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Free vibration of laminated composite cross-ply spherical 

panels 

ABSTRACT 

 
 
 
 

The use of laminated composite curved panels is common in many engineering fields; the study 

of vibration problems arising in spherical shells/panels has become increasingly important. 

Free vibration frequencies and mode shapes are essential for the analysis of re sonant  response 

and flutter.  Due to its significance in structural mechanics, many researchers have worked on 

the vibration characteristics of spherical shells/panels. 

 

Composite structures have extensive use in aerospace, civil, marine and other engineering 

applications. Laminated composites are becoming key components in many of them. Their high 

performance places them at the top of the list of engineering materials needed for 

advanced design applications. This is because controlling the lamination angle and the 

stacking sequence can alter their structural properties leading to an optimal design. The higher 

specific modulus and specific strength of these composites means that the weight of certain 

components can be reduced. The increasingly wider application to other fields of engineering 

has necessitated the evolution of adequate analyt ical tools for the better understanding of the 

structural behavior and efficient utilization of the materials. 

 

Composites have the specific advantage that their structural characteristics can be tailored 

to suit the design requirements. Hence they are finding increased use in primary and secondary 

structures in aerospace projects. The composites, like most structural materials, are fabricated 
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with appropriate quality control. The control works under finite limits due to practical and 

economic considerations. This results in variation in material properties, making them random.  

 

In this thesis work, an analytical solution of frequency characteristics for the free 

vibration of laminated composite thin spherical panels has  been ob ta ined  by using the 

first order shear deformation theory as well as a higher order shear deformation theory.  Compared 

with c la ss ica l theory and   higher order theory,   the “first order   shear deformation theory” 

combines higher accuracy and lower calculation efforts. The higher order shear deformation 

theory is based on a displacement field in which the displacements of the middle surface are 

expanded as cubic functions of the thickness coordinate and the transverse displacement is 

assumed to be constant through the thickness. This displacement field leads to parabolic  

distribution of the transverse shear stresses and zero transverse normal strain and hence no 

shear correction factors are used.  

The objective of this study is to examine the effect of various shell parameters on the frequency 

characteristics o f laminated composite cross-ply thin spher ica l panels.  For reasons of 

simplicity, the s imp ly supported boundary condit ions a re  a ss umed  fo r  t he  panels.  The 

formulation is general. Frequency envelopes for different lamination schemes for the panels have 

been plotted. The results obtained by both the shear deformation theories have also been compared. 

From the results, the influence of radius to length ratio on natural frequency of the spherical shell 

is larger than that of length to thickness ratio. Also there is not much difference in the results by 

the first and higher order shear deformation theory.  
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CHAPTER 1 

INTRODUCTION 
 

The ever- increasing use of thin-walled structural elements with relatively low flexural 

rigidity has necessitated the study of their dynamic behavior at large amplitudes. The shell-type 

structures are known as the most desired structural elements in modern construction engineering, 

aircraft construction, ship building, rocket construction, nuclear, aerospace as well as the 

petrochemical industries. The use of composite materials in many industries has increased 

greatly in recent years. This is largely due to the high strength-to-weight and stiffness-to-weight 

ratios and their ability to be tailored to meet design requirements of strength and stiffness.  

 

The use of laminated composite materials in thin-walled structural applications has had a 

major impact on the entire design process for two-dimensional stress-bearing systems. Nowhere 

has this impact been greater than in the birthplace of the modern composite - the aerospace 

industry - where current design capabilities range from aero elastic tailoring to minimum weight 

structures. This advantageous state of affairs owes much to the vast amount of research and 

development that has been, and continues to be, expended in gaining a better understanding of 

the mechanical behaviour of composite materials under static and dynamic loading actions.  

 

Laminated composite shells are increasingly being used in various engineering 

applications including aerospace, mechanical, marine and automotive engineering. With the 

increased awareness of, and sensitivity to, structural noise and vibration, research covering the 

vibration of composite shells has received considerable attention. Acoustic design and 
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consideration of composite structures involve elastic wave propagation in composite materials 

and interaction of sound waves with the composite structures. During cruise flight of a modern 

aircraft, the vibration of the outer shell of the fuselage is transmitted to the interior and can 

produce a high noise level within the cabin. However, the acoustical properties of these light and 

stiff structures can often be less than desirable resulting in high aircraft interior noise levels. The 

development of lightweight structures, made of composite materials, has lowered the acoustic 

transmission loss of such structures and therefore further increased the acoustic transmission 

problem. 

