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Abstract 

 

         Vibration control of machines and structures incorporating viscoelastic 

materials in suitable arrangement is an important aspect of investigation. The use of 

viscoelastic layers constrained between elastic layers is known to be effective for 

damping of flexural vibrations of structures over a wide range of frequencies. The energy 

dissipated in these arrangements is due to shear deformation in the viscoelastic layers, 

which occurs due to flexural vibration of the structures. Multilayered cantilever sandwich 

beam like structures can be used in aircrafts and other applications such as robot arms for 

effective vibration control. These members may experience parametric instability when 

subjected to time dependant forces. The theory of dynamic stability of elastic systems 

deals with the study of vibrations induced by pulsating loads that are parametric with 

respect to certain forms of deformation 

The purpose of the present work is to investigate the dynamic stability of a three 

layered  symmetric sandwich beam subjected to an end periodic axial force . Equations of 

motion are derived using finite element method. The regions of instability for simple and 

combination resonances are established using modified Hsu’s method proposed by Saito 

and Otomi[76].  

                It  is  observed  that  with  increase  in  core  thickness  parameter  fundamental 

buckling  load  increases. The  fundamental  resonant  frequency  and  second  mode 

frequency  parameter  also  increase  with increase in core  thickness  parameter. 

Fundamental  loss factor and  second  mode  loss  factor  also  increase  with increase in 

core  thickness parameter.Increase  in  core  thickness  parameter  enhances  the  stability  

of  the  beam. With  increase  in  core  loss  factor  also  the  stability  of  the  beam  

enhances. There  is  a  very  good  agreement  of  the  experimental  results  with  the  

theoretical  findings. 

 

 

 

 



 
 

                                           
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

Introduction 

 
                     The theory of dynamic stability of elastic systems deals with the study of 

vibrations induced by pulsating loads that are parametric with respect to certain forms of 

deformation. A system is said to be parametrically excited if the excitation which is an 

explicit function of time appears as one of the co-efficients of the homogeneous 

differential equation describing the system, unlike external excitation which leads to an 

inhomogeneous differential equation. A well known form of equation describing a 

parametric system is Hill’s equation.  
..

2 ( ) 0xf tx αω+ +∈ =                                                                                                      (1.1) 

When f(t) = cosΩt, Equation (1.1) is known as Mathieu’s  equation . 

Equation (1.1) governs the response of many physical systems to a sinusoidal parametric 

equation. 

                  In practice parametric excitation can occur in structural systems subjected to 

vertical ground motion, aircraft structures subjected to turbulent flow, and in machine 

components and mechanisms. Other examples are longitudinal excitation of rocket tanks 

and their liquid propellant by the combustion chambers during powered flight, helicopter 

blades in forward flight in a free-stream that varies periodically and spinning satellites in 

elliptic orbits passing through a periodically varying gravitational field. In industrial 

machines and mechanisms, their components and instruments are frequently subjected to 

periodic or random excitation transmitted through elastic coupling elements, example 

includes those associated with electromagnetic aeronautical instruments and vibratory 

conveyers, saw blades and belt drives.  

                  In parametric instability the rate of increase in amplitude is generally 

exponential and  thus potentially dangerous while in typical resonance the rate of increase 

is linear. Moreover damping reduces the severity of typical resonance, but may only 

reduce the rate of increase during parametric resonance. Moreover parametric instability   

 



occurs over a region of parameter space and not at discrete points. The system can 

experience parametric instability (resonance), when the excitation frequency or any 

integer multiple  of  it  is  twice the natural frequency  that  is  to say 

mΩ=2ω, m=1,2,3,4  

The case Ω=2ω is known to be the most important in application and is called main 

parametric resonance. A vital step in the analysis of parametric dynamic systems is thus 

establishment of the regions in the parameter space in which the system becomes 

unstable, these regions are known as regions of dynamic instability or zones of 

parametric resonance. The unstable regions are separated from the stable ones by the so 

called stability boundaries and a plot of these boundaries on the parameter space is called 

a stability diagram.  

  

Vibration control of machines and structures incorporating viscoelastic materials in 

suitable arrangement is an important aspect of investigation. The use of viscoelastic 

layers constrained between elastic layers is known to be effective for damping of flexural 

vibrations of structures over a wide range of frequencies. The energy dissipated in these 

arrangements is due to shear deformation in the viscoelastic layers, which occurs due to 

flexural vibration of the structures. Multilayered cantilever sandwich beam like structures 

can be used in aircrafts and other applications such as robot arms for effective vibration 

control. These members may experience parametric instability when subjected to time 

dependant forces. 

 

 

 

 

 

 

 

 



 
 
 
 
 
 
 
 
 
 
 
 
 
 

                                           
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 

 

Literature review 

2.1 Introduction 

    Discovery  of  parametric resonance  dates  back  to  1831. The phenomenon of  

parametric  excitation  was  first  observed  by  Faraday[24], when  he  noticed that  when  

a  fluid filled  container  vibrates  vertically, fluid surface  oscillates  at  half  the  

frequency  of  the  container. Parametric  resonance  in  the  case  of  lateral  vibration  of  

a  string  was  reported  by  Melde[57]. Beliaev [10] was  first to  provide  a  theoretical  

analysis of  parametric  resonance  while dealing  with  the  stability  of  prismatic  rods. 

These  are  a few  early  works. 

                  Several  review  articles  on  parametric  resonance  have  also  been  

published. Evan-Iwanowski [23], Ibrahim  and  coworkers [34-40], Ariarathnam [3] and  

Simitses [84] gave  exhaustive  account  of  literature  on  vibration  and  stability  of  

parametrically  excited  systems. Review  article  of  Habip [29] gives  an  account  of  

developments  in  the  analysis  of  sandwich  structures. Articles  of  Nakra [60-62] have  

extensively  treated  the  aspect  of  vibration control  with  viscoelastic  materials. Books  

by  Bolotin [13], Schmidt [80] and Nayfeh and  Mook [63] deals  extensively  on  the  

basic  theory  of  dynamic  stability  of  systems  under  parametric  excitations. In  this  

chapter  further  developments  in  subsequent  years in  the  field  of  parametric  

excitation  of  system  with  specific  resonance  to  ordinary  and  sandwich  beams  is  

reported. Reference  cited  in  the  above  mentioned  review  works  are  not  repeated  

except  at  a  few  places  for  the  sake  of  continuity. The  reported  literature  mainly  

deals  with  the  methods  of  stability  analysis, types  of  resonance, study  of  different  

system  parameters  on  the  parametric  instability  of  the system  and  experimental  

verification  of  the  theoretical  findings. 

 



 

2.2  Methods  of  stability  analysis  of  parametrically  excited  system  

         There  is  no  exact  solution   to  the  governing  equations  for  

parametrically  excited  systems  of  second  order differential  equations  with  periodic  

coefficients. The researchers  for  a  long  time  have  been  interested  to explore  

different  solution  methods  to  this  class  of  problem. The  two  main  objectives  of  

this  class  of  researchers  are  to establish the  existence  of  periodic  solutions  and  

their  stability. When  the  governing equation  of  motion  for  the  system  is  of  

Mathieu-Hill  type, a  few  well  known  methods   commonly  used  are  method  

proposed  by  Bolotin  based  on  Floquet’s  theory, perturbation  and  iteration  

techniques,  the  Galerkin’s  method, the  Lyapunov  second method  and  asymptotic  

technique  by  Krylov, Bogoliubov  and  Mitroploskii. 

