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                                   ABSTRACT 
 

The robot control problem can be divided into two main areas, kinematics control (the 

coordination of the links of kinematics chain to produce desire motion of the robot), and dynamic 

control (driving the actuator of the mechanism to follow the commanded position velocities). In 

general the control strategies used in robot involves position coordination in Cartesian space by 

direct or indirect kinematics method. Inverse kinematics comprises the computation need to find 

the join angles for a given Cartesian position and orientation of the end effectors. This 

computation is fundamental to control of robot arms but it is very difficult to calculate an inverse 

kinematics solution of robot manipulator. For this solution most industrial robot arms are 

designed by using a non-linear algebraic computation to finding the inverse kinematics solution. 

From the literature it is well described that there is no unique solution for the inverse kinematics. 

That is why it is significant to apply an artificial neural network models. Here structured artificial 

neural network (ANN) models an approach has been proposed to control the motion of robot 

manipulator. In these work two types of ANN models were used. The first kind ANN model is 

MLP (multi-layer perceptrons) which was famous as back propagation neural network model. In 

this network gradient descent type of learning rules are applied. The second kind of ANN model 

is PPN (polynomial poly-processor neural network) where polynomial equation was used. Here, 

work has been undertaken to find the best ANN configuration for the problem. It was found that 

between MLP and PPN, MLP gives better result as compared to PPN by considering average 

percentage error, as the performance index.  

 



 

1 

 

      CHAPTER 

               1 
INTRODUCTION 

Robot manipulator is composed of a serial chain of rigid links connected to each 

other by revolute or prismatic joints. A revolute joint rotates about a motion axis 

and a prismatic joint slide along a motion axis. Each robot joint location is usually 

defined relative to neighboring joint. The relation between successive joints is 

described by 4X4 homogeneous transformation matrices that have orientation and 

position data of robots. The number of those transformation matrices determines 

the degrees of freedom of robots. The product of these transformation matrices 

produces final orientation and position data of an n degrees of freedom robot 

manipulator. Robot control actions are executed in the joint coordinates while 

robot motions are specified in the Cartesian coordinates. Conversion of the 

position and orientation of a robot manipulator end-effectors from Cartesian space 

to joint space, called as inverse kinematics problem, which is of fundamental 

importance in calculating desired joint angles for robot manipulator design and 

control. In most robotic applications the desired positions and orientations of the 

end effectors are specified by the user in Cartesian coordinates. The 

corresponding joint values must be computed at high speed by the inverse 

kinematics transformation. 
                  For a manipulator with n degree of freedom, at any instant of time 

joint variables is denoted by niti .........3,2,1),( == θθ and position 

variables ........3,2,1),( mjtxx j == . The relations between the end-effectors 

position x (t) and joint angle )(tθ can be represented by forward kinematic 

equation, 

                                                ))(()( tftx θ=                                              (1)                             
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Where f is a nonlinear, continuous and differentiable function. On the other hand, 

with the given desired end effectors position, the problem of finding the values of 

the joint variables is inverse kinematics, which can be solved by, 

                                              ))(()( txft =θ                                 (2)                                                               

Solution of (2) is not unique due to nonlinear, uncertain and time varying nature 

of the governing equations. Figure 1 shows the schematic representation of 

forward and inverse kinematics. The different techniques used for solving inverse 

kinematics can be classified as algebraic [1], geometric [2] and iterative [3]. The 

algebraic methods do not guarantee closed form solutions. In case of geometric 

methods, closed form solutions for the first three joints of the manipulator must 

exist geometrically. The iterative methods converge to only a single solution 

depending on the starting point and will not work near singularities. 

 

                             
                     Fig. (1.1) schematic representation of forward and inverse 

kinematics. 

If the joints of the manipulator are more complex, the inverse kinematics solution 

by using these traditional methods is a time consuming. In other words, for a more 

generalized m degrees of freedom manipulator, traditional methods will become 

prohibitive due to the high complexity of mathematical structure of the 

formulation. To compound the problem further, robots have to work in the real 

world that cannot be modeled concisely using mathematical expressions. In recent 

years, there have been increasing research interest of artificial neural networks 

and many efforts have been made on applications of neural networks to various 

control problems. The most significant features of neural networks are the 

extreme flexibility due to the learning ability and the capability of nonlinear 
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functions approximations. This fact leads us to expect neural networks to be a 

excellent tool for solving the inverse kinematics problem in robot manipulators 

with overcoming the difficulties of algebraic, geometric and iterative methods. 

  The robot motion problem involves in bringing the end-effectors of the 

manipulator from the present to the desired position and orientation in the global 

coordinates while following a prescribed trajectory in either the joint coordinates 

or global coordinates. Since the desired position is usually specified in the global 

coordinates, whereas the actuators used to drive the system are to be commanded 

with desired joint values, the inverse kinematics must be solved. The solution of 

the inverse kinematic problem maps the six-degree of freedom world coordinates 

of the robot manipulator’s end-effectors into the robot’s joint space. The number 

of solutions will depend on the manipulator configuration (including the number, 

type, and relative location of the joints), on the range of motion of each of the 

joints, and on the location of the selected end-effectors position in world 

coordinates. There may be no solutions, a unique solution, or multiple solutions. 

Kinematicians have for some time worked on this problem and have, as of yet, not 

developed a methodology that can solve the inverse kinematics problem for a 

generalized N-degree-of-motion freedom manipulator. Solutions have been found, 

however, for certain manipulator configurations. Industrial robot manipulators 

have conformed to these configurations in order to facilitate the specification of 

tasks in a Cartesian-defined Workspace (often called the task space). 

 

      An alternative solution to that of developing and solving a set of equations 

would be useful for those cases where: 

 

A. The equations cannot be derived even though the   manipulator can be 

designed   And built, 

 

B. The equations are so computationally intensive that solutions take too long 

to Compute for  practical robot control implementation, and         
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C. The equations involve coefficients which cannot readily be determined. 

 

Humans and animals control their extremities without recourse to solving a set of 

equations. There ought to be a methodology that more closely mimics the 

mechanisms whereby we move our arms without consciously determining (i.e., 

calculating) the necessary joint angles, and velocities that enable that motion. An 

acceptable solution must recognize the existence and location of singularities and 

find a valid solution such that the continuity of the mapping between world and 

joint space is preserved. Possible solutions to this problem include both numerical 

procedures and neural network based methods. The success of numerical solution 

procedures depends to a great extent on the formulation of a mathematical 

expression that accurately describes the functional relationship between the input 

parameters (specified end-point position of the manipulator in world coordinates, 

in our case) and the output solution parameters (the joint angles in our case). 

There are similarities between traditional numerical solution procedures and 

neural net methods. These include the existence of an iterative adaptation 

procedure and a performance measure. However, we wish to limit ourselves to 

neural net procedures in which the solution is not determined based on a 

mathematical expression defining the input/output relationship, but is captured in 

some form of an associative memory relati                                     

Several neural network approaches have been proposed in the literature. Guez and 

Ahmad [3], applying the back-error propagation algorithm based on a three layer 

perceptron, solved the problem as a learning process. Their first approach 

“yielded good results but were not accurate enough to be practically utilized.” A 

second attempt by these authors combined back-error propagation with a 

conventional numerical procedure. They used the neural network simply as a 

“lookup table in providing a good initial guess to an iterative procedure.” In 

general, it should be noted that back propagation requires 

the development of "hidden units," which will slow down the learning process. 

Guo and Cherkassky [7] proposed a solution using a Hopfield net. Their solution 
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did not directly develop the inverse kinematic relationship, but instead coupled 

the neural net with a Jacobian based control technique. 

  We used MLP (multiple layer perceptrons) and PPN (polynomial poly-

processor neural network) method and comparison with MIMO system which 

uses a Widrow- Hoff type error correction rule. This unsupervised method learns 

the functional relationship between input (Cartesian) space and output (joint) 

space based on a localized adaptation of the mapping, by using the manipulator 

itself under joint control and adapting the solution based on a comparison between 

the resulting locations of the manipulator's end effectors in Cartesian space with 

the desired location. Even when a manipulator is not available; the approach is 

still valid if the forward kinematic equations are used as a model of the 

manipulator. The forward kinematic equations always have a unique solution, and 

the resulting Neural net can be used as a starting point for further refinement 

when the manipulator does become available. Artificial neural network especially 

MLP and PPN are used to learn the forward and the inverse kinematic equations 

of two degrees freedom (DOF) robot arm. The technique is independent of arm 

configuration, including the number of degrees of freedom and the link geometry. 

In this paper two types of artificial neural networks were used and finalized which 

one is giving better result. The comparative study and results presented in this 

paper indicate the feasibility of using these ANN for learning complex 

input/output relations of robot kinematic control (based on computation of 

forward and inverse mapping between joint space and Cartesian space). The 

simulation shows that the MLP and PPN with MIMO system algorithms assure 

faster convergence compared to other algebraic and analytical algorithm.  
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        Fig.(1.2).   (a)  feed-back neural network and, (b) feed-forward neural 

network  

 

These are some basic neural networks which applied here in this paper as you can 

see above fig.(2),there are feed-back and fee-forward neural network is shown. 

