy fails, then backup copy always finishes
successfully,

− If the execution of the primary copy is successful, the backup copy is terminated, and
reserved resources are deallocated from the VM running it,

− A new task will not be allocated to any known failed VM,

− An acceptance test is available to detect the failure of a VM.

72

Chapter 6 Primary­Backup based Fault­tolerant Scheduling Algorithm

The proposed fault model can be extended to tolerate multiple VM failures by first dividing
the VM set into several small groups. Then, in each group, the proposed fault model is
applied as reported in [109, 110] to process multiple VM failure.

6.3 Fault­tolerant Scheduling Algorithm

This section discusses the Reliability and Energy (REO) aware fault­tolerant scheduling
algorithm. The proposed approach uses the PB concept, BB overlapping, and backup
deallocation techniques. Before discussing the scheduling algorithm, an analysis of the BB
overlapping technique is presented in Section 6.3.1.

6.3.1 Backup­Backup Overlapping

In Backup­Backup (BB) overlapping, backups of multiple primaries are scheduled on the
same or overlapping time interval on a VM. The following conditions must be satisfied for
the overlapping of backups on a VM.

C1: The primary (P_tki) and backup (B_tki) copy of a task tki must be mutually
exclusive in space. It can be formulated as:

v(P_tki) ̸= v(B_tki). (6.12)

This condition helps to overcome permanent failure as backup copy always completes task
execution in the presence of execution failure of the primary copy.

C2: For an active backup copy of a task condition in Equation 6.13 must hold.

P_stji ≤ B_stji ≤ P_ftji (6.13)

C3: For passive backup copy of a task (say tbki) condition in Equation 6.14 must hold.

P_ftji ≤ B_stji (6.14)

VM vmj in both C2 and C3 must satisfy C1.
C4: Even though multiple backups can have overlapping time interval on a VM but only

one backup is allowed to execute at any time instant. Let slot(.) shows the time interval
between start time and finish time. For instance, for tki, tkk ∈ T and v(P_tki) = v(B_tki),
if slot(B_tki) ∩ slot(B_tkk) ̸= ϕ (overlapping time interval) then at any time either B_tki
or B_tkk will be executed.

C5: At most, one primary copy is expected to encounter fault to ensure only one backup
will be executed among overlapped backups.

The overlapping technique for active and backup copies is formalized in the following
Theorems.

73

Chapter 6 Primary­Backup based Fault­tolerant Scheduling Algorithm

Theorem 6.2. Given two tasks tki, tkk ∈ T , passive backup copies B_tki and B_tkk can
be overlap only if P_tki and B_tkk are on different VMs. It is represented as:

(v(B_tki) = v(B_tkk)) ∧ ((slot(B_tki) ∩ slot(B_tkk)) ̸= ϕ)⇒ v(P_tki) ̸= v(P_tkk).
(6.15)

Proof. By contradiction, let P_tki and P_tkk are scheduled on same VM, i.e., v(P_tki) =
v(P_tkk) = vm1. Further B_tki overlap B_tkk, i.e., (slot(B_tki) ∩ slot(B_tkk)) ̸= ϕ as
shown in Figure 6.2. If vm1 fails, both backup copies need to be executed at same time on
same VM. This situation cause timing conflict due to condition C4. A contradiction occurs.
Hence, v(P_tki) ̸= v(P_tkk).

vm1

vm2

Primary

Backup tki

Backup tkk

Overlapped

Backups

fault

P_tki

B_tk i B_tkk

fault

P_tkk

time

Figure 6.2: Overlapping of Two Passive Backup Copies

Theorem 6.3. Given two tasks tki, tkk ∈ T , if at least one of the backup copy (B_tki or
B_tkk) is active then B_tki can not overlap B_tkk.

Proof. Let, B_tki overlap with B_tkk.
Case 1: Both B_tki and B_tkk are active backup copies. The two copies need to be

executed simultaneously on the same VM due to the property of active backup copy, i.e.,
(slot(B_tki) ∩ slot(B_tkk)) ̸= ϕ if P_tki and P_tkk fails. This cause a contradiction
according to conditions C4 and C5. Hence, B_tki cannot overlap B_tkk.

Case 2: Let B_tki is passive and B_tkk is active backup copy. If P_tki fails at time
t, where t ≤ P_ftji ≤ B_stji , B_tki is invoked. Due to property of active backup copy,
B_tkk is executed along with P_tkk. So, invocation of B_tki causes B_tkk and B_tki to
execute simultaneously. This is a contradiction according to condition C4. Hence, B_tki
cannot overlap B_tkk. An example of this situation is shown in Figure 6.3.

Case 3: B_tki is active andB_tkk is passive backup copy. If P_tkk fails at time twhere,
t ≤ B_stjk ≤ B_ftji , B_tkk is invoked. Based on property of active backup copy B_tki
is executed along with P_tki. The invocation of B_tkk causes B_tki and B_tkk to execute
simultaneously. Hence, B_tkk cannot overlap B_tki according to condition C4.

Theorem 6.4. Given two tasks tki, tkk ∈ T , if active backup copy B_tki overlaps with
passive backup copy B_tkk then the earliest start time of B_tkk is

B_estk ≥ max(P_efti, P_eftk). (6.16)

Proof. Let, P_tkk fails at time t where t ≤ B_stjk < B_ftji , B_tkk is invoked. As B_tki
overlap B_tkk, i.e., (slot(B_tki) ∩ slot(B_tkk)) ̸= ϕ. This situation as shown in Figure

74

Chapter 6 Primary­Backup based Fault­tolerant Scheduling Algorithm

vm1

vm2

vm3

fault

P_tki

B_tki B_tkk

P_tkk

Primary

Backup tki

Backup tkk

Overlapped

Backupstime

Figure 6.3: Overlapping of Passive and Active Backup Copies (Case 2)

6.4 makes both copies to execute simultaneously at same VM, but a conflict occurs due to
conditionC2. So, earliest start time ofB_tkk must be later than the finish time of P_tki and
P_tkk. Hence,

B_estk ≥ max(P_efti, P_eftk). (6.17)

Primary

Backup tki

Backup tkk

Overlapped

Backups

vm1

vm2

vm3

fault

P_tki

B_tki B_tkk

P_tkk

time

fault

Figure 6.4: Overlapping of Active and Passive Backup Copies with Earliest Start Time

6.3.2 Scheduling Strategy

An acceptance test­based framework is designed to detect VM failure. The failure detection
is based on schedulability failure (deadline miss) (p_1) and response time failure (p_2) of
a VM. The response time of a task P_tki on VM vmj is defined as the interval between
the arrival of a task, and it’s finish time, i.e., P_rtji = P_efti − tkari . Let H(P_rtji) and
L(P_rtji) is the higher and lower limit of response time possible for a task on vmj . If
P_rtji < L(P_rtji) or P_rt

j
i > H(P_rtji), it is assumed that there is response time failure

for vmj . The response time calculation for a task P_tki is shown in Algorithm 6.1.
The schedulability failure is signified by whether a task meets its deadline or not. It

is assumed that the primary copy of a task should be assigned to a VM with the earliest
finish time, whereas the backup copy should be assigned to a VMwith the latest start time to
achieve fault­tolerance. Algorithm 6.2 and Algorithm 6.3 gives the detail of schedulability
failure of the primary and backup copy of a task, respectively.

75

Chapter 6 Primary­Backup based Fault­tolerant Scheduling Algorithm

Algorithm 6.1 : RT (P_tki, vmj)

Input: P_tki, vmj

Output: Decision regarding response time failure
1: Compute P_rtji = P_efti − tkari ;
2: if L(P_rtji) ≤ P_rtji ≤ H(P_rtji) then
3: Return True;
4: else
5: Return False;
6: end if

Algorithm 6.2 : P_Sched_tsk (P_ftji , tkdli)
Input: P_ftji , tkdli
Output: Decision regarding primary copy deadline miss

1: if P_ftji ≤ tkdli then
2: Return True;
3: else
4: Return False;
5: end if

In this work, the timeliness (response time failure) and performance (schedulability
failure) criteria are used to study a VM’s behavior and check whether its Faulty or not.
Let, np_1(vmj) and np_2(vmj) count the number of times p_1 and p_2 occurs on VM vmj

respectively. mp_1 andmp_2 are the median of number of reports of p_1 and p_2 on all the
VMs respectively. Compute pc_a(vmj) =| np_a(vmj)−mp_a

mp_a |, where a = 1, 2. Let, Th_p_a
be the threshold value for p_a and stat(vmj) represents the status of vmj . The detailed
of acceptance test framework is shown in Algorithm 6.4. Usually, an acceptance test for
the real­time task considers the only schedulability failure [109]. In this context, a two­step
fault detection method is employed in this work. In the first step it is checking whether the
schedulability failure of VM reaches a threshold or not. If VM passes this test, then the
response time failure count is checked. Based on whether the counter reaches the threshold
value or not, VM’s status is set to Faulty or OK.

The primary copies in REO are assigned according to As Early As Possible (AEAP)
mechanism. Figure 6.5 shows the working of the primary copy schedule. At first, a primary

Algorithm 6.3 : B_Sched_tsk (B_stki , tkdli)
Input: B_stki , tkdli
Output: Decision regarding backup copy deadline miss

1: if B_stki ≤ tkdli then
2: Return True;
3: else
4: Return False;
5: end if

76

Chapter 6 Primary­Backup based Fault­tolerant Scheduling Algorithm

Start

Select P_tk i and check
status and reliability

value of vmj

vm
j
rel

vm
j

stat ()== Ok

>Threshold

?

