
“Novel Artificial Neural Network Application for Prediction of Inverse
Kinematics of Manipulator”

 A THESIS SUBMITTED IN PARTIAL FULFILLMENT

FOR THE REQUIREMENT FOR THE DEGREE OF

Master of Technology

In

Production Engineering

By

PANCHANAND JHA

Department of Mechanical Engineering

National Institute of Technology

Rourkela – 8

2009

“Novel Artificial Neural Network Application for Prediction of Inverse
Kinematics of Manipulator”

 A THESIS SUBMITTED IN PARTIAL FULFILLMENT

FOR THE REQUIREMENT FOR THE DEGREE OF

Master of Technology

In

Production Engineering

By

PANCHANAND JHA

Under the guidance of

Dr. B.B. BISWAL

Professor, Department of Mechanical Engineering

Department of Mechanical Engineering

National Institute of Technology

Rourkela – 8

2009

i

 NATIONAL INSTITUTE OF TECHNOLOGY

 ROURKELA – 769008

 INDIA

 CERTIFICATE

 This is to certify that the thesis entitled, “Novel Artificial Neural Network Application for

Prediction of Inverse Kinematics of Manipulator “submitted by Mr. PANCHANAND JHA

in partial fulfillment of the requirement for the award of Master of Technology Degree in

Mechanical Engineering with specialization in Production engineering at the National

Institute of Technology, Rourkela (Deemed University) is an authentic work carried out by him

under my supervision and guidance.

To the best of my knowledge, the matter embodied in the thesis has not been submitted to

any other University/ Institute for the award of any degree or diploma.

Date: Prof.B.B Biswal

 Mechanical Engineering Department

 National Institute of Technology

 Rourkela-769008

ii

 ACKNOWLEDGEMENTS

No thesis is created entirely by an individual, many people have helped to create this thesis and

each of their contribution has been valuable. I express my sincere gratitude and indebtedness to

my thesis supervisor, Dr. B.B.Biswal, for proposing

this area of research, for his kind and valuable guidance in the completion of the present work.

His consistent support and intellectual guidance made me energize and to innovate new ideas.

I am grateful to Dr. R.K Sahu, Professor and Head, Mechanical Engineering Department, NIT,

Rourkela for his excellent support during my work. I am also thankful to all the faculty members

and staff of Mechanical Engineering Department, for providing me support and advice in

preparing my thesis work. Last, but not the least I would like to thank my parents and my friends

who are involved directly and indirectly in successful completion of the present work.

 Panchanand Jha

 Roll no.207me206

 M.Tech.(Production Engg.)

 Mechanical Engineering Department

 NIT Rourkela - 769008

iii

CONTENTS

TITLE PAGE NO.

LIST OF FIGURES V

LIST OF TABLES V

LIST OF ABBREVIATIONS VI

ABSTRACT VII

1 INTRODUCTION 1

 1.1Background of the Work 7

 1.2Objectives 7

 1.3Methodology 7

 1.4Scope of the Present Work 8

 1.5Organization of the Thesis 8

 1.6Summary 9

2 LITERATURE REVIEW 10

 2.1Introduction 10

 2.2Summary 18

3 INTRODUCTIONS TO KINEMATICS OF MANIPULATOR 19

 3.1 Introduction 19

 3.2 Direct Kinematics 22

 3.3 Inverse Kinematics 24

 3.4 Summary 27

4 INTRODUCTIONS TO NEURAL NETWORK ARCHITECTURE28

iv

4.1 Introduction of Artificial Neural Network 29

4.2 Why use Neural Networks? 30

4.3 Neuron Model 31

4.4 Network Layers 31

4.5 Activation Functions 32

4.6 Sigmoidel Function 33

4.7 Feed Forward Networks 34

4.8 Learning 35

4.9 Back Propagation Algorithm 35

4.10 An Overview of Training in Back Propagation 36

4.11 Training Algorithm 37

4.12 Adjusting Weights of Network 37

4.13 Testing 38

4.14 Summary 39

5 NOVEL ANN APPLICATIONS FOR PREDICTING OF INVERSE KINEMATICS OF

MANIPULATOR 40

 5.1 Introduction 40

5.2 Application of MLP (multi-layer perceptron) 40

5.3 Application of PPN (polynomial preprocessor neural network) 46

5.4 Summary 47

6 SIMULATION RESULTS AND PERFORMANCE ANALYSIS 48

7 CONCLUSIONS AND SCOPE FOR FUTURE WORK 55

8 REFERENCE 56

v

 LIST OF FIGURE & TABLES

1.1 Schematic Representation of Forward and Inverse kinematics.

1.2 Feed-back Neural Network and Feed-Forward Neural Network

3.1 A Schematic of a Planar Manipulator with Three Revolute Joints.

3.2 Representation of 3R Planar Manipulator in Cartesian Space.

3.3 The Two Inverse kinematics Solutions for the 3R Manipulator: “elbow-up” Configuration

(σ =+1) and the “elbow-down” Configuration (σ = -1)

4.1 Neural Network Model Fig 6: Simple Neuron Model

4.2 A Multi-Layer Neuron Model

4.3 A Multi-Layer Neuron Model

4.4 Sigmoidal Function

4.5 Common Activation Functions

4.6 An example of Feed Forward Network

4.7 Basic Model of Neuron using Back Propagation

4.8 Multilayer Back Propagation Neural Network

4.9 Adjusting Weights of Output Layer

4.10 Adjusting Weights of Hidden Layer

5.1 Architecture for Neuron

5.2 Architecture of MLP

5.3 Architecture for Back-Propagation

5.4 The Influence of the Learning Rate on the Weight Changes.

5.5 Flow Chart for MLP

vi

5.6 Polynomial Perceptron Network.

6.1 Mean Square Error for 1θ

6.2 Graph for Matching of Desired and Predicted Values of 1θ

6.3 Mean Square Error for 2θ

6.4 Graph for Matching of Desired and Predicted Values of 2θ

6.5 Comparison Table for Desired Data and Predicted Data by ANN

6.6 Mean square error for 1θ

6.7 Mean square error for 2θ

6.8 Graph for matching of desired and predicted values of 2θ

6.9 Graph for matching of desired and predicted values of 1θ

vii

 LIST OF ABBREVIATIONS

ANN-- - Artificial Neural Network

AI------ Artificial intellegence

MLP-- Multilayer perceptrons

PPN-- Polynomial Pre-Processor

FLANN-- Functional Link Artificial Neural Network

RBF-- Radial Basis Function

MIMO-- Multi input multi output

DOF-- Degree Of Freedom

NN-- Neural Network

IK-- Inverse Kinematics

FK-- Forward Kinematics

BP-- Back Poropagation

ANFIS-- Artificial Neuro- Fuzzy Inference System

6R-- 6 Revolute

viii

 ABSTRACT

The robot control problem can be divided into two main areas, kinematics control (the

coordination of the links of kinematics chain to produce desire motion of the robot), and dynamic

control (driving the actuator of the mechanism to follow the commanded position velocities). In

general the control strategies used in robot involves position coordination in Cartesian space by

direct or indirect kinematics method. Inverse kinematics comprises the computation need to find

the join angles for a given Cartesian position and orientation of the end effectors. This

computation is fundamental to control of robot arms but it is very difficult to calculate an inverse

kinematics solution of robot manipulator. For this solution most industrial robot arms are

designed by using a non-linear algebraic computation to finding the inverse kinematics solution.

From the literature it is well described that there is no unique solution for the inverse kinematics.

That is why it is significant to apply an artificial neural network models. Here structured artificial

neural network (ANN) models an approach has been proposed to control the motion of robot

manipulator. In these work two types of ANN models were used. The first kind ANN model is

MLP (multi-layer perceptrons) which was famous as back propagation neural network model. In

this network gradient descent type of learning rules are applied. The second kind of ANN model

is PPN (polynomial poly-processor neural network) where polynomial equation was used. Here,

work has been undertaken to find the best ANN configuration for the problem. It was found that

between MLP and PPN, MLP gives better result as compared to PPN by considering average

percentage error, as the performance index.

1

 CHAPTER

 1
INTRODUCTION

Robot manipulator is composed of a serial chain of rigid links connected to each

other by revolute or prismatic joints. A revolute joint rotates about a motion axis

and a prismatic joint slide along a motion axis. Each robot joint location is usually

defined relative to neighboring joint. The relation between successive joints is

described by 4X4 homogeneous transformation matrices that have orientation and

position data of robots. The number of those transformation matrices determines

the degrees of freedom of robots. The product of these transformation matrices

produces final orientation and position data of an n degrees of freedom robot

manipulator. Robot control actions are executed in the joint coordinates while

robot motions are specified in the Cartesian coordinates. Conversion of the

position and orientation of a robot manipulator end-effectors from Cartesian space

to joint space, called as inverse kinematics problem, which is of fundamental

importance in calculating desired joint angles for robot manipulator design and

control. In most robotic applications the desired positions and orientations of the

end effectors are specified by the user in Cartesian coordinates. The

corresponding joint values must be computed at high speed by the inverse

kinematics transformation.
 For a manipulator with n degree of freedom, at any instant of time

joint variables is denoted by niti3,2,1),(== θθ and position

variables3,2,1),(mjtxx j == . The relations between the end-effectors

position x (t) and joint angle)(tθ can be represented by forward kinematic

equation,

))(()(tftx θ= (1)

2

Where f is a nonlinear, continuous and differentiable function. On the other hand,

with the given desired end effectors position, the problem of finding the values of

the joint variables is inverse kinematics, which can be solved by,

))(()(txft =θ (2)

Solution of (2) is not unique due to nonlinear, uncertain and time varying nature

of the governing equations. Figure 1 shows the schematic representation of

forward and inverse kinematics. The different techniques used for solving inverse

kinematics can be classified as algebraic [1], geometric [2] and iterative [3]. The

algebraic methods do not guarantee closed form solutions. In case of geometric

methods, closed form solutions for the first three joints of the manipulator must

exist geometrically. The iterative methods converge to only a single solution

depending on the starting point and will not work near singularities.