Typical network structures include feed-back and feed-forward NNs. Learning 

algorithms are categorized into supervised learning and unsupervised learning. 

This section provides an overview of these models and algorithms. In a class of 

neural networks (NN) called Feed-forward Networks the processing elements, 

termed as nodes indicated by circles in Fig. 2, are connected in layers through 

links, termed as weights indicated by arrows in Fig. 2. The output of the node is a 

function of the inputs, which are weighted outputs of the nodes of the previous 

layer, and the threshold of the node. The learning takes place through the 

modification of the weights and the thresholds as specified by the training 

algorithm that acts on the supplied input and output data pairs as the training set. 

The training algorithm used in our simulations is the Back Error Propagation 

(BEP) Algorithm. The nodes to which the input is applied are called as the input 

nodes and the nodes from which the output is taken are called as the output nodes. 

The remaining nodes are termed as hidden nodes.  

                A simple multilayer perceptron neural network (MLP) with back 

propagation learning was used in the first step. The input layer has as many nodes 

as the number of inputs to the map, namely four actuator lengths. Similarly the 

output layer will have two nodes which represent the orientation of the moving 

plate (θ1, θ2). The number of neurons in the hidden layer was used as a design 
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parameter. Sigmoid and linear transfer functions were selected for all hidden and 

output layer nodes respectively. 

 

1.1 Background of the work 

In this paper, some methods of artificial neural network applied for the 

solution of inverse kinematics of 2-link serial chain manipulator. The methods are 

multilayer perceptrons and polynomial preprocessor neural network has applied. 

The main objective of this thesis is to predict the values of joint angles (inverse 

kinematics), as we know that there is no unique solution for the inverse 

kinematics even mathematical formulae are complex and time taking so it is better 

to find out solution through neural network. There are so many methods in soft-

computing, but in this paper two methods has been taken. After validation of 

these methods, we multilayer perceptrons giving better result. 

1.2 Objective of the thesis 

The main objective of the thesis is to find out the solution for inverse 

kinematics of manipulator as well as comparison of neural network methods. 

Validation of the NN methods ensures future selection of the correct method of 

NN. From the literature it is well described that there is no unique solution for 

inverse kinematics. This is why it is significant to apply artificial neural networks 

models. Here work has been undertaken to find the best ANN configuration for 

the problem. 

1.3 Methodology 

In this paper the researchers has proposed two methods for the solution of 

inverse kinematics of manipulator, the proposed methods are multilayer 

perceptrons and polynomial preprocessor in order to validate the performance of 

MLP and PPN for inverse kinematics problem, simulation studies are carried out 

by using MATLAB. Many researchers have followed MLP, PPN, RBF and 

FLANN with MISO (multi input single output) system. Here in this paper we 

have applied MLP and PPN with MIMO (multi input multi output) system. A set 

of 130 data sets were first generated as per the formula equation (10) for this the 

input parameter X and Y coordinates in inches. Using these data sets was basis for 
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the training and evaluation or testing the MLP and PPN models. Out of the sets of 

130 data points, 100 were used as training data and 30 were used for testing for 

MLP. Back-propagation algorithm was used for training the network and for 

updating the desired weights. In this work epoch based training method was 

applied. 

1.4 Scope of the Present Work 

In this study the MLP and PPN has been proposed for the solution of inverse 

kinematics problem of robot manipulator. However, it has some limitations. There 

are several types of soft computing methods are available which can be used for 

finding the solution, but this is beyond the scope of this thesis but this technique 

can be used for the future scope of the thesis. These methods are followed: 

¾ Application of fuzzy inference system (FIS) 

¾ Adaptive network based fuzzy inference system (ANFIS) 

¾ Functional link artificial neural network (FLANN) 

¾ Evaluation computation 

1.5 Organization Of The Thesis 

Robot control actions are executed in the joint coordinates while robot 

motions are specified in the Cartesian coordinates. Conversion of the position and 

orientation of a robot manipulator end-effectors from Cartesian space to joint 

space, called as inverse kinematics problem. In chapter [2] various researchers has 

proposed neural network models for the prediction of inverse kinematics, methods 

they applied are feed forward architectures, multilayer perceptrons using back 

propagation algorithms, polynomial preprocessor networks , functional link 

artificial neural network and radial basis functional network. In chapter [3] we 

focused on fundamentals of inverse kinematics and direct kinematics of 

manipulator. In chapter [4] we have discussed about artificial neural network and 

various neural models and explained why neural networks are important for 

inverse kinematics. In chapter [5] the researchers has proposed two methods for 

the solution of inverse kinematics of manipulator, their proposed methods are 

multilayer perceptrons and polynomial preprocessor in order to validate the 

performance of MLP and PPN for inverse kinematics problem. In chapter [6] 
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simulation studies are carried out by using MATLAB. In chapter [7] conclusion 

and future work were discussed. 

1.6 Summary 

The robot motion problem involves in bringing the end-effectors of the 

manipulator from the present to the desired position and orientation in the global 

coordinates while following a prescribed trajectory in either the joint coordinates 

or global coordinates. Since the desired position is usually specified in the global 

coordinates, whereas the actuators used to drive the system are to be commanded 

with desired joint values, the inverse kinematics must be solved. There are several 

types of soft computing methods available which can be used for finding the 

solution of the inverse kinematics and further we’ll discuss about them in next 

chapter. 
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         CHAPTER 
                

 

 

 LITERATURE REVIEW   
2.1 Introduction: 

      Another important consideration is the choice of appropriate criteria for 

kinematics of robotics and artificial neural networks. Although the ultimate 

objective of this problem is to find out inverse kinematics, but as we know that 

there is no unique solution for this problem so we tried to find out IK through 

neural networks. Some researchers are developing methodologies which can 

approach to finding this problem.  

 

2.2 Previous Work: 

Alavandar and  Nigam [1]  developed  Neuro-Fuzzy based Approach for 

Inverse Kinematics Solution of Industrial Robot Manipulators. Obtaining the joint 

variables that result in a desired position of the robot end-effectors called as 

inverse kinematics is one of the most important problems in robot kinematics and 

control. In this paper, using the ability of ANFIS (Adaptive Neuro-Fuzzy 

Inference System) to learn from training data, it is possible to create ANFIS, an 

implementation of a representative fuzzy inference system using a BP neural 

network-like structure, with limited mathematical representation of the system. 

Computer simulations conducted on 2 DOF and 3DOF robot manipulator shows 

the effectiveness of the approach.  

 Morris and Mansor [2] developed artificial neural network  for finding 

inverse kinematics of robot manipulator using look up table. The neural networks 

utilized were multi-layered perceptions with a back-propagation training 

algorithm. They used 5 hidden layer neurons , the rate of training , ή , was  2.018 , 

        CHAPTER 

          2 
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and the momentum factor , α , was  0.54 . The training of the 9 patterns was done 

3000 times. The average percentage error, i.e. the percentage of the difference 

between actual and targeted / desired output, at the final iteration of the final 

session was 0.02% for the first joint and 0.3% for the second joint. 

Guez and Ahmad [3] developed solution to inverse kinematics problem in 

robots using neural network they employ a neural network model in the solution 

of the inverse kinematics problem in Robotics. It is found that the neural network 

can be trained to generate a fairly accurate solution which when augmented with 

local differential inverse kinematic methods will result in minimal burden on 

processing load of each control cycle and thus enable real time robot control. The 

back propagation algorithm simulating a three layer perceptron was employed to 

tackle this problem. Symmetric sigmoidal nonlinearity was used. The learning 

rate and the momentum term assumed the values of 0.1 and 0.4 respectively, 

throughout the different Simulations described below. Also the desired outputs 

were normalized between -0.9 and +0.9. The average error is less than 0.01 

radians while maximum error is 0.25 radians. 

 Karlik & Aydinb developed [4] an improved approach to the solution of 

inverse kinematics problems for robot manipulator. A structured artificial neural-

network (ANN) approach has been proposed here to control the motion of a robot 

manipulator. Many neural-network models use threshold units with sigmoid 

transfer functions and gradient descent-type learning rules. The learning equations 

used are those of the back propagation algorithm. In this work, the solution of the 

kinematics of a six- degrees-of-freedom robot manipulator is implemented by 

using ANN. An appropriate computer program has been developed in the Borland 

C++ language for the ANN architectures considered in this study. Iterations were 

performed on a PC P-90 computer, and 6000 iterations were used for teaching the 

ANN. 

 Npyen., et.al [5] Neural Network Architectures For The Forward 

Kinematics Problem in Robotics In this paper, various neural network models are 

considered for solving the robot forward kinematics problem. It is found that 
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certain models with proper training strategies can generate a fairly accurate 

solution for the robot forward kinematics problem. In this paper, various neural 

network architectures are used to solve the forward kinematics problem in 

robotics. Its purpose is to identify the advantages and disadvantages of each 

architecture in this robotic application. All the results have been obtained by 

simulation on a SUN 3/60 work station. The networks were trained with a set of 

sixty four desired inputs/outputs collected from measurements. All the weights of 

the networks were randomly initialized from -0.5 to +0.5. In the output layer of 

this network, all the weights were initialized to zero. This is to avoid the case in 

which a local minimum predominates when the training process is started. The 

training process was stopped when the average error was under 10%. 