                Bolotin’s[13] method  based  on  Floquet’s  theory  can  be  used  to  get 

satisfactory  results  for  simple  resonance  only. Steven [85] later  modified  the  

Bolotin’s method  for  system  with  complex  differentials  equation  of  motion. Hsu 

[32-33]proposed an  approximate  method  of  stability  analysis  of  systems  having  

small  parameter excitations . Hsu’s  method can  be  used  to  obtain  instability  zones  

of  main, combination and  difference  types. Later  Saito  and  Otomi [76] modified  

Hsu’s  method  to  suit systems  with  complex  differential  equation  of  motion. 

Takahashi [88] proposed  a method  free  from  the  limitations  of  small  parameter  

assumption. This  method establishes  both  the  simple  and  combination  type  

instability  zones. Zajaczkowski  and Lipinski [93] and  Zajaczkowski [94] based  on  

Bolotin’s  method  derived  formulae  to establish  the  regions  of  instability  and  to  

calculate  the  steady  state  response  of systems  described  by  a  set  of  linear  

differential  equations  with  time  dependent parameters  represented  by  a  

trigonometric  series. Lau et al.[52] proposed  a  variable parameter  incrementation  

method, which  is  free  from  limitations  of  small  excitation parameters. It  has  the  

advantage  of  treating  non-linear  systems. Many  investigators  to  study  the  dynamic  

stability  of  elastic systems have  also  applied finite  element  method. Brown et al [14] 



studied  the  dynamic stability of  uniform  bars  by  applying  this  method. Abbas [2] 

studied  the  effect  of rotational speed  and  root  flexibility  on the  stability  of  a     

rotating Timoshenko beam by finite element  method. Abbas  and  Thomas [1] and  

Yokoyama [92] used  finite  element  method to  study  the  effect  of  support  condition  

on  the  dynamic  stability  of  Timoshenko beams. Shastry  and  Rao  by  finite  element  

method  obtained  critical  frequencies [81] and the  stability  boundaries [82-83] for  a  

cantilever  column  under  an  intermediate  periodic concentrated  load  for  various  load  

positions. Bauchau and Hong [8] studied  the  non- linear  response  and  stability  of  

beams  using  finite  element  in  time. Briseghella et al. [12] studied  the  dynamic  

stability  problems  of  beams  and  frames  by   using  finite element  method. Svensson 

[87] by  this  method  studied  the  stability  properties  of  a periodically  loaded  non-

linear  dynamic  system, giving  special  attention  to damping effects. 

 

2.3 Type of parametric resonances 

                   Multidegree  freedom  systems  may  exhibit  simple  resonance, resonance  

of  sum type  or  resonance  of  difference  type  depending  upon  the  type  of  loading, 

support conditions  and  system  parameters. 

             Mettler [58] furnished  a classification  for  various  kinds  of  resonances  

exhibited by  linear  periodic  system. Iwatsubo  and  his  co-workers [43-44] from  their  

investigation on  stability  of  columns  found  that  uniform  columns  with  simple  

supported  ends  do not  exhibit  combination  type  resonances. Saito  and Otomi [76] on  

the  basis  of  their investigation  of  stability  of  viscoelastic  beams  with  viscoelastic  

support  concluded  that combination  resonances  of  difference  type  do not  occur  for  

axial  loading, but  it  exists for tangential  type  of  loading. Celep [15] found  that  for  a 

simply  supported  pretwisted column, combination  resonances  of  the  sum  type  may  

exist  or  disappear  depending  on the  pretwist  angle  and  rigidity  ratio  of  the  cross-

section. Ishida et al. [42] showed  that an  elastic  shaft  with  a  disc  exhibits  only  

difference  type  combination  resonance. Chen and  Ku [17] from  their  investigations  

found  that  for  a  cantilever  shaft  disc  system, the gyroscopic  moment  can  enlarge  

the  principal  regions  of  dynamic  instability. 

 



 

2.4 Sandwich  Beams      

 

        The  main  objectives  of  the  researchers  dealing  with  sandwich  beams  may  be 

grouped  in  the  following  categories. 

     i)  Prediction  of  resonant  frequencies  and  loss  factor 

     ii)  Static  and  dynamic  analysis  of  sandwich  beams 

     iii) Stability  study  of  sandwich  beams  and  columns 

     iv) Experimental  investigations 

 

2.4.1  Resonant  frequencies  and  loss  factor  prediction  

 

              Kerwin [50] was  the  first  to  carry  out  a  quantitative  analysis  of  the  

damping effectiveness  of  a  constrained  viscoelastic  layer  and  he  obtained  an  

expression  to estimate  the  loss  factor. Ungar [90]  derived  general  expressions  for  

the  loss  factor  of uniform  linear  composites  in  terms  of  the  properties  of  the  

constituting  materials. Di Taranto [22] developed a  theory  to  estimate  natural  

frequencies, loss  factors  for  a finite  length  sandwich  beam. Jones et al.[47] 

theoretically  and  experimentally  evaluated the  damping  capacity  of  a  sandwich  

beam  with  viscoelastic  core. Asnani  and  Nakra [4]  analysed  multilayer  simply  

supported  sandwich  beams  and  estimated  loss  factors and  displacement  response  

effectiveness  for  beams  of  different  number  of  layers. Chatterjee  and  Baumgarten 

[16] obtained  for  a  simply  supported  sandwich  beam, the damped  natural  

frequencies  and  logarithmic  decrement  for  the  fundamental  mode  of vibration.  They  

also  conducted  experiments  to  verify  their  theoretical  results, which showed  good  

agreement. Nakra  and  Grootenhuis [59] studied  theoretically  as well  as 

experimentally, the  vibration  characteristics  of  asymmetric  dual  core  sandwich  

beams. They  did  not  include  the  rotary  and  longitudinal  inertia  terms  in  their  

analysis. Later Rao [70]  included  both  these  effects  in  his  analysis. Asnani  and  

Nakra [6]  studied  the effect  of  number  of  layers and  thickness  ratio  on  the  system  

loss  factors  for  a  simply supported  multilayer  beam. Rao [66]  investigated  the  



influence  of  pretwist  on  resonant frequency  and  loss  factor  for  a  symmetric  

pretwisted  simply  supported  sandwich  beam and  found  that  pretwisting  reduces  

loss  factor  and  very  soft  thick  cored  beam  is especially  sensitive  to  even  small  

changes  of  pretwist. Rao  and  Stuhler [67] analysed the  damping effectiveness  of  

tapered  sandwich  beam  with  simply  supported  and clamped  free  end  conditions. 

