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Abstract

A   strong interest   has developed  within  the  past several years  in the dynamic behavior of

turbo  machinery  with  cracked shafts.  An excellent  review of  the field of the dynamics of

cracked  rotors  and of different  detection procedures to diagnose fracture damage has been

presented  by  Wauer . Vibration  investigation  of    a  damaged  structure  is  one  approach

for  fault  diagnosis. Vibration  diagnosis,  as  a  non-destructive  detection  technique,    has

recently become of greater importance.

A crack on a beam element  introduces considerable local flexibility due to the strain energy concentration  in the  vicinity  of the  crack  tip under  load. The  vibrational   characteristics 
of  a  cracked Timoshenko shaft  were investigated by Rajab and Sabeeh . They    presented analytical expressions and derived  curves relating the crack depth and location on the shaft 
to  changes in  the first few natural  frequencies of the shaft. The element stiffness matrix of 
a beam with a crack was derived  froman  integration of the stress intensity factors and then 
 a  finite element  model  (FEM) of a cracked beam was established  in reference . A similar approach  based on the flexibility matrix developed  by Papado-poulos and Dimarogonas is 
dealt with by using FEM in the present study for crack detection.
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1.INRODUCTION

A  method  for   the   detection of cracks in  Timoshenko shafts based    on measuring  changes

in   the natural   frequencies  is   described   in  this    paper . Cracks   may  be   initiated     and

subsequently propagated  in shaft sand structures  subjected to dynamic loadings. Failure  may 
result if the history of these cracks  is   not recorded and  precautionary measures are not taken. 
At the    early stages   of crack  growth, it   is difficult  to detect   the existence of the crack by 
Visual   inspection. Other  more detailed  techniques  of   non-destructive testing   need    to be 
used instead. An ultrasonic pulse technique    has been used successfully to detect the positions
of    cracks in structures and welds       . In some materials, this technique may  not work due to 
the large attenuation of the signal at all except a particular frequency.

Radiographic  techniques  have  also  been used  for  crack  detection   in   structures   . These 

Techniques , however , require  higher  radiation  energy  input  for     Increasing        material 

thickness, which increases  the cost of operation. In addition, crack    detectability is small for
a  small  crack        width/depth     ratio and  for  cracks  not  parallel  to  the  material  surface.

Analytical    expressions   for   the   flexibility   effect  of  a  crack were first derived by Irwin

and later used in structural analysis   applications by Liebowitz .Thevibrational characteristics 
of  a  rotor containing  a  crack were s tudied  by  Henry  and  Okah-Avae , Mayes and Davies, 
Gasch , and    Dimarogonas . Adams et al. used  axial vibration  analysis  in   one-dimensional structures  to predict the location and  the  magnitude o f a defect. The effect of the defect was represented  as an elastic  stiffness  which  is  determined from a  knowledge of the changes in 
two natural frequencies   of the structure. The method presented would not detect longitudinal cracks . A finite   element  analysis   was used  by  Cawley  and Adams    to predict damage  in structures.  Chondros  and Dimarogonas  studied  the  effect of a crack in a welded joint on the

dynamic  behavior  of beams  with various  boundary  conditions.  Crack depth  was estimated

from  knowledge  of  changes  in  the  system  natural  frequencies. A torsional elastic stiffness

was  used  to model the  effect of  the crack. The  torsional  stiffness  was    determined experi-

mentally from  measurements of changes  in the  natural  frequencies  for various  crack  depth

values.    Dimarogonas   and   Massouros   considered  the   effectof a crack   on the   torsional

dynamic behavior of  a shaft. They used the strain energy release rate to obtain  an   expression
 for     local  stiffness    effect  due  to     a  circumferential  crack.  Anifantis  et al.    presented  
a   nomogram  for   identification  of a c rack on a simple beam  . Ju et al. proposed   a damage 
function     relating the  changes in the natural frequencies of a structureto the crack depth and location.   Dimarogonas  and    Papadopoulos    studied  the dynamic  behavior  of  a    rotating

shaft   with a surface crack. Yuen  Chen and Chen  and Gounaris and Dimarogonas used finite element analysis to study   the   vibrational characteristics of  crackedstructures. Papadopoulos 
and Dimarogonas considered the free and forced vibrations   of coupled bending and torsional vibrations  of  a damaged shaft.  The present  work is  concerned  with  developing   analytical expressions for the compli-ance  effects of a crack in a Timoshenko-type shaft for the purpose 
of   predicting   both   the depth  and location of the crack on the shaft. A part-through surface 
crack is assumed in  the analysis, and   changes in the shaft natural frequencies are used in the prediction of   crack parameters.