 Jaein, et.al [6] developed Robot Control Using Neural Network. A neural 

network theory is applied to theoretical robot kinematics to learn accuracy 

transforms. The network is trained on accuracy data that characterize the actual 

robot kinematics. The network learns the differences in the joint angles to 

improve the accuracy between the effectors endpoint resulting from the 

theoretically calculated joint angles and the desired endpoint. It is hoped that the 

capabilities of modem day neural networks will solve problems that appear to be 

beyond the bounds of conventional computational devices. The results were 

virtually identical for both test cases. After the network had be trained on 1 point, 

the accuracy of positioning the end-effectors to a desired point was improved by 

an average of 60% and for all test sets presented, the accuracy was greater than 

the accuracy of the uncompensated or naked controller. 

Guo & Cherkassky [7] developed A Solution to the Inverse Kinematic 

Problem in Robotics Using Neural Network Processing. In this paper, a solution 

algorithm is presented using the Hopfield and Tank [1985] analog neural 

computation scheme to implement the Jacobian control technique. The states of 

neurons represent joint velocities of a manipulator, and the connection weights are 

determined from the current value of the Jacobian matrix. The network energy 

function is constructed so that its minimum corresponds to the minimum least 
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square error between the actual and desired joint velocities. At each sampling 

time, connection weights and neuron states are updated according to current joint 

positions. During each sampling period, the energy function is minimized and 

joint velocity command signals are obtained as the states of the Hopfield network. 

They proposed a solution to the inverse kinematic problem using Hopfield neural 

network. Our approach is based on the Jacobian control technique. The Hopfield 

network should be capable of updating its connection weights in real time. The 

outputs of the network are joint velocity commands which can be used to control 

joint actuators of a robot manipulator. 

Wang and Zilouchian[8] has given solutions of Kinematics of Robot 

Manipulators Using a kohonen Self- Organizing Neural Network. Kohonen self-

organizing neural network is used to solve the forward kinematics problems of 

robot manipulators. Through competition learning, neurons learn their distribution 

in the training phase. In sequel, the nonlinear mapping has been obtained by 

proper calibration of training results. The proposed method is based on the 

unsupervised learning which does not rely on the knowledge of process model 

and target information. Simulation results have shown the effectiveness of the 

proposed method for a two degree planer robot manipulator. The initial weights of 

neuron are randomly selected to congregate within the estimated range of neuron 

space. After 1000 end effectors positions have been presented for training, the 

weight vectors have been moving out of the center range. With 5000 training 

steps, the neurons begin to approach the shape of its distribution. After 20,000 

steps of training, the neurons develop to a proper distribution which is very close 

to its final form. Fig. 6 shows the average error versus the number of training 

steps. Obviously, the training result is fare satisfactory after 6.000 iterations. 

 Xia and Wang [9] developed A Dual Neural Network for Kinematic 

Control of Redundant Robot Manipulators the inverse kinematics problem in 

robotics can be formulated as a time-varying quadratic optimization problem. A 

new recurrent neural network, called the dual network, is presented in this paper. 

The proposed neural network is composed of a single layer of neurons, and the 
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number of neurons is equal to the dimensionality of the workspace. The proposed 

dual network is proven to be globally exponentially stable. The proposed dual 

network is also shown to be capable of asymptotic tracking for the motion control 

of kinematic ally redundant manipulator. 

 Yee & Lim [10] developed Forward kinematics solution of Stewart 

platform using neural networks. The Stewart platform’s unique structure 

presents an interesting problem in its forward kinematics (FK) solution. It 

involves the solving of a series of simultaneous non-linear equations and, usually, 

non-unique, multiple sets of solutions are obtained from one set of data. In 

addition, most effort usually results in having to find the solution of a 16th-order 

polynomial by means of numerical methods. A simple feed-forward network was 

trained to recognize the Relationship between the input values and the output 

values of the FK problem and was able to provide the solution around an average 

error of 1.0” and 1.0 mm. By performing a few iterations with an innovative 

offset adjustment, the performance of the trained network was improved 

tremendously. Two extra iterations with the offset adjustment reduced the average 

error of the same trained neural network to 0.017” and 0.017 mm.  

 

Gallaf [11] developed Neural Networks for Multi-Finger Robot Hand 

Control. This paper investigates the employment of Artificial Neural Networks 

(ANN) for a multi-finger robot hand manipulation in which the object motion is 

defined in task-space with respect to six Cartesian based coordinates. The 

approach followed here is to let an ANN learn the nonlinear functional relating 

the entire hand joints positions and displacements to object displacement. This is 

done by considering the inverse hand Jacobian, in addition to the interaction 

between hand fingers and the object being grasped and manipulated. The 

developed network has been trained for several object training patterns and 

postures within a Cartesian based palm dimension. The paper demonstrates the 

proposed algorithm for a four fingered robot hand, where inverse hand Jacobian 

plays an important role in robot hand dynamic control. 
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 Houvinen and Handroos [12] they used basically ADAMS –Model for 

training of neural network for inverse kinematics of flexible robot manipulator. If 

flexibility of system is included than problem becomes more complicated. Neural 

network can be used to solve inverse kinematic problem. Multiple layer networks 

are capable of approximating any function with a finite number of discontinuities. 

For learning the inverse kinematics neural network needs information about join 

coordinates, joint angles, and actuator position. By creating flexible ADAMS-

model of the robot and equipped with virtual instrument it is possible to simulate 

the data needed for the training of neural network. in this study the number of 

training  vectors was used 1750 and 350 separate vectors were used for the testing 

the neural network. In this paper they used of simulation data in training neural 

network for inverse kinematic computation of manipulator. The result shows that 

the positioning of a flexible robot using an inverse neural network model is 

possible but the accuracy is not yet good enough. The accuracy is increased by 

increasing the number of training vector and training the neural network again.  

 Daniel Patiño, et.al [13] Neural Networks for Advanced Control of Robot 

Manipulators. This paper presents an approach and a systematic design 

methodology to adaptive motion control based on neural networks (NNs) for 

high-performance robot manipulators, for which stability conditions and 

performance evaluation are given. The neuro-controller includes a linear 

combination of a set of off-line trained NNs (bank of fixed neural networks), and 

an update law of the linear combination coefficients to adjust robot dynamics and 

payload uncertain parameters. This paper deals with a neural network-based 

controller for motion dynamic control of robot manipulators. The dynamical 

behavior of a rigid manipulator can be characterized by a system of highly 

coupled and nonlinear differential equations. The nonlinear effects are 

emphasized for robots working at high speeds with direct drive motors or low 

ratio gear transmissions. A simulation study has been carried out for the PUMA-

560 robot. They have presented an approach and a systematic design methodology 

to a motion adaptive control based on NNs for high-performance robot 
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manipulators, for which stability conditions and performance evaluation have 

been given. 

Ted Hesselroth,et. al [14]   they proposed Neural Network Control of a 

Pneumatic Robot Arm. A neural map algorithm has been employed to control a 

five-joint pneumatic robot arm and gripper through feedback from two video 

cameras. The pneumatically driven robot arm (Soft Arm) employed in this 

investigation shares essential mechanical characteristics with skeletal muscle 

systems. To control the position of the arm, 200 neurons formed a network 

representing the three-dimensional workspace embedded in a four-dimensional 

system of coordinates from the two cameras, and learned a three-dimensional set 

of pressures corresponding to the end effectors positions, as well as a set of 3×4 

Jacobian matrices for interpolating between these positions. The gripper 

orientation was achieved through adaptation of a 1 × 4 Jacobian matrix for a 

fourth joint. Because of the properties of the rubber-tube actuators of the Soft 

Arm, the position as a function of supplied pressure is nonlinear, no separable, 

and exhibits hysteresis. Nevertheless, through the neural network learning 

algorithm the position could be controlled to an accuracy of about one pixel (_3 

mm) after two hundred learning steps and the orientation could be controlled to 

two pixels after eight hundred learning steps. This was achieved through 

employment of a linear correction algorithm using the Jacobian matrices 

mentioned above. Applications of repeated corrections in each positioning and 

grasping step leads to a very robust control algorithm since the Jacobians learned 

by the network have to satisfy the weak requirement that the Jacobian yields a 

reduction of the distance between gripper and target. 

Benhabib,et.al.[15]  A solution to the inverse kinematics is a set of joint 

coordinates which correspond to a given set of task space coordinates (position 

and orientation of end effectors). For the class of kinematic ally redundant robots 

the solution is generically no unique such that special methods are required for 

obtaining a solution. The paper presents a new algorithm for solving the inverse 

kinematics which is based on a modified Newton-Raphson iterative technique. 

The new algorithm is efficient, converges rapidly, and completely generalizes the 
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solution of the inverse kinematics problem for redundant robots. The method is 

illustrated by a numerical example. 