Y

N

Compute ui
j

& sort it (u_sort)

No
Operation

u_sort != Null

Select x % VM

Y

Assign P_tk i to
vmj

Compute status off
vmj using

acceptance test

stat(vmj)== Ok
?

Deallocate resource of
backup copy

Execute backup
copy

N

Y

End

N

deadline
constraint ?

find vmj with earliest
finish time

Y

N

Add new VM

Figure 6.5: Flowchart of Primary Copy Scheduling

copy of a task is selected, and then the status and reliability value of each VM is checked. If
the condition holds, the utility value is computed. The VMs are sorted based on utility value
(u_sort). Then top x% VMs are selected from the sorted list. A VM (vmj), which satisfies
deadline constraint and has the earliest finish time, is selected to execute P_tki. The status
of vmj is computed using the acceptance test. If the status of vmj is Ok, then deallocate
resources for the backup copy; otherwise, execute the backup copy of the task.

The objective of primary copy scheduling in REO presented in Algorithm 6.5 is to
allocate primary copies to the VM with the earliest finish time and satisfy scheduling
objectives. The working of Algorithm 6.5 is as follows: top x% VMs, which satisfies
the scheduling objective, is chosen as candidate VMs (lines 3 ­ 10). Then, the VM with
the earliest finish time is chosen to execute the task’s primary copy (lines 12 ­ 23). If
there is no VM in candidate VM set V _cand, then the next x% VMs in u_sort will be

77

Chapter 6 Primary­Backup based Fault­tolerant Scheduling Algorithm

Start

Select B_tk i whose
P_tk i is allocated

vm
k
rel

vm
k

stat ()== Ok

>Threshold

?

Y

N

Compute ui
j

& sort it (u_sort)

No
Operation

u_sort != Null

Select top x % VM

Y

Assign B_tk i to
vmk

End

N

deadline
constraint ?

find vmj with latest
 start time

Y

N

Add new VM

Figure 6.6: Flowchart of Backup Copy Scheduling

used to find the appropriate VM (lines 24 ­ 26). The overall process helps to map primary
copy to a VM that can complete its execution as early as possible while optimizing the
scheduling objective. Despite this, if there is no VM in the current cloud system that can
execute P_tki, then add new VMs (lines 28 ­ 30). After the VM performing its intended
computation, an acceptance test A_Test(v(P_tki)) is carried out. If A_Test(v(P_tki))
returns status of VM,i.e., stat(v(P_tki)) asOk then it is considered that execution of P_tki
is successful and Algorithm 6.6 is called to deallocate resources from VM where backup is
assigned. IfA_Test(v(P_tki)) returns stat(v(P_tki)) asFaulty, backup copy is scheduled
by B_sch(B_tki, vmk) (lines 32 ­ 39). If for any task tki, task_completed(tki) ̸= 1 then it
is rejected (lines 41 ­ 45).

Theorem 6.5. The time complexity for scheduling primary copy in REO as discussed in
Algorithm 6.5 is O(m2n + nmlogm) where m is number of VM in the system, and n is
number of task in the system.

78

Chapter 6 Primary­Backup based Fault­tolerant Scheduling Algorithm

Algorithm 6.4 : A_Test (vmj)

Input: vmj

Output: VM status
1: if P_Sched_tsk (P_ftji , vmj)) == False then
2: np_1(vmj) = np_1(vmj) + 1;
3: end if
4: if RT (P_tki, vmj) == False then
5: np_2(vmj) = np_2(vmj) + 1;
6: end if
7: for a = 1, 2 do
8: Compute pc_a(vmj);
9: end for
10: if pc_1(vj) ≥ Th_p_1 then
11: Return Faulty;
12: else if pc_2(vmj) ≥ Th_p_2 then
13: Return Faulty;
14: else
15: Return Ok;
16: end if

Proof. The worst case time complexity to compute uji is O(m) (lines 4 ­ 8). The sorting
process takes O(mlogm) times. The worst case time complexity to determine the VM
with earliest finish time for P_tki is O(m2) (lines 11 ­ 27). The rest of the lines has time
complexityO(1). The time complexity of the algorithm isn(O(m)+O(mlogm)+O(m2)) =
O(mn) +O(nmlogm) +O(m2n) = O(m2n+ nmlogm).

The objective of backup copy scheduling is to allocate backup copies to a VM with the
latest start time so that the scheduling objective is optimized. The backup copy scheduling
employs the As Late As Possible (ALAP) mechanism and is discussed in Algorithm 6.7.
Figure 6.6 shows the working of the backup copy schedule. At first, backup copy (B_tki) of
a task is selected whose primary copy is scheduled, and then the status and reliability value
of each VM is checked. If the condition holds, the utility value is computed. The VMs are
sorted based on utility value (u_sort). Then top x% VMs are selected from the sorted list.
A VM (vmk), which satisfies deadline constraint and has the latest start time, is selected to
execute B_tki.

The working of scheduling backup copy in REO is as follows: first, it finds VM onwhich
primary copy is not scheduled and calculates uki on these VMs (lines 4 ­ 8). Then VM with
the latest start time is found among the candidate VM set V _cand (lines 11 ­ 23). If the
selected x% VM fails to execute B_tki then select the next x% VMs until u_sort ̸= Null

(lines 24 ­ 26). If scheduler fails to find an appropriate VM for B_tki then add new VMs
(lines 28 ­ 30); otherwise, B_tki is assigned to selected VM in V _sel. If for any task tki,
task_completed(tki) ̸= 1 then reject both P_tki and B_tki (lines 35 ­ 39).

Theorem 6.6. The time complexity for scheduling backup copy in REO as discussed in
Algorithm 6.7 is O(m2n + nmlogm) where m is number of VM in the system, and n is

79

Chapter 6 Primary­Backup based Fault­tolerant Scheduling Algorithm

Algorithm 6.5 : P_sch (P_tki, vmj)

Input: P_tki, vmj

Output: Schedule for P_tki
1: task_competed(P_tki)← 0;
2: for each task tki, schedule the primary copy P_tki do
3: find← False;
4: for each VM vmj in the system do
5: if stat(vmj) == Ok ∧ vmrel

j > R_Th then
6: Calculate uji using Equation 5.2.
7: end if
8: end for
9: u_sort← sort(u); /* sort() function arrange the elements in ascending order */
10: V _cand← top x% of VM in usort;
11: while u_sort ̸= Null do
12: P_efti ←∞, Vsel ← Null;
13: for each VM vmj in V _cand do
14: Compute P_ftji ;
15: if P_sched_tsk (P_ftji , tkdli) == True then
16: find← True;
17: if P_ftji < P_efti then
18: P_efti ← P_ftji ;
19: vsel ← vmj;
20: task_completed(P_tki) = 1;
21: end if
22: end if
23: end for
24: if find == False then
25: Vcand ← next top x% of VM in u_sort;
26: end if
27: end while
28: if find == False then
29: Add new VM;
30: end if
31: v(P_tki)← vsel;
32: stat(v(P_tki))← A_Test (v(P_tki));
33: if find == True then
34: if stat(v(P_tki)) == Ok then
35: Synch (P_tki);
36: else
37: B_Sch (B_tki, vmk);
38: end if
39: end if
40: end for
41: for each task tki do
42: if task_completed(P_tki) ̸= 1 then
43: Reject P_tki;
44: end if
45: end for

80

Chapter 6 Primary­Backup based Fault­tolerant Scheduling Algorithm

Algorithm 6.6 : Synch (P_tki, stat(v(P_tki)))
Input: P_tki, stat(v(P_tki))
Output: Schedule for P_tki

1: if stat(v(P_tki)) == Ok then
2: Store the result;
3: Deallocate B_tki;
4: end if

Algorithm 6.7 : B_Sch (B_tki, vmk)
Input: B_tki, vmk

Output: Schedule for B_tki
1: task_competed(B_tki)← 0;
2: for each task tki whose P_tki has been allocated, schedule B_tki do
3: find← False;
4: for each VM vmk in V \ v(P_tki) do
5: if stat(vmk) == Ok ∧ vmrel

k > R_Th then
6: Calculate uki using Equation 5.2;
7: end if
8: end for
9: u_sort← sort(u);
10: V _cand← top x% of VM in u_sort;
11: while u_sort ̸= Null do
12: B_lsti ← −∞, V _sel← Null;
13: for each VM vmk in V _cand do
14: Compute B_stki ;
15: if B_sched_tsk (B_stki , tkdli) == True then
16: find← True;
17: if B_stki > B_lsti then
18: b_lsti ← B_stki ;
19: V _sel← vmk;
20: task_completed(B_tki) = 1;
21: end if
22: end if
23: end for
24: if find == False then
25: V _cand← next top x% of VM in u_sort;
26: end if
27: end while
28: if find == False then
29: Add new VM;
30: end if
31: if find == True then
32: v(B_tki)← v_sel;
33: end if
34: end for
35: for each task tki do
36: if task_completed(B_tki) ̸= 1 then
37: Reject P_tki and B_tki;
38: end if
39: end for

81

Chapter 6 Primary­Backup based Fault­tolerant Scheduling Algorithm

number of task in the system.