2. MOTIONS  EQUATIONS  OF A  CRACKED SHAFT

The FEM model of a cracked  rotor which was derived in the author’s previous work    is used in present  study also.  A  brief  description of  the  model and equation of motion are given below.

A  cracked  shaft  loaded by three tension forces and three torsion forces is shown in Fig. 1. The equation of motion of the cracked rotor system is given by
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where M, C, G, K0 and Kc  are the   mass matrix,  bearing   oil-.lm damping matrix, gyroscopic matrix, whole stiffness matrix without  crack and  the whole  stiffness decrease caused by crack, respectively . H is the  transformation  matrix  between  rotating  co-ordinates  Z–z  and  inertial 
co-ordinates y–z, which has
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        where a is the angle between the two co-ordinates.
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Fig. 1. Model of a rotor element with 2 transverse edge erack




F is the  excitation  matrix  including  the unbalance  forces  and  gravity  forces. The stiffness matrix of cracked    element [K]crack can be written as
                  [image: image4.png][Klepaer = [T (7,




        where
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The .exibility matrix of cracked element can be expressed as

                           [image: image6.png]=9+ "





where [c](0) is the .exibility matrix of element without crack, [c](1) is the additional .exibility matrix due to  crack, which has
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The expressions of cij can be found in Ref. [15].

The switch function of cracks used here is same as that in Ref. [15]:
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where me is the mass unbalance.     
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For the   state of  a crack propagating during  the startup process , the  stiffness  of  cracked  shaft varies as a function of time and propagation rate. Because crack propagating is a speci.c complex process, following two assumptions are adopted in present study:

(1) The crack tip growth occurs at the beginning of a cyclic.

(2) The crack tip line after growth parallels to the initial crack tip line.

The  dynamic  response  can  be  obtained using  numerical  integration  method   for non-linear system—  Newmark method [22]. The computational algorithm is as follows:
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According to the implicit integration formula of the Newmark integral method , we have
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(1) Set i =0
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(2) Calculate the residual force
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(3) Calculate the effective stiffness matrix
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.

(4) Solve the following equation:

                    [image: image16.png]RAf =¥,




(5) Revise displacement, velocity, acceleration and i:

                 [image: image17.png]45 = G + A
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and then reduplicate the above process until                       [image: image18.png](|82 /]j gz < . where i is a known accuracy error.




3. CRACK MODELING
The    presence   of   a crack   in a  structure  tends  to  modify  the dynamic characteristics of

the  structure,  such  as  the  natural frequencies  and  mode  shapes.  This  fact  can  be  used

inversely  to predict  the  crack parameters  from  measurements of the changes in the natural

frequencies  and mode  shapes  of  the structure  once  a functional  relationship  between the

crack  parameters  and  the  changes  in  the  structure  dynamic  characteristics  has       been

determined . The  crack  parameters of  interest  are  the  crack  depth  and  crack  location in

the  structure.  To  this  end,  an  analytical  solution  for the functional  relationship between

the  system  natural  frequencies  and  the crack  parameters  is  attempted  for a Timoshenko-

type  shaft  with  a  transverse  part-through  surface  crack .

For  a  shaft  with  a  transverse  surface crack  and  loaded  with bending moment and shear

force as shown in Figure 1, the displacement in the i direction is given by
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where  Pi  is  the load  in the  same direction as the  displacement and J(a)  is  the  J-integral
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                                      Figure 2 . The shaft with a transverse surface crack.
3. CRACK IDENITIFICATION AND ESTIMATION METHOD
3.1. Forward problem
Friswell and Penny compared the different approaches to crack modeling, and demonstrate that for structural health monitoring using low-frequency vibration, simple models based on beam elements are able to model the effects of an open crack. Because the natural frequencies can be easily and cheaply acquired in practice and the linear rotational spring model can effectively describe open crack, the present work is based on the open transverse crack in shafts and using the first three natural frequencies to identify crack location and size.