Oyama and Tachi [16] Inverse kinematics computation using an artificial 

neural network that learns the inverse kinematics of a robot arm has been 

employed by many researchers. However, conventional learning methodologies 

do not pay enough attention to the discontinuity of the inverse kinematics system 

of typical robot arms with joint limits. The inverse kinematics system of the robot 

arms is a multi-valued and discontinuous function. Since it is difficult for a well-

known multi-layer neural network to approximate such a function, a correct 

inverse kinematics model for the end-effectors’s overall position and orientation 

cannot be obtained by using a single neural network. In order to overcome the 

discontinuity of the inverse kinematics function, we propose a novel modular 

neural network system for the inverse kinematics model learning. We also 

propose the on-line learning and control method for trajectory tracking. 

Manocha and Canny [17] in this paper, they present an algorithm and 

implementation for efficient inverse kinematics for a general 6R manipulator. 

When stated mathematically, the problem reduces to solving a system of 

multivariate equations. They make use of the algebraic properties of the system 

and the symbolic formulation used for reducing the problem to solving a 

univariate polynomial. However, the polynomial is expressed as a matrix 

determinant and its roots are computed by reducing to an eigenvalue problem. 

The other roots of the multivariate system are obtained by computing 

eigenvectors and substitution. The algorithm involves symbolic preprocessing, 

matrix computations and a variety of other numerical techniques. The average 

running time of the algorithm, for most cases, is 11 milliseconds on an IBM 

RS/6000 workstation. This approach is applicable to inverse kinematics of all 

serial manipulators. 

Kieffer et.al.[18],  presented a methodology where a neural network is 

used to learn the inverse kinematic relationship for a robot arm. They presented 

two link, two degree of freedom planar robot arm simulation, and an 

accompanying neural network which solves the inverse kinematic problem. Their 
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method is based on Kohonen’s self organizing mapping algorithm using a 

Widrow-Hoff type error correction rule. They have specifically addressed a 

number of issues associated with the inverse kinematic solution, including the 

occurrence of singularities and multiple solutions. 

Kozalziewicz et.al,[19] developed the solution of inverse kinematics of 

robot manipulator with the help of Partitioned Neural Network architecture. In 

this paper they obtained quit good result, and they demand high accuracy. The 

Partitioned Neural Network is composed of a Pre - Processing layer and Partition 

Modules containing dedicated neurons. The learning equations used are those of 

the Back propagation algorithm. The Network has been applied to learning of the 

Inverse Kinematic solution of a 6 degree of freedom robot manipulator. After 

training, the Partitioned network was able to predict robot joint angles. 

 

2.3 Summary: 

 The different types of approaches to the inverse kinematics have been 

reported. Here these approaches show their various advantages and disadvantages 

to the development of new design problem. Taking the old approach in to 

consideration the development of new approaches conceptualized through these 

literatures. 
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      CHAPTER 

               3 
                

 INTRODUCTION TO KINEMATICS OF MANIPULATOR 

3.1 Introduction 

The purpose of this chapter is to introduce you to robot kinematics, and the 

concepts related to both open and closed kinematics chains. Forward kinematics is 

distinguished from inverse kinematics. Kinematics is the study of motion without 

regard to the forces that create it. The forward kinematics is about finding an end 

effectors or tool piece pose given a set of joint variables. The Inverse Kinematics 

is the opposite problem. We want to and a set of joint variables that give rise to a 

particular end effectors or tool piece pose. Kinematics is the study of motion. In 

this subsection, we will explore the relationship between joint movements and end 

effectors movements. More precisely, we will try to develop equations that will 

make explicit the dependence of end effectors coordinates on joint coordinates 

and vice versa. 

                                    
         Fig. (3.1) A schematic of a planar manipulator with three revolute joints. 
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We will start with the example of the planar 3R manipulator. From basic 

trigonometry, the position and orientation of the end effectors can be written in 

terms of the joint coordinates in the following way: 

                      )cos()cos(cos 321321211 θθθθθθ +++++= lllx  

                                  )sin()sin(sin 321321211 θθθθθθ +++++= llly       …….. (3) 

                     =φ 321 θθθ ++       

Note that all the angles have been measured counter clockwise and the link 

lengths are assumed 

to be positive going from one joint axis to the immediately distal joint axis. 

Equation (3) is a set of three nonlinear equations that describe the relationship 

between end effectors coordinates and joint coordinates. Notice that we have 

explicit equations for the end effectors coordinates in terms of joint coordinates. 

However, to find the joint coordinates for a given set of end effectors coordinates 

(x, y, φ), one needs to solve the nonlinear equations for θ1, θ2, and θ3. 

The kinematics of the planar R-P manipulator is easier to formulate. The 

equations are: 

                                     12 cos. θdx =  

                                        12 sin. θdy =                                                           …………… (4) 

                                        1θφ =  

Again the end-effector coordinates are explicitly given in terms of the joint 

coordinates. However, since the equations are simpler (than in (3)), you would 

expect the algebra involved in 

Solving for the joint coordinates in terms of the end effector coordinates to be 

easier. Notice that 

in contrast to (3), now there are three equations in only two joint coordinates, θ1, 

and d2. Thus, in general, we cannot solve for the joint coordinates for an arbitrary 

set of end effector coordinates. Said another way, the robot cannot, by moving its 

two joints, reach an arbitrary end effector position and orientation.   
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Let us instead consider only the position of the end effector described by (x, y), 

the coordinates of the end effector tool point or reference point. We have only two 

equations: 

 

                                       12 cos. θdx =  

                                        12 sin. θdy =                                                ………… (5) 

Given the end effectors coordinates (x, y), the joint variables can be computed to 

be:        

                                                                                 

                             22
2 yxd ++=              

                              ⎟
⎠
⎞

⎜
⎝
⎛= −

x
y1

1 tanθ                                 ……… (6) 

Notice that we restricted d2 to positive values. A negative d2 may be physically 

achieved by allowing the end effector reference point to pass through the origin of 

the x-y coordinate system 

over to another quadrant. In this case, we obtain another solution: 

 

                                      

                             22
2 yxd +−=              

                              ⎟
⎠
⎞

⎜
⎝
⎛= −

x
y1

1 tanθ                                    ……. (7) 

In both cases (6-7), the inverse tangent function is multivalued10. In particular, 

 

                   ....2,1,0,1,2.....),tan()tan( −−=+= kkxx π                 …….(8) 

  
However, if we limit θ1 to the range 0<θ1<2π, there is a unique value of θ1 that is 

consistent with the given (x, y) and the computed d2 (for which there are two 

choices). The existence of multiple solutions is typical when we solve nonlinear 
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equations. As we will see later, this poses some interesting questions when we 

consider the control of robot manipulators. The planar Cartesian manipulator is 

trivial to analyze. The equations for kinematic analysis are:     

 

                                12 , dydx ==                                               …. (9) 

 
The simplicity of the kinematic equations makes the conversion from joint to end 

effector coordinates and back trivial. This is the reason why P-P chains are so 

popular in such automation equipment as robots, overhead cranes, and milling 

machines.  

 

3.2 Direct kinematics 

As seen earlier, there are two types of coordinates that are useful for 

describing the configuration of the system. If we focus our attention on the task 

and the end effector, we would prefer to use Cartesian coordinates or end effector 

coordinates. The set of all such coordinates is generally referred to as the 

Cartesian space or end effector space. The other set of coordinates is the so called 

joint coordinates that is useful for describing the configuration of the mechanical 

lnkage. The set of all such coordinates is generally called the joint space.  
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                      Fig. (3.2) Representation of 3R planar manipulator in Cartesian 

space. 

 In robotics, it is often necessary to be able to “map” joint coordinates to end 

effector coordinates. This map or the procedure used to obtain end effector 

coordinates from joint coordinates is called direct kinematics.  For example, for 

the 3-R manipulator, the procedure reduces to simply substituting the values for 

the joint angles in the equation                 

                      )cos()cos(cos 321321211 θθθθθθ +++++= lllx  

                              )sin()sin(sin 321321211 θθθθθθ +++++= llly           ….. (10) 

                   =φ 321 θθθ ++       

And determining the Cartesian coordinates, x, y, and φ. For the other examples of 

open chains Discussed so far (R-P, P-P) the process is even simpler (since the 

equations are simpler). In fact, for all serial chains (spatial chains included), the 

direct kinematics procedure is fairly straight Forward. On the other hand, the 

same procedure becomes more complicated if the mechanism contains one or 

more closed loops. In addition, the direct kinematics may yield more than one 

solution or no solution in such cases. For example, in the planar parallel 
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manipulator in Figure 3, the joint positions or coordinates are the lengths of the 

three telescoping links (q1, q2, q3) and the end effectors coordinates (x, y, φ) are 

the position and orientation of the floating triangle. It can be shown that 

depending on the value of (q1, q2, q3), the number of (real) solutions for (x, y, φ) 

can be anywhere from zero to six. For the Stewart Platform in Figure 4, this 

number has been shown to be anywhere from zero to forty. 

 

3.3 Inverse kinematics 

The analysis or procedure that is used to compute the joint coordinates for 

a given set of end effector coordinates is called inverse kinematics. Basically, this 

procedure involves solving a set of equations. However the equations are, in 

general, nonlinear and complex, and therefore, the inverse kinematics analysis can 

become quite involved. Also, as mentioned earlier, even if it is possible to solve 

the nonlinear equations, uniqueness is not guaranteed. There may not (and in 

General, will not) be a unique12 set of joint coordinates for the given end effector 

coordinates. 