Proof. The worst case time complexity to compute uki is O(m) (lines 4 ­ 8). The sorting
process of VM based on utility value takes O(mlogm) times. The worst case time
complexity to determine the VM with earliest finish time for B_tki is O(m2) (lines 11 ­
27). The rest of the lines has time complexity O(1). The time complexity of the algorithm
is n(O(m) + O(mlogm) + O(m2)) = O(mn) + O(nmlogm) + O(m2n) = O(m2n +
nmlogm)

6.4 Performance Evaluation

The proposed REO fault­tolerant scheduling algorithm is compared with the algorithms
FESTAL [5] and FTESW [91], which are briefly summarized below.

• FESTAL [5]: The fault­tolerant scheduling algorithm is designed considering the PB
model and BB overlapping. FESTAL considers only AEAP and ALAP mechanism,
whereas, in REO, both energy consumption and reliability are considered along with
AEAP and ALAP mechanism for VM selection.

• FTESW [91]: It uses the PBmodel but without overlapping concepts alongwithAEAP
and ALAP mechanism to achieve fault­tolerance.

The metrics Success Ratio (SR), total energy consumption (δ), and makespan (τ) are used
to evaluate the performance of REO, FTESW and FESTAL algorithms.

6.4.1 Simulation Framework

Figure 6.7 shows the simulation framework used for this work for a fault­tolerant cloud
system. The task generated by the task generator is sent to the task scheduler. The task
scheduler uses scheduling mechanisms and constraints to map a task to an appropriate VM in
the VM pool. To realize the fault­tolerance fault injector and fault detector modules are used.
The fault injector randomly selects a VM from the VM pool and generates fault instances
according to a specified fault rate. The fault detector runs along with the task scheduler to
detect whether a primary copy is Faulty or not. It starts at the end of the execution of the
primary copy. The values of parameters are listed in Table 6.1.

6.4.2 Simulation Setting

The detailed settings and parameters for simulation are given below.

• Task deadline is set as tkdli = tkari + baseD where baseD is in Uniform distribution
U(4, 8).

82

Chapter 6 Primary­Backup based Fault­tolerant Scheduling Algorithm

Task
Generator

Task
Generator

Task
Generator
VM Pool

Task
Generator

Task
Scheduler

Task
Generator

Fault

Injector

Task
Generator

Fault

Detector

Task
Generator

Set of
<task, VM >

pair

Figure 6.7: Block Diagram of Fault­tolerant Simulation Framework

Table 6.1: Parameters for Simulation Studies

Parameter Value (Fixed) ­(Varied)
Task Count 1000 − (200, 400, 600, 800, 1000)

VM Count 80 − (40, 60, 80, 100)

tsvar 1500 − (500, 1000, 1500, 2000, 2500)

spvar 400 − (200, 400, 600, 800, 1000)

task arrival rate (λ) 0.05 ­ (0.01, 0.03, 0.05, 0.08, 0.1)

baseD 4 ­ (2, 4, 6, 8)

• Let task size represents the task heterogeneity. It is uniformly distributed in the range
[tsavg − tsvar] and [tsavg + tsvar] where tsavg is average task size and tsvar is variable
scope taking tsavg = 5000MI as center respectively.

• Let VM speed indicates VM heterogeneity. It is uniformly distributed in the range
[spavg − spvar] and [spavg + spvar] where spavg is average VM speed and spvar is
variable scope taking spavg = 1500MIPS as center respectively.

• The failure rate of VM vmj follows Uniform distribution U(1.0× 10−6, 3.5× 10−6)

per hour [26].

The development of IT infrastructure and applications makes heterogeneous tasks and VM
obvious in the cloud system. In this context, a set of experiments were conducted to analyze
the impact of task and VM heterogeneity on system performance. Besides the effect of task
and VM count, arrival rate and deadline variation on system performance are also discussed
in the next section.

6.4.3 Impact of Task Heterogeneity on System Performance

The effect of task heterogeneity on system performance is shown in Figure 6.8. If the task set
has tasks whose task size is near the minimum limit, tasks have a short task execution time.
Similarly, a task set with task size near themaximum limit has prolonged task execution time.
The short execution time contributes to lowmakespan, and the long execution time increases

83

Chapter 6 Primary­Backup based Fault­tolerant Scheduling Algorithm

the makespan. Hence the simulation outcome, as shown in Figure 6.8a for makespan, has
little variation. Further, the chance of a task misses its deadline is more for long execution
time, reducing the Success Ratio. The Success Ratio is high because of short task execution
time as it allows the task to finish execution before the deadline. So the Success Ratio due
to task heterogeneity is, as given in Figure 6.8b. The short execution time contributes to
low total energy consumption, whereas the long execution time increases VM’s active time,
which raises the total energy consumption. The effect of the heterogeneous task set on total
energy consumption is shown in Figure 6.8c. However, the proposed acceptance test for VM
fault detection and backup deallocation technique helps REO perform better against FTESW
and FESTAL. The simulation outcome confirms that REO is adaptive to different task sizes.

500 1000 1500 2000 2500
Average Task Size

0

1000

2000

3000

4000

5000

M
ak

es
p

an
 (

S
ec

o
n

d
)

REO
FTESW
FESTAL

(a) Makespan

500 1000 1500 2000 2500
Average Task Size

0

20

40

60

80

100

S
u

cc
es

s
R

at
io

(%
)

REO
FTESW
FESTAL

(b) Success Ratio

500 1000 1500 2000 2500
Average Task Size

0

2

4

6

8

T
o

ta
l

E
n

er
g

y
 C

o
n

su
m

p
ti

o
n

 (
Jo

u
le

)

106

REO
FTESW
FESTAL

(c) Total Energy Consumption

Figure 6.8: Impact of Task Heterogeneity on System Performance

200 400 600 800 1000
Average VM Speed

0

1000

2000

3000

4000

M
ak

es
p

an
 (

S
ec

o
n

d
)

REO
FTESW
FESTAL

(a) Makespan

200 400 600 800 1000
Average VM Speed

0

20

40

60

80

100

S
u

cc
es

s
R

at
io

(%
)

REO
FTESW
FESTAL

(b) Success Ratio

200 400 600 800 1000
Average VM Speed

0

2

4

6

T
o

ta
l

E
n

er
g

y
 C

o
n

su
m

p
ti

o
n

 (
Jo

u
le

)

106

REO
FTESW
FESTAL

(c) Total Energy Consumption

Figure 6.9: Impact of VM Heterogeneity on System Performance

6.4.4 Impact of VM Heterogeneity on System Performance

The performance of the cloud system considering VM heterogeneity is shown in Figure 6.9.
If the VM set contains low­speed VMs, tasks have long execution time, and the VM set
with high­speed VMs short execution time. Therefore the makespan is stable in Figure 6.9a.
The Success Ratio decreases as the prolonged execution time cause many tasks to miss their

84

Chapter 6 Primary­Backup based Fault­tolerant Scheduling Algorithm

deadline. Besides, the short task execution time results increase the Success Ratio. This is
because many tasks complete their execution before the deadline due to the short execution
time. The small variation in Success Ratio, as given in Figure 6.9b, confirms the effect of
VM heterogeneity on it. The low­speed VM consumes less energy compared to high­speed
VM. So the total energy consumption is stable for heterogeneous VM set as given in Figure
6.9c. However, the proposed acceptance test for VM fault detection and backup deallocation
technique causes REO performance improvement against FTESW and FESTAL.

6.4.5 Impact of VM Count on System Performance

The impact of VM count on system performance, as given in Figure 6.10 is obtained by
varying it in the range [40 − 100] with a step of 20. The increase in VM count results
execution of a large number of tasks on different VMs simultaneously. This reduces the total
execution time and, thus, the makespan, as given in Figure 6.10a. The addition in VM count
allows many tasks to execute before the deadline. Hence, there is an increase in the Success
Ratio, as shown in Figure 6.10b. The total energy consumption increase as many tasks are
executed with constant VM count in the system. Further, idle VM’s presence due to large
VM count contributes to idle energy consumption and, hence, the total energy consumption,
as shown in Figure 6.10c. Besides, the simulation outcomes also show that REO performs
better compared to FTESW and FESTAL.

40 60 80 100
VM Count

0

1000

2000

3000

4000

M
ak

es
p

an
 (

S
ec

o
n

d
)

REO
FTESW
FESTAL

(a) Makespan

40 60 80 100
VM Count

0

20

40

60

80

100

S
u

cc
es

s
R

at
io

(%
)

REO
FTESW
FESTAL

(b) Success Ratio

40 60 80 100
VM Count

0

2

4

6

8

T
o

ta
l

E
n

er
g

y
 C

o
n

su
m

p
ti

o
n

 (
Jo

u
le

)

106

REO
FTESW
FESTAL

(c) Total Energy Consumption

Figure 6.10: Impact of VM Count on System Performance

6.4.6 Impact of Task Count on System Performance

The task count is varied in the range [200 − 1000] with an interval of 200. Its impact on
system performance is shown in Figure 6.11. The rise in task count increases the makespan.
This can be attributed to the fact that the increase in the number of tasks increases the total
execution time, increasing the makespan. Hence the simulation outcome, as shown in Figure
6.11a, decreases with an increase in task count. There are chances that some tasks miss their
deadline due to high task count. So the Success Ratio, as given in Figure 6.11b, decreases

85

Chapter 6 Primary­Backup based Fault­tolerant Scheduling Algorithm

for increased task count. Further, the increase in task count increases the total energy
consumption because of the rise in VM’s active time. Thus the total energy consumption
decreases with increases in task count in Figure 6.11c. From the simulation outcomes, it can
be observed that the proposed acceptance test and backup deallocation technique helps REO
to achieve better performance in comparison with FTESW and FESTAL.