Rao [70]  investigated  the  free  vibration  of  a  short sandwich  beam  considering  the  

higher  order  effects  such  as  inertia, extention  and  shear  of  all  the  layers. He  found  

that  if  these  parameters  are  neglected  for  short sandwich  beam  there  is  an  error  as  

high  as  45%  in  estimation  of  the  loss  factor  and frequencies. Rubayi  and  

Charoenree [75] carried  theoretical  and  experimental  investigations  to  obtain  the  

natural  frequencies  of  cantilever  sandwich  beams  subjected  to  gravity  force  only. 

Rao [69] on  another  work obtained graphs  and  equations  to  estimate  frequencies  and  

loss  factor  for  sandwich  beam  under  various  boundary  conditions. Johnson  and  his  

coworkers [45-46] used  the  finite  element  method  to  solve  frequencies and  loss  

factors  for  beams  and  plates  with  constrained  viscoelastic  layer. Vaswani et al.[91] 

derived  equations  of  motion for  a  multilayer  curved  sandwich  beam  subjected to  

harmonic  excitation. Lall et al.[51] analysed  the  partially  covered  sandwich  beams 

using  three  different  methods  and  found  that  method  by  Markus [55] estimates  

modal  loss  factors  only, whereas  Rayleigh-Ritz  and  classical  search  method  give  

both  loss factor  and  resonant  frequencies. Dewa et al.[21] studied  the  damping  

effectiveness  of  partially  covered  sandwich  beams. They  found  that  partially  

covered  beams  have  better damping  capacity  than  fully  covered  beams. Also  

through  experiments  he  validated  his  theoretical  findings. Imaino  and  Harrison [41] 

adopted  modal  strain  energy  method  and  finite  element  technique  to  investigate  

damping  of  the  first  and  second  bending resonance  of  a  sandwich  beam  with  

constrained  damping  layer. He  and  Rao [30] developed  an  analytical  model  to  carry  

out  a  parameter  study  of  the  coupled  flexural  and  longitudinal  vibration  of  a  

curved  sandwich  beam. Effects  of  parameters  such  as  curvature, core  thickness  and  

adhesive  shear  modulus  on  the  system  loss  factors  and  resonant  frequencies  were  

investigated. Same  authors [31] in  another  work  studied  the vibration  of  multispan   

beams  with  arbitrary  boundary  condition. Effects  of  parameter  like  location  of   



intermediate  supports  and  adhesive  thickness  on  the  resonant frequencies  and  loss  

factors  were  investigated. Bhimaraddi[11]  solved  both  the  resonant frequencies  and  

loss  factors  for  a  simply  supported  beam  with  constrained  layer  damping  using  a  

model  which  accounted  for  the  continuity  of  displacements  and  the  transverse  

shear  stresses  across  the  interfaces  of  the  layers. Sakiyama et al.[77]  developed  an  

analytical  method  for  free  vibration  analysis  of  a  three  layer  continuous sandwich  

beam  and  investigated  the  effect  of  shear  parameter  and  core  thickness  on  the  

resonant  frequencies  and  loss  factors. Fasana  and  Marchesiello [25] calculated  the 

mode  shapes, frequencies  and  loss  factors  for  sandwich  beams  by  Rayleigh-Ritz  

method. They  choose  polynomials  which  satisfy  the  geometric  boundary  conditions  

as  admissible  function. Banerjee[7] studied  the  free  vibration  of  a  three  layer  

sandwich  beam  using  dynamic  stiffness  matrix  method. He  calculated  the  natural  

frequencies  and mode  shapes. 

 

2.4.2 Static  and  dynamic  analysis  of  sandwich  beams 

             

               The  forced  vibration  analysis  of  a  three layered  sandwich  beam  with  

viscoelastic  core  and  with  arbitrary  boundary  conditions  was  carried  out  by  Mead  

and  Markus [56]. They  followed  the  method  used  by  Di  Taranto [22] in  their  

analysis. Asnani  and Nakra[5] carried  out  forced  vibration  analysis  of  sandwich  

beams  with  viscoelastic core  and  with  fixed-fixed  and  cantilever  type  end  

conditions. The  forced  vibration  response  obtained  by  applying  Ritz  method  

matched  well  with  the  experimental results. Rao [68] studied  the  forced  vibration  of  

a  damped  sandwich  beam  subjected  to moving  forces  and  found  that  increasing  the  

shear  stiffness  of  the  core  materials  can reduce  the  dynamic  magnification  of  the  

central  deflection   of  the  beam. Kapur[48] considered  both  rotary  and  longitudinal  

inertia  in  his  analysis  to  study  the  dynamic  response  of  two  and  three-layered  

viscoelastically damped beams subjected to half –sine shock excitation .Sharma and Rao 

[79]determined static deflections and stresses in sandwich beams  for both concentrated  

and distributed loads under various conditions.Frosting and Baruch [26] from their 

analysis of stresses in a sandwich beam  with flexible core under concentrated and 



distributed loading found that transverse normal stresses at the interface between the skin 

and core  in some cases  are significant in determining the sudden failure of the beam. 

Sun et al.[86] developed  a finite element model to study the effect of add-on viscoelastic 

layer in damping and vibration control of unidirectional composite laminates. Their 

theoretical  results compared well  with the exprerimental findings .Qian and Demao[65]  

carried out modal analysis as well as response calculation in time domain using finite 

element technique.Salet  and Hamelink[78] developed a numerical model based on finite 

difference method, for non-linear analysis of sandwich beams with simply supported 

boundary conditions. Ha[28] suggested an exact analysis procedure  for bending and 

buckling analysis of sandwich beam system. 

 

2.4.3   Stability study of sandwich beams and columns 

          

             The stability of sandwich columns with simply supported end conditions and 

subjected to pulsating axial loads was  investigated  by  Bauld[9]. Chonan [19] studied 

the stability of  two layer sandwich cantilever beams with imperfect bonding .They 

obtained critical loads for divergence and flutter type instabilities  and found that these 

are functions of shear and normal  stiffness of the bond .In another work Chonan[20]  

studied  the divergence and flutter type instabilities  in symmetric sandwich beams  with 

elastic bonding and found that critical divergence  and flutter loads depends on the 

interface bond stiffness. Kar and Hauger [49] investigated the dynamic stability of a 

sandwich beam subjected to a direction controlled non-conservative force and determined 

the critical divergence and flutter loads. Ray and Kar [71]   have investigated the dynamic 

stability of sandwich beams under various boundary Conditions.The same authors[72-74] 

also investigated  the parametric stability of  partially convered sandwich beams, dual 

cored sandwich beams and symmetric sandwich beams with higher  order effects. Ray 

and Kar in these works derived the governing equations of motion by using Hamilton’s 

principle and converted the equation of motion to a set of coupled Hill’s equation in the  

time domain by Galerkin’s method.They assumed approximate series solutions , which 

satisfy majority of the boundary conditions. The effect of rotating speed , setting angle 



and hub radius on the dynamic stability of a rotating sandwich beam with a constrained  

damping layer were  studied  by  Lin  and  Chen [53]. 