Fig. 3 shows a simply supported rotor system with a crack in shaft (suppose the crack occurred on segment L2). A transverse crack of depth δ is considered on a shaft of diameter d1 (the corresponding radius is r1) as shown in Fig. 4. The shaft has local flexibility due to the crack, in many directions, depending on the direction of the applied forces. Here, only bending deformation will be considered. Axial forces which give coupling with transverse motions of the cracked shaft will not be considered. Therefore, the shaft is bent by a pure bending moment and the additional angular deflection of the shaft end relative to the other will be computed. The local stiffness kt due to the crack is [7]

…………………..(34)
where E is the Young's modulus, μ is the Poisson's ratio, α=δ/2r1 denotes normalized crack size, 
, 
and the function F(η/H) can be given by the experimental formula [37].

F(η/H)=1.122-1.40(η/H)+7.33(η/H)2-13.08(η/H)3+14.0(η/H)4................................ (35)
Eq. (34) is a function of normalized crack size α only and can be computed by numerical integration. β=e/L2 denotes normalized crack location.
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Fig. 3. Simply supported rotor system with a crack in shaft.
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Fig. 4. Geometry of a cracked section in shaft.

The physical model and rotational spring model with stiffness kt , are shown in Fig. 5.
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The corresponding DOF of the left neighboring element around crack are 
and the corresponding DOF of the right neighboring element are 
wright={wj+1θj+1}T
. If we change the two entries of 
to 
wleft={θjwj}T
, the corresponding row and column entries of the global stiffness matrix 
and mss matrix 
should be exchanged their locations each other. The DOF of wleft and wright can be assembled to 
{θjwj+1θj+1,…}T
.

Hence, we can assemble cracked stiffness submatrix KS into the global stiffness matrix easily. The global mass matrix of cracked rotor system is equal to the uncracked one. From now on, the cracked rotor system finite element model is constructed by using BSWI beam element. The solution of the eigenvalue problem can then proceed as usual.

For the determination of the natural frequencies ω for a given crack location (determine the location of cracked stiffness submatrix in global stiffness) and size (determine Kt), the normalized crack location β and size α are given as input. The relationship between the natural frequencies and the crack parameters is


…………………………(36)Because the functions Fj(j=1,2,3,…) are unknown and the discrete values can be obtained by solving WFEM model, the surface-fitting techniques are needed for the 3D plots of Eq. (36). Then the crack identification database of forward problem for cracked rotor system has been built up.
3.2. Vibration analysis

In the simulation, the rotor geometries and the material properties are as follows: 
, 
, 
, 
, 
, 
, 
, 
, μ=0.3.

13 BSWI43 Rayleigh–Euler beam and 1 BSWI43 Rayleigh–Timoshenko beam elements are employed to the vibration analysis of rotor system. Fig. 6 shows the relationship between ωi(i=1,2,3) and all possible normalized crack location β=e/L2 and size α=δ/d1 using surface-fitting techniques (here, 
α,β[0.1,0.9])
.

3.2.1. Effects of the normalized crack location β
Fig. 7 shows the first three natural frequencies as a function of normalized crack location β for some of the normalized crack size α. It can be seen from Fig. 7(a)–(c) that the change in the first three natural frequencies were affected when the crack was located at every normalized location β. For a certain normalized crack size α, Fig. 7(a) show the fundamental frequency would be decreased significantly with respect to the larger normalized crack location β. While a correlation between normalized crack location and size was given, as shown in Fig. 7(b) and (c). Taking α=0.8, for example, the second natural frequency was mostly affected when the crack was located at the center of the shaft segment L2, and the third natural frequency was mostly affected when the crack was located at β=0.25. Moreover, Fig. 7(c) shows that the third natural frequency was almost unaffected for a crack located at β=0.75; the reason for this zero influence was that the nodal point for the third mode was located at that position.
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     Fig. 5. The first three natural frequencies as a function of normalized crack location β for some       of the normalized crack size α.

Unlike to the effects of the normalized crack location of simply supported shaft without mass disc, as mentioned by Dong, the changes in the first three natural frequencies of a cracked rotor system with a mass disc, would not monotonically decrease with the increment of the normalized crack location. The reason is that only the crack of shaft segment L2 is considered in the present study, and this is not affecting the crack identification results.

3.2.2. Effects of the normalized crack size α
The first three natural frequencies as a function of normalized crack size α for some of the normalized crack location β are shown in Fig. 8. It is noticed that the change in the first three natural frequencies were affected when the crack was occurred at every normalized size α. For a certain normalized crack location β, Fig. 8(a)–(c) show the first three frequencies would monotonically decrease if the larger normalized crack size α was given.