200 400 600 800 1000
Task Count

0

1000

2000

3000

M
ak

es
p

an
 (

S
ec

o
n

d
)

REO
FTESW
FESTAL

(a) Makespan

200 400 600 800 1000
Task Count

0

20

40

60

80

100

S
u

cc
es

s
R

at
io

(%
)

REO
FTESW
FESTAL

(b) Success Ratio

200 400 600 800 1000
Task Count

0

2

4

6

T
o

ta
l

E
n

er
g

y
 C

o
n

su
m

p
ti

o
n

 (
Jo

u
le

)

106

REO
FTESW
FESTAL

(c) Total Energy Consumption

Figure 6.11: Impact of Task Count on System Performance

0.02 0.04 0.06 0.08 0.1
Arrival Rate

0

1000

2000

3000

4000

5000

M
ak

es
p

an
 (

S
ec

o
n

d
)

REO
FTESW
FESTAL

(a) Makespan

0.02 0.04 0.06 0.08 0.1
Arrival Rate

0

20

40

60

80

100

S
u

cc
es

s
R

at
io

(%
)

REO
FTESW
FESTAL

(b) Success Ratio

0.02 0.04 0.06 0.08 0.1
Arrival Rate

0

2

4

6

8
T

o
ta

l
E

n
er

g
y

 C
o

n
su

m
p

ti
o

n
 (

Jo
u

le
)

106

REO
FTESW
FESTAL

(c) Total Energy Consumption

Figure 6.12: Impact of Arrival Rate on System Performance

6.4.7 Impact of Arrival Rate on System Performance

Figure 6.12 shows the effect of arrival rate on system performance by varying arrival rate
(λ) from 0.01 to 0.1with step 0.02. The increase in arrival rate causes the presence of a lot of
taskswithin a short time, so a task gets less time to complete its execution. Since a small set of
the task gets executed, makespan decreases with an increase in arrival rate as given in Figure
6.12a. Further presence of large tasks within a short time interval results in deadline misses
for many tasks. Hence the Success Ratio decreases as given in Figure 6.12b with an increase
in arrival rate. Besides, the reduction in the number of task execution decreases total energy
consumption. As shown in Figure 6.12c for total energy consumption, the simulation result
decreases with an increase in arrival rate. However, the proposed acceptance test for VM

86

fault detection allows REO to achieve improved system performance compared to FTESW
and FESTAL.

6.4.8 Impact of Deadline Variation on System Performance

Figure 6.13 shows the effect of deadline variation on system performance. The baseD
value is varied in the range [2 − 8]. The rise in baseD allows a large set of tasks to finish
their execution, increasing the total execution time. The total execution time contributes
to increasing makespan, as given in Figure 6.13a for an addition in baseD. Furthermore,
many tasks complete their execution before the deadline because of an increase of baseD.
So there is a rise in Success Ratio as given in Figure 6.13b. The total energy consumption
increases with an addition in baseD, as shown in Figure 6.13c. This is because the large set
of task execution increases the active time of VM. However, the proposed acceptance test
helps REO complete its execution with a backup copy if a task’s primary copy fails. So there
is less number of task that miss the deadline or gets rejected. The simulation outcomes show
the performance improvement of REO over FTESW and FESTAL.

2 4 6 8
baseD

0

1000

2000

3000

4000

5000

M
ak

es
p

an
 (

S
ec

o
n

d
)

REO
FTESW
FESTAL

(a) Makespan

2 4 6 8
baseD

0

20

40

60

80

100

S
u

cc
es

s
R

at
io

(%
)

REO
FTESW
FESTAL

(b) Success Ratio

2 4 6 8
baseD

0

2

4

6

8
T

o
ta

l
E

n
er

g
y

 C
o

n
su

m
p

ti
o

n
 (

Jo
u

le
)

106

REO
FTESW
FESTAL

(c) Total Energy Consumption

Figure 6.13: Impact of Deadline Variation on System Performance

6.5 Summary

This Chapter introduces a Primary­Backup based fault­tolerant scheduling algorithm to
enhance system performance in terms of energy consumption and reliability. The scheduling
goal is realized by the PB concept and BB overlapping mechanism. The experimental
outcomes implied that the proposed PB­based approach performs better compared to existing
algorithms considered for comparison. Compared to FTESW, the performance improvement
of REO in Success Ratio is 10.4%, makespan is 8.7%, and the total energy consumption is
7.9%. Similarly, REO has an improvement of 10.9% in Success Ratio, 8.3% in makespan,
and 8.9% in total energy consumption.

The next Chapter concludes the thesis and highlights the future direction of work.

Chapter 7

Conclusions and Future Directions

The work presented in the thesis is guided by the need for multi­objective scheduling
solutions for the real­time task in a cloud system. At first, the proposed cloud system
model is discussed that includes the VM model, task model, generalized scheduling model,
cost model, energy model, and the reliability model, etc. Then a brief review of various
real­time task scheduling techniques, considering performance metrics like energy, cost, and
methodologies used, is analyzed. In the remainder of this chapter, a summary of the original
contributions made in the thesis are discussed. Finally, some directions for future work are
highlighted.

7.1 Contributions

This section summarizes the contributions made in this thesis.

7.1.1 VM Scoring based Approach

In this work (Chapter 3), a scheduling algorithm is proposed for real­time tasks to minimize
energy consumption and execution cost simultaneously. A scoring value concept similar
to the TOPSIS analysis method, is used to rank a VM for a task. The scoring function is
defined in terms of energy consumption and execution cost of a task on aVM.VM selection’s
scoring value helps to map a task to its optimal VM by energy consumption, execution
cost, and timing constraint. Besides, an Energy and Cost Aware task scheduling (ECA)
algorithm is presented considering the proposed VM scoring based scheduling architecture.
The simulation results show the suitability of ECA for real­time tasks compared to some
existing algorithms.

7.1.2 Learning Automata­based Approach

An LA­based scheduling framework for real­time tasks is introduced in Chapter 4. Later, an
LA­based Scheduling (LAS) algorithm is presented for finding the solution to a bi­objective
scheduling problem that includes the minimization of energy consumption and makespan.
The solution is found using a reinforcement method where task assignment is rewarded if it
improves the scheduling objective; otherwise, it is penalized. The process continues until a

88

Chapter 7 Conclusions and Future Directions

maximum iteration is found, and the task assignment with maximum reward is considered
the best solution. Further, the LAS algorithm is explained with an example. An extensive
set of experiments were conducted to show the effectiveness of LAS over its peers.

7.1.3 Game Theory based Approach

A game theory based scheduling algorithm is discussed in Chapter 5. First, the scheduling
problem considers energy consumption and reliability and is modeled as a non­cooperative
scheduling game, RTSG. Then Vickery auction mechanism is used to find the Nash
Equilibrium that indicates the best possible solution for the RTSG game. Further, the RTSG
game outcome is compared with a cooperative game­based solution and an auction­based
approach. The simulation results show the effectiveness of the proposed game­based
scheduling solution compared to similar approaches.

7.1.4 Primary­Backup based Approach

In Chapter 6, an acceptance test mechanism considering schedulability and response time
failure for the detection of VM failure is presented. A reliability and energy­aware
fault­tolerant scheduling algorithm, REO, is proposed using the PB concept and BB
overlapping technique for the real­time task on a cloud system. A series of experiments
on a simulated cloud environment is conducted to demonstrate REO’s performance
improvements. Further, the comparison of REO with some existing approaches shows its
effectiveness over others.

7.1.5 Summary

As energy conservation is an essential aspect of a cloud system, in this thesis, four
multi­objective scheduling solutions are proposed for the real­time task considering energy
consumption as one of the objectives. Different approaches employed to find the solution
includes the Multi­Objective Decision Making (MODM) technique (Chapter 3), Learning
Automata (LA) (Chapter 4), game theory (Chapter 5), and Primary­Backup (PB) technique
(Chapter 6). MODM technique is used to minimize the energy consumption and execution
cost jointly. The bi­objective energy consumption and makespan minimization problem is
solved using the LA method. Game theory based task scheduling solution is to optimize the
energy consumption and reliability in a cloud system. A fault­tolerant scheduling approach
is discussed using the PB technique and BB overlapping technique to optimize energy
consumption and reliability.

89

7.2 Future Research Directions

The scope of this research is not limited to only these aspects. Still, it has room for further
enhancement. Possible future research directions are outlined below.

− The proposed task model is for inter independent tasks only, but there are also
instances of dependent tasks and parallel workloads. So, the proposed techniques can
be extended for other task models.

− The proposed scheduling approach in Chapter 3 is designed considering only
execution cost. Further, it can be extended, taking into account communication and
storage cost.

− In general, a game model can be cooperative or non­cooperative. The proposed work
considers a non­cooperative scheduling game, which can be further designed as a
cooperative scheduling game. Here, the Vickery auction mechanism is employed to
findNash solution; researchers can use other auctionmechanisms like English auction,
Dutch auction, etc. to do the same.

− The proposed PB based fault­tolerant approach can be extended to support multiple
VM faults. Further, other fault tolerance techniques like a checkpoint, resubmission,
etc. can be explored for real­time task scheduling in the cloud system.

− Reinforcement learning helps to gradually learn from the environment through reward
and penalty for action. Further, in recent times, machine learning is a popular
technique used in multidisciplinary fields. These learning methods can be explored
for multi­objective real­time task scheduling problem.

References

[1] X. Zhu, L. T. Yang, H. Chen, J. Wang, S. Yin, and X. Liu, “Real­time tasks oriented energy­aware
scheduling in virtualized clouds,” IEEE Transactions on Cloud Computing, vol. 2, no. 2, pp. 168–180,
2014.