We saw that for the R-P manipulator, the direct kinematics equations are: 

  

                              12 cos. θdx =  

                             12 sin. θdy =                                                                     . . . . . (11) 

If we restrict the revolute joint to have a joint angle in the interval [0, 2π), there 

are two solutions for the inverse kinematics: 

 

                               22
2 yxd += σ  

                                       ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

22
1 ,2tan

d
x

d
yaθ                                     ….(12) 

                                       1±=σ  

The inverse kinematics analysis for a planar 3-R manipulator appears to be 

complicated but we can derive analytical solutions. Recall that the direct 

kinematics equations (10) are: 
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                                  )cos()cos(cos 321321211 θθθθθθ +++++= lllx                      10(a) 

                              )sin()sin(sin 321321211 θθθθθθ +++++= llly               10(b)  

 

                  =φ 321 θθθ ++                                                                                        10(c) 

We assume that we are given the Cartesian coordinates, x, y, and φ and we want 

to find analytical expressions for the joint angles 21,θθ  and 3θ in terms of the 

Cartesian coordinates. 

Substituting 10(c) into 10(a) and 10(b) we can eliminate 3θ  so that we have two 

equations in 1θ  

And 2θ : 

 

              )cos(coscos 212113 θθθφ ++=− lllx                                                10(d) 

              )sin(sinsin 212113 θθθφ ++=− llly                                                   10(e) 

Where the unknowns have been grouped on the right hand side; the left hand side 

depends only on the end effector or Cartesian coordinates and are therefore 

known. 

Rename the left hand sides, φφ sin,cos 3
'

3
' lyylxx −=−= for 

convenience. We regroup 

Terms in (d) and (e), square both sides in each equation and add them: 

            2
212

2
212

2
11

2
11

' ))sin(())cos(()sin()cos( θθθθθθ +++=−′+− lllylx  

After rearranging the terms we get a single nonlinear equation in θ 1: 

   0)(sin)2(cos)2( 2
22

1
22

1111 =−+′+′+′−+′− llyxylxl θθ                           10(f) 

Notice that we started with three nonlinear equations in three unknowns in (a-c). 

We reduced the problem to solving two nonlinear equations in two unknowns (d-

e). And now we have simplified it further to solving a single nonlinear equation in 

one unknown (f). Equation (f) is of the type 

                           0sincos =++ RQP αα                                                     10(g) 

There are two solutions for θ 1 given by: 
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Where, 

         
⎥
⎥
⎦

⎤
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′+′

′−

′+′

′−
=

2222
,2tan
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yaγ  

And   1±=σ  

Note that there are two solutions forθ 1, one corresponding to 1+=σ , the other 

corresponding to 

1−=σ . Substituting any one of these solutions back into Equations (d) and (e) 

gives us: 

                     
2

11
21

cos)cos(
l

lx θ
θθ

−′
=+  

                            
2

11
2

sin)sin(
l
ly θ

θθ
−′
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And, 

 

              1
2

11

2

11
2

sin,sin2tan θ
θθ

θ −⎥
⎦

⎤
⎢
⎣

⎡ −′−′
=

l
lx

l
lya                                      10(i) 

Thus, for each solution forθ 1 , there is one (unique) solution for θ 2. 

Finally, θ 3 can be easily determined from (c): 

               θ 3=Φ-θ 1-θ 2                                                                                                                    10(j) 

Equations (h-j) are the inverse kinematics solution for the 3-R manipulator. For a 

given end effectors position and orientation, there are two different ways of 

reaching it, each corresponding to a different value ofσ . These different 

configurations are shown in Figure  
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 Fig. (3.3) The two inverse kinematics solutions for the 3R manipulator: 

“elbow-up” configuration (σ =+1) and the “elbow-down” configuration 

(σ = -1). 

3.4 Summary 

Robot manipulator is composed of a serial chain of rigid links connected to each 

other by revolute or prismatic joints. A revolute joint rotates about a motion axis 

and a prismatic joint slide along a motion axis. Each robot joint location is usually 

defined relative to neighboring joint. The relation between successive joints is 

described by 4X4 homogeneous transformation matrices that have orientation and 

position data of robots. The number of those transformation matrices determines 

the degrees of freedom of robots. The purpose of this chapter is to introduce you 

to robot kinematics, and the concepts related to both open and closed kinematics 

chains. Forward kinematics is distinguished from inverse kinematics. Kinematics 

is the study of motion without regard to the forces that create it. The forward 

kinematics is about finding an end effectors or tool piece pose given a set of joint 

variables. The Inverse Kinematics is the opposite problem. We want to and a set 

of joint variables that give rise to a particular end effectors or tool piece pose. 

Kinematics is the study of motion. 
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   CHAPTER 

          4 
 

INTRODUCTION TO NEURAL NETWORK ARCHITECTURE 

 

Artificial neural network (ANN) takes their name from the network of nerve cells 

in the brain. Recently, ANN has been found to be an important technique for 

classification and optimization problem. Artificial Neural Networks (ANN) has 

emerged as a powerful learning technique to perform complex tasks in highly 

nonlinear dynamic environments. Some of the prime advantages of using ANN 

models are their ability to learn based on optimization of an appropriate error 

function and their excellent performance for approximation of nonlinear function. 

The ANN is capable of performing nonlinear mapping between the input and 

output space due to its large parallel interconnection between different layers and 

the nonlinear processing characteristics. An artificial neuron basically consists of 

a computing element that performs the weighted sum of the input signal and the 

connecting weight. The sum is added with the bias or threshold and the resultant 

signal is then passed through a nonlinear function of sigmoid or hyperbolic 

tangent type. Each neuron is associated with three parameters whose learning can 

be adjusted; these are the connecting weights, the bias and the slope of the 

nonlinear function. For the structural point of view a NN may be single layer or it 

may be multilayer. In multilayer structure, there is one or many artificial neurons 

in each layer and for a practical case there may be a number of layers. Each 

neuron of the one layer is connected to each and every neuron of the next layer. 

The functional-link ANN is another type of single layer NN. In this type of 

network the input data is allowed to pass through a functional expansion block 

where the input data are nonlinearly mapped to more number of points. This is 
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achieved by using trigonometric functions, tensor products or power terms of the 

input. The output of the functional expansion is then passed through a single 

neuron. The learning of the NN may be supervised in the presence of the desired 

signal or it may be unsupervised when the desired signal is not accessible. Here in 

this paper ANN is supervised learning. Rumelhart developed the Back-

propagation (BP) algorithm, which is central to much work on supervised learning 

in MLP. A feed-forward structure with input, output, hidden layers and nonlinear 

sigmoid functions are used in this type of network. In recent years many different 

types of learning algorithm using the incremental back-propagation algorithm, 

evolutionary learning using the nearest neighbor MLP and a fast learning 

algorithm based on the layer-by-layer optimization procedure. 

 

4.1 Introduction of Artificial Neural Network: 

A neural network is a machine that is designed to model the way in which the 

brain performs a particular task or function of interest. To achieve good 

performance, they employ a massive interconnection of simple computing cells 

referred to as ‘Neurons’ or ‘processing units’. Hence a neural network viewed as 

an adaptive machine can be defined as A neural network is a massively parallel 

distributed processor made up of simple processing units, which has a natural 

propensity for storing experimental knowledge and making it available for use. It 

resembles the brain in two respects: 

1. Knowledge is acquired by the network from its environment through a 

     learning process. 

2. Interneuron connection strengths, known as synaptic weights, are us to 

store the acquired knowledge. 

Neural networks are composed of simple elements operating in parallel. These 

elements are inspired by biological nervous systems. As in nature, the network 

function is determined largely by the connections between elements. We can train 

a neural network to perform a particular function by adjusting the values of the 

connections (weights) between elements. Commonly neural networks are 
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adjusted, or trained, so that a particular input leads to a specific target output. 

Such a situation is shown below. 

 
                                       Fig 4.1: Neural Network Model 

The true power and advantage of neural networks lies in their ability to represent 

both linear and non-linear relationships and in their ability to learn these 

relationships directly from the data being modeled. Traditional linear models are 

simply inadequate when it comes to modeling data that contains non-linear 

characteristics. Neural networks are designed to work with patterns - they can be 

classified as pattern classifiers or pattern associates. 

 

4.2 WHY USE NEURAL NETWORKS? 

It is apparent that a neural network derives its computing power through, first, its 

massively parallel distributed structure and, second, its ability to learn and 

therefore generalize. The use of neural networks offers the following useful 

properties and capabilities: 

o Massive parallelism 

o Distributed representation and computation 

o Learning ability 

o Generalization ability 

o Input-output mapping 

o Adaptivity 

o Uniformity of Analysis and Design 

o Fault tolerance 

o Inherent contextual information processing 
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o VLSI implements ability. 

 

4.3 NEURON MODEL 

An artificial neuron is a device with many inputs and many outputs. Each input is 

multiplied by a corresponding weight, analogous to a synaptic strength, and all the 

weighted inputs are then summed to determine the activation level of the neuron. 

These weighted inputs are then added together to produce ‘net’ output and if they 

exceed a pre-set threshold value, the neuron fires. The ‘net’ output produced is 

further processed by an activation function (f) to produce the neuron’s output 

signal. A simple neuron model can be represented as below: 

                                       
                                          Fig 4.2: Simple Neuron Model 

In the above figure p is input of signal w is the weighted input and b is bias input. 