[image: image45.png]hikz

70

60

40

01

560
540
520
500
£ 480
= 4
440
a0
400
02 03 04 05 08 07 08 09 01 02 03 04 05 08 07 08
a
c
1800
1700
1600
1500
£ 1400
a0
1200
1100
1000
01 02 03 04 05 06 07 08 09

09




Fig. 6. The first three natural frequencies as a function of normalized crack size α for some of the normalized crack location 



From the above observations, it could be stated that the change in frequencies is not only a function of the normalized crack location β but also the normalized crack size α. In the procedures of constructing crack identification database of forward problem for cracked rotor system, the influence of the normalized crack size α and location β was considered through the computation of rotational spring stiffness kt and the location of inserting cracked stiffness submatrix into global stiffness, respectively.
3.3. Inverse problem

The crack identification inverse problem can be described by


………………(37)
The measurements of any two natural frequencies enable us to define the normalized location and size of a crack if Eq. (36) has been determined, i.e. the crack identification database of forward problem for cracked rotor system has been constructed. However, when we use the method of frequencies contour plots for crack identification of a rotor system, two natural frequencies contour plots may intersect at more than one point. Therefore a minimum of three frequencies is required to identify the two unknown parameters, i.e. the normalized crack location β and size α. Because the first three frequencies can be measured easily and accurately; they are usually served as inputs to solve the inverse problem in structural damage identification.
Supposing the first three frequencies are known, the frequency contour plots of the crack identification database of forward problem for cracked rotor system, can be acquired and plotted on the same axes. The common intersection of all the three contour lines indicates the normalized crack location and size. This intersection becomes unique due to the fact that any cracked structural natural frequency can be represented by a frequency equation ( Eq. (36)) that is dependent on normalized crack parameters [20].
4. EXPERIMENTAL VARIFICATION

4.1. Experimental setup

Fig. 9 shows the experimental setup used for measuring the first three frequencies of the cracked rotor system with a single mass disc using the Doppler signal laser vibrometer. A Polytec Doppler laser vibrometer OFV-505/5000 was used to measure the velocities of one point in the shaft. We point out here that to measure the first three frequencies only requires one measurement point. The reason is that for the simple structure, single-input and single-output (SISO) modal analysis by using a hammer as excitation, which is a usually used method. To reduce the reflection of the laser beam and spectral noise, retro-reflective tapes were put on the measurement point in the shaft.
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   Fig. 7. The experimental setup

The laser vibrometer OFV-5000 uses the principle of the heterodyne interferometer to acquire the characteristics of mechanical vibrations. For each cracked shaft, the high-metrical frequencies can be obtained by using the standard FFT program of the software Matlab.

Taking the uncracked rotor system with the same geometries and the material properties, as given by Section 3.2, and the corresponding impulse response signal and power spectrum are shown in Fig. 10. In the experimental study, the sampling frequency fs is 5000.

Different elements are employed to estimate the first three frequencies, respectively, i.e.:

1. 5 BSWI43 beam elements (not consider rotatory inertia effect);

2. 200 traditional beam elements (not consider rotatory inertia effect);

3. 5 BSWI43 Rayleigh beam elements (consider rotatory inertia effect);

4. 200 BEAM3 (Software Ansys) elements (consider rotatory inertia effect).

The results are shown in Table 1. Compared with the experimental frequencies, both 5 BSWI43 beam element (not consider rotatory inertia effect) and 200 traditional beam elements (not consider rotatory inertia effect) have the same computational precision. The relative errors of the second frequencies arrive at 61.5%, which can not be used to the model-based crack identification method. However, if we consider the rotatory inertia effect, both 5 BSWI43 Rayleigh beam elements (consider rotatory inertia effect) and 200 BEAM3 (Software Ansys) elements (consider rotatory inertia effect) can achieve high-computational precision. And the relative errors of the first three frequencies are less than 0.3%. Moreover, the elemental DOF of 5 BSWI43 Rayleigh beam elements (consider rotatory inertia effect) are 58, which are smaller 
than 402 DOF of BEAM3 elements. The results of this example indicate the accuracy and efficiency of the BSWI Rayleigh beam element, which has been constructed herein. Meanwhile, the BSWI Rayleigh beam element can be employed to build up the crack identification database for cracked rotor system.
Table 1. 