[2] H. Chen, X. Zhu, D. Qiu, H. Guo, L. T. Yang, and P. Lu, “Eons: minimizing energy consumption for
executing real­time workflows in virtualized cloud data centers,” in 45th International Conference on
Parallel Processing Workshops (ICPPW). IEEE, 2016, pp. 385–392.

[3] S. K. Mishra, D. Puthal, J. J. Rodrigues, B. Sahoo, and E. Dutkiewicz, “Sustainable service allocation
using a metaheuristic technique in a fog server for industrial applications,” IEEE Transactions on
Industrial Informatics, vol. 14, no. 10, pp. 4497–4506, 2018.

[4] Y. Gao, Y. Wang, S. K. Gupta, and M. Pedram, “An energy and deadline aware resource
provisioning, scheduling and optimization framework for cloud systems,” in Proceedings of the Ninth
IEEE/ACM/IFIP International Conference on Hardware/Software Codesign and System Synthesis.
IEEE Press, 2013, p. 31.

[5] J. Wang, W. Bao, X. Zhu, L. T. Yang, and Y. Xiang, “Festal: fault­tolerant elastic scheduling
algorithm for real­time tasks in virtualized clouds,” IEEE Transactions on Computers, vol. 64, no. 9,
pp. 2545–2558, 2014.

[6] X. Qiu, Y. Dai, Y. Xiang, and L. Xing, “A hierarchical correlation model for evaluating reliability,
performance, and power consumption of a cloud service,” IEEE Transactions on Systems, Man, and
Cybernetics: Systems, vol. 46, no. 3, pp. 401–412, 2015.

[7] X.­Q. Pham, N. D. Man, N. D. T. Tri, N. Q. Thai, and E.­N. Huh, “A cost­and performance­effective
approach for task scheduling based on collaboration between cloud and fog computing,” International
Journal of Distributed Sensor Networks, vol. 13, no. 11, pp. 1–16, 2017.

[8] J. Koomey et al., “Growth in data center electricity use 2005 to 2010,” A report by Analytical Press,
completed at the request of The New York Times, vol. 9, p. 161, 2011.

[9] F. Juarez, J. Ejarque, and R. M. Badia, “Dynamic energy­aware scheduling for parallel task­based
application in cloud computing,” Future Generation Computer Systems, vol. 78, pp. 257–271, 2018.

[10] Z. Li, J. Ge, H. Hu, W. Song, H. Hu, and B. Luo, “Cost and energy aware scheduling algorithm for
scientific workflows with deadline constraint in clouds,” IEEE Transactions on Services Computing,
vol. 11, no. 4, pp. 713–726, 2015.

[11] H. Han, W. Bao, X. Zhu, X. Feng, and W. Zhou, “Fault­tolerant scheduling for hybrid real­time tasks
based on cpb model in cloud,” IEEE Access, vol. 6, pp. 18 616–18 629, 2018.

[12] M. Mao and M. Humphrey, “A performance study on the vm startup time in the cloud,” in Fifth
International Conference on Cloud Computing. IEEE, 2012, pp. 423–430.

[13] H. Yan, X. Zhu, H. Chen, H. Guo, W. Zhou, and W. Bao, “Deft: Dynamic fault­tolerant elastic
scheduling for tasks with uncertain runtime in cloud,” Information Sciences, vol. 477, pp. 30–46, 2019.

[14] Y. Ding, X. Qin, L. Liu, and T. Wang, “Energy efficient scheduling of virtual machines in cloud with
deadline constraint,” Future Generation Computer Systems, vol. 50, pp. 62–74, 2015.

91

References

[15] G. L. Stavrinides and H. D. Karatza, “An energy­efficient, qos­aware and cost­effective scheduling
approach for real­time workflow applications in cloud computing systems utilizing dvfs and
approximate computations,” Future Generation Computer Systems, vol. 96, pp. 216–226, 2019.

[16] S. El Kafhali and K. Salah, “Efficient and dynamic scaling of fog nodes for iot devices,” The Journal
of Supercomputing, vol. 73, no. 12, pp. 5261–5284, 2017.

[17] G. Bolch, S. Greiner, H. De Meer, and K. S. Trivedi, Queueing networks and Markov chains: modeling
and performance evaluation with computer science applications. John Wiley & Sons, 2006.

[18] K. Deb,Multi­objective optimization using evolutionary algorithms. JohnWiley& Sons, 2001, vol. 16.

[19] M. Velasquez and P. T. Hester, “An analysis of multi­criteria decision making methods,” International
Journal of Operations Research, vol. 10, no. 2, pp. 56–66, 2013.

[20] L. P. Kaelbling, M. L. Littman, and A. W. Moore, “Reinforcement learning: A survey,” Journal of
artificial intelligence research, vol. 4, pp. 237–285, 1996.

[21] N. Ranganathan and A. K. Murugavel, “A low power scheduler using game theory,” in Proceedings of
the 1st IEEE/ACM/IFIP international conference on Hardware/software codesign and system synthesis.
ACM, 2003, pp. 126–131.

[22] J. N. Webb, Game theory: decisions, interaction and Evolution. Springer Science & Business Media,
2007.

[23] G. Baranwal, D. Kumar, Z. Raza, and D. P. Vidyarthi, Auction Based Resource Provisioning in Cloud
Computing. Springer, 2018.

[24] R. A. Feldman and R. Mehra, “Auctions: Theory and applications,” Staff Papers, vol. 40, no. 3, pp.
485–511, 1993.

[25] X. Zhu, C. He, R. Ge, and P. Lu, “Boosting adaptivity of fault­tolerant scheduling for real­time tasks
with service requirements on clusters,” Journal of Systems and Software, vol. 84, no. 10, pp. 1708–1716,
2011.

[26] X. Qin and H. Jiang, “A novel fault­tolerant scheduling algorithm for precedence constrained tasks in
real­time heterogeneous systems,” Parallel Computing, vol. 32, no. 5­6, pp. 331–356, 2006.

[27] Q. Zheng, B. Veeravalli, and C.­K. Tham, “On the design of fault­tolerant scheduling strategies using
primary­backup approach for computational grids with low replication costs,” IEEE Transactions on
Computers, vol. 58, no. 3, pp. 380–393, 2008.

[28] X. Zhu, J. Wang, H. Guo, D. Zhu, L. T. Yang, and L. Liu, “Fault­tolerant scheduling for real­time
scientific workflows with elastic resource provisioning in virtualized clouds,” IEEE Transactions on
Parallel and Distributed Systems, vol. 27, no. 12, pp. 3501–3517, 2016.

[29] J. Kołodziej, S. U. Khan, L. Wang, and A. Y. Zomaya, “Energy efficient genetic­based schedulers in
computational grids,” Concurrency and Computation: Practice and Experience, vol. 27, no. 4, pp.
809–829, 2015.

[30] N. Quang­Hung, P. D. Nien, N. H. Nam, N. H. Tuong, and N. Thoai, “A genetic algorithm
for power­aware virtual machine allocation in private cloud,” in Information and communication
technology­EurAsia conference. Springer, 2013, pp. 183–191.

[31] A. Rehman, S. S. Hussain, Z. ur Rehman, S. Zia, and S. Shamshirband, “Multi­objective approach of
energy efficient workflow scheduling in cloud environments,” Concurrency and Computation: Practice
and Experience, vol. 31, no. 8, pp. 1–20, 2019.

[32] S. Yassa, R. Chelouah, H. Kadima, and B. Granado, “Multi­objective approach for energy­aware
workflow scheduling in cloud computing environments,” The Scientific World Journal, vol. 2013, 2013.

92

References

[33] P. Guo and Z. Xue, “Cost­effective fault­tolerant scheduling algorithm for real­time tasks in cloud
systems,” in 17th International Conference on Communication Technology (ICCT). IEEE, 2017, pp.
1942–1946.

[34] H. Chen, X. Zhu, G. Liu, and W. Pedrycz, “Uncertainty­aware online scheduling for real­time
workflows in cloud service environment,” IEEE Transactions on Services Computing, 2018,
doi:10.1109/TSC.2018.2866421.

[35] S. Sahoo, B. Sahoo, and A. K. Turuk, “A learning automata­based scheduling for deadline sensitive task
in the cloud,” IEEE Transactions on Services Computing, 2019, doi: 10.1109/TSC.2019.2906870.

[36] K. Li, Y. Wang, and M. Liu, “A non­cooperative game model for reliability­based task scheduling in
cloud computing,” arXiv preprint arXiv:1403.5012, 2014.

[37] J. Yang, B. Jiang, Z. Lv, and K.­K. R. Choo, “A task scheduling algorithm considering game theory
designed for energy management in cloud computing,” Future Generation Computer Systems, 2017,
doi: 10.1016/j.future.2017.03.024.

[38] Y. Zhang, X. Cheng, L. Chen, and H. Shen, “Energy­efficient tasks scheduling heuristics with
multi­constraints in virtualized clouds,” Journal of Grid Computing, vol. 16, no. 3, pp. 459–475, 2018.

[39] Z. Hu, B. Li, and J. Luo, “Time­and cost­efficient task scheduling across geo­distributed data centers,”
IEEE Transactions on Parallel and Distributed Systems, vol. 29, no. 3, pp. 705–718, 2017.

[40] E. Hwang and K. H. Kim, “Minimizing cost of virtual machines for deadline­constrained mapreduce
applications in the cloud,” in Proceedings of the ACM/IEEE 13th International Conference on Grid
Computing. IEEE Computer Society, 2012, pp. 130–138.