 

2.4.4   Experimental Investigations  

 

           The reported experimental works are mainly related to the experimental validation 

of theoretically predicted dynamic response,damping values, resonant frequencies and 

loss factors of sandwich beams.Chatterjee and Baumgarten[16] experimentally 

determined the logarithmic decrement to validate their theoretically obtained values for 

damped natural frequencies and damping values for a simply supported sandwich 

beams.Asnani and Nakra[5] compared their theoretically  obtained resonant frequencies 

by applying Ritz method with experimental result for a three-layer sandwich 

beam.Trompette et al.[89] carried out experiments to obtain resonant frequencies and 

damping values and compared with their theoretical results, which showed good 

agreement .Mace[54] compared the frequency response curve obtained from experiment 

with his theoretical results and drew  the conclusion that his predicted theory is an 

efficient in predicting the dynamic response of beams that are damped by means of a thin 

viscoelastic film.Gorrepati and Rao[27] measured from experiment, the natural 

frequencies and loss factor for a simply supported beam with adhesively bonded double 

strap joint to validate their results obtained by modal strain energy method.Chen and 

Chan[18] in order to establish their results obtained from integral finite element method 

experimentally obtained frequency response functions for elastic-viscoelastric composite 

structures. In a recent work Nayfeh[64] conducted experiment to obtain resonant 

frequencies  and loss factors  and compared with values predicted by his developed 

model for vibrations parallel to the plane  of lamination of a symmetric elastic- 

viscoelastic sandwich beam. 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

                                           
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

Theoretical  Study 
3.1 Introduction 

 
Sandwich structures are getting importance particularly in aerospace and other 

applications because of their remarkable vibration damping capacity. In one of the 

earliest work, Mead and Markus[56] investigated the forced vibration characteristics of a 

three layer damped sandwich beam with arbitrary boundary conditions. Asnani and 

Nakra[6] studied the vibration damping characteristics of a multilayer sandwich beam. 

Rubayi and Charoenree [75] calculated the natural frequencies of cantilever sandwich 

beam for various system parameters. Rao and Stuhler[67] studied the damping 

effectiveness of tapered symmetric sandwich beams for clamped-free and hinged-hinged 

boundary conditions. Rao[69] in his latter work obtained frequency and loss factors of 

sandwich beams with different boundary conditions and presented his findings in the 

form of graphs and formulae. Rao[66] also investigated the vibration characteristics of  

pre-twisted sandwich beams. He also studied the forced vibration characteristic of 

damped sandwich beam subjected to moving forces [68]. Sharma and Rao[79] studied the 

static deflection and stresses in sandwich beams under various boundary conditions. 

Bauld[9] determined the instability regions of simply supported sandwich column 

subjected to pulsating compressive load. Chonan studied the stability of  two layered [20] 

cantilever beam with imperfect elastic bonding and subjected to constant horizontal and 

tangential compressive forces.  

The purpose of the present work is to investigate the dynamic stability of a three 

layered  symmetric sandwich beam subjected to an end  periodic axial force . Equations 

of motion are derived using finite element method. The regions of instability for simple 

and combination resonances are established using modified Hsu’s method proposed by 

Saito and Otomi[76].  

 

 

 



 

 

3.2 Formulation of the problem 

 

Figure (3.1) shows a three layered symmetric sandwich beam of length L 

subjected to a pulsating axial force P (t) = P0 + P1 cos Ω t acting along its undeformed 

axis at one end.  

The finite element model developed is based on the following assumptions: 

(1) The transverse displacement w is same for all the three layers. 

(2) The rotary inertia and shear deformation in the constrained layers are 

negligible.  

(3) Linear theories of elasticity and viscoelasticity are used.  

(4) No slip occurs between the layers and there is perfect continuity at the 

interfaces.  

(5) Young’s modulus of the viscoelastic material is negligible compared to the 

elastic material.  

As shown in figure the element model presented here consists of two nodes and 

each node has four degrees of freedom. Nodal displacements are given by  

{ ∆e } = { u1i  u3i  wi  Φi  u1j  u3j  wj  Φj }                                                                (3.1) 

Where i and j are elemental nodal numbers. The axial displacement of the constraining 

layer, the transverse displacement and the rotational angle, can be expressed in terms of 

nodal displacements and finite element shape functions.  

u1 = [N1]{∆e }, u 3 = [N3] { ∆e }, w =[Nw] { ∆e }, Φ = [Nw]’{∆e},                        (3.2) 

where the prime denotes differentiation with respect to axial co-ordinate x and the shape 

functions are given by  

[N1] = [1-ξ 0 0 0 ξ 0 0 0 ] 

[N3] = [0 1-ξ 0 0 0 ξ 0 0  ] 

and 

 [Nw] = [0 0 (1-3ξ2+2ξ3)  (ξ -2ξ2 + ξ3)Le 0 0   3ξ2 -2 ξ3  (- ξ2 + ξ3) Le]                  (3.3) 

Where ξ = x/Le and Le is the length of the element.                              

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.2 Sandwich Beam Element 

wi wj

u1i u1j 

u3i u3j 
Le 

Figure 3.1 Configuration of the beam 

t2 



3.2.1. Constraining Layers 

The potential energy of the constraining layers is written as  

Uk (e) 
2

2

2 2
1 1
2 20 0

k k k k

e eL Lw dudE I dx E A dx
dxd x

⎛ ⎞ ⎛ ⎞= +⎜ ⎟∫ ∫ ⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠
           k = 1,3                             (3.4) 

Where E, A and I are the Young’s modulus, cross-sectional area and moment of inertia 

respectively. The notations 1 and 3 represent the upper and lower constraining layer, 

respectively.  

The kinetic energy of the constraining layers is written as  

Tk 
(e)  

2 21 1
2 20 0

k k k k

e eL Ldw duA dx A dx
dt dt

ρ ρ⎛ ⎞ ⎛ ⎞= +∫ ∫⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

       k = 1,3                                 (3.5) 

Where ρ is the mass density. 

By substituting Eq.(3.2) into Eq.(3.4) and  Eq.(3.5), the element potential energy and the 

kinetic energy of the constraining layers can be written as  

 Uk (e) =  ( ){ } ( ) ( )( ) ( ){ }1
2 ku kw

e ee e
K K⎡ ⎤ ⎡ ⎤+∆ ∆⎣ ⎦ ⎣ ⎦     k = 1,3                                                (3.6) 

and 

  Tk (e) = ( ){ } ( ) ( )( ) ( ){ }1
2 ku kw

e ee eM M⎡ ⎤ ⎡ ⎤+∆ ∆⎣ ⎦ ⎣ ⎦  k = 1,3                                               (3.7) 

Where  

( ) ( ) ( ) [ ] [ ] [ ] [ ]1 1 3 31 3 1 31 3

0 0

e e

ku u u
T Te e e

L L
E A dx E A dxN NN NK K K⎡ ⎤ ⎡ ⎤ ⎡ ⎤= + = +∫ ∫⎣ ⎦ ⎣ ⎦ ⎣ ⎦  

( ) ( ) ( ) [ ] [ ] [ ] [ ]1 1 3 31 3

0 0

e e

w ww wkw w w
T Te e e

L L
E I N dx E I N dxN NK K K⎡ ⎤ ⎡ ⎤ ⎡ ⎤= + = +∫ ∫⎣ ⎦ ⎣ ⎦ ⎣ ⎦  

( ) ( ) ( ) [ ] [ ] [ ] [ ]1 1 3 31 3 1 31 3

0 0

e e

ku u u
T Te e e

L L
A dx A dxN NN NM M M ρ ρ⎡ ⎤ ⎡ ⎤ ⎡ ⎤= + = +∫ ∫⎣ ⎦ ⎣ ⎦ ⎣ ⎦  

( ) ( ) ( ) [ ] [ ] [ ] [ ]1 1 3 3 31 3

0 0

e e

ww wkw w w
T Te e e

L L
A N dx A N dxN NM M M ρ ρ⎡ ⎤ ⎡ ⎤ ⎡ ⎤= + = +∫ ∫⎣ ⎦ ⎣ ⎦ ⎣ ⎦  

 