The block ‘å’ produces the ‘net’ output by summing the weighted inputs. The 

block ‘f’ represents the activation function. 

 

4.4 NETWORK LAYERS 

Although a single neuron can perform certain simple pattern detection functions, 

the power of neural computation comes from connecting neurons into network 

layers. These multilayer networks have been proven to have capabilities beyond 

those of a single layer. These networks are formed by cascading group of single 

layers; the output of one layer provides the input to the subsequent layer. 
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Figure 4.3: A multi-layer neuron model 

The commonest type of artificial neural network consists of three groups, or 

layers, of units: a layer of "input" units is connected to a layer of "hidden" units, 

which is connected to a layer of "output" units as in the figure: 

¾ The activity of the input units represents the raw information that is fed 

        into the network. 

 

¾ The activity of each hidden unit is determined by the activities of the input 

units and the   weights on the connections between the input and  the hidden units.     

                                                                                                                                                                  

¾ The behavior of the output units depends on the activity of the hidden units 

and the weights between the hidden and output units.            

The hidden units are free to construct their own representations of the input. The 

weights between the input and hidden units determine when each hidden unit is 

active, and so by modifying these weights, a hidden unit can choose what it 

represents.  

 

4.5 ACTIVATION FUNCTIONS          

Activation functions for the hidden units are needed to introduce nonlinearity into 

the network. Without nonlinearity, hidden units would not make nets more 

powerful as it is the nonlinearity (i.e, the capability to represent nonlinear 

functions) that makes multilayer networks so powerful.       
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There are three types of Activation functions:    

¾ Binary Function - PERCEPTRON 

¾ Sigmoidal Function 

¾ Hyperbolic Tangent Function       

4.6 SIGMOIDAL FUNCTION              

The block ‘f’ accepts the NET output and produces the signal labeled OUT. If the 

‘f’ processing block compresses the range of NET, so that OUT never exceeds 

some limits regardless of the value of NET, ‘f’ is called a squashing function. The 

squashing function is often chosen to be the logistic function or “sigmoid”. This 

function is expressed in mathematically as   

                                             nete
OUT −+

=
1

1          

                            
                                 Figure 4.4: Sigmoidal Function            

The non-linear gain is calculated by finding the ratio of the change in OUT to a 

small change in NET. Thus, gain is the slope of the curve (shown in figure) at a 

specific excitation level. It varies from a low value at large negative excitations, 

to a high value at zero excitation, and it drops back as excitation becomes very 

large and positive. Small signals, while its regions of decreasing gain at positive 

and negative extremes are appropriate for large excitations. In this way, a neuron 

performs with appropriate gain over a wide range of input levels. 
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FIG.(4.5) Common activation functions 

 

4.7 FEED-FORWARD NEURAL NETWORKS: 

Feed-forward ANNs allow signals to travel one way only; from input to output. 

There is no feedback (loops) i.e. the output of any layer does not affect that same 

layer. These networks are called non-recurrent networks and they do not require 

any memory as outputs are directly related to inputs and weights. They are 

extensively used in pattern recognition. This type of organization is also referred 

to as bottom-up or top-down. The figure (9) below shows a simple feed forward 

network: 

               
Figure (4.6): An example of Feed Forward Network 
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4.8 LEARNING 

Learning is essential to most of these neural network architectures and hence the 

choice of a learning algorithm is a central issue in network development. Learning 

implies that a processing unit is capable of changing its input/output behavior as a 

result of changes in the environment. Since the activation rule is usually fixed 

when the network is constructed and since the input/output vector cannot be 

changed, to change the input/output behavior the weights corresponding to that 

input vector need to be adjusted. In a neural network, learning can be supervised 

or unsupervised. 

 

4.9 BACK PROPOGATION ALGORITHM 

For many years, there was no theoretically sound algorithm for training multilayer 

artificial neural networks. The invention of the back propagation algorithm has 

played a large part in the resurgence of interest in artificial neural networks. Back 

propagation is a systematic method for training multilayer artificial neural 

networks (Perceptrons). The following figure shows the basic model of the neuron 

used in Back propagation networks. 

 
Figure (4.7): Basic model of neuron using back propagation 

Each input is multiplied by corresponding weights, analogous to a synaptic 

strength, and all the weighted inputs are then summed to determine the activation 

level of the neuron. These summed (NET) signals are further processed by an 

activation function (F) to produce the neuron’s output signal (OUT). In back 

propagation, the function used for the activation is the logistic function or 

Sigmoid. This function is expressed mathematically as: 

                      xe
xF −+

=
1

1)( , thus nete
OUT −+

=
1

1  
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The Sigmoid compresses the range of NET so that OUT lies between zero and 

one. Since the back-propagation uses the derivative of the squashing function, it 

has to be everywhere differentiable. The Sigmoid has this property and the 

additional advantage of providing a form of automatic gain control (i.e. if the 

value of NET is large, the gain is small and if it is small the gain is large). 

 

4.10 AN OVERVIEW OF TRAINING IN BACK PROPOGATION 

          TRAINING ALGORITHM: 

The objective of training the network is to adjust the weights so that the 

application of a set of inputs (input vectors) produces the desired outputs (output 

vectors). Training a back propagation network involves each input vector being 

paired with a target vector representing the desired output; together they are called 

a training pair. The following figure shows the architecture of the multilayer back 

propagation neural network. 

 
Figure (4.8): Multilayer Back propagation neural network 

 

Before starting the training process, all of the weights are initialized to small 

random numbers. Training the back propagation network requires the following 

steps: 

1. Select a training pair (next pair) from the training data set and apply the input 

vector to the network input. 

 

2. Calculate the output of the network, i.e. to each neuron NET=ΣXiWi must be 

calculated and then the activation function must be applied on the result F 

(NET). 
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3. Calculate the error between the network output and the desired output 

(TARGET – OUT). 

 

4. Adjust the weights of the network in a way that minimizes the ERROR 

(described below). 

 

      5. Repeat step 1 through 4 for each vector in the training set until no training pair 

produces an error larger than a pre-decided acceptance level. 

 

4.11 ADJUSTING WEIGHTS OF THE NETWORK 

Adjusting the weights of the output layer is easier, as a target value is available 

for each neuron. The following shows the training process for a single weight 

from neuron “q” in the hidden layer “j” to neuron “r” in the output layer “k”. The 

output of a neuron in layer “k” is subtracted from its target values to produce an 

ERROR signal. This is multiplied by the derivative of a squashing function OUT 

(1-OUT) calculated for that neuron (“r”) thereby producing a “δ” value. 

δ = OUT *(1-OUT) *(TARGET – OUT) 

 
Figure (4.9): adjusting weights of output layer 

Where, 

 

Wqr,j(n) = the value of weight from neuron in the hidden layer “j” to neuron “r” 

in the output layer “k” at step “n” (before adjustment). 
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Wr,j(n+1) = the value of weight from neuron in the hidden layer j to neuron “r” in 

the output layer “k” at step n+1 (after adjustment). 

 

OUTq,j = the value of OUT of neuron in the hidden layer “j”. 

 

ΔWqr,k = amount that Wqr,j to be adjusted. 

Adjusting the weights of the hidden layer: 

 

Back propagation trains the hidden layer by propagating the output ERROR back 

through the network layer by layer, adjusting weights at each layer. The same 2 

equations (1) and (2) above are used for all layers, both output & hidden except 

that, for hidden layers the ή , δs values must be generated without the benefit of 

targets. The following figure explains how this is accomplished. δs for hidden 

layer neurons are calculated according to equation (3) by using the δs calculated 

for output layer (δy,k s) and propagating them backward through the 

corresponding weights. 

),,)(1( ,,,, kkWOUTOUT rqrjqjqjq δδ Δ−=  ----------- (3) 

                        
Figure (4.10): adjusting weights of hidden layer 

Then, with δs in hand, hidden layer weights can be adjusted similar to the output 

layer weights as given below: 

jqjqjqr OUTW ,,, ηδ=Δ --------------- (4) 

 

jqrnjqrnjqr WWW ,)(,)1(, Δ+=+ -------------- (5) 
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4.12 TESTING 

 

In this paper testing data has taken from training data. We have just selected 100 

random numbers of data from the training data and tested. Since Inverse Kinematics 

is a nonlinear mapping from (X, Y, Z, zyx andφφφ ,, ) space to ( 654321 ,,,,, θθθθθθ ) 

space, it can be regarded as an input - output process with an unknown transfer 

function. Approximation of such a relationship is an example of general 

approximation problem and as such it is well suited for learning by a Neural 

Network. Two problems encountered when teaching a NN robot Inverse 

Kinematics are low accuracy of Approximation and the need to create a teach 

data set with a relatively large number of data points. In the case where the 

kinematic parameters of each robot link are known, a simple kinematic model of 

the robot can be made based on equations 10(a) to 10(j) and a required number of 

data points can be readily generated. In the case where the joint parameters are 

unknown, the required data has to be obtained by measuring the position and 

orientation of the robot gripper for a number of arm configurations such 

measurement is very difficult in practice. The accuracy of NN approximation is a 

current research topic. 