[41] T. Shi, M. Yang, X. Li, Q. Lei, and Y. Jiang, “An energy­efficient scheduling scheme for
time­constrained tasks in local mobile clouds,” Pervasive and Mobile Computing, vol. 27, pp. 90–105,
2016.

[42] E. Grochowski and M. Annavaram, “Energy per instruction trends in intel microprocessors,”
Technology@ Intel Magazine, vol. 4, no. 3, pp. 1–8, 2006.

[43] K. Weins, “Cloud pricing comparison: Aws vs. microsoft azure vs. google cloud vs. ibm cloud,”
Tech. Rep., 2017, available [Online] http://www.infoworld.com/article/3237566/cloud­computing/
cloud­pricing­comparison­aws­vs­azure­vs­google­vs­ibm.html.

[44] H. Khazaei, J. Misic, and V. B. Misic, “Performance analysis of cloud computing centers using
m/g/m/m+ r queuing systems,” IEEE Transactions on Parallel & Distributed Systems, no. 5, pp.
936–943, 2011.

[45] J. Vilaplana, F. Solsona, I. Teixido, J. Mateo, F. Abella, and J. Rius, “A queuing theory model for cloud
computing,” The Journal of Supercomputing, vol. 69, no. 1, pp. 492–507, 2014.

[46] D. Bruneo, “A stochastic model to investigate data center performance and qos in iaas cloud computing
systems,” IEEE Transactions on Parallel and Distributed Systems, vol. 25, no. 3, pp. 560–569, 2014.

[47] X. Liu, S. Li, and W. Tong, “A queuing model considering resources sharing for cloud service
performance,” The Journal of Supercomputing, vol. 71, no. 11, pp. 4042–4055, 2015.

[48] H. Zhang, Y. Xiao, S. Bu, D. Niyato, F. R. Yu, and Z. Han, “Computing resource allocation in three­tier
iot fog networks: A joint optimization approach combining stackelberg game and matching,” IEEE
Internet of Things Jornal, vol. 4, no. 5, pp. 1204–1215, 2017.

[49] J. Mei, K. Li, Z. Tong, Q. Li, and K. Li, “Profit maximization for cloud brokers in cloud computing,”
IEEE Transactions on Parallel and Distributed Systems, vol. 30, no. 1, pp. 190–203, 2019.

[50] Q. Fan and N. Ansari, “Application aware workload allocation for edge computing­based iot,” IEEE
Internet of Things Journal, vol. 5, no. 3, pp. 2146–2153, 2018.

93

http://www.infoworld.com/article/3237566/cloud-computing/cloud-pricing-comparison-aws-vs-azure-vs-google-vs-ibm.html
http://www.infoworld.com/article/3237566/cloud-computing/cloud-pricing-comparison-aws-vs-azure-vs-google-vs-ibm.html

References

[51] H. Khazaei, J. Misic, and V. B. Misic, “A fine­grained performance model of cloud computing centers,”
IEEE Transactions on parallel and distributed systems, vol. 24, no. 11, pp. 2138–2147, 2013.

[52] R. Ghosh, F. Longo, V. K. Naik, and K. S. Trivedi, “Modeling and performance analysis of large scale
iaas clouds,” Future Generation Computer Systems, vol. 29, no. 5, pp. 1216–1234, 2013.

[53] S. Sahoo, S. K. Mishra, B. Sahoo, D. Puthal, and M. S. Obaidat, “Deadline­constraint services
in cloud with heterogeneous servers,” in International Conference on Computer, Information and
Telecommunication Systems (CITS). IEEE, 2017, pp. 20–24.

[54] H. Chen, G. Liu, S. Yin, X. Liu, and D. Qiu, “Erect: energy­efficient reactive scheduling for real­time
tasks in heterogeneous virtualized clouds,” Journal of computational science, vol. 28, pp. 416–425,
2018.

[55] K. Li, “Scheduling parallel tasks with energy and time constraints on multiple manycore processors in
a cloud computing environment,” Future generation computer systems, vol. 82, pp. 591–605, 2018.

[56] P. Zhang and M. Zhou, “Dynamic cloud task scheduling based on a two­stage strategy,” IEEE
Transactions on Automation Science and Engineering, vol. 15, no. 2, pp. 772–783, 2018.

[57] A. Beloglazov, J. Abawajy, and R. Buyya, “Energy­aware resource allocation heuristics for efficient
management of data centers for cloud computing,” Future generation computer systems, vol. 28, no. 5,
pp. 755–768, 2012.

[58] G. Xing, X. Xu, H. Xiang, S. Xue, S. Ji, and J. Yang, “Fair energy­efficient virtual machine scheduling
for internet of things applications in cloud environment,” International Journal of Distributed Sensor
Networks, vol. 13, no. 2, p. 1550147717694890, 2017.

[59] Z. Dong, N. Liu, and R. Rojas­Cessa, “Greedy scheduling of tasks with time constraints for
energy­efficient cloud­computing data centers,” Journal of Cloud Computing, vol. 4, no. 1, p. 5, 2015.

[60] Q. Zhang, M. F. Zhani, R. Boutaba, and J. L. Hellerstein, “Harmony: Dynamic heterogeneity­aware
resource provisioning in the cloud,” in 33rd International Conference on Distributed Computing
Systems. IEEE, 2013, pp. 510–519.

[61] K. H. Kim, A. Beloglazov, and R. Buyya, “Power­aware provisioning of virtual machines for real­time
cloud services,” Concurrency and Computation: Practice and Experience, vol. 23, no. 13, pp.
1491–1505, 2011.

[62] G. Xie, G. Zeng, R. Li, and K. Li, “Energy­aware processor merging algorithms for deadline constrained
parallel applications in heterogeneous cloud computing,” IEEE Transactions on Sustainable Computing,
vol. 2, no. 2, pp. 62–75, 2017.

[63] K. Kathe and U. A. Deshpande, “A thermal aware routing algorithm for a wireless body area network,”
Wireless Personal Communications, vol. 105, no. 4, pp. 1353–1380, 2019.

[64] M. K. Gupta and T. Amgoth, “Resource­aware virtual machine placement algorithm for iaas cloud,”
The Journal of Supercomputing, vol. 74, no. 1, pp. 122–140, 2018.

[65] P. Arroba, J. L. Risco­Martín, J. M. Moya, and J. L. Ayala, “Heuristics and metaheuristics for
dynamic management of computing and cooling energy in cloud data centers,” Software: Practice and
Experience, vol. 48, no. 10, pp. 1775–1804, 2018.

[66] Z. Cai, X. Li, R. Ruiz, and Q. Li, “A delay­based dynamic scheduling algorithm for bag­of­task
workflows with stochastic task execution times in clouds,” Future Generation Computer Systems,
vol. 71, pp. 57–72, 2017.

[67] S. K. Garg, R. Buyya, and H. J. Siegel, “Time and cost trade­off management for scheduling parallel
applications on utility grids,” Future Generation Computer Systems, vol. 26, no. 8, pp. 1344–1355,
2010.

94

References

[68] K. Li, X. Tang, and Q. Yin, “Energy­aware scheduling algorithm for task execution cycles with
normal distribution on heterogeneous computing systems,” in 41st International Conference on Parallel
Processing. IEEE, 2012, pp. 40–47.

[69] D. Poola, S. K. Garg, R. Buyya, Y. Yang, and K. Ramamohanarao, “Robust scheduling of scientific
workflows with deadline and budget constraints in clouds,” in 28th international conference on
advanced information networking and applications. IEEE, 2014, pp. 858–865.

[70] Y. Ran, J. Yang, S. Zhang, and H. Xi, “Dynamic iaas computing resource provisioning strategy with qos
constraint,” IEEE Transactions on Services Computing, vol. 10, no. 2, pp. 190–202, 2015.

[71] E. N. Alkhanak, S. P. Lee, R. Rezaei, and R. M. Parizi, “Cost optimization approaches for scientific
workflow scheduling in cloud and grid computing: A review, classifications, and open issues,” Journal
of Systems and Software, vol. 113, pp. 1–26, 2016.

[72] K. Gai, M. Qiu, H. Zhao, and X. Sun, “Resource management in sustainable cyber­physical systems
using heterogeneous cloud computing,” IEEE Transactions on Sustainable Computing, vol. 3, no. 2,
pp. 60–72, 2017.

[73] X. Zeng, S. K. Garg, Z. Wen, P. Strazdins, A. Y. Zomaya, and R. Ranjan, “Cost efficient scheduling
of mapreduce applications on public clouds,” Journal of computational science, vol. 26, pp. 375–388,
2018.

[74] S. K. Panda and P. K. Jana, “Efficient task scheduling algorithms for heterogeneous multi­cloud
environment,” The Journal of Supercomputing, vol. 71, no. 4, pp. 1505–1533, 2015.

[75] G. L. Stavrinides and H. D. Karatza, “A cost­effective and qos­aware approach to scheduling real­time
workflow applications in paas and saas clouds,” in 3rd International Conference on Future Internet of
Things and Cloud. IEEE, 2015, pp. 231–239.

[76] S. Sahoo, S. Nawaz, S. K. Mishra, and B. Sahoo, “Execution of real time task on cloud environment,”
in Annual IEEE India Conference (INDICON). IEEE, 2015, pp. 1–5.

[77] S. Su, J. Li, Q. Huang, X. Huang, K. Shuang, and J. Wang, “Cost­efficient task scheduling for executing
large programs in the cloud,” Parallel Computing, vol. 39, no. 4­5, pp. 177–188, 2013.