The spherical shell panels play an important role in modern engineering. Laminated 

spherical shells have been used extensively in various fields of modern engineering due to the 

distinct structural advantages they offer. One such field is aerospace engineering where 

structures are mostly assemblies of shell structures. Comprehensive understanding of the 

mechanical behavior of composite shells is vital to assure the integrity of these structures during 

their service life. Several studies have focused on predicting optimum laminate configurations 

for enhancing the load capacity of composite shells under various loading conditions such as 

pure axial compression, combined axial compression, torsion, transverse load etc. 

 

The high performance of composite materials places them at the top of the list of 

engineering materials needed for advanced design applications. This is because controlling the 

lamination angle and the stacking sequence can alter their structural properties leading to an 

optimal design. The higher specific modulus and specific strength of these composites means 

that the weight of certain components can be reduced. The increasingly wider application to 
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other fields of engineering has necessitated the evolution of adequate analytical tools for the 

better understanding of the structural behavior and efficient utilization of these materials.  

 

In this thesis work, an analytical solution of the free vibration frequency characteristics of 

laminated composite cross-ply thin spherical panels is obtained by using the First order shear 

deformation theory and a Higher order shear deformation theory for laminated shells as proposed 

by Reddy and Liu for plates and shallow shells. The higher order shear deformation theory is 

based on a displacement field in which the displacements of the middle surface are expanded as 

cubic functions of the thickness coordinate and the transverse displacement is assumed to be 

constant through the thickness. This displacement fie ld leads to parabolic distribution of the 

transverse shear stresses and zero transverse normal strain and hence no shear correction factors 

are used. The governing equations have been developed. These equations are then reduced to the 

equations of motion for spherical panel and the Navier solution has been obtained for cross-ply 

laminated composite spherical panels. The resulting equations are suitably nondimensionalised. 

The eigen value problem is then solved to obtain the free vibration frequencies.  

 

This work also examines the effect of various shell parameters on the frequency 

characteristics of laminated composite cross-ply thin spherical panels. For reasons of 

simplicity, the simply supported boundary conditions are assumed for the panels. The 

formulation is general. Different boundary conditions, lamination schemes, order of shear 

deformation theories, and even forms of assumed solutions can be easily accommodated into 

the analysis. Frequency envelopes for different lamination schemes for the panels have been 

plotted. The results obtained by both the shear deformation theories have also been compared. 
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CHAPTER 2 

LITERATURE REVIEW 

 

2.1 INTRODUCTION 

 

The analysis of plate and shell structures has a long history starting with membrane 

theory and then the bending theories. Laminated composite plate analyses and shell analyses are 

mainly based on three theories: 

          (1)  The classical laminated plate theory (CLPT),  

          (2)  The first-order shear deformation theory (FSDT) and, 

          (3)  The higher-order shear deformation theory (HSDT).  

 

The effect of transverse shear deformation, which may be essential in some cases, is included in 

FSDT and HSDT, whereas it is neglected in CLPT due to the Kirchhoff hypothesis.  

 

The classical laminate plate theory is based on the Kirchhoff hypothesis that straight lines normal 

to the undeformed midplane remain straight and normal to the deformed midplane and do not 

undergo stretching in the thickness direction. These assumptions imply the vanishing of the 

transverse shear and transverse normal strains. The classical laminate theory has been used in the 

stress analysis of composite plates. However, it is only accurate for thin composite laminates.  

 
In FSDT, a first-order displacement field is assumed for transverse shear strain through the 

thickness. Appropriate shear correction factors are required in FSDT due to the assumption of 

constant transverse shear strain and shear stress through the plate thickness, which is 



National Institute of Technology , Rourkela  5 
 

contradictory to the zero shear stress condition on the bounding planes of the laminate and actual 

stress states through the layer thickness.  