 Fig. (1.1) schematic representation of forward and inverse

kinematics.

If the joints of the manipulator are more complex, the inverse kinematics solution

by using these traditional methods is a time consuming. In other words, for a more

generalized m degrees of freedom manipulator, traditional methods will become

prohibitive due to the high complexity of mathematical structure of the

formulation. To compound the problem further, robots have to work in the real

world that cannot be modeled concisely using mathematical expressions. In recent

years, there have been increasing research interest of artificial neural networks

and many efforts have been made on applications of neural networks to various

control problems. The most significant features of neural networks are the

extreme flexibility due to the learning ability and the capability of nonlinear

3

functions approximations. This fact leads us to expect neural networks to be a

excellent tool for solving the inverse kinematics problem in robot manipulators

with overcoming the difficulties of algebraic, geometric and iterative methods.

 The robot motion problem involves in bringing the end-effectors of the

manipulator from the present to the desired position and orientation in the global

coordinates while following a prescribed trajectory in either the joint coordinates

or global coordinates. Since the desired position is usually specified in the global

coordinates, whereas the actuators used to drive the system are to be commanded

with desired joint values, the inverse kinematics must be solved. The solution of

the inverse kinematic problem maps the six-degree of freedom world coordinates

of the robot manipulator’s end-effectors into the robot’s joint space. The number

of solutions will depend on the manipulator configuration (including the number,

type, and relative location of the joints), on the range of motion of each of the

joints, and on the location of the selected end-effectors position in world

coordinates. There may be no solutions, a unique solution, or multiple solutions.

Kinematicians have for some time worked on this problem and have, as of yet, not

developed a methodology that can solve the inverse kinematics problem for a

generalized N-degree-of-motion freedom manipulator. Solutions have been found,

however, for certain manipulator configurations. Industrial robot manipulators

have conformed to these configurations in order to facilitate the specification of

tasks in a Cartesian-defined Workspace (often called the task space).

 An alternative solution to that of developing and solving a set of equations

would be useful for those cases where:

A. The equations cannot be derived even though the manipulator can be

designed And built,

B. The equations are so computationally intensive that solutions take too long

to Compute for practical robot control implementation, and

4

C. The equations involve coefficients which cannot readily be determined.

Humans and animals control their extremities without recourse to solving a set of

equations. There ought to be a methodology that more closely mimics the

mechanisms whereby we move our arms without consciously determining (i.e.,

calculating) the necessary joint angles, and velocities that enable that motion. An

acceptable solution must recognize the existence and location of singularities and

find a valid solution such that the continuity of the mapping between world and

joint space is preserved. Possible solutions to this problem include both numerical

procedures and neural network based methods. The success of numerical solution

procedures depends to a great extent on the formulation of a mathematical

expression that accurately describes the functional relationship between the input

parameters (specified end-point position of the manipulator in world coordinates,

in our case) and the output solution parameters (the joint angles in our case).

There are similarities between traditional numerical solution procedures and

neural net methods. These include the existence of an iterative adaptation

procedure and a performance measure. However, we wish to limit ourselves to

neural net procedures in which the solution is not determined based on a

mathematical expression defining the input/output relationship, but is captured in

some form of an associative memory relati

Several neural network approaches have been proposed in the literature. Guez and

Ahmad [3], applying the back-error propagation algorithm based on a three layer

perceptron, solved the problem as a learning process. Their first approach

“yielded good results but were not accurate enough to be practically utilized.” A

second attempt by these authors combined back-error propagation with a

conventional numerical procedure. They used the neural network simply as a

“lookup table in providing a good initial guess to an iterative procedure.” In

general, it should be noted that back propagation requires

the development of "hidden units," which will slow down the learning process.

Guo and Cherkassky [7] proposed a solution using a Hopfield net. Their solution

5

did not directly develop the inverse kinematic relationship, but instead coupled

the neural net with a Jacobian based control technique.

 We used MLP (multiple layer perceptrons) and PPN (polynomial poly-

processor neural network) method and comparison with MIMO system which

uses a Widrow- Hoff type error correction rule. This unsupervised method learns

the functional relationship between input (Cartesian) space and output (joint)

space based on a localized adaptation of the mapping, by using the manipulator

itself under joint control and adapting the solution based on a comparison between

the resulting locations of the manipulator's end effectors in Cartesian space with

the desired location. Even when a manipulator is not available; the approach is

still valid if the forward kinematic equations are used as a model of the

manipulator. The forward kinematic equations always have a unique solution, and

the resulting Neural net can be used as a starting point for further refinement

when the manipulator does become available. Artificial neural network especially

MLP and PPN are used to learn the forward and the inverse kinematic equations

of two degrees freedom (DOF) robot arm. The technique is independent of arm

configuration, including the number of degrees of freedom and the link geometry.

In this paper two types of artificial neural networks were used and finalized which

one is giving better result. The comparative study and results presented in this

paper indicate the feasibility of using these ANN for learning complex

input/output relations of robot kinematic control (based on computation of

forward and inverse mapping between joint space and Cartesian space). The

simulation shows that the MLP and PPN with MIMO system algorithms assure

faster convergence compared to other algebraic and analytical algorithm.

6

 Fig.(1.2). (a) feed-back neural network and, (b) feed-forward neural

network

These are some basic neural networks which applied here in this paper as you can

see above fig.(2),there are feed-back and fee-forward neural network is shown.

Typical network structures include feed-back and feed-forward NNs. Learning

algorithms are categorized into supervised learning and unsupervised learning.

This section provides an overview of these models and algorithms. In a class of

neural networks (NN) called Feed-forward Networks the processing elements,

termed as nodes indicated by circles in Fig. 2, are connected in layers through

links, termed as weights indicated by arrows in Fig. 2. The output of the node is a

function of the inputs, which are weighted outputs of the nodes of the previous

layer, and the threshold of the node. The learning takes place through the

modification of the weights and the thresholds as specified by the training

algorithm that acts on the supplied input and output data pairs as the training set.

The training algorithm used in our simulations is the Back Error Propagation

(BEP) Algorithm. The nodes to which the input is applied are called as the input

nodes and the nodes from which the output is taken are called as the output nodes.

The remaining nodes are termed as hidden nodes.

 A simple multilayer perceptron neural network (MLP) with back

propagation learning was used in the first step. The input layer has as many nodes

as the number of inputs to the map, namely four actuator lengths. Similarly the

output layer will have two nodes which represent the orientation of the moving

plate (θ1, θ2). The number of neurons in the hidden layer was used as a design

7

parameter. Sigmoid and linear transfer functions were selected for all hidden and

output layer nodes respectively.

1.1 Background of the work

In this paper, some methods of artificial neural network applied for the

solution of inverse kinematics of 2-link serial chain manipulator. The methods are

multilayer perceptrons and polynomial preprocessor neural network has applied.

The main objective of this thesis is to predict the values of joint angles (inverse

kinematics), as we know that there is no unique solution for the inverse

kinematics even mathematical formulae are complex and time taking so it is better

to find out solution through neural network. There are so many methods in soft-

computing, but in this paper two methods has been taken. After validation of

these methods, we multilayer perceptrons giving better result.

1.2 Objective of the thesis

The main objective of the thesis is to find out the solution for inverse

kinematics of manipulator as well as comparison of neural network methods.

Validation of the NN methods ensures future selection of the correct method of

NN. From the literature it is well described that there is no unique solution for

inverse kinematics. This is why it is significant to apply artificial neural networks

models. Here work has been undertaken to find the best ANN configuration for

the problem.

1.3 Methodology

In this paper the researchers has proposed two methods for the solution of

inverse kinematics of manipulator, the proposed methods are multilayer

perceptrons and polynomial preprocessor in order to validate the performance of

MLP and PPN for inverse kinematics problem, simulation studies are carried out

by using MATLAB. Many researchers have followed MLP, PPN, RBF and

FLANN with MISO (multi input single output) system. Here in this paper we

have applied MLP and PPN with MIMO (multi input multi output) system. A set

of 130 data sets were first generated as per the formula equation (10) for this the

input parameter X and Y coordinates in inches. Using these data sets was basis for

8

the training and evaluation or testing the MLP and PPN models. Out of the sets of

130 data points, 100 were used as training data and 30 were used for testing for

MLP. Back-propagation algorithm was used for training the network and for

updating the desired weights. In this work epoch based training method was

applied.