[78] C. Za’in, M. Pratama, E. Lughofer, M. Ferdaus, Q. Cai, and M. Prasad, “Big data analytics based on
panfis mapreduce,” Procedia Computer Science, vol. 144, pp. 140–152, 2018.

[79] S. Mini, S. K. Udgata, and S. L. Sabat, “Sensor deployment and scheduling for target coverage problem
in wireless sensor networks,” IEEE sensors journal, vol. 14, no. 3, pp. 636–644, 2013.

[80] K. S. Narendra and M. A. Thathachar, “Learning automata­a survey,” IEEE Transactions on systems,
man, and cybernetics, no. 4, pp. 323–334, 1974.

[81] M. Thathachar and B. R. Harita, “Learning automata with changing number of actions,” IEEE
transactions on systems, man, and cybernetics, vol. 17, no. 6, pp. 1095–1100, 1987.

[82] S. Misra, P. V. Krishna, K. Kalaiselvan, V. Saritha, and M. S. Obaidat, “Learning automata­based qos
framework for cloud iaas,” IEEE Transactions on Network and Service Management, vol. 11, no. 1, pp.
15–24, 2014.

[83] A. Rezvanian and M. R. Meybodi, “Finding minimum vertex covering in stochastic graphs: a learning
automata approach,” Cybernetics and Systems, vol. 46, no. 8, pp. 698–727, 2015.

[84] M. Ranjbari and J. A. Torkestani, “A learning automata­based algorithm for energy and sla efficient
consolidation of virtual machines in cloud data centers,” Journal of Parallel andDistributed Computing,
vol. 113, pp. 55–62, 2018.

[85] A. A. Rahmanian, M. Ghobaei­Arani, and S. Tofighy, “A learning automata­based ensemble resource
usage prediction algorithm for cloud computing environment,” Future Generation Computer Systems,
vol. 79, pp. 54–71, 2018.

95

References

[86] J. A. Torkestani, “An adaptive learning to rank algorithm: Learning automata approach,” Decision
Support Systems, vol. 54, no. 1, pp. 574–583, 2012.

[87] R. D. Venkataramana and N. Ranganathan, “A learning automata based framework for task assignment
in heterogeneous computing systems,” in Proceedings of the ACM symposium on Applied computing.
Citeseer, 1999, pp. 541–547.

[88] S. Sahoo, B. Sahoo, and A. K. Turuk, “An energy­efficient scheduling framework for cloud using
learning automata,” in 9th International Conference on Computing, Communication and Networking
Technologies (ICCCNT). IEEE, 2018, pp. 1–5.

[89] G. Xie, G. Zeng, R. Li, and K. Li, “Quantitative fault­tolerance for reliable workflows on heterogeneous
iaas clouds,” IEEE Transactions on Cloud Computing, 2017, doi: 10.1109/TCC.2017.2780098.

[90] M. S. A. Latiff, S. H. H. Madni, M. Abdullahi et al., “Fault tolerance aware scheduling technique
for cloud computing environment using dynamic clustering algorithm,” Neural Computing and
Applications, vol. 29, no. 1, pp. 279–293, 2018.

[91] Y. Ding, G. Yao, and K. Hao, “Fault­tolerant elastic scheduling algorithm for workflow in cloud
systems,” Information Sciences, vol. 393, pp. 47–65, 2017.

[92] S. Ghosh, R. Melhem, and D. Mossé, “Fault­tolerance through scheduling of aperiodic tasks in hard
real­time multiprocessor systems,” IEEE Transactions on Parallel and distributed systems, vol. 8, no. 3,
pp. 272–284, 1997.

[93] M. Smara, M. Aliouat, A.­S. K. Pathan, and Z. Aliouat, “Acceptance test for fault detection in
component­based cloud computing and systems,” Future Generation Computer Systems, vol. 70, pp.
74–93, 2017.

[94] M. Gabel, R. Gilad­Bachrach, N. Bjorner, and A. Schuster, “Latent fault detection in cloud services,”
Microsoft Re­search, Tech. Rep. MSR­TR­2011­83, 2011.

[95] D.­M. Bui, S. Lee et al., “Early fault detection in iaas cloud computing based on fuzzy logic and
prediction technique,” The Journal of Supercomputing, vol. 74, no. 11, pp. 5730–5745, 2018.

[96] A. V. Nimkar and S. K. Ghosh, “A security framework for virtual resource management in horizontal
iaas federation,” in Advanced Computing, Networking and Informatics­Volume 2. Springer, 2014, pp.
241–247.

[97] G. Fan, L. Chen, H. Yu, and D. Liu, “Modeling and analyzing dynamic fault­tolerant strategy for
deadline constrained task scheduling in cloud computing,” IEEE Transactions on Systems, Man, and
Cybernetics: Systems, no. 99, pp. 1–15, 2017.

[98] Z. Wen, J. Cała, P. Watson, and A. Romanovsky, “Cost effective, reliable and secure workflow
deployment over federated clouds,” IEEE Transactions on Services Computing, vol. 10, no. 6, pp.
929–941, 2016.

[99] X. Xiao, G. Xie, C. Xu, C. Fan, R. Li, and K. Li, “Maximizing reliability of energy constrained parallel
applications on heterogeneous distributed systems,” Journal of computational science, vol. 26, pp.
344–353, 2018.

[100] C. Li, J. Tang, and Y. Luo, “Cost­aware scheduling for ensuring software performance and reliability
under heterogeneous workloads of hybrid cloud,” Automated Software Engineering, vol. 26, no. 1, pp.
125–159, 2019.

[101] S. S. M. Nik, M. Naghibzadeh, and Y. Sedaghat, “Cost­driven workflow scheduling on the cloud with
deadline and reliability constraints,” Computing, pp. 1–24, 2019.

[102] X. Zhu, X. Qin, and M. Qiu, “Qos­aware fault­tolerant scheduling for real­time tasks on heterogeneous
clusters,” IEEE transactions on Computers, vol. 60, no. 6, pp. 800–812, 2011.

96

References

[103] R. Rathnayake, M. S. Karunarathne, N. S. Nafi, and M. A. Gregory, “Cloud enabled solution for
privacy concerns in internet of medical things,” in 28th International Telecommunication Networks and
Applications Conference (ITNAC). IEEE, 2018, pp. 1–4.

[104] Q. Zheng, B. Veeravalli, and C.­K. Tham, “On the design of fault­tolerant scheduling strategies using
primary­backup approach for computational grids with low replication costs,” IEEE Transactions on
Computers, vol. 58, no. 3, pp. 380–393, 2008.

[105] C. Qu, R. N. Calheiros, and R. Buyya, “A reliable and cost­efficient auto­scaling system for web
applications using heterogeneous spot instances,” Journal of Network and Computer Applications,
vol. 65, pp. 167–180, 2016.

[106] T. Guo, J. Liu, W. Hu, and M. Wei, “Energy­aware fault­tolerant scheduling under reliability and time
constraints in heterogeneous systems,” in International Conference on Intelligent Computing. Springer,
2018, pp. 36–46.

[107] P. Sun, Y. Dai, andX. Qiu, “Optimal scheduling andmanagement on correlating reliability, performance,
and energy consumption for multiagent cloud systems,” IEEE Transactions on Reliability, vol. 66, no. 2,
pp. 547–558, 2017.

[108] S. Malik, F. Huet, and D. Caromel, “Reliability aware scheduling in cloud computing,” in International
Conference for Internet Technology and Secured Transactions. IEEE, 2012, pp. 194–200.

[109] G. Manimaran and C. S. R. Murthy, “A fault­tolerant dynamic scheduling algorithm for multiprocessor
real­time systems and its analysis,” IEEE Transactions on Parallel and Distributed Systems, vol. 9,
no. 11, pp. 1137–1152, 1998.

[110] R. Al­Omari, G. Manimaran, and A. K. Somani, “An efficient backup­overloading for fault­tolerant
scheduling of real­time tasks,” in International Parallel and Distributed Processing Symposium.
Springer, 2000, pp. 1291–1295.

[111] S. U. Khan and I. Ahmad, “A cooperative game theoretical technique for joint optimization of energy
consumption and response time in computational grids,” IEEE Transactions on Parallel and Distributed
Systems, vol. 20, no. 3, pp. 346–360, 2008.

[112] D. Ye and J. Chen, “Non­cooperative games on multidimensional resource allocation,” Future
Generation Computer Systems, vol. 29, no. 6, pp. 1345–1352, 2013.

[113] K. Li, C. Liu, and K. Li, “An approximation algorithm based on game theory for scheduling simple
linear deteriorating jobs,” Theoretical Computer Science, vol. 543, pp. 46–51, 2014.

[114] M. Malawski, G. Juve, E. Deelman, and J. Nabrzyski, “Cost­ and deadline­constrained provisioning for
scientific workflow ensembles in iaas clouds,” in SC ’12: Proceedings of the International Conference
on High Performance Computing, Networking, Storage and Analysis. IEEE, 2012, pp. 1–11.

[115] T. T. Huu and C.­K. Tham, “An auction­based resource allocation model for green cloud computing,”
in IEEE International Conference on Cloud Engineering (IC2E). IEEE, 2013, pp. 269–278.

[116] X.Wu,M. Liu, W. Dou, L. Gao, and S. Yu, “A scalable and automatic mechanism for resource allocation
in self­organizing cloud,” Peer­to­peer networking and applications, vol. 9, no. 1, pp. 28–41, 2016.