Higher-order polynomials are used to represent displacement components through the thickness 

of the laminates in HSDT, and the actual transverse strain/stress through the thickness and the 

zero stress conditions on the top and bottom of a general laminate can be represented. A more 

accurate approximation of the transverse shear effect can thus be obtained with no shear 

correction factors. However, complexities in formulation and large computational effort make it 

economically unattractive. The free vibration of plates has been largely studied using the first 

order shear deformation theory (FSDT).  

 

2.2 REVIEW OF SPHERICAL SHELL 

 

During the past three to four decades, there has been continuously increasing usage of 

laminated composite materials in structural applications. Often encountered among these 

applications are plate and shell structural components. Accompanying this increasing usage has 

been a growth in the literature of composite laminate structural analysis, particularly for plates 

and to a lesser extent for spherical shells. Equations have been thoroughly developed for the 

deformation analysis of laminated composite plates (Ambartsumyan, 1964, Ashton and Whitney, 

1970), as well as for circular cylindrical shells.  

 
 Thin shells are widely used as structural elements. Studies of thin shells are extensive 

and many theories have been developed. The first to study the curved shell problem was Aron .In 

1874, Aron derived the first set of equations for a cylindrical shell. Love was the first to provide 

a mathematical framework for a thin shell theory.  Love‟s mathematical framework, also known 
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as Love‟s first approximation theory, consisted of four principal assumptions under which many 

thin shell theories were developed. These four assumptions, commonly known as the Kirchhoff-

Love hypotheses form the background of many linear thin shell theories, which over the years 

have been modified and employed to varying degree. Reddy (1984)[24] has developed a higher 

order but simple shear deformation theory of laminated plates and shells . The developed theory 

is simple in the sense that it contains the same dependent unknowns as in the first order shear 

deformation theory  . the u and v displacement are expanded as cubic functions of the thickness 

coordinates and the transverse displacement is assumed as constant.  

 

K. P. Soldatos [28] (University of Ioannina, Greece- 1986) used Love‟s approximations to 

determine influence of thickness shear deformation on free vibrations of rectangular plates, 

cylindrical panels and cylinders of antisymmetric angle-ply construction. This paper presented 

the influence of thickness shear deformation and rotatory inertia on the free vibrations of 

antisymmetric angle-ply laminated circular cylindrical panels. Two kinds of thickness shear 

deformable shell theories were considered. In the first one, uniformly distributed thickness shear 

strains through the shell thickness were assumed and, therefore, thickness shear correction 

factors were used. In the second theory a parabolic variation of thickness shear strains and 

stresses with zero values at the inner and outer shell surfaces was assumed. The analysis is 

mainly based on Love‟s approximations but, for purposes of comparison, Donnell‟s shallow shell 

approximations were also considered. 

 

A.V. Singh [1] (The University of Western Ontario, London-1996) used Rayleigh–Ritz method 

for the free vibration analysis of deep doubly curved sandwich panels. This paper presented the 

free vibration analysis of doubly curved open deep sandwich shells made of thin outer layers and 
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a relatively thick core. The outer layers were assumed to be made of high strength and high 

density material. The core was a low strength low density material. The Rayleigh–Ritz method, 

in which the displacement fields were defined by Bezier surface patches, was used to obtain the 

natural frequencies. The formulation procedure was developed for the analysis of open panels 

circumscribed by four curvilinear edges. Numerical results were obtained for circular cylindrical 

and spherical sandwich panels with the boundary conditions given by one curved edge clamped 

and the remaining three edges free as well as two opposite edges clamped and the other two 

completely free. 