The experimental and differently elemental results of the first three natural frequencies

	Method
	Computational frequencies/Hz



	Metrical frequencies/Hz



	Computational errors/%




	
	f1
	f2
	f3
	f1
	f2
	f3
	f1
	f2
	f3

	1
	86.33
	900.95
	1732.07
	
	
	
	0.26
	61.51
	0.26

	2
	86.34
	901.00
	1732.25
	
	
	
	0.27
	61.52
	0.27

	
	
	
	
	86.11
	557.82
	1727.54
	
	
	

	3
	86.33
	558.17
	1728.25
	
	
	
	0.26
	0.06
	0.04

	4
	86.33
	558.17
	1728.20
	
	
	
	0.26
	0.06
	0.04


4.2. Experimental results

We tested six cracked shafts each having an open crack at shaft with four crack cases as shown in Table 2. The material of workpiece for experiment was 40Cr steel, and the rotor geometries and the material properties are as follows: 
, 
, 
, 
, 
, 
, Young's modulus E=2.06×1011N/m2, material density 
, Poisson's ratio μ=0.3. The cracks actually are slots cut by a wire electrical discharge machine, the crack width is 0.2 mm, and the crack depths δ are 3.8 and 7.2 mm. In other words, the normalized crack sizes α=δ/d1 are 0.2 and 0.4. The crack locations e are 75.2, 112.8 and 150.4 mm, respectively, and the corresponding normalized crack locations β=e/L2 are 0.4, 0.6 and 0.8, respectively.



Table 2. 

Crack cases of shaft and identification results

	Case
	β
	α
	Metrical frequencies/Hz



	Predicted β* (Error/%)
	Predicted α* (Error%)

	
	
	
	f1/Hz
	f2/Hz
	f3/Hz
	
	

	1
	0.4
	0.2
	98.2
	582.04
	1049.88
	0.415 (3.75)
	0.196 (2)

	2
	0.4
	0.4
	96.62
	568.43
	1016.25
	0.41 (2.5)
	0.42 (5)

	3
	0.6
	0.2
	98.12
	583.13
	1055.80
	0.585 (2.5)
	0.17 (14)

	4
	0.6
	0.4
	95.76
	572.14
	1053.12
	0.605 (0.83)
	0.385 (3.75)

	5
	0.8
	0.2
	97.34
	583.84
	1051.64
	0.785 (1.88)
	0.225 (12.5)

	6
	0.8
	0.4
	93.04
	580.87
	1032.62
	0.794 (0.75)
	0.425 (6.25)




View Within Article


In most cases, however, the three lines do not accurately intersect at one point because of inaccuracies in the modeling as compared to measured results. For this purpose, the ‘zero-setting’ procedure that described by Adams [38] is used. In this procedure, Young's modulus of the structure is changed by using the undamaged natural frequencies of the structure to determine an effective value, and given by the following iterative approach:


…………………………………(38)
where Em is the corrected value of Young's modulus E, which can be acquired through solving Eq. (38) for each frequency. It should be noted that the physical signification for the correction of Young's modulus is not to change the value of E but to make the metrically uncracked natural frequencies match the computational ones. This procedure can greatly reduce the error between theoretical analysis and the experimental studies, which are caused by boundary conditions and material parameters.

In this section, the first three metrical frequencies are employed as the inputs of inverse problem for crack quantitative identification. Fig. 11 shows the crack identification results in a shaft by using the frequency contour plots. The intersection point A of three lines indicates the normalized crack location β and size α. In the experimental studies, when the three lines do not meet exactly, the centroid of the three pairs of intersections is taken as the normalized crack location and size [13]. Table 2 shows the comparison of actual normalized crack parameters β and α and the predicted crack parameters β* and α*. For the given cases, the relative errors of β* are not more than 4% while the relative errors of α* arrive at 15%. Hence, the proposed model-based crack identification method by using BSWI Rayleigh beam element is considered to be valid for actual application to detect open cracks in rotor systems. We point out here that the identification precisions of the crack sizes are much larger than those of the crack location. The probable reason is that the effects of the normalized crack size α are much complicated than those of the normalized crack location β. Therefore, for the identification of α, the tiny metrical errors would be significantly enlarged.
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Fig. 8. Frequency contour plots (- - -: 1st frequency; -.-.-: 2nd frequency; - - -: 3rd frequency): (a) case 1; (b) case 2; (c) case 3; (d) case 4; (e) case 5 and (f) case 6.