[117] Z. Su, Q. Xu, M. Fei, and M. Dong, “Game theoretic resource allocation in media cloud with mobile
social users,” IEEE Transactions on Multimedia, vol. 18, no. 8, pp. 1650–1660, 2016.

[118] L. Ding, L. Chang, and L. Wang, “Online auction­based resource scheduling in grid computing
networks,” International Journal of Distributed Sensor Networks, vol. 12, no. 10, pp. 1–12, 2016.

[119] W. Wang, Y. Jiang, and W.Wu, “Multiagent­based resource allocation for energy minimization in cloud
computing systems,” IEEE Transactions on Systems, Man, and Cybernetics: Systems, vol. 47, no. 2,
pp. 205–220, 2016.

97

Dissemination

[120] A. Bandyopadhyay, F. Xhafa, and S. Mukhopadhyay, “An auction framework for daas in cloud
computing,” in International Conference on Emerging Internetworking, Data & Web Technologies.
Springer, 2018, pp. 732–741.

[121] G. Zhou, P. Jiang, and G. Q. Huang, “A game­theory approach for job scheduling in networked
manufacturing,” The International Journal of Advanced Manufacturing Technology, vol. 41, no. 9­10,
pp. 972–985, 2009.

[122] S. U. Khan and I. Ahmad, “Non­cooperative, semi­cooperative, and cooperative games­based grid
resource allocation,” in Proceedings 20th IEEE International Parallel & Distributed Processing
Symposium. IEEE, 2006.

[123] S. Das, S. Misra, M. Khatua, and J. J. Rodrigues, “Mapping of sensor nodes with servers in a mobile
health­cloud environment,” in 15th International Conference on e­Health Networking, Applications and
Services (Healthcom 2013). IEEE, 2013, pp. 481–485.

[124] Q. He, G. Cui, X. Zhang, F. Chen, S. Deng, H. Jin, Y. Li, and Y. Yang, “A game­theoretical approach
for user allocation in edge computing environment,” IEEE Transactions on Parallel and Distributed
Systems, pp. 1–12, 2019, doi: 10.1109/TPDS.2019.2938944.

[125] N. Sorensen, “Industry Benchmarks Performance,” https://www.cisco.com/c/dam/global/da_dk/assets/
docs/presentations/vBootcamp_Performance_Benchmark.pdf, 2011, [Online].

98

https://www.cisco.com/c/dam/global/da_dk/assets/docs/presentations/vBootcamp_Performance_Benchmark.pdf
https://www.cisco.com/c/dam/global/da_dk/assets/docs/presentations/vBootcamp_Performance_Benchmark.pdf

Dissemination

Internationally indexed journals (SCI, SCIE)

1. Sampa Sahoo, Bibhudatta Sahoo, and Ashok Kumar Turuk. “A Learning Automata­based
Scheduling for Deadline Sensitive Task in The Cloud.” IEEE Transactions on Services Computing,
https://doi.org/10.1109/TSC.2019.2906870, 2019.

2. Sampa Sahoo, Bibhudatta Sahoo, and Ashok Kumar Turuk. “An eigenvalue‐based edge infrastructure
for cloud‐based CDN.” International Journal of Communication Systems, Wiley,
https://doi.org/10.1002/dac.3966, 2019.

Book Chapters
1. Sampa Sahoo, Bibhudatta Sahoo, and Ashok Kumar Turuk. “Video transcoding services in cloud

computing environment.” In Cloud Computing for Optimization: Foundations, Applications, and
Challenges, pp. 417­433. Springer, Cham, 2018.

2. Sampa Sahoo, Sambit Kumar Mishra, Bibhudatta Sahoo, and Ashok Kumar Turuk. “Co­resident
Attack in Cloud Computing: An Overview.” In Encyclopedia of Big Data Technologies, Springer,
https://doi.org/10.1007/978­3­319­63962­8_322­1, 2018.

3. Sampa Sahoo, Bibhudatta Sahoo, Ashok Kumar Turuk, and Sambit Kumar Mishra. “Real time task
execution in cloud using mapreduce framework.” In Resource Management and Efficiency in Cloud
Computing Environments, pp. 190­209. IGI Global, 2017.

Conferences
1. Sampa Sahoo, Bibhudatta Sahoo and Ashok Kumar Turuk. “MCSA: A Multi­constraint Scheduling

Algorithm for Real­time Task in Virtualized Cloud.” In 2018 Annual IEEE India Conference
(INDICON), 2018. [Accepted]

2. Sampa Sahoo, Sahil Kumar Sahu, Tanmay Kumar Rath, Bibhudatta Sahoo, and Ashok Kumar Turuk.
“TCA: A multi constraint real­time task scheduling algorithm for heterogeneous cloud environment.”
In 2018 International Conference on Information Technology (ICIT), pp. 132­136. IEEE, 2018.

3. Sampa Sahoo, Bibhudatta Sahoo, and Ashok Kumar Turuk. “An Energy­Efficient Scheduling
Framework for Cloud Using Learning Automata.” In 2018 9th International Conference on Computing,
Communication and Networking Technologies (ICCCNT), pp. 1­5. IEEE, 2018.

4. Sampa Sahoo, Maneesha Nidhi, Kshira Sagar Sahoo, Bibhudatta Sahoo, and Ashok Kumar Turuk.
“Video delivery services in media cloud with abandonment: An analytical approach.” In 2017 IEEE
International Conference on Advanced Networks and Telecommunications Systems (ANTS), pp. 1­6.
IEEE, 2017.

5. Sampa Sahoo, Bibhudatta Sahoo, and Ashok Kumar Turuk. “RT­PUSH: a VM fault detector for
deadline­based tasks in cloud.” In Proceedings of the 3rd International Conference on Communication
and Information Processing, pp. 196­201. ACM, 2017.

6. Sampa Sahoo, Syed Nawaz, Sambit Kumar Mishra, and Bibhudatta Sahoo. “Execution of real time
task on cloud environment.” In 2015 Annual IEEE India Conference (INDICON), pp. 1­5. IEEE, 2015.

	Certificate of Examination
	Supervisors' Certificate
	Dedication
	Declaration of Originality
	Acknowledgment
	Abstract
	List of Figures
	List of Tables
	List of Algorithms
	List of Abbreviations
	List of Symbols
	Introduction
	Overview
	Motivation of the Work
	Objective of the Work
	Methodology Used
	Queuing Theory
	Multi Objective Decision Making Method
	Reinforcement Learning
	Game Theory
	Primary-Backup Approach

	Performance Evaluation
	Simulation Environment
	Performance Metrics

	Thesis Organization

	 Literature Survey
	Introduction
	Cloud System Model
	VM Model
	Task Model
	Scheduling Framework
	Energy Model
	Cost Model
	Reliability Model
	Analytical Model

	Real-time Task Scheduling
	Energy-aware Scheduling
	Cost-aware Scheduling
	Makespan-aware Scheduling
	Use of Learning Automata-based Approach
	Fault-tolerant Task Scheduling
	Use of Game Theory
	Outcome of the Survey

	Summary

	VM Scoring based Scheduling Algorithm
	Introduction
	Scheduling Framework

	Energy and Cost Aware (ECA) Scheduling Algorithm
	Performance Evaluation
	Simulation Setting
	Impact of Task Heterogeneity on System Performance
	Impact of VM Heterogeneity on System Performance
	Impact of VM Count on System Performance
	Impact of Task Count on System Performance
	Impact of Arrival Rate on System Performance
	Impact of Deadline Variation on System Performance

	Summary

	Learning Automata-based Scheduling Algorithm
	Introduction
	Learning Automata

	Learning Automata-based Scheduling (LAS) Framework
	Learning Automata Model

	Learning Automata-based Scheduling (LAS) Algorithm
	Example

	Performance Evaluation
	Simulation Settings
	Impact of Task Heterogeneity on System Performance
	Impact of VM Heterogeneity on System Performance
	Impact of VM Count on System Performance
	Impact of Task Count on System Performance
	Impact of Arrival Rate on System Performance
	Impact of Deadline Variation on System Performance
	Comparison

	Summary

	 Game Theory based Scheduling Approach
	Introduction
	Generalized Game model

	Game Theory based Scheduling Framework
	Real-time Task Scheduling Game (RTSG) Model
	Nash Equilibrium based on Auction Mechanism

	Performance Evaluation
	Simulation Setting
	Impact of Task Heterogeneity on System Performance
	Impact of VM Heterogeneity on System Performance
	Impact of VM Count on System Performance
	Impact of Task Count on System Performance
	Impact of Arrival Rate on System Performance
	Impact of Deadline Variation on System Performance

	Summary

	Primary-Backup based Fault-tolerant Scheduling Algorithm
	Introduction
	Primary-Backup based Scheduling Framework
	Task Model
	Fault Model

	Fault-tolerant Scheduling Algorithm
	Backup-Backup Overlapping
	Scheduling Strategy

	Performance Evaluation
	Simulation Framework
	Simulation Setting
	Impact of Task Heterogeneity on System Performance
	Impact of VM Heterogeneity on System Performance
	Impact of VM Count on System Performance
	Impact of Task Count on System Performance
	Impact of Arrival Rate on System Performance
	Impact of Deadline Variation on System Performance

	Summary

	Conclusions and Future Directions
	Contributions
	VM Scoring based Approach
	Learning Automata-based Approach
	Game Theory based Approach
	Primary-Backup based Approach
	Summary

	Future Research Directions

	References
	Dissemination