 



3.2.2. Viscoelastic layer 

                 The axial displacement uv and shear strain γv of the viscoelastic layer is derived 

from kinematic relationships between the constraining layers as given by Mead and 

Markus [56]. They  are expressed as follows: 

( )1 31 3

2 4
v

t tu u wu
x

−+ ∂
= +

∂
                                                                                               (3.8)                               

. ( )2 1 3
1 3

2

2
2

v
w t t t u u
x t

γ ∂ + +⎡ ⎤= + −⎢ ⎥∂ ⎣ ⎦
                                                                                   (3.9) 

Substituting Eq. (3.2) into Eq.(3.8) and Eq.(3.9), γv and uv can be expressed in terms of 

nodal displacements and element shape functions: 

( ) ( ){ }v v
eu N= ∆  

( ) ( ){ }v
eN γγ = ∆  

Where ( ) ( ) ( )( ) ( ) ( )1 3
1 3

1
2 4

v w
t t

N N N N
−

= +  

( ) ( ) ( )( ) ( ) ( )
1 3 1 2 3

2 2

21
2

w
N N t t t

N N
t t

γ
− + +

= +  

The potential energy of the viscoelastic layer due to shear deformation is written as  

( ) 1 2
2 0

e

v v vv
e

L
G A dxU γ= ∫                                                                                                  (3.10) 

Where Av is the cross-sectional area and Gv is the complex shear modulus of viscoelastic 

layer. 

The kinetic energy of viscoelastic layer is written as  

( )
2 21

2 0

e v
v vv

e
L dw duA dxT dt dt
ρ

⎧ ⎫⎪ ⎪⎛ ⎞ ⎛ ⎞= +∫ ⎨ ⎬⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎪ ⎪⎩ ⎭

                                                                       (3.11) 

Substituting Eq.(3.2) into Eqs. (3.10) and (3.11), the potential energy and kinetic energy 

of viscoelastic material layer is given by  

( ) ( ){ } ( )( ) ( ){ }1
2v v

e ee eU K⎡ ⎤= ∆ ∆⎣ ⎦                                                                                      (3.12) 

 



( ) ( ){ } ( )( ) ( ).1 .
2v v

ee eeT M
⎧ ⎫⎡ ⎤= ⎨ ⎬⎣ ⎦∆ ∆⎩ ⎭

                                                                                  (3.13) 

Where  ( ) [ ] [ ]
0

e

v vv
Te

L
G A N dxNK γγ⎡ ⎤ = ∫⎣ ⎦  

( ) [ ] [ ] [ ] [ ]
0 0

e e

v v v v v wv wv
T Te

L L
A N dx A N dxN NM ρ ρ⎡ ⎤ = +∫ ∫⎣ ⎦  

And  the  dot  denotes  differentiation  with  respect   to  time  t. 

3.2.3 Work done by axial periodic force  

Work done by axial periodic force P(t) is written as 

( )
21 ( )

2 0

e

p
e

L dwP t dxW
dx

⎛ ⎞= ∫ ⎜ ⎟
⎝ ⎠

                                                                                           (3.14) 

Substituting Eq.(3.2) into Eq.(3.14), the work done by the axial periodic load can be 

rewritten as  

( ) ( ){ } ( ) ( ){ }1 ( )
2

p p
Te ee eP tW k= ∆ ∆                                                                                    (3.15) 

Where ( ) [ ] [ ]
0

e

wwp
Te

L
N dxNk⎡ ⎤ = ∫⎣ ⎦  

The dynamic load P(t) is periodic and can be expressed in the form P(t)= P0 +P1Cos Ω t, 

where Ω is the disturbing frequency, P0 the static and  P1 the amplitude of time dependent 

component of the load, can be represented as the fraction of the fundamental static 

buckling load Pcr = (Π22E1I1)/L2 of a reference Euler beam, which is defined as having 

flexural rigidity 2E1I1 and mass per unit length same as that of the original sandwich 

beam with pin-pin end conditions. Hence substituting  P(t)= α Pcr + β Pcr Cos Ω t with α 

and β as static and dynamic load factors respectively.  

3.2.4 Equation of motion 

The element equations of motion for a sandwich beam with constrained damping layer 

subjected to an axial periodic load is derived by using extended Hamilton’s principle. 

  ( ) ( ) ( )( )
2

1

0p
eee

t
dtWUT

t
δ − + =∫                                                                                       (3.16) 



Substituting Eqn.(3.6), (3.7), (3.12), (3.13) and (3.15) in to Eq. (3.16) the element 

equation of motion for the sandwich beam element are obtained as follows:  

( )
( )

( ) ( ){ } ( ) ( ){ }.. 0cr p

e
ee ee e P Cos t KM K β

⎧ ⎫
⎡ ⎤⎡ ⎤ ⎡ ⎤ − Ω =∆ ∆⎨ ⎬⎣ ⎦ ⎣ ⎦ ⎣ ⎦∆⎩ ⎭

                                          (3.17) 

where 
( ) ( ) ( ) ( ) ( ) ( )

1 1 3 3u u u u v
e e e e ee M M M M MM ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎡ ⎤ = + + + +⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦                                                 

( ) ( ) ( ) ( ) ( ) ( )
1 1 3 3 vu u u u

ee e e ee KK K K KK γ⎡ ⎤⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎡ ⎤ = + + + +⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦  

Assembling  individual elements, the equations of motion of the global system can be 

expressed as  

[ ] [ ]{ } [ ]{ }
..

( ) 0pM K P t K⎧ ⎫+ ∆ − ∆ =⎨ ⎬∆⎩ ⎭
                                                                         (3.18) 

Substituting P(t), Eq.(3.18) becomes 

[ ] [ ]{ } ( )[ ]{ }
..

0 1cos 0pM K P P t K⎧ ⎫+ ∆ − + Ω ∆ =⎨ ⎬∆⎩ ⎭
                                                       (3.19) 

[ ] [ ] [ ]{ }( )[ ]{ }
..

0 1cos 0p pM K P K P t K⎧ ⎫+ − ∆ − Ω ∆ =⎨ ⎬∆⎩ ⎭
                                               (3.20) 

[ ] { } [ ]{ }
..

cos 0cr pM K P t Kβ⎧ ⎫ ⎡ ⎤+ ∆ − Ω ∆ =⎨ ⎬∆ ⎣ ⎦⎩ ⎭
                                                            (3.21) 

Where [ ] [ ]0 pK K P K⎡ ⎤ = −⎣ ⎦                                                                                           (3.22) 

The nodal displacement matrix{ }∆ can be assumed as  

{ } [ ]{ }∆ = Φ Γ                                                                                                                (3.23) 

Where [ ]Φ is the normalized modal matrix corresponding to  

[ ] { }
..