5. DISCUSSION AND FURTHER RESEARCHES

Except the open crack, there are many other types of open and closed cracks and defects in rotor systems, and different types of defects have different controller equations and because damage estimation is essentially an inverse problem, it is difficult to obtain a unique or accurate estimation of cracks, especially for on-line crack identification of rotor systems. On-line structural crack detection is challenging because actual rotor system dynamic responses are always contaminated by unknown external loads as well as other harmless conditions, such as material composition uncertainly, geometric variation, sensor noise, and so on. Therefore, after the possible existence of damage is detected by an on-line damage detection method as mentioned by Green, a reliable inspection of the stopped system to find crack location and size is necessary in order to assure the existence of damage, and the model-based crack identification method by using BSWI Rayleigh beam element is intended for such use.

The effect of the bearing on the fault diagnosis of the rotor system is very obvious for the rotating shafts. In this section, the bearing stiffness is considered, as shown in Fig. 12. The stiffness matrix considers the stiffness of the shaft elements including cracked shaft element and the bearing stiffness kb.
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Fig. 9. Typical rotor-bearing system considered.

The vibration analysis has been carried out using BSWI Rayleigh beam elements for the rotor system with the same geometrical and physical parameters as shown in Section 4.2. The bearing stiffness kb is varying from 1×105 to 
, supposing the normalized crack location β=0.4 and crack depth α=0.4. The first three natural frequencies under different bearing stiffness are shown in Table 3. The first three natural frequencies influenced by bearing stiffness are shown in Fig. 13. To describe clearly, we adopt the logarithm coordinates. From Table 3 and Fig. 13, the influence of bearing stiffness can be neglected when kb>1×108. Both simply supported rotor system as shown in Fig. 3 and the bearing stiffness is considered as shown in Fig. 12 have the same computational results.



Table 3. 

The first three natural frequencies under different bearing stiffness

	Frequencies
	Simply supported
	Bearing stiffness kb (N/m)




	
	
	1×105
	5×105
	1×106
	1×107
	1×108
	1×109
	5×109

	f1/Hz
	96.97
	60.25
	84.77
	90.31
	96.25
	96.90
	96.96
	96.97

	f2/Hz
	569.13
	225.03
	398.18
	464.15
	556.38
	567.83
	569.002
	569.11

	f3/Hz
	1019.25
	452.90
	693.05
	827.37
	1001.13
	1017.48
	1019.08
	1019.22


In the present experimental studies of this paper, only static (non-rotating) rotor system is studied, the bearing stiffness nearly to 
. Hence the simply supported model of rotor system can give reasonable results. The bearing damping and other factors are not considered. It obviously introduces tiny errors of the wavelet-based finite element model. So the ‘zero-setting’ procedure is introduced to eliminate those influences. However, it is worth to point out here that the present method is only a reliable inspection of the stopped system to find crack location and size for the sake that the bearing effect is not considered. The further research is that a more complicated rotating rotor-bearing model which includes bearing stiffness, bearing damping, gyroscopic effect, etc., will be studied for on-line crack identification use.

6. CONCLUSIONS
The  detection  of  cracks  in  shafts  by  measuring  the  change s in  an  adequate  number  of

The  natural  frequencies  has  been considered  in  this  paper.  A crack is known to introduce

local  flexibility  in  the  shaft.  The  local  flexibility due to a crack in the presence of bending

moment  and  shear  loads  is  modeled  by using  fracture  mechanics concepts .  The  natural

frequencies  of  the  cracked  shaft  are determined  numerically by  solving  the characteristic

equation  of  the  shaft . Cracks  are  then  predicted  by  measuring  an  adequate  number  of

shaft  natural frequencies  and constructing curves  similar to  Figure 6. The adequate number

of  natural  frequencies  that  needs  to be measured depends on the number of cracks present.

The  first  three  natural  frequencies   need  to  be   measured  for  a  single  crack,  and  each

additional  crack  requires  the  measurement  of  two more  higher  natural  frequencies. This

may  limit  the  application  of  this  method  to shafts with not more than three or four cracks

and  with  no closely coupled  modes. The technique presented is most suited as a preventive

maintenance  tool  from the  initial installation of  the shaft    through a programmed mainten-

ance schedule to record the history of the cracks as they grow, at appropriate time intervals.
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