4.13 Summary  

Artificial Neural Networks (ANN) has emerged as a powerful learning technique 

to perform complex tasks in highly nonlinear dynamic environments. Some of 

the prime advantages of using ANN models are their ability to learn based on 

optimization of an appropriate error function and their excellent performance for 

approximation of nonlinear function. So it is required to have basic knowledge of 

artificial neural networks that’s why we have discussed here.  
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NOVEL ANN APPLICATION FOR PREDICTING OF INVERSE 

KINEMATICS OF MANIPULATOR    

 

5.1 Introduction 

The prime advantages of using ANN models are their ability to learn based on 

optimization of an appropriate error function and their excellent performance for 

approximation of nonlinear functions. Here in this paper two ANN architectures 

MLP and PPN are discussed. Both methods are widely used in present research 

scenario. In most of the field ANN models are preferred for predicting the values 

and optimizing the problems. ANN models especially MLP with back-

propagation model can solve complex problem. 

 

5.2 MULTI-LAYER PERCEPTRONS: 

A typical multi-layer network consists of an input, hidden and output layer, each 

fully connected to the next, with activation feeding forward. Multi-layer networks 

can represent arbitrary functions, but an effective learning algorithm for such 

networks was thought to be difficult.  The weights determine the function 

computed. Given an arbitrary number of hidden units, any boolean function can 

be computed with a single hidden layer. 
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Fig (5.1) architecture for neuron 

• The neuron is the basic information processing unit of a NN. It consists of: 

¾ A set of links, describing the neuron inputs, with weights  W1, W2, …, Wm  

¾ An adder function (linear combiner) for computing the weighted sum of 

the inputs (real    numbers):     ∑
=

=
m

j
jj XWu

1
                                         

¾ Activation function (squashing function) φ for limiting the amplitude of 

the neuron output. )( buy += ϕ  

 

 

I/O are bounded in [0,1] for the activation to perform; 

Pass 1: Forward Pass - Present inputs and let the activations flow until 

they reach the output layer.  

Pass 2: Backward Pass - Error estimates are computed for each output unit 

by comparing the actual output (Pass 1) with the target output. Then, these 

error estimates are used to adjust the weights in the hidden layer and the 

errors from the hidden layer are used to adjust the input layer.  
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Fig. (5.2) Architecture of MLP         Fig. (5.3) Architecture for back-propagation  

 

The Back propagation Learning Routine: 

 
As with perceptrons, the information in the network is stored in the weights, so 

the learning problem comes down to the question: how do we train the weights to 

best categories the training examples. We then hope that this representation 

provides a good way to categories unseen examples. In outline, the back 

propagation method is the same as for perceptrons: 

 

1. We choose and fix our architecture for the network, which will contain input, 

hidden and output units, all of which will contain sigmoid functions. 

2. We randomly assign the weights between all the nodes. The assignments 

should be to small numbers, usually between -0.5 and 0.5. 

3. Each training example is used, one after another, to re-train the weights in the 

network. The way this is done is given in detail below. 

4. After each epoch (run through all the training examples), a termination 

condition is checked (also detailed below). Note that, for this method, we are not 

guaranteed to find weights which give the network the global minimum error, i.e., 

perfectly correct categorization of the training examples. Hence the termination 

condition may have to be in terms of a (possibly small) number of miss-

categorizations. We see later that this might not be such a good idea, though. 
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Learning rule for multilayer-perceptrons: 
If the weight values are too large the net value will large as well; this causes the 

derivative of the activation function to work in the saturation region and the 

weight changes to be near zero. For small initial weights the changes will also be 

very small, which causes the learning process to be very slow and might even 

prevent convergence. The easiest method is to select the weights randomly from a 

suitable range, such as between (-0.1,0.1) or (- 2,2). The Learning Coefficient ή 

determines the size of the weight changes. A small value for ή will result in a very 

slow learning process. If the learning coefficient is too large the large weight 

changes may cause the desired minimum to be missed. A useful range is between 

0.05 and 2 dependent on the problem. The influence of the ή on the weight 

changes is shown in Figure (17). The Momentum α causes the weight changes to 

be dependent on more than one input pattern. The change is a linear combination 

of the current gradient and the previous gradient. The useful range for this 

parameter is between 0 and 1. For some data sets the momentum makes the 

training faster, while for others there may be no improvement. 

 

 
Fig (5.4) The Influence of the Learning Rate on the Weight Changes. 
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Where are neural networks being used? 
¾ Signal processing: suppress line noise, with adaptive echo canceling, blind 

source  separation 

¾ Control: e.g. backing up a truck: cab position, rear position, and match 

with the dock get 

 converted to steering instructions. Manufacturing plants for controlling 

automated machines. 

¾ Siemens successfully uses neural networks for process automation in basic 

industries, e.g., in 

¾ rolling mill control more than 100 neural networks do their job, 24 hours a 

day 

¾ Robotics - navigation, vision recognition 

¾ Pattern recognition, i.e. recognizing handwritten characters, e.g. the 

current version of 

¾ Apple's Newton uses a neural net 

¾ Medicine, i.e. storing medical records based on case information 

¾ Speech production: reading text aloud (NET talk) 

Speech recognition 

¾ Vision: face recognition , edge detection, visual search engines 

¾ Business, e.g... rules for mortgage decisions are extracted from past 

decisions made by 

experienced evaluators, resulting in a network that has a high level of 

agreement with human experts. 

¾ Financial Applications: time series analysis, stock market prediction 

¾ Data Compression: speech signal, image, e.g. faces 

¾ Game Playing: backgammon, chess. 
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Fig (5.5). Flow chart for MLP 
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5.3 THE POLYNOMIAL PERCEPTRON NETWORK: 

Weierstrass approximation theorem states that any function which is continuous 

in a closed interval can be uniformly approximated within any prescribed 

tolerance over that interval by some polynomial. Considering a binary PAM 

system (i.e. K = 2 in (1)) the channel equalization becomes a two class 

classification problem, and a decision boundary can be established between the 

pattern classes. Fig.(20) depicts a PPN network where X is the input pattern given 

by  
T

mxxxxX ],........,,[ 321=  

 

 

Fig.(5.6) Polynomial perceptron network. 

 

Considering a two-dimensional pattern X = [x1 x2]’ and polynomial order 2, the 

decision function (14) may be written as 
TT XWXDF =)(  

Where, 
TwwwwwwW ];,;,,[ 212212110=  

And 
TxxxxxxX ],,,,,,1[ 21

2
221

2
1

* =  

For output layer      (P = L), 

For other layers   (p = L - 1, L - 2, . . . , 1) 
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The general quadratic case can be formed by considering all combination of 

components of X which forms terms of degree two or less. Thus, for an M-

dimensional pattern, 

*
0

11

1

11

2)( XWwxwxxwxwXDF T
M

j
jj

M

jk
kjjk

M

j

M

j
jjjj =+++= ∑∑∑∑

=+=

−

==

 

The number of terms needed to describe a polynomial decision function grows 

rapidly as the polynomial degree r and the dimension M of the pattern increases. 

For the M-dimensional case, the number of coefficients in a function of rth degree 

is given by 

!!
)!(

rM
rMCN r

rM
M r

+
== +  

The input pattern X to the PPN at time n is the channel output vector X(n). This is 

then converted into X*(n) by passing it into a polynomial preprocessor. The 

weighted sum of the components of X*(n) is passed through a nonlinear function 

sigmoid and purelinear function to produce the output z (n). The output of the 

PPN is compared with the desired response to generate an error s (n) which is 

then used to update its weights by the BP algorithm. 

 

5.4 Summary 

The behavior of the output units depends on the activity of the hidden units and 

the weights between the hidden and output units. The hidden units are free to 

construct their own representations of the input. The weights between the input 

and hidden units determine when each hidden unit is active, and so by modifying 

these weights, a hidden unit can choose what it represents. Here in this paper two 

ANN architectures MLP and PPN are discussed. Both methods are widely used in 

present research scenario. In most of the field ANN models are preferred for 

predicting the values and optimizing the problems. ANN models especially MLP 

with back-propagation model can solve complex problem. 
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SIMULATION RESULTS AND PERFORMANCE ANALYSIS: 

To validate the performance of MLP and PPN for inverse kinematics problem, 

simulation studies are carried out by using MATLAB. 

 In this work the training data sets were generated by using equation 10-

10(j). A set of 130 data sets were first generated as per the formula equation (10) 

for this the input parameter X and Y coordinates in inches. Using these data sets 

was basis for the training and evaluation or testing the MLP and PPN models. Out 

of the sets of 130 data points, 100 were used as training data and 30 were used for 

testing for MLP. Back-propagation algorithm was used for training the network 

and for updating the desired weights. In this work epoch based training method 

was applied. 