0M K⎧ ⎫ ⎡ ⎤+ ∆ =⎨ ⎬∆ ⎣ ⎦⎩ ⎭
                                                                                                (3.24) 

and { }Γ is a new set of generalized coordinates. 

Substituting Eq.(3.23) in Eq.(3.21), Eq. (3.21) transforms to the following set of coupled  

Mathieu equations. 

 



...

1

2

cos 0
N

n
m cr mn nmm P t bw β

=

⎛ ⎞+ Γ + Ω Γ =⎜ ⎟
⎝ ⎠

∑Γ               m = 1,2, ……………N,              (3.25) 

Where 
. 2

mw⎛ ⎞
⎜ ⎟
⎝ ⎠

are the distinct eigen values of [ ] 1 KM − ⎡ ⎤⎣ ⎦ and bmn are the elements of the 

complex matrix [ ] [ ] [ ] [ ][ ]1 1
pB KM− −

= − ΦΦ  and  

w·
m= wm.R+i wm.I,                   bmn = bmn.R +I bmn.I   

3.2.5 Regions of Instability 

             The boundaries of the regions of instability for simple and combination 

resonance are obtained by applying the following conditions [76 ] to the Eq. (3.25.) 

(A) Simple resonance 

 The boundaries of the instability regions are given by  

 
( ). .

. .
.

1
2 22 2

2
2

1 16
2 4

R I
R I

o R

b bµµ µµ
µ µ

µ

β
ω ωω ω

⎡ ⎤+Ω ⎢ ⎥− 〈 −
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         µ = 1,2…………N                 (3.26) 

Where 1 1 1 1
42 /o E I A Lω ρ= , . . 0/R Rµ µω ω ω= and . . 0/I Iµ µω ω ω=  

 

When damping is neglected, the regions of instability are given by  

( ).
.

.

1
2 4

R
R

o R

b
µµ

µ
µ

β
ω

ω ω

⎡ ⎤
Ω ⎢ ⎥− 〈 ⎢ ⎥

⎢ ⎥⎣ ⎦

           µ = 1, 2,………………N                                        (3.27) 

(B) Combination resonance of sum type 

The boundaries of the regions of instability of sum type are given 

by ( ) ( )
( )

( )
1/ 2

. . . . . .
. . . .

. .. .

1
221 1

162 2 8

I v I v R v R v I v I
R v R I v I

o R v RI v I

b b b bµ µ µ µ µ
µ µ

µµ

ω ω β
ω ω ω ω

ω ω ωω ω

+ +Ω
− + 〈 ⎡ ⎤−⎢ ⎥⎣ ⎦

(3.28) 

 µ ≠ v, µ,v = 1, 2,……………………..N        

When damping is neglected,the  unstable  regions  are  given by 

( ) ( ). .
. .

. .

1
221 1

2 2 4
v R v I

R v R
o R v R

b bµ µ
µ

µ

β
ω ω

ω ω ω
Ω

− + 〈 ⎡ ⎤
⎢ ⎥⎣ ⎦

                                                              (3.29) 

  µ ≠ v, µ,v = 1, 2,……………………..N          



 

(C) Combination resonance of difference type 

The boundaries of the regions of instability of difference type are given by 

( ) ( )
( )

( )
1/ 2

. . . . . .
. . . .

. .. .

1
221 1

162 2 8

I v I v R v R v I v I
R v R I v I

o R v RI v I

b b b bµ µ µ µ µ
µ µ

µµ

ω ω β
ω ω ω ω

ω ω ωω ω

+ −Ω
− − 〈 ⎡ ⎤−⎢ ⎥⎣ ⎦

       (3.30) 

       )                   

 v › µ, µ,v = 1, 2,……………………..N      

When damping is neglected, the unstable regions are  given by 

    ( ) ( ). .
. .

. .

1
221 1

2 2 4
v R v R

R v R
o R v R

b bµ µ
µ

µ

β
ω ω

ω ω ω
Ω

− − 〈 ⎡ ⎤
⎢ ⎥⎣ ⎦

                                                           (3.31)           

     v › µ, µ,v = 1, 2,……………………..N      

 

3.3 Results and discussion 

  

                    To study the effect of various system parameters, such as core thickness 

parameter t21, (defined as the ratio of the thickness of the viscoelastic core to the thickness 

of the elastic layer) and core loss factor, numerical results have been obtained for a three 

layer symmetric beam with identical elastic layers and having fixed end condition. For 

calculation purpose the young’s modulus E1 of the elastic layers and the inphase shear 

modulus of the viscoelastic material layer  ∗
vG   were taken as 70x109 N/m2   and 2.6x105 

N/m2 respectively. The ratio of mass density 21ρ   of the viscoelastic material layer and 

elastic material layer was taken to be 0.4.With a ten element discretisation of the beam, 

the resonant frequency  parameters and modal system loss factors obtained for a three-

layer beam were compared with those of Rao[69] and results were found to be in good 

agreement. The comparison  is  shown  in  Table-3.1. In the following discussion,  

⎟
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  as defined in Rao[69],  is the shear parameter. 

 

 



 

 

Table-3.1 Comparison  of  Resonant  frequency  parameters  and  Modal  loss  

factors  calculated   from  present  analysis  with  those  of  reference[69]. 

                                           g =5.0,  t21= 1.0, ηc= 0.1, 0.6  

Core  

loss  

factor 

ηc 

 Fundamental 

frequency 

parameter 

f1 

Fundamental

loss 

factor 

η1 

Second 

mode 

frequency

parameter 

f2 

Second

mode 

loss 

factor 

η2 

Third  

mode 

frequency 

parameter 

f3 

Third 

mode 

loss 

factor 

η3 

Present 7.8239 0.0302 33.3295 0.038 77.6149 0.0316 0.1 

Reference 

[69] 

7.9213 0.0307 34.0012 0.0391 78.5237 0.03205 

Present 8.0458 0.1557 33.9851 0.2152 78.4573 0.1854 0.6 

Reference 

[69] 

8.1932 0.1569 34.0517 0.2192 79.1942 0.1839 

 

           Effect of core thickness parameter on fundamental buckling load parameter is 

shown in figure 3.3 for shear parameter g = 5.0 and core loss factor ηc = 0.5. 

Fundamental buckling load parameter is defined as the ratio of the buckling load of the 

sandwich beam and to that of an equivalent Euler beam. It is seen that with increase in 

core thickness parameter fundamental buckling load parameter increases. The rate of 

increase is more for higher values of core thickness parameter. 

 Effect of core thickness parameter on fundamental frequency parameter is shown 

in figure3.4 for  g = 5.0 and ηc = 0.5. Fundamental frequency parameter is defined as the 

ratio of fundamental resonant frequency of the sandwich beam to that of an equivalent 

Euler beam. It is seen that fundamental resonant frequency increases almost linearly with 

increase in core thickness parameter.  