A.Dasgupta and K.H . Huang [4] (University of Maryland-1997) used finite element method for 

a layer-wise analysis for free vibration of thick composite spherical panels. The authors had 

previously presented layer-wise model for modeling the vibrations of thick composite cylindrical 

shell. The layer-wise theory is needed to overcome the deficiencies of conventional shear 

deformable plate theories because the gradient  of the deformation field are not necessarily 

continuous through the thickness, due to the discontinuity of material properties at layer 

interfaces. Fully three dimensional finite element models place prohibitive demands on 

computational resources, and are not economically feasible. In this paper a similar layer-wise 

laminated shell theory was developed for doubly curved thick composite panels subjected to 

different combination of three-dimensional boundary conditions. Piece-wise continuous, 

quadratic interpolation functions through the thickness, were combined with beam function 

expansions in the two in plane directions of the laminate, to model the dynamic behaviour of  

laminated spherical panels. This captured the discontinuities in the transverse shear and other 

strain distributions, from one layer to another. 
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Jose Simoes Moita ,Cristovao M. Mota Soares and Carlos A. Mota Soares [12] (Dep. Engenharia 

Mecanica, Portugal-1999) used a single layer higher order shear deformation theory for the 

buckling and dynamic behaviour of laminated composite structures using a discrete higher-order 

displacement model. .This model is based on an eight-node C0 serendipity finite element with 10 

degrees of freedom per node to contemplate general applications. The present model was tested 

on the evaluation of buckling loads and free vibrations of multilaminated plates and shells. The 

effects of different number of layers, lamination angles, material anisotropy, and length or radius 

to thickness ratios are studied. 

Partha Bhattacharya , Hassan Suhail , Prasanta K. S inha [22] (Indian Institute of Technology, 

Kharagpur, 2002) developed a shear deformable shell element based on Reissner‟s hypothesis 

for the analysis of smart laminated composite shells. The electric field was defined in the 

curvilinear co-ordinate system. The mathematics of arbitrary shell geometry was amenable to the 

flexible mapping characteristic of the finite element formulation developed in the present work. 

Lame‟s parameters and the radii of curvature are generated within the model. An IMSC based 

LQR control methodology was adopted for the active vibration control of laminated spherical 

shells with different fibre orientation and varying radius of curvature.  

 

Latifa S K and P. K. Sinha [16] (Department of Aerospace Engineering, Kharagpur-2005) used 

Koiter‟s shell theory and Mindlin‟s hypotheses for Improved Finite Element Analysis of 

Multilayered, Doubly Curved Composite Shells. An improved finite element model for the 

bending and free vibration analysis of doubly curved, laminated composite shells having 

spherical and ellipsoidal shapes was presented. The present formulation was based on the stress 

resultant-type Koiter‟s shell theory and no restriction was imposed on the magnitude of curvature 
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components to capture the deep and shallow shell cases. The twist curvature component was 

incorporated along with the normal curvatures to keep the strain equations complete. Transverse 

shear deformation was also considered according to Mindlin‟s hypotheses. The present five-DOF 

shell formulation was kept sufficiently general to capture both the bending- and membrane 

dominated problems. The accuracy and efficiency of the proposed finite element were illustrated 

by examples and were compared with those existing in the open literature. The comparison 

shows that the present analysis yielded accurate results with a relatively small number of 

elements. 

 

Umut Topal [30] (Department of Civil Engineering, Turkey-2006) used first-order shear 

deformation theory for Mode-Frequency Analysis of Laminated Spherical Shell. The paper dealt 

with mode-frequency analysis of a simply-supported equal-sided sector of a laminated spherical 

shell. The problem was modelled using finite element package program ANSYS. The 

formulation was based on first-order shear deformation theory. Four elements were chosen along 

each edge of the sector. The reduced method of eigenvalue solution was chosen for the 

undamped mode-frequency analysis. The first five modes were extracted to obtain the 

fundamental frequency (first mode natural frequency). The numerical studies were conducted to 

determine the effects of width-to-thickness ratio (b/h), degree of orthotropy (E1 / E2), fiber 

orientations (θ) on the non-dimensional fundamental frequency.  

 
H. Nguyen-Van, N. Mai-Duy and T. Tran-Cong [10] (University of Southern Queensland-2007) 

analyzed laminated plate/shell structures based on FSDT with a stabilized nodal- integrated 

quadrilateral element. This paper reported numerical analyses of free vibration of laminated 

composite plate/shell structures of various shapes, span-to-thickness ratios, boundary conditions 
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and lay-up sequences. The method was based on a novel four-node quadrilateral element