1.4 Scope of the Present Work

In this study the MLP and PPN has been proposed for the solution of inverse

kinematics problem of robot manipulator. However, it has some limitations. There

are several types of soft computing methods are available which can be used for

finding the solution, but this is beyond the scope of this thesis but this technique

can be used for the future scope of the thesis. These methods are followed:

¾ Application of fuzzy inference system (FIS)

¾ Adaptive network based fuzzy inference system (ANFIS)

¾ Functional link artificial neural network (FLANN)

¾ Evaluation computation

1.5 Organization Of The Thesis

Robot control actions are executed in the joint coordinates while robot

motions are specified in the Cartesian coordinates. Conversion of the position and

orientation of a robot manipulator end-effectors from Cartesian space to joint

space, called as inverse kinematics problem. In chapter [2] various researchers has

proposed neural network models for the prediction of inverse kinematics, methods

they applied are feed forward architectures, multilayer perceptrons using back

propagation algorithms, polynomial preprocessor networks , functional link

artificial neural network and radial basis functional network. In chapter [3] we

focused on fundamentals of inverse kinematics and direct kinematics of

manipulator. In chapter [4] we have discussed about artificial neural network and

various neural models and explained why neural networks are important for

inverse kinematics. In chapter [5] the researchers has proposed two methods for

the solution of inverse kinematics of manipulator, their proposed methods are

multilayer perceptrons and polynomial preprocessor in order to validate the

performance of MLP and PPN for inverse kinematics problem. In chapter [6]

9

simulation studies are carried out by using MATLAB. In chapter [7] conclusion

and future work were discussed.

1.6 Summary

The robot motion problem involves in bringing the end-effectors of the

manipulator from the present to the desired position and orientation in the global

coordinates while following a prescribed trajectory in either the joint coordinates

or global coordinates. Since the desired position is usually specified in the global

coordinates, whereas the actuators used to drive the system are to be commanded

with desired joint values, the inverse kinematics must be solved. There are several

types of soft computing methods available which can be used for finding the

solution of the inverse kinematics and further we’ll discuss about them in next

chapter.

10

 CHAPTER

 LITERATURE REVIEW
2.1 Introduction:

 Another important consideration is the choice of appropriate criteria for

kinematics of robotics and artificial neural networks. Although the ultimate

objective of this problem is to find out inverse kinematics, but as we know that

there is no unique solution for this problem so we tried to find out IK through

neural networks. Some researchers are developing methodologies which can

approach to finding this problem.

2.2 Previous Work:

Alavandar and Nigam [1] developed Neuro-Fuzzy based Approach for

Inverse Kinematics Solution of Industrial Robot Manipulators. Obtaining the joint

variables that result in a desired position of the robot end-effectors called as

inverse kinematics is one of the most important problems in robot kinematics and

control. In this paper, using the ability of ANFIS (Adaptive Neuro-Fuzzy

Inference System) to learn from training data, it is possible to create ANFIS, an

implementation of a representative fuzzy inference system using a BP neural

network-like structure, with limited mathematical representation of the system.

Computer simulations conducted on 2 DOF and 3DOF robot manipulator shows

the effectiveness of the approach.

 Morris and Mansor [2] developed artificial neural network for finding

inverse kinematics of robot manipulator using look up table. The neural networks

utilized were multi-layered perceptions with a back-propagation training

algorithm. They used 5 hidden layer neurons , the rate of training , ή , was 2.018 ,

 CHAPTER

 2

11

and the momentum factor , α , was 0.54 . The training of the 9 patterns was done

3000 times. The average percentage error, i.e. the percentage of the difference

between actual and targeted / desired output, at the final iteration of the final

session was 0.02% for the first joint and 0.3% for the second joint.

Guez and Ahmad [3] developed solution to inverse kinematics problem in

robots using neural network they employ a neural network model in the solution

of the inverse kinematics problem in Robotics. It is found that the neural network

can be trained to generate a fairly accurate solution which when augmented with

local differential inverse kinematic methods will result in minimal burden on

processing load of each control cycle and thus enable real time robot control. The

back propagation algorithm simulating a three layer perceptron was employed to

tackle this problem. Symmetric sigmoidal nonlinearity was used. The learning

rate and the momentum term assumed the values of 0.1 and 0.4 respectively,

throughout the different Simulations described below. Also the desired outputs

were normalized between -0.9 and +0.9. The average error is less than 0.01

radians while maximum error is 0.25 radians.

 Karlik & Aydinb developed [4] an improved approach to the solution of

inverse kinematics problems for robot manipulator. A structured artificial neural-

network (ANN) approach has been proposed here to control the motion of a robot

manipulator. Many neural-network models use threshold units with sigmoid

transfer functions and gradient descent-type learning rules. The learning equations

used are those of the back propagation algorithm. In this work, the solution of the

kinematics of a six- degrees-of-freedom robot manipulator is implemented by

using ANN. An appropriate computer program has been developed in the Borland

C++ language for the ANN architectures considered in this study. Iterations were

performed on a PC P-90 computer, and 6000 iterations were used for teaching the

ANN.

 Npyen., et.al [5] Neural Network Architectures For The Forward

Kinematics Problem in Robotics In this paper, various neural network models are

considered for solving the robot forward kinematics problem. It is found that

12

certain models with proper training strategies can generate a fairly accurate

solution for the robot forward kinematics problem. In this paper, various neural

network architectures are used to solve the forward kinematics problem in

robotics. Its purpose is to identify the advantages and disadvantages of each

architecture in this robotic application. All the results have been obtained by

simulation on a SUN 3/60 work station. The networks were trained with a set of

sixty four desired inputs/outputs collected from measurements. All the weights of

the networks were randomly initialized from -0.5 to +0.5. In the output layer of

this network, all the weights were initialized to zero. This is to avoid the case in

which a local minimum predominates when the training process is started. The

training process was stopped when the average error was under 10%.

 Jaein, et.al [6] developed Robot Control Using Neural Network. A neural

network theory is applied to theoretical robot kinematics to learn accuracy

transforms. The network is trained on accuracy data that characterize the actual

robot kinematics. The network learns the differences in the joint angles to

improve the accuracy between the effectors endpoint resulting from the

theoretically calculated joint angles and the desired endpoint. It is hoped that the

capabilities of modem day neural networks will solve problems that appear to be

beyond the bounds of conventional computational devices. The results were

virtually identical for both test cases. After the network had be trained on 1 point,

the accuracy of positioning the end-effectors to a desired point was improved by

an average of 60% and for all test sets presented, the accuracy was greater than

the accuracy of the uncompensated or naked controller.

Guo & Cherkassky [7] developed A Solution to the Inverse Kinematic

Problem in Robotics Using Neural Network Processing. In this paper, a solution

algorithm is presented using the Hopfield and Tank [1985] analog neural

computation scheme to implement the Jacobian control technique. The states of

neurons represent joint velocities of a manipulator, and the connection weights are

determined from the current value of the Jacobian matrix. The network energy

function is constructed so that its minimum corresponds to the minimum least

13

square error between the actual and desired joint velocities. At each sampling

time, connection weights and neuron states are updated according to current joint

positions. During each sampling period, the energy function is minimized and

joint velocity command signals are obtained as the states of the Hopfield network.

They proposed a solution to the inverse kinematic problem using Hopfield neural

network. Our approach is based on the Jacobian control technique. The Hopfield

network should be capable of updating its connection weights in real time. The

outputs of the network are joint velocity commands which can be used to control

joint actuators of a robot manipulator.

Wang and Zilouchian[8] has given solutions of Kinematics of Robot

Manipulators Using a kohonen Self- Organizing Neural Network. Kohonen self-

organizing neural network is used to solve the forward kinematics problems of

robot manipulators. Through competition learning, neurons learn their distribution

in the training phase. In sequel, the nonlinear mapping has been obtained by

proper calibration of training results. The proposed method is based on the

unsupervised learning which does not rely on the knowledge of process model

and target information. Simulation results have shown the effectiveness of the

proposed method for a two degree planer robot manipulator. The initial weights of

neuron are randomly selected to congregate within the estimated range of neuron

space. After 1000 end effectors positions have been presented for training, the

weight vectors have been moving out of the center range. With 5000 training

steps, the neurons begin to approach the shape of its distribution. After 20,000

steps of training, the neurons develop to a proper distribution which is very close

to its final form. Fig. 6 shows the average error versus the number of training

steps. Obviously, the training result is fare satisfactory after 6.000 iterations.

 Xia and Wang [9] developed A Dual Neural Network for Kinematic

Control of Redundant Robot Manipulators the inverse kinematics problem in

robotics can be formulated as a time-varying quadratic optimization problem. A

new recurrent neural network, called the dual network, is presented in this paper.

The proposed neural network is composed of a single layer of neurons, and the

14

number of neurons is equal to the dimensionality of the workspace. The proposed

dual network is proven to be globally exponentially stable. The proposed dual

network is also shown to be capable of asymptotic tracking for the motion control

of kinematic ally redundant manipulator.

 Yee & Lim [10] developed Forward kinematics solution of Stewart

platform using neural networks. The Stewart platform’s unique structure

presents an interesting problem in its forward kinematics (FK) solution. It

involves the solving of a series of simultaneous non-linear equations and, usually,

non-unique, multiple sets of solutions are obtained from one set of data. In

addition, most effort usually results in having to find the solution of a 16th-order

polynomial by means of numerical methods. A simple feed-forward network was

trained to recognize the Relationship between the input values and the output

values of the FK problem and was able to provide the solution around an average

error of 1.0” and 1.0 mm. By performing a few iterations with an innovative

offset adjustment, the performance of the trained network was improved

tremendously. Two extra iterations with the offset adjustment reduced the average

error of the same trained neural network to 0.017” and 0.017 mm.

Gallaf [11] developed Neural Networks for Multi-Finger Robot Hand

Control. This paper investigates the employment of Artificial Neural Networks

(ANN) for a multi-finger robot hand manipulation in which the object motion is

defined in task-space with respect to six Cartesian based coordinates. The

approach followed here is to let an ANN learn the nonlinear functional relating

the entire hand joints positions and displacements to object displacement. This is

done by considering the inverse hand Jacobian, in addition to the interaction

between hand fingers and the object being grasped and manipulated. The

developed network has been trained for several object training patterns and

postures within a Cartesian based palm dimension. The paper demonstrates the

proposed algorithm for a four fingered robot hand, where inverse hand Jacobian

plays an important role in robot hand dynamic control.