 Effect of core thickness parameter on second mode frequency parameter is shown 

in figure3.5 for g = 5.0 and ηc = 0.5. The second mode frequency parameter increases 

almost linearly with increase in core thickness parameter.  



  Effect of core thickness parameter on fundamental loss factor of the system is 

shown in figure 3.6 for  g = 5.0 and ηc = 0.5. It is seen that fundamental loss factor 

increases with increase in core thickness parameter, but the rate of increase is less for 

higher values of core thickness parameter.  

 Figure 3.7 shows the effect of core thickness parameter on second mode loss 

factor  for  g = 5.0 and ηc = 0.5. In this case also second mode loss factor increases with 

increase in core thickness parameter.  

 Figure 3.8 shows the effect of core thickness parameter on the instability regions. 

Instability regions are shown for two values of core thickness parameter t21 =2/3 and 1/3  

for  g = 5.0 and ηc = 0.3 for both the cases. It is seen that with increase in core thickness 

parameter the width of the instability regions decreases. The instability regions also shift 

to higher frequency of excitation along the excitation frequency axis and also shift 

upward parallel to the dynamic load axis which means that with increase in core 

thickness parameter the area of the instability regions reduces and instability commences 

at higher values of excitation frequency and dynamic load component. Thus with increase 

in core thickness parameter there is improvement of the stability of the beam.  

 The effect of core loss factor ηc on the instability regions are shown in figure 3.9. 

Instability regions have been shown for ηc = 0.18 and 0.3 with g=5.0 and t21=0.67. It can 

be seen that with increase in core loss factor the area of the instability region reduces. 

The instability regions shift vertically upward with increase in core loss factor, but there 

is little shift of the instability regions parallel to the frequency axis. Thus with increase in 

core loss factor the instability of the beam enhances with respect to reduction in area of 

the instability regions and commencement of instability at higher dynamic load 

component.   
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Figure - 3.3 ,Effect of Core Thickness Parameter on Fundamental Buckling Load Parameter,g=5.0, ηc
=0.3
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Figure - 3.4 ,Effect of Core Thickness Parameter on Fundamental Frequency Prameter,g=5.0, ηc=0.3
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Figure - 3.5 ,Effect of Core Thickness Parameter on Second Mode Frequency Prameter,g3=5.0, ηc=0.3
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Figure - 3.6,Effect of Core Thickness Parameter on Fundamental Loss Factor,g=5.0, ηc=0.3
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Figure - 3.7 ,Effect of Core Thickness Parameter on Second Mode Loss Factor, g =5.0, ηc=0.3
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3.4  Closure   

  

                 From  the  above  it  can  be  concluded  that  with  increase  in  core  thickness  

parameter  fundamental  buckling  load  increases. The  fundamental  resonant  frequency  

and  second  mode  frequency  parameter  also  increase  with  increase in core  thickness  

parameter. Fundamental  loss  factor  and  second  mode  loss  factor  also  increase  with  

increase in core  thickness  parameter. Again  increase  in  core  thickness  parameter  

enhances  the  stability  of  the  beam. With  increase  in  core  loss  factor  also  the  

stability  of  the  beam  enhances. 

 

 

 

                                           

 

 
 



 

 

 

 

 

 

 

 

 

 

                                          
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Experimental   work 
 

4.1 Introduction 

           

           The aim of the experimental work  is to establish  experimentally  the stability 

diagrams  for a few typical cases related to sandwich beams .For sandwich beams , the 

stability diagrams have been experimentally established for three-layered beams.The 

theoretical and experimental stability diagrams have been compared to assess  the 

accuracy of the theoretical results. 

 

4.2 Description of the experimental set up 

             

           The  set  up  consists  of   1) Frame   2)Specimen  3)End  attachments  4)Vibration  

Generator/Electrodynamic  shaker  5)Vibration  Pickup  6)Oscilloscope/Signal  Analyzer  

7) Loading  Device  8)Load  Indicator  9)Oscillator  &  Amplifier 

           

           1)  FRAME:-  It  has  been  fabricated  from  steel  channel  sections  by  welding.  

The  frame  is  fixed  in  vertical  position  to  the  foundation  by  means  of  foundation  

bolts  and  it  has  the  provision  to  accommodate  beams  of   different  lengths. 

            2)  END  ATTACHMENT:-  It  is  manufactured  from  steel  angles. Holes  are  

drilled  on  the  angle  flange. The  end  of  the  beam  is  rigidly  fixed  by  tightening  

bolts.            

           3)  VIBRATION  GENERETOR / ELECTRODYNAMIC  SHAKER:-  It  is  used  

to  apply  variable  loading  at  different  frequencies. The periodic axial load P1  cos Ωt  is  

applied  to  the  specimen  by  a  500N  capacity  electrodynamic  shaker  (Saraswati  

dynamics ,India, Model  no.  SEV-005). 

            4)  VIBRATION  PICKUP:-  It  is   used  to  sense  the  amplitude  of  vibration  

of  the  beam. The  vibration  response  of  the  test  specimen  is  measured  by  means  of  

vibration  pickups (B & K  type.model  no. MM-0002). 

 



            5)  OSCILLOSCOPE: - It is used to observe the response of vibration pick ups 

and load cell.  

            6)  LOADING   DEVICE:-  The  static  load   can  be  applied  to  the  specimen  

by  means   of  a  screw  jack  fixed  to  the  frame  at  the  upper  end. 

            7)  LOAD  CELL:-  The  applied  load  on  the  specimen  is  measured   by  a  

piezoelectric  load  cell ( Bruel & Kjaer , model  no. 2310-100), which  is  fixed  between  

the  shaker  and  the  specimen. 

            8)  OSCILLATOR  &  AMPLIFIER:-  Oscillator  is  used  to  produce  the  sine  

wave  of  required  frequency. Amplifier  is  used  for  subsequent  amplification  of  the  

signal  generated  by  the  oscillator. 

                   The schematic diagram of the equipments used for the experiment and 

photographic view of the experimental set up are shown . 

 

4.3. Preparation of specimens 

           

            Sandwich beams were fabricated from strips cut from mild steel sheets of suitable 

thickness. Viscoelastic core of the sandwich beam is P.V.C. In preparing the sandwich 

beams the face layers were made free from dirt, grease etc. by cleaning their surfaces 

with acetone and carbon tetrachloride. The adhesive used for bonding the layers is 

commercially available dendrite. After application of thin layer of adhesive on surfaces, 

the layers were bonded  and the sandwich beams were kept under loads for about  six 

hours. Slipping of the layers were avoided by providing positioning guides at all the 

edges of the specimens during the setting time .The Young’s modulus of the specimen 

materials were determined  by measuring the static deflection of a test specimen under 

known  load. Mass density of the specimen material  was measured  by measuring the 

weight and volume of a piece of  specimen material.The details of the physical and 

geometric data of the specimen are given in tables and the photographs of the specimen 

are shown in plates. 

 

 

 



 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
1. Screw jack    2. Fixed  end attachment    3. Vibration pick ups    4. Oscilloscope     
5. Piezoelectric load cell    6. Electrodynamic shaker     7. Oscillator & amplifier 

Fig. 4.1 Schematic diagram of the experimental set up 7 
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Table-4.1, Physical  and  Geometrical  parameters  of  the  specimen, 
 

Specimen 

No. 