6.1 Sumilation result of MLP 

 
Fig (6.1)  mean square error for 1θ  
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Fig (6.2) graph for matching of desired and predicted values of 

1θ  

    Fig (6.3) mean square error for 2θ  
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               Fig (6.4) graph for matching of desired and predicted values of 2θ  

 

Table (6.5) comparison table for desired data and predicted data by ANN 

2θ   Predicted  
1θ   Predicted 

 139.0499  135.0321    52.7038  50.3645 

   98.5943  96.5845     61.9182  59.6542 

 124.0105  122.0475    ‐73.9847  ‐70.2341 

   83.1976  82.65     10.7648  9.3426 

 124.0105  122.24    ‐73.9847  ‐71.5486 

   94.9685  90.15     27.9406  26.6451 

    6.8891  6.1521     42.0630  41.6572 

   98.6345  97.7523     77.0242  78.6512 
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 144.9305  140.2147     71.2636  72.3542 

   14.8260  13.8241    ‐23.7413  ‐22.5412 

 142.7669  141.5321    ‐65.9324  ‐66.2145 

   55.7833  53.4712    ‐68.6521  ‐67.6423 

   66.9949  63.5342    ‐82.5974  ‐81.6421 

   99.3724  97.2136    ‐61.2022  ‐60.2341 

   62.4008  60.2145     29.8007  27.6324 

   95.0525  97.1254     40.7122  38.6134 

   43.6812  41.6532     39.1977  38.9423 

   86.0279  85.6542    ‐77.3040  ‐74.3692 

   62.4008  60.2451     29.8007  30.4765 

   51.1973  52.1234     20.8457  18.6324 

   59.9854  58.6945    ‐39.5220  ‐37.3245 

   46.0676  45.0214     27.1536  26.1348 

   28.8915  26.5412    ‐44.5580  ‐43.8945 

 124.0105  122.2345    ‐73.9847  ‐72.8643 

   67.0224  66.5321    ‐81.6532  ‐82.1536 

 151.4063  150.9527    ‐17.1316  ‐18.1142 

   98.6345  99.2145     77.0242  76.9850 

   44.5800  43.2587      4.9643  3.5843 

   55.7833  56.3210    ‐68.6521  ‐67.5216 
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   51.4107  51.1024     23.6330  22.2435 

 

6.2 Simulation result of PPN 

 
Fig (6.6) Mean square error for 1θ  

 
Fig (6.7) Mean square error for 2θ  
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Fig (6.8) graph for matching of desired and predicted values of 2θ  

 
Fig (6.9) graph for matching of desired and predicted values of 1θ  
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The performance of MLP network is discussed first, were 16 nodes selected in the 

hidden layer. The MSE (mean square error) of the MLP model for 100 epochs for 

1θ  was represented in fig (21). MSE (mean square error) for second output ( 2θ ) 

for 100 epoch represented in fig (22). To test the stability of the models validation 

data or testing data is essential as discussed earlier 30 data points were selected 

randomly for testing the MLP model. Fig (23) represents the performance of the 

model for 30 testing samples or validation samples for output one (i.e. 1θ ) and fig 

(24) represents the performance of output two ( 2θ ). The similar results are 

presented in table (1). It may be noted that the performance of MLP is very closer 

to the experimental result. 
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CONCLUSION AND SCOPE FOR FUTURE WORK: 

Mathematical models relay on assuming the structure of the model in advanced, 

which may be sub-optimal. Consequently, many mathematical models fail to 

simulate the complex behavior of inverse kinematics problem. In contrast, ANN 

(artificial neural networks) is based on the data input/output data pairs to 

determine the structure and parameters of the model. Moreover, ANN’s can 

always be updated to obtain better results by presenting new training examples as 

new data become available. From the present study it was observe that the MLP 

gives the better results as compared to PPN for inverse kinematics problem. This 

artificial neural network based joint angles prediction model can be useful tool for 

the production engineer’s to estimate the motion of the manipulator accurately.   

FUTURE SCOPE: 

In this study the MLP and PPN has been proposed for the solution of inverse 

kinematics problem of robot manipulator. However, it has some limitations. There 

are several types of soft computing methods are available which can be used for 

finding the solution, but this is beyond the scope of this thesis but this technique 

can be used for the future scope of the thesis. These methods are followed: 

¾ Application of fuzzy inference system (FIS) 

¾ Adaptive network based fuzzy inference system (ANFIS) 

¾ Functional link artificial neural network (FLANN) 

¾ Evaluation computation 

 



 

56 

    CHAPTER 

           8 
REFERENCE: 

1. Alavandar S. and Nigam M. J.  “Neuro-Fuzzy based Approach for Inverse 

Kinematics Solution of Industrial Robot Manipulators”, Int. J. of 

Computers, Communications & Control, ISSN 1841-9836, E-ISSN 1841-

9844 Vol. III (2008), No. 3, pp. 224-234. 

2. Morris A. S.  And A. Mansor A. “artificial neural network  for finding 

inverse kinematics of robot manipulator using look up table”, Robotica 

(1997) volume 15 , pp 617 – 625 . Printed in the United Kingdom Ö 1997 

Cambridge University Press. 

3. Ahmad Z. and Guez A. “On the Solution to the Inverse Kinematic 

Problem”, department of electrical and computer engineering Drexel 

University Philadelphia PA 19104. 

4.  Bekir Karlik, Serkan Aydin “An improved approach to the solution of 

inverse kinematics problems for robot manipulator”. 

5. L. Npyen. “Neural Network Architectures For The Forward Kinematics 

Problem in Robotics”. 

6. G. Jaein, “Robot Control Using Neural Network”. 

7. Jenhwa Guo and Vladimir Cherkassky “Developed A Solution to the 

Inverse Kinematic Problem in Robotics Using Neural Network 

Processing” University of Minnesota Minneapolis, Minnesok 55455. 

8. Dali wang and ali zilouchain “Solutions of Kinematics of Robot 

Manipulators Using a kohonen Self- Organizing Neural Network”. 

department of Elect. Engineering Florida Atlantic University Boca Raton 

FL 33431. 



 

57 

9.    Youshen Xia and Jun Wang “A Dual Neural Network for Kinematic 

Control of Redundant Robot Manipulators”.   

10. Choon seng Yee, Kah-bin Lim “Forward kinematics solution of Stewart 

platform Using neural networks”. 

11. E. A. Al-Gallaf “Neural Networks for Multi-Finger Robot Hand Control”, 

JKAU: Eng. Sci., Vol. 19 No. 1, pp: 19-42 (2008 A.D. /1429 A.H.) 

12. Asko Houvinen and Heikki Handroos  “ADAMS –Model for  training of 

neural network for inverse kinematics of flexible robot manipulator”. 

13. H. Daniel Patiño “Neural Networks for Advanced Control of Robot 

Manipulators”. 

14. Ted Hesselroth, “Neural Network Control of a Pneumatic Robot Arm”. 

15. B. Benhabib, “A solution to the inverse kinematics”. 

16. Oyama and Tachi “Inverse kinematics computation using an artificial 

neural network”. 

17. Manocha and Canny “An algorithm and implementation for efficient 

inverse kinematics for a general 6R manipulator”. 

18. Kozalziewicz C. Ogiso T. and Miyake N. “Partitioned Neural Network 

architecture for Inverse Kinematic calculation of a 6 dof robot 

manipulator”. 

19. Mayorga∗V. and Sanongboon P. “Inverse kinematics and geometrically 

bounded singularities prevention of redundant manipulators: An Artificial 

Neural Network approach”. Robotics and Autonomous Systems 53 (2005) 

164–176. 

20. Kieffe S. Morella V. and Donath M. “Neural Network Learning of the Inverse 

Kinematic Relationships for a Robot Arm” Proceedings of the 1991 IEEE 

Intemational conference on Robotics and Automation Sacramento, 

Califomia - April 1991. 

21. Rao D. H. and Gupta M. M. “Performance Comparison of Dynamic 

Neural Networks as Applied to Robot Inverse Kinematic Computations”. 

Proceeding of the American Control Conference Baltlmorr, Mayland June 

1994. 



 

58 

22. Kim S.W. Lee J.J. and Sugisaka M. “Inverse kinematics solution based on 

fuzzy logic for redundant manipulators”. Proceedings of the 1993 

IEEE/RSJ Intemational Conference on Intelligent Robots and Systems 

Yokohama, Japan July 2630,1993. 
23. Velagic J. Osmic N. and Lacevic B. “Neural Network Controller for 

Mobile Robot Motion Control”. International Journal of Intelligent 

Systems and Technologies 3; 3 www.waset.org summer 2008. 

24. H. Sadjadian , H.D. Taghirad Member, IEEE and A. Fatehi “Neural 

Networks Approaches for Computing the Forward Kinematics of a 

Redundant Parallel Manipulator”. International Journal of Computational 

Intelligence 2; 1 winter 2006. 

25. Ding H., Member, IEEE, and Wang J. Senior Member, IEEE, “Recurrent 

Neural Networks for Minimum Infinity-Norm Kinematic Control of 

Redundant Manipulators”. IEEE Transaction on systems, man, and 

cybernetics part-A: systems and humans, vol.29, N0.3 May 1999. 

 

 

 

BOOKS REFERRED: 

¾ Robert J. Schilling for robotics 

¾ John Craig for robotics 

¾ S.R.Deb for robotics 

¾ Haykins for neural network 

¾ Hagen for neural network 

 


	front page.pdf
	certificates for pribnt fginal.pdf
	chaptersfinal final 007.pdf