15

 Houvinen and Handroos [12] they used basically ADAMS –Model for

training of neural network for inverse kinematics of flexible robot manipulator. If

flexibility of system is included than problem becomes more complicated. Neural

network can be used to solve inverse kinematic problem. Multiple layer networks

are capable of approximating any function with a finite number of discontinuities.

For learning the inverse kinematics neural network needs information about join

coordinates, joint angles, and actuator position. By creating flexible ADAMS-

model of the robot and equipped with virtual instrument it is possible to simulate

the data needed for the training of neural network. in this study the number of

training vectors was used 1750 and 350 separate vectors were used for the testing

the neural network. In this paper they used of simulation data in training neural

network for inverse kinematic computation of manipulator. The result shows that

the positioning of a flexible robot using an inverse neural network model is

possible but the accuracy is not yet good enough. The accuracy is increased by

increasing the number of training vector and training the neural network again.

 Daniel Patiño, et.al [13] Neural Networks for Advanced Control of Robot

Manipulators. This paper presents an approach and a systematic design

methodology to adaptive motion control based on neural networks (NNs) for

high-performance robot manipulators, for which stability conditions and

performance evaluation are given. The neuro-controller includes a linear

combination of a set of off-line trained NNs (bank of fixed neural networks), and

an update law of the linear combination coefficients to adjust robot dynamics and

payload uncertain parameters. This paper deals with a neural network-based

controller for motion dynamic control of robot manipulators. The dynamical

behavior of a rigid manipulator can be characterized by a system of highly

coupled and nonlinear differential equations. The nonlinear effects are

emphasized for robots working at high speeds with direct drive motors or low

ratio gear transmissions. A simulation study has been carried out for the PUMA-

560 robot. They have presented an approach and a systematic design methodology

to a motion adaptive control based on NNs for high-performance robot

16

manipulators, for which stability conditions and performance evaluation have

been given.

Ted Hesselroth,et. al [14] they proposed Neural Network Control of a

Pneumatic Robot Arm. A neural map algorithm has been employed to control a

five-joint pneumatic robot arm and gripper through feedback from two video

cameras. The pneumatically driven robot arm (Soft Arm) employed in this

investigation shares essential mechanical characteristics with skeletal muscle

systems. To control the position of the arm, 200 neurons formed a network

representing the three-dimensional workspace embedded in a four-dimensional

system of coordinates from the two cameras, and learned a three-dimensional set

of pressures corresponding to the end effectors positions, as well as a set of 3×4

Jacobian matrices for interpolating between these positions. The gripper

orientation was achieved through adaptation of a 1 × 4 Jacobian matrix for a

fourth joint. Because of the properties of the rubber-tube actuators of the Soft

Arm, the position as a function of supplied pressure is nonlinear, no separable,

and exhibits hysteresis. Nevertheless, through the neural network learning

algorithm the position could be controlled to an accuracy of about one pixel (_3

mm) after two hundred learning steps and the orientation could be controlled to

two pixels after eight hundred learning steps. This was achieved through

employment of a linear correction algorithm using the Jacobian matrices

mentioned above. Applications of repeated corrections in each positioning and

grasping step leads to a very robust control algorithm since the Jacobians learned

by the network have to satisfy the weak requirement that the Jacobian yields a

reduction of the distance between gripper and target.

Benhabib,et.al.[15] A solution to the inverse kinematics is a set of joint

coordinates which correspond to a given set of task space coordinates (position

and orientation of end effectors). For the class of kinematic ally redundant robots

the solution is generically no unique such that special methods are required for

obtaining a solution. The paper presents a new algorithm for solving the inverse

kinematics which is based on a modified Newton-Raphson iterative technique.

The new algorithm is efficient, converges rapidly, and completely generalizes the

17

solution of the inverse kinematics problem for redundant robots. The method is

illustrated by a numerical example.

Oyama and Tachi [16] Inverse kinematics computation using an artificial

neural network that learns the inverse kinematics of a robot arm has been

employed by many researchers. However, conventional learning methodologies

do not pay enough attention to the discontinuity of the inverse kinematics system

of typical robot arms with joint limits. The inverse kinematics system of the robot

arms is a multi-valued and discontinuous function. Since it is difficult for a well-

known multi-layer neural network to approximate such a function, a correct

inverse kinematics model for the end-effectors’s overall position and orientation

cannot be obtained by using a single neural network. In order to overcome the

discontinuity of the inverse kinematics function, we propose a novel modular

neural network system for the inverse kinematics model learning. We also

propose the on-line learning and control method for trajectory tracking.

Manocha and Canny [17] in this paper, they present an algorithm and

implementation for efficient inverse kinematics for a general 6R manipulator.

When stated mathematically, the problem reduces to solving a system of

multivariate equations. They make use of the algebraic properties of the system

and the symbolic formulation used for reducing the problem to solving a

univariate polynomial. However, the polynomial is expressed as a matrix

determinant and its roots are computed by reducing to an eigenvalue problem.

The other roots of the multivariate system are obtained by computing

eigenvectors and substitution. The algorithm involves symbolic preprocessing,

matrix computations and a variety of other numerical techniques. The average

running time of the algorithm, for most cases, is 11 milliseconds on an IBM

RS/6000 workstation. This approach is applicable to inverse kinematics of all

serial manipulators.

Kieffer et.al.[18], presented a methodology where a neural network is

used to learn the inverse kinematic relationship for a robot arm. They presented

two link, two degree of freedom planar robot arm simulation, and an

accompanying neural network which solves the inverse kinematic problem. Their

18

method is based on Kohonen’s self organizing mapping algorithm using a

Widrow-Hoff type error correction rule. They have specifically addressed a

number of issues associated with the inverse kinematic solution, including the

occurrence of singularities and multiple solutions.

Kozalziewicz et.al,[19] developed the solution of inverse kinematics of

robot manipulator with the help of Partitioned Neural Network architecture. In

this paper they obtained quit good result, and they demand high accuracy. The

Partitioned Neural Network is composed of a Pre - Processing layer and Partition

Modules containing dedicated neurons. The learning equations used are those of

the Back propagation algorithm. The Network has been applied to learning of the

Inverse Kinematic solution of a 6 degree of freedom robot manipulator. After

training, the Partitioned network was able to predict robot joint angles.

2.3 Summary:

 The different types of approaches to the inverse kinematics have been

reported. Here these approaches show their various advantages and disadvantages

to the development of new design problem. Taking the old approach in to

consideration the development of new approaches conceptualized through these

literatures.

19

 CHAPTER

 3

 INTRODUCTION TO KINEMATICS OF MANIPULATOR

3.1 Introduction

The purpose of this chapter is to introduce you to robot kinematics, and the

concepts related to both open and closed kinematics chains. Forward kinematics is

distinguished from inverse kinematics. Kinematics is the study of motion without

regard to the forces that create it. The forward kinematics is about finding an end

effectors or tool piece pose given a set of joint variables. The Inverse Kinematics

is the opposite problem. We want to and a set of joint variables that give rise to a

particular end effectors or tool piece pose. Kinematics is the study of motion. In

this subsection, we will explore the relationship between joint movements and end

effectors movements. More precisely, we will try to develop equations that will

make explicit the dependence of end effectors coordinates on joint coordinates

and vice versa.

 Fig. (3.1) A schematic of a planar manipulator with three revolute joints.

20

We will start with the example of the planar 3R manipulator. From basic

trigonometry, the position and orientation of the end effectors can be written in

terms of the joint coordinates in the following way:

)cos()cos(cos 321321211 θθθθθθ +++++= lllx

)sin()sin(sin 321321211 θθθθθθ +++++= llly …….. (3)

 =φ 321 θθθ ++

Note that all the angles have been measured counter clockwise and the link

lengths are assumed

to be positive going from one joint axis to the immediately distal joint axis.

Equation (3) is a set of three nonlinear equations that describe the relationship

between end effectors coordinates and joint coordinates. Notice that we have

explicit equations for the end effectors coordinates in terms of joint coordinates.

However, to find the joint coordinates for a given set of end effectors coordinates

(x, y, φ), one needs to solve the nonlinear equations for θ1, θ2, and θ3.

The kinematics of the planar R-P manipulator is easier to formulate. The

equations are:

 12 cos. θdx =

 12 sin. θdy = …………… (4)

 1θφ =

Again the end-effector coordinates are explicitly given in terms of the joint

coordinates. However, since the equations are simpler (than in (3)), you would

expect the algebra involved in

Solving for the joint coordinates in terms of the end effector coordinates to be

easier. Notice that

in contrast to (3), now there are three equations in only two joint coordinates, θ1,

and d2. Thus, in general, we cannot solve for the joint coordinates for an arbitrary

set of end effector coordinates. Said another way, the robot cannot, by moving its

two joints, reach an arbitrary end effector position and orientation.

21

Let us instead consider only the position of the end effector described by (x, y),

the coordinates of the end effector tool point or reference point. We have only two

equations:

 12 cos. θdx =

 12 sin. θdy = ………… (5)

Given the end effectors coordinates (x, y), the joint variables can be computed to

be:

 22
2 yxd ++=

 ⎟
⎠
⎞

⎜
⎝
⎛= −

x
y1

1 tanθ ……… (6)

Notice that we restricted d2 to positive values. A negative d2 may be physically

achieved by allowing the end effector reference point to pass through the origin of

the x-y coordinate system

over to another quadrant. In this case, we obtain another solution:

 22
2 yxd +−=

 ⎟
⎠
⎞

⎜
⎝
⎛= −

x
y1

1 tanθ ……. (7)

In both cases (6-7), the inverse tangent function is multivalued10. In particular,

 2,1,0,1,2.....),tan()tan(−−=+= kkxx π …….(8)

However, if we limit θ1 to the range 0<θ1<2π, there is a unique value of θ1 that is

consistent with the given (x, y) and the computed d2 (for which there are two

choices). The existence of multiple solutions is typical when we solve nonlinear

22

equations. As we will see later, this poses some interesting questions when we

consider the control of robot manipulators. The planar Cartesian manipulator is

trivial to analyze. The equations for kinematic analysis are:

 12 , dydx == …. (9)

The simplicity of the kinematic equations makes the conversion from joint to end

effector coordinates and back trivial. This is the reason why P-P chains are so

popular in such automation equipment as robots, overhead cranes, and milling

machines.

3.2 Direct kinematics

As seen earlier, there are two types of coordinates that are useful for

describing the configuration of the system. If we focus our attention on the task

and the end effector, we would prefer to use Cartesian coordinates or end effector

coordinates. The set of all such coordinates is generally referred to as the

Cartesian space or end effector space. The other set of coordinates is the so called

joint coordinates that is useful for describing the configuration of the mechanical

lnkage. The set of all such coordinates is generally called the joint space.

23

 Fig. (3.2) Representation of 3R planar manipulator in Cartesian

space.

 In robotics, it is often necessary to be able to “map” joint coordinates to end

effector coordinates. This map or the procedure used to obtain end effector

coordinates from joint coordinates is called direct kinematics. For example, for

the 3-R manipulator, the procedure reduces to simply substituting the values for

the joint angles in the equation

)cos()cos(cos 321321211 θθθθθθ +++++= lllx

)sin()sin(sin 321321211 θθθθθθ +++++= llly ….. (10)

 =φ 321 θθθ ++

And determining the Cartesian coordinates, x, y, and φ. For the other examples of

open chains Discussed so far (R-P, P-P) the process is even simpler (since the

equations are simpler). In fact, for all serial chains (spatial chains included), the

direct kinematics procedure is fairly straight Forward. On the other hand, the

same procedure becomes more complicated if the mechanism contains one or

more closed loops. In addition, the direct kinematics may yield more than one

solution or no solution in such cases. For example, in the planar parallel

24

manipulator in Figure 3, the joint positions or coordinates are the lengths of the

three telescoping links (q1, q2, q3) and the end effectors coordinates (x, y, φ) are

the position and orientation of the floating triangle. It can be shown that

depending on the value of (q1, q2, q3), the number of (real) solutions for (x, y, φ)

can be anywhere from zero to six. For the Stewart Platform in Figure 4, this

number has been shown to be anywhere from zero to forty.

3.3 Inverse kinematics

The analysis or procedure that is used to compute the joint coordinates for

a given set of end effector coordinates is called inverse kinematics. Basically, this

procedure involves solving a set of equations. However the equations are, in

general, nonlinear and complex, and therefore, the inverse kinematics analysis can

become quite involved. Also, as mentioned earlier, even if it is possible to solve

the nonlinear equations, uniqueness is not guaranteed. There may not (and in

General, will not) be a unique12 set of joint coordinates for the given end effector

coordinates.

We saw that for the R-P manipulator, the direct kinematics equations are:

 12 cos. θdx =

 12 sin. θdy = (11)

If we restrict the revolute joint to have a joint angle in the interval [0, 2π), there

are two solutions for the inverse kinematics:

 22
2 yxd += σ

 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

22
1 ,2tan

d
x

d
yaθ ….(12)

 1±=σ

The inverse kinematics analysis for a planar 3-R manipulator appears to be

complicated but we can derive analytical solutions. Recall that the direct

kinematics equations (10) are:

25

)cos()cos(cos 321321211 θθθθθθ +++++= lllx 10(a)

)sin()sin(sin 321321211 θθθθθθ +++++= llly 10(b)

 =φ 321 θθθ ++ 10(c)

We assume that we are given the Cartesian coordinates, x, y, and φ and we want

to find analytical expressions for the joint angles 21,θθ and 3θ in terms of the

Cartesian coordinates.

Substituting 10(c) into 10(a) and 10(b) we can eliminate 3θ so that we have two

equations in 1θ

And 2θ :

)cos(coscos 212113 θθθφ ++=− lllx 10(d)

)sin(sinsin 212113 θθθφ ++=− llly 10(e)

Where the unknowns have been grouped on the right hand side; the left hand side

depends only on the end effector or Cartesian coordinates and are therefore

known.

Rename the left hand sides, φφ sin,cos 3
'

3
' lyylxx −=−= for

convenience. We regroup

Terms in (d) and (e), square both sides in each equation and add them:

 2
212

2
212

2
11

2
11

'))sin(())cos(()sin()cos(θθθθθθ +++=−′+− lllylx

After rearranging the terms we get a single nonlinear equation in θ 1:

 0)(sin)2(cos)2(2
22

1
22

1111 =−+′+′+′−+′− llyxylxl θθ 10(f)

Notice that we started with three nonlinear equations in three unknowns in (a-c).

We reduced the problem to solving two nonlinear equations in two unknowns (d-

e). And now we have simplified it further to solving a single nonlinear equation in

one unknown (f). Equation (f) is of the type

 0sincos =++ RQP αα 10(g)

There are two solutions for θ 1 given by:

26

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

′+′

−+′+′−
+= −

22
1

2
21

222
1

1
2

)(cos
yxl

llyx
σγθ 10(h)

Where,

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

′+′

′−

′+′

′−
=

2222
,2tan

yx
x

yx
yaγ

And 1±=σ

Note that there are two solutions forθ 1, one corresponding to 1+=σ , the other

corresponding to

1−=σ . Substituting any one of these solutions back into Equations (d) and (e)

gives us:

2

11
21

cos)cos(
l

lx θ
θθ

−′
=+

2

11
2

sin)sin(
l
ly θ

θθ
−′

=+

And,

 1
2

11

2

11
2

sin,sin2tan θ
θθ

θ −⎥
⎦

⎤
⎢
⎣

⎡ −′−′
=

l
lx

l
lya 10(i)

Thus, for each solution forθ 1 , there is one (unique) solution for θ 2.

Finally, θ 3 can be easily determined from (c):

 θ 3=Φ-θ 1-θ 2 10(j)

Equations (h-j) are the inverse kinematics solution for the 3-R manipulator. For a

given end effectors position and orientation, there are two different ways of

reaching it, each corresponding to a different value ofσ . These different

configurations are shown in Figure

27

 Fig. (3.3) The two inverse kinematics solutions for the 3R manipulator:

“elbow-up” configuration (σ =+1) and the “elbow-down” configuration

(σ = -1).

3.4 Summary

Robot manipulator is composed of a serial chain of rigid links connected to each

other by revolute or prismatic joints. A revolute joint rotates about a motion axis

and a prismatic joint slide along a motion axis. Each robot joint location is usually

defined relative to neighboring joint. The relation between successive joints is

described by 4X4 homogeneous transformation matrices that have orientation and

position data of robots. The number of those transformation matrices determines

the degrees of freedom of robots. The purpose of this chapter is to introduce you

to robot kinematics, and the concepts related to both open and closed kinematics

chains. Forward kinematics is distinguished from inverse kinematics. Kinematics

is the study of motion without regard to the forces that create it. The forward

kinematics is about finding an end effectors or tool piece pose given a set of joint

variables. The Inverse Kinematics is the opposite problem. We want to and a set

of joint variables that give rise to a particular end effectors or tool piece pose.

Kinematics is the study of motion.

28

 CHAPTER

 4

INTRODUCTION TO NEURAL NETWORK ARCHITECTURE

Artificial neural network (ANN) takes their name from the network of nerve cells

in the brain. Recently, ANN has been found to be an important technique for

classification and optimization problem. Artificial Neural Networks (ANN) has

emerged as a powerful learning technique to perform complex tasks in highly

nonlinear dynamic environments. Some of the prime advantages of using ANN

models are their ability to learn based on optimization of an appropriate error

function and their excellent performance for approximation of nonlinear function.

The ANN is capable of performing nonlinear mapping between the input and

output space due to its large parallel interconnection between different layers and

the nonlinear processing characteristics. An artificial neuron basically consists of

a computing element that performs the weighted sum of the input signal and the

connecting weight. The sum is added with the bias or threshold and the resultant

signal is then passed through a nonlinear function of sigmoid or hyperbolic

tangent type. Each neuron is associated with three parameters whose learning can

be adjusted; these are the connecting weights, the bias and the slope of the

nonlinear function. For the structural point of view a NN may be single layer or it

may be multilayer. In multilayer structure, there is one or many artificial neurons

in each layer and for a practical case there may be a number of layers. Each

neuron of the one layer is connected to each and every neuron of the next layer.

The functional-link ANN is another type of single layer NN. In this type of

network the input data is allowed to pass through a functional expansion block

where the input data are nonlinearly mapped to more number of points. This is

29

achieved by using trigonometric functions, tensor products or power terms of the

input. The output of the functional expansion is then passed through a single

neuron. The learning of the NN may be supervised in the presence of the desired

signal or it may be unsupervised when the desired signal is not accessible. Here in

this paper ANN is supervised learning. Rumelhart developed the Back-

propagation (BP) algorithm, which is central to much work on supervised learning

in MLP. A feed-forward structure with input, output, hidden layers and nonlinear

sigmoid functions are used in this type of network. In recent years many different

types of learning algorithm using the incremental back-propagation algorithm,

evolutionary learning using the nearest neighbor MLP and a fast learning

algorithm based on the layer-by-layer optimization procedure.

4.1 Introduction of Artificial Neural Network:

A neural network is a machine that is designed to model the way in which the

brain performs a particular task or function of interest. To achieve good

performance, they employ a massive interconnection of simple computing cells

referred to as ‘Neurons’ or ‘processing units’. Hence a neural network viewed as

an adaptive machine can be defined as A neural network is a massively parallel

distributed processor made up of simple processing units, which has a natural

propensity for storing experimental knowledge and making it available for use. It

resembles the brain in two respects:

1. Knowledge is acquired by the network from its environment through a

 learning process.

2. Interneuron connection strengths, known as synaptic weights, are us to

store the acquired knowledge.

Neural networks are composed of simple elements operating in parallel. These

elements are inspired by biological nervous systems. As in nature, the network

function is determined largely by the connections between elements. We can train

a neural network to perform a particular function by adjusting the values of the

connections (weights) between elements. Commonly neural networks are

30

adjusted, or trained, so that a particular input leads to a specific target output.

Such a situation is shown below.

 Fig 4.1: Neural Network Model

The true power and advantage of neural networks lies in their ability to represent

both linear and non-linear relationships and in their ability to learn these

relationships directly from the data being modeled. Traditional linear models are

simply inadequate when it comes to modeling data that contains non-linear

characteristics. Neural networks are designed to work with patterns - they can be

classified as pattern classifiers or pattern associates.

4.2 WHY USE NEURAL NETWORKS?

It is apparent that a neural network derives its computing power through, first, its

massively parallel distributed structure and, second, its ability to learn and

therefore generalize. The use of neural networks offers the following useful

properties and capabilities:

o Massive parallelism

o Distributed representation and computation

o Learning ability

o Generalization ability

o Input-output mapping

o Adaptivity

o Uniformity of Analysis and Design

o Fault tolerance

o Inherent contextual information processing

31

o VLSI implements ability.

4.3 NEURON MODEL

An artificial neuron is a device with many inputs and many outputs. Each input is

multiplied by a corresponding weight, analogous to a synaptic strength, and all the

weighted inputs are then summed to determine the activation level of the neuron.

These weighted inputs are then added together to produce ‘net’ output and if they

exceed a pre-set threshold value, the neuron fires. The ‘net’ output produced is

further processed by an activation function (f) to produce the neuron’s output

signal. A simple neuron model can be represented as below:

 Fig 4.2: Simple Neuron Model

In the above figure p is input of signal w is the weighted input and b is bias input.

The block ‘å’ produces the ‘net’ output by summing the weighted inputs. The

block ‘f’ represents the activation function.

4.4 NETWORK LAYERS

Although a single neuron can perform certain simple pattern detection functions,

the power of neural computation comes from connecting neurons into network

layers. These multilayer networks have been proven to have capabilities beyond

those of a single layer. These networks are formed by cascading group of single

layers; the output of one layer provides the input to the subsequent layer.

32

Figure 4.3: A multi-layer neuron model

The commonest type of artificial neural network consists of three groups, or

layers, of units: a layer of "input" units is connected to a layer of "hidden" units,

which is connected to a layer of "output" units as in the figure:

¾ The activity of the input units represents the raw information that is fed

 into the network.

¾ The activity of each hidden unit is determined by the activities of the input

units and the weights on the connections between the input and the hidden units.

¾ The behavior of the output units depends on the activity of the hidden units

and the weights between the hidden and output units.

The hidden units are free to construct their own representations of the input. The

weights between the input and hidden units determine when each hidden unit is

active, and so by modifying these weights, a hidden unit can choose what it

represents.

4.5 ACTIVATION FUNCTIONS

Activation functions for the hidden units are needed to introduce nonlinearity into

the network. Without nonlinearity, hidden units would not make nets more

powerful as it is the nonlinearity (i.e, the capability to represent nonlinear

functions) that makes multilayer networks so powerful.

33

There are three types of Activation functions:

¾ Binary Function - PERCEPTRON

¾ Sigmoidal Function

¾ Hyperbolic Tangent Function

4.6 SIGMOIDAL FUNCTION

The block ‘f’ accepts the NET output and produces the signal labeled OUT. If the

‘f’ processing block compresses the range of NET, so that OUT never exceeds

some limits regardless of the value of NET, ‘f’ is called a squashing function. The

squashing function is often chosen to be the logistic function or “sigmoid”. This

function is expressed in mathematically as

 nete
OUT −+

=
1

1

 Figure 4.4: Sigmoidal Function

The non-linear gain is calculated by finding the ratio of the change in OUT to a

small change in NET. Thus, gain is the slope of the curve (shown in figure) at a

specific excitation level. It varies from a low value at large negative excitations,

to a high value at zero excitation, and it drops back as excitation becomes very

large and positive. Small signals, while its regions of decreasing gain at positive

and negative extremes are appropriate for large excitations. In this way, a neuron

performs with appropriate gain over a wide range of input levels.

34

FIG.(4.5) Common activation functions

4.7 FEED-FORWARD NEURAL NETWORKS:

Feed-forward ANNs allow signals to travel one way only; from input to output.

There is no feedback (loops) i.e. the output of any layer does not affect that same

layer. These networks are called non-recurrent networks and they do not require

any memory as outputs are directly related to inputs and weights. They are

extensively used in pattern recognition. This type of organization is also referred

to as bottom-up or top-down. The figure (9) below shows a simple feed forward

network:

Figure (4.6): An example of Feed Forward Network

35

4.8 LEARNING

Learning is essential to most of these neural network architectures and hence the

choice of a learning algorithm is a central issue in network development. Learning

implies that a processing unit is capable of changing its input/output behavior as a

result of changes in the environment. Since the activation rule is usually fixed

when the network is constructed and since the input/output vector cannot be

changed, to change the input/output behavior the weights corresponding to that

input vector need to be adjusted. In a neural network, learning can be supervised

or unsupervised.

4.9 BACK PROPOGATION ALGORITHM

For many years, there was no theoretically sound algorithm for training multilayer

artificial neural networks. The invention of the back propagation algorithm has

played a large part in the resurgence of interest in artificial neural networks. Back

propagation is a systematic method for training multilayer artificial neural

networks (Perceptrons). The following figure shows the basic model of the neuron

used in Back propagation networks.

Figure (4.7): Basic model of neuron using back propagation

Each input is multiplied by corresponding weights, analogous to a synaptic

strength, and all the weighted inputs are then summed to determine the activation

level of the neuron. These summed (NET) signals are further processed by an

activation function (F) to produce the neuron’s output signal (OUT). In back

propagation, the function used for the activation is the logistic function or

Sigmoid. This function is expressed mathematically as:

 xe
xF −+

=
1

1)(, thus nete
OUT −+

=
1

1

36

The Sigmoid compresses the range of NET so that OUT lies between zero and

one. Since the back-propagation uses the derivative of the squashing function, it

has to be everywhere differentiable. The Sigmoid has this property and the

additional advantage of providing a form of automatic gain control (i.e. if the

value of NET is large, the gain is small and if it is small the gain is large).

4.10 AN OVERVIEW OF TRAINING IN BACK PROPOGATION

 TRAINING ALGORITHM:

The objective of training the network is to adjust the weights so that the

application of a set of inputs (input vectors) produces the desired outputs (output

vectors). Training a back propagation network involves each input vector being

paired with a target vector representing the desired output; together they are called

a training pair. The following figure shows the architecture of the multilayer back

propagation neural network.

Figure (4.8): Multilayer Back propagation neural network

Before starting the training process, all of the weights are initialized to small

random numbers. Training the back propagation network requires the following

steps:

1. Select a training pair (next pair) from the training data set and apply the input

vector to the network input.

2. Calculate the output of the network, i.e. to each neuron NET=ΣXiWi must be

calculated and then the activation function must be applied on the result F

(NET).

37

3. Calculate the error between the network output and the desired output

(TARGET – OUT).

4. Adjust the weights of the network in a way that minimizes the ERROR

(described below).

 5. Repeat step 1 through 4 for each vector in the training set until no training pair

produces an error larger than a pre-decided acceptance level.

4.11 ADJUSTING WEIGHTS OF THE NETWORK

Adjusting the weights of the output layer is easier, as a target value is available

for each neuron. The following shows the training process for a single weight

from neuron “q” in the hidden layer “j” to neuron “r” in the output layer “k”. The

output of a neuron in layer “k” is subtracted from its target values to produce an

ERROR signal. This is multiplied by the derivative of a squashing function OUT

(1-OUT) calculated for that neuron (“r”) thereby producing a “δ” value.

δ = OUT *(1-OUT) *(TARGET – OUT)

Figure (4.9): adjusting weights of output layer

Where,

Wqr,j(n) = the value of weight from neuron in the hidden layer “j” to neuron “r”

in the output layer “k” at step “n” (before adjustment).

38

Wr,j(n+1) = the value of weight from neuron in the hidden layer j to neuron “r” in

the output layer “k” at step n+1 (after adjustment).

OUTq,j = the value of OUT of neuron in the hidden layer “j”.

ΔWqr,k = amount that Wqr,j to be adjusted.

Adjusting the weights of the hidden layer:

Back propagation trains the hidden layer by propagating the output ERROR back

through the network layer by layer, adjusting weights at each layer. The same 2

equations (1) and (2) above are used for all layers, both output & hidden except

that, for hidden layers the ή , δs values must be generated without the benefit of

targets. The following figure explains how this is accomplished. δs for hidden

layer neurons are calculated according to equation (3) by using the δs calculated

for output layer (δy,k s) and propagating them backward through the

corresponding weights.

),,)(1(,,,, kkWOUTOUT rqrjqjqjq δδ Δ−= ----------- (3)

Figure (4.10): adjusting weights of hidden layer

Then, with δs in hand, hidden layer weights can be adjusted similar to the output

layer weights as given below:

jqjqjqr OUTW ,,, ηδ=Δ --------------- (4)

jqrnjqrnjqr WWW ,)(,)1(, Δ+=+ -------------- (5)

39

4.12 TESTING

In this paper testing data has taken from training data. We have just selected 100

random numbers of data from the training data and tested. Since Inverse Kinematics

is a nonlinear mapping from (X, Y, Z, zyx andφφφ ,,) space to (654321 ,,,,, θθθθθθ)

space, it can be regarded as an input - output process with an unknown transfer

function. Approximation of such a relationship is an example of general

approximation problem and as such it is well suited for learning by a Neural

Network. Two problems encountered when teaching a NN robot Inverse

Kinematics are low accuracy of Approximation and the need to create a teach

data set with a relatively large number of data points. In the case where the

kinematic parameters of each robot link are known, a simple kinematic model of

the robot can be made based on equations 10(a) to 10(j) and a required number of

data points can be readily generated. In the case where the joint parameters are

unknown, the required data has to be obtained by measuring the position and

orientation of the robot gripper for a number of arm configurations such

measurement is very difficult in practice. The accuracy of NN approximation is a

current research topic.

4.13 Summary

Artificial Neural Networks (ANN) has emerged as a powerful learning technique

to perform complex tasks in highly nonlinear dynamic environments. Some of

the prime advantages of using ANN models are their ability to learn based on

optimization of an appropriate error function and their excellent performance for

approximation of nonlinear function. So it is required to have basic knowledge of

artificial neural networks that’s why we have discussed here.

40

 CHAPTER

 5

NOVEL ANN APPLICATION FOR PREDICTING OF INVERSE

KINEMATICS OF MANIPULATOR

5.1 Introduction

The prime advantages of using ANN models are their ability to learn based on

optimization of an appropriate error function and their excellent performance for

approximation of nonlinear functions. Here in this paper two ANN architectures

MLP and PPN are discussed. Both methods are widely used in present research

scenario. In most of the field ANN models are preferred for predicting the values

and optimizing the problems. ANN models especially MLP with back-

propagation model can solve complex problem.

5.2 MULTI-LAYER PERCEPTRONS:

A typical multi-layer network consists of an input, hidden and output layer, each

fully connected to the next, with activation feeding forward. Multi-layer networks

can represent arbitrary functions, but an effective learning algorithm for such

networks was thought to be difficult. The weights determine the function

computed. Given an arbitrary number of hidden units, any boolean function can

be computed with a single hidden layer.

41

Fig (5.1) architecture for neuron

• The neuron is the basic information processing unit of a NN. It consists of:

¾ A set of links, describing the neuron inputs, with weights W1, W2, …, Wm

¾ An adder function (linear combiner) for computing the weighted sum of

the inputs (real numbers): ∑
=

=
m

j
jj XWu

1

¾ Activation function (squashing function) φ for limiting the amplitude of

the neuron output.)(buy += ϕ

I/O are bounded in [0,1] for the activation to perform;

Pass 1: Forward Pass - Present inputs and let the activations flow until

they reach the output layer.

Pass 2: Backward Pass - Error estimates are computed for each output unit

by comparing the actual output (Pass 1) with the target output. Then, these

error estimates are used to adjust the weights in the hidden layer and the

errors from the hidden layer are used to adjust the input layer.

42

Fig. (5.2) Architecture of MLP Fig. (5.3) Architecture for back-propagation

The Back propagation Learning Routine:

As with perceptrons, the information in the network is stored in the weights, so

the learning problem comes down to the question: how do we train the weights to

best categories the training examples. We then hope that this representation

provides a good way to categories unseen examples. In outline, the back

propagation method is the same as for perceptrons:

1. We choose and fix our architecture for the network, which will contain input,

hidden and output units, all of which will contain sigmoid functions.

2. We randomly assign the weights between all the nodes. The assignments

should be to small numbers, usually between -0.5 and 0.5.

3. Each training example is used, one after another, to re-train the weights in the

network. The way this is done is given in detail below.

4. After each epoch (run through all the training examples), a termination

condition is checked (also detailed below). Note that, for this method, we are not

guaranteed to find weights which give the network the global minimum error, i.e.,

perfectly correct categorization of the training examples. Hence the termination

condition may have to be in terms of a (possibly small) number of miss-

categorizations. We see later that this might not be such a good idea, though.

43

Learning rule for multilayer-perceptrons:
If the weight values are too large the net value will large as well; this causes the

derivative of the activation function to work in the saturation region and the

weight changes to be near zero. For small initial weights the changes will also be

very small, which causes the learning process to be very slow and might even

prevent convergence. The easiest method is to select the weights randomly from a

suitable range, such as between (-0.1,0.1) or (- 2,2). The Learning Coefficient ή

determines the size of the weight changes. A small value for ή will result in a very

slow learning process. If the learning coefficient is too large the large weight

changes may cause the desired minimum to be missed. A useful range is between

0.05 and 2 dependent on the problem. The influence of the ή on the weight

changes is shown in Figure (17). The Momentum α causes the weight changes to

be dependent on more than one input pattern. The change is a linear combination

of the current gradient and the previous gradient. The useful range for this

parameter is between 0 and 1. For some data sets the momentum makes the

training faster, while for others there may be no improvement.

Fig (5.4) The Influence of the Learning Rate on the Weight Changes.

44

Where are neural networks being used?
¾ Signal processing: suppress line noise, with adaptive echo canceling, blind

source separation

¾ Control: e.g. backing up a truck: cab position, rear position, and match

with the dock get

 converted to steering instructions. Manufacturing plants for controlling

automated machines.

¾ Siemens successfully uses neural networks for process automation in basic

industries, e.g., in

¾ rolling mill control more than 100 neural networks do their job, 24 hours a

day

¾ Robotics - navigation, vision recognition

¾ Pattern recognition, i.e. recognizing handwritten characters, e.g. the

current version of

¾ Apple's Newton uses a neural net

¾ Medicine, i.e. storing medical records based on case information

¾ Speech production: reading text aloud (NET talk)

Speech recognition

¾ Vision: face recognition , edge detection, visual search engines

¾ Business, e.g... rules for mortgage decisions are extracted from past

decisions made by

experienced evaluators, resulting in a network that has a high level of

agreement with human experts.

¾ Financial Applications: time series analysis, stock market prediction

¾ Data Compression: speech signal, image, e.g. faces

¾ Game Playing: backgammon, chess.

45

Fig (5.5). Flow chart for MLP

46

5.3 THE POLYNOMIAL PERCEPTRON NETWORK:

Weierstrass approximation theorem states that any function which is continuous

in a closed interval can be uniformly approximated within any prescribed

tolerance over that interval by some polynomial. Considering a binary PAM

system (i.e. K = 2 in (1)) the channel equalization becomes a two class

classification problem, and a decision boundary can be established between the

pattern classes. Fig.(20) depicts a PPN network where X is the input pattern given

by
T

mxxxxX],........,,[321=

Fig.(5.6) Polynomial perceptron network.

Considering a two-dimensional pattern X = [x1 x2]’ and polynomial order 2, the

decision function (14) may be written as
TT XWXDF =)(

Where,
TwwwwwwW];,;,,[212212110=

And
TxxxxxxX],,,,,,1[21

2
221

2
1

* =

For output layer (P = L),

For other layers (p = L - 1, L - 2, . . . , 1)

47

The general quadratic case can be formed by considering all combination of

components of X which forms terms of degree two or less. Thus, for an M-

dimensional pattern,

*
0

11

1

11

2)(XWwxwxxwxwXDF T
M

j
jj

M

jk
kjjk

M

j

M

j
jjjj =+++= ∑∑∑∑

=+=

−

==

The number of terms needed to describe a polynomial decision function grows

rapidly as the polynomial degree r and the dimension M of the pattern increases.

For the M-dimensional case, the number of coefficients in a function of rth degree

is given by

!!
)!(

rM
rMCN r

rM
M r

+
== +

The input pattern X to the PPN at time n is the channel output vector X(n). This is

then converted into X*(n) by passing it into a polynomial preprocessor. The

weighted sum of the components of X*(n) is passed through a nonlinear function

sigmoid and purelinear function to produce the output z (n). The output of the

PPN is compared with the desired response to generate an error s (n) which is

then used to update its weights by the BP algorithm.

5.4 Summary

The behavior of the output units depends on the activity of the hidden units and

the weights between the hidden and output units. The hidden units are free to

construct their own representations of the input. The weights between the input

and hidden units determine when each hidden unit is active, and so by modifying

these weights, a hidden unit can choose what it represents. Here in this paper two

ANN architectures MLP and PPN are discussed. Both methods are widely used in

present research scenario. In most of the field ANN models are preferred for

predicting the values and optimizing the problems. ANN models especially MLP

with back-propagation model can solve complex problem.

48

 CHAPTER

 6

SIMULATION RESULTS AND PERFORMANCE ANALYSIS:

To validate the performance of MLP and PPN for inverse kinematics problem,

simulation studies are carried out by using MATLAB.

 In this work the training data sets were generated by using equation 10-

10(j). A set of 130 data sets were first generated as per the formula equation (10)

for this the input parameter X and Y coordinates in inches. Using these data sets

was basis for the training and evaluation or testing the MLP and PPN models. Out

of the sets of 130 data points, 100 were used as training data and 30 were used for

testing for MLP. Back-propagation algorithm was used for training the network

and for updating the desired weights. In this work epoch based training method

was applied.

6.1 Sumilation result of MLP

Fig (6.1) mean square error for 1θ

49

Fig (6.2) graph for matching of desired and predicted values of

1θ

 Fig (6.3) mean square error for 2θ

50

 Fig (6.4) graph for matching of desired and predicted values of 2θ

Table (6.5) comparison table for desired data and predicted data by ANN

2θ Predicted
1θ Predicted

 139.0499 135.0321 52.7038 50.3645

 98.5943 96.5845 61.9182 59.6542

 124.0105 122.0475 ‐73.9847 ‐70.2341

 83.1976 82.65 10.7648 9.3426

 124.0105 122.24 ‐73.9847 ‐71.5486

 94.9685 90.15 27.9406 26.6451

 6.8891 6.1521 42.0630 41.6572

 98.6345 97.7523 77.0242 78.6512

51

 144.9305 140.2147 71.2636 72.3542

 14.8260 13.8241 ‐23.7413 ‐22.5412

 142.7669 141.5321 ‐65.9324 ‐66.2145

 55.7833 53.4712 ‐68.6521 ‐67.6423

 66.9949 63.5342 ‐82.5974 ‐81.6421

 99.3724 97.2136 ‐61.2022 ‐60.2341

 62.4008 60.2145 29.8007 27.6324

 95.0525 97.1254 40.7122 38.6134

 43.6812 41.6532 39.1977 38.9423

 86.0279 85.6542 ‐77.3040 ‐74.3692

 62.4008 60.2451 29.8007 30.4765

 51.1973 52.1234 20.8457 18.6324

 59.9854 58.6945 ‐39.5220 ‐37.3245

 46.0676 45.0214 27.1536 26.1348

 28.8915 26.5412 ‐44.5580 ‐43.8945

 124.0105 122.2345 ‐73.9847 ‐72.8643

 67.0224 66.5321 ‐81.6532 ‐82.1536

 151.4063 150.9527 ‐17.1316 ‐18.1142

 98.6345 99.2145 77.0242 76.9850

 44.5800 43.2587 4.9643 3.5843

 55.7833 56.3210 ‐68.6521 ‐67.5216

52

 51.4107 51.1024 23.6330 22.2435

6.2 Simulation result of PPN

Fig (6.6) Mean square error for 1θ

Fig (6.7) Mean square error for 2θ

53

Fig (6.8) graph for matching of desired and predicted values of 2θ

Fig (6.9) graph for matching of desired and predicted values of 1θ

54

The performance of MLP network is discussed first, were 16 nodes selected in the

hidden layer. The MSE (mean square error) of the MLP model for 100 epochs for

1θ was represented in fig (21). MSE (mean square error) for second output (2θ)

for 100 epoch represented in fig (22). To test the stability of the models validation

data or testing data is essential as discussed earlier 30 data points were selected

randomly for testing the MLP model. Fig (23) represents the performance of the

model for 30 testing samples or validation samples for output one (i.e. 1θ) and fig

(24) represents the performance of output two (2θ). The similar results are

presented in table (1). It may be noted that the performance of MLP is very closer

to the experimental result.

55

 CHAPTER

 7

CONCLUSION AND SCOPE FOR FUTURE WORK:

Mathematical models relay on assuming the structure of the model in advanced,

which may be sub-optimal. Consequently, many mathematical models fail to

simulate the complex behavior of inverse kinematics problem. In contrast, ANN

(artificial neural networks) is based on the data input/output data pairs to

determine the structure and parameters of the model. Moreover, ANN’s can

always be updated to obtain better results by presenting new training examples as

new data become available. From the present study it was observe that the MLP

gives the better results as compared to PPN for inverse kinematics problem. This

artificial neural network based joint angles prediction model can be useful tool for

the production engineer’s to estimate the motion of the manipulator accurately.

FUTURE SCOPE:

In this study the MLP and PPN has been proposed for the solution of inverse

kinematics problem of robot manipulator. However, it has some limitations. There

are several types of soft computing methods are available which can be used for

finding the solution, but this is beyond the scope of this thesis but this technique

can be used for the future scope of the thesis. These methods are followed:

¾ Application of fuzzy inference system (FIS)

¾ Adaptive network based fuzzy inference system (ANFIS)

¾ Functional link artificial neural network (FLANN)

¾ Evaluation computation

56

 CHAPTER

 8
REFERENCE:

1. Alavandar S. and Nigam M. J. “Neuro-Fuzzy based Approach for Inverse

Kinematics Solution of Industrial Robot Manipulators”, Int. J. of

Computers, Communications & Control, ISSN 1841-9836, E-ISSN 1841-

9844 Vol. III (2008), No. 3, pp. 224-234.

2. Morris A. S. And A. Mansor A. “artificial neural network for finding

inverse kinematics of robot manipulator using look up table”, Robotica

(1997) volume 15 , pp 617 – 625 . Printed in the United Kingdom Ö 1997

Cambridge University Press.

3. Ahmad Z. and Guez A. “On the Solution to the Inverse Kinematic

Problem”, department of electrical and computer engineering Drexel

University Philadelphia PA 19104.

4. Bekir Karlik, Serkan Aydin “An improved approach to the solution of

inverse kinematics problems for robot manipulator”.

5. L. Npyen. “Neural Network Architectures For The Forward Kinematics

Problem in Robotics”.

6. G. Jaein, “Robot Control Using Neural Network”.

7. Jenhwa Guo and Vladimir Cherkassky “Developed A Solution to the

Inverse Kinematic Problem in Robotics Using Neural Network

Processing” University of Minnesota Minneapolis, Minnesok 55455.

8. Dali wang and ali zilouchain “Solutions of Kinematics of Robot

Manipulators Using a kohonen Self- Organizing Neural Network”.

department of Elect. Engineering Florida Atlantic University Boca Raton

FL 33431.

57

9. Youshen Xia and Jun Wang “A Dual Neural Network for Kinematic

Control of Redundant Robot Manipulators”.

10. Choon seng Yee, Kah-bin Lim “Forward kinematics solution of Stewart

platform Using neural networks”.

11. E. A. Al-Gallaf “Neural Networks for Multi-Finger Robot Hand Control”,

JKAU: Eng. Sci., Vol. 19 No. 1, pp: 19-42 (2008 A.D. /1429 A.H.)

12. Asko Houvinen and Heikki Handroos “ADAMS –Model for training of

neural network for inverse kinematics of flexible robot manipulator”.

13. H. Daniel Patiño “Neural Networks for Advanced Control of Robot

Manipulators”.

14. Ted Hesselroth, “Neural Network Control of a Pneumatic Robot Arm”.

15. B. Benhabib, “A solution to the inverse kinematics”.

16. Oyama and Tachi “Inverse kinematics computation using an artificial

neural network”.

17. Manocha and Canny “An algorithm and implementation for efficient

inverse kinematics for a general 6R manipulator”.

18. Kozalziewicz C. Ogiso T. and Miyake N. “Partitioned Neural Network

architecture for Inverse Kinematic calculation of a 6 dof robot

manipulator”.

19. Mayorga∗V. and Sanongboon P. “Inverse kinematics and geometrically

bounded singularities prevention of redundant manipulators: An Artificial

Neural Network approach”. Robotics and Autonomous Systems 53 (2005)

164–176.

20. Kieffe S. Morella V. and Donath M. “Neural Network Learning of the Inverse

Kinematic Relationships for a Robot Arm” Proceedings of the 1991 IEEE

Intemational conference on Robotics and Automation Sacramento,

Califomia - April 1991.

21. Rao D. H. and Gupta M. M. “Performance Comparison of Dynamic

Neural Networks as Applied to Robot Inverse Kinematic Computations”.

Proceeding of the American Control Conference Baltlmorr, Mayland June

1994.

58

22. Kim S.W. Lee J.J. and Sugisaka M. “Inverse kinematics solution based on

fuzzy logic for redundant manipulators”. Proceedings of the 1993

IEEE/RSJ Intemational Conference on Intelligent Robots and Systems

Yokohama, Japan July 2630,1993.
23. Velagic J. Osmic N. and Lacevic B. “Neural Network Controller for

Mobile Robot Motion Control”. International Journal of Intelligent

Systems and Technologies 3; 3 www.waset.org summer 2008.

24. H. Sadjadian , H.D. Taghirad Member, IEEE and A. Fatehi “Neural

Networks Approaches for Computing the Forward Kinematics of a

Redundant Parallel Manipulator”. International Journal of Computational

Intelligence 2; 1 winter 2006.

25. Ding H., Member, IEEE, and Wang J. Senior Member, IEEE, “Recurrent

Neural Networks for Minimum Infinity-Norm Kinematic Control of

Redundant Manipulators”. IEEE Transaction on systems, man, and

cybernetics part-A: systems and humans, vol.29, N0.3 May 1999.

BOOKS REFERRED:

¾ Robert J. Schilling for robotics

¾ John Craig for robotics

¾ S.R.Deb for robotics

¾ Haykins for neural network

¾ Hagen for neural network

	front page.pdf
	certificates for pribnt fginal.pdf
	chaptersfinal final 007.pdf