Length 

L  

in  m 

Breadth 

B 

in  m 

Elastic 

layer 

thickness  

t1 in  m 

Viscoelastic

 layer 

    thickness 

     t2  in  m 

Young’s 

modulus 

E  in  N/m2 

Inphase shear 

modulus 
∗
vG  in N/m2 

1 0.5 0.0254 0.001 0.25 2.08 x 1011 9.33 x 106 

2 0.5 0.0254 0.001 3.0 2.08 x 1011 9.33 x 106 

 

4.4 Testing Procedure 

            

              An oscillator cum power amplifier unit drives the electrodynamic vibration 

shaker used for providing for dynamic loading.The beam response was recorded  by the 

non-contacting  vibration pick-up.Two pick-ups, one at each end of the beam were used 

to send the vibrartion response to the beam.The air gap between the pick-up and the 

vibrating surface were so adjusted that  the measurements were in the linear range.The 

amplitude of the signal gives no absolute displacement  since it is not calibrated. 

              Initially the beam was excited at certain frequencies and the amplitude of 

excitation was increased till the response was observed. Then the amplitude of excitation 

was kept constant  and the frequency of excitation was changed in step by 0.1Hz. The 

experimental boundary  of instability region was  marked by the parameters [P1,Ω], 

which were measured just before a sudden increase of the amplitude of lateral vibration. 

For accurate measurement of the excitation frequency an accelerometer was fixed to the 

moving platform of the exciter .Its response was observed on computer in the frequency 

domain.The dynamic load component of the applied load was measured from the 

response  curve of the load cell.The excitation frequency  was divided by 2ω0 to get the 

non-dimensional excitation frequency [Ω/2ω0].Similarly the dynamic load amplitude  

was divided  by the reference load Pcr to get the dynamic load factor  β. The details of 

observations  are given in tables. 

 

 



4.5 Results and discussion 

Figures (4.2 & 4.3 ) show the theoretical and experimental instability diagrams for a three 

layer sandwich beam with core thickness parameter equal to 0.25 and 3.0 respectively. 

The measured excitation frequencies and dynamic load are presented in table(4.1 & 4.2).   

It is seen that the instability regions from theoretical analysis are fairly close to the 

experimental ones.  

4.6 Closure 

   There is   good agreement between the theoretical and experimental results. 
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Fig. -4.2,Instability regions for three layer beam:,t21 =0.25,ηc=0.55,           

Theoretical Boundary from FEM;-, Experimental data;•.           
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Table-4.2, Experimental boundary frequencies of instability regions for 3- layered  
sandwich beam, 

           L= 0.5m, t1=0.001m, t21 = 0.25   , Pcr=36.86N,    ωo=20Hz. 
 

Excitation Frequency (Ω) Excitation frequency ratio Ω/2ωo 

1st Zone 2nd Zone 3rd Zone 2ω1 ω1+ω2 2ω2 

Sl 
No 

Dynamic 
load 
Amplitude 
(P1) Lower 

limit 
(Ω11) 

Upper 
limit 
(Ω12) 

Lower 
limit 
(Ω21) 

Upper 
limit 
(Ω22) 

Lower 
limit 
(Ω31) 

Upper 
limit 
(Ω32) 

Dynamic 
Load 
Factor 
β= P1 / 
Pcr

 
Lower 
limit 
(Ω11/2ωo) 

Upper 
limit 
(Ω12/2ωo) 

Lower 
limit 
(Ω21 / 
2ωo) 

Upper 
limit 
(Ω22 / 
2ωo) 

Lower 
limit 
(Ω31/2ωo) 

Upper 
limit 
(Ω32 

/2ωo)

1 
 

5.5 19.0 33.0 - - 56.0 76.0 0.15 0.95 1.65 - - 2.8 3.8

2 
 

8.5 18.0 36.0 - - 54.0 78.0 0.23 0.90 1.80 - - 2.7 3.9

3 
 

11.0 15.0 39.0 - - 51.0 85.0 0.30 0.75 1.95 - - 2.55 4.2

4 
 

12.2 12.0 40.0 - - 44.0 88.0 0.33 0.60 2.0 - - 2.20 4.4

 
 
 

Table-4.3, Experimental boundary frequencies of instability regions for 3-layered 
sandwich beam, 

           L= 0.5m, t1=0.001m, t21 =3    , Pcr=36.8N,   ωo= 16.18Hz. 
 

Excitation Frequency (Ω) Excitation frequency ratio Ω/2ωo 

1st Zone 2nd Zone 3rd Zone 2ω1 ω1+ω2 2ω2 

Sl 
No 

Dynamic 
load 
Amplitude 
(P1) Lower 

limit 
(Ω11) 

Upper 
limit 
(Ω12) 

Lower 
limit 
(Ω21) 

Upper 
limit 
(Ω22) 

Lower 
limit 
(Ω31) 

Upper 
limit 
(Ω32) 

Dynamic 
Load 
Factor 
β= P1 / 
Pcr

 
Lower 
limit 
(Ω11/2ωo) 

Upper 
limit 
(Ω12/2ωo) 

Lower 
limit 
(Ω21 / 
2ωo) 

Upper 
limit 
(Ω22 / 
2ωo) 

Lower 
limit 
(Ω31/2ωo) 

Upper 
limit 
(Ω32 

/2ωo)

1 
 

5.2 20.2 22.7 - - 48.5 55.0 0.14 1.25 1.40 - - 3.0 3.4

2 
 

7.7 17.8 25.4 - - 45.3 58.2 0.21 1.10 1.57 - - 2.8 3.6

3 
 

12.1 14.6 28.3 - - 41.4 63.1 0.33 0.90 1.75 - - 2.56 3.9

4 
 

13.6 12.1 29.1 - - 40.5 64.7 0.37 0.75 1.80 - - 2.5 4.0



 

 

 

 

 

 

 

 

 

 
                                     

                                           
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 
 

5.1 Conclusion:      

 The  following   conclusions  can  be  made  from  the  present  study. 

(i)  With  increase in core  thickness  parameter fundamental  buckling load  increases.  

(ii)  Fundamental  resonant  frequency  and  second  mode  frequency  parameter  also 

      increase  with  increase  in  core  thickness  parameter.           .  

(iii) Fundamental  loss factor and  second  mode  loss  factor  also  increase  with  

        increase   in  core  thickness  parameter.  

(iv)  Increase  in  core  thickness  parameter  enhances  the  stability  of  the  beam.  

(v)  With  increase  in  core  loss  factor  also  the  stability  of  the  beam  enhances. 

(vi) There  is  a  very  good  agreement  of  the  experimental  results  with  the 

       theoretical  findings.                                  

5.2 Scope for Future Work 

The  following  works  may  be  carried  out  as  an  extension  of  the present  work. 

1.   Stability of  sandwich  beams  with  different  boundary  conditions. 

2.   Stability of  sandwich beams  of  different  cross sections  like  I  section, trapezoidal  

section  etc. 

3.   Stability of  multilayered  sandwich  beams. 

4.   Stability  of  sandwich  plates. 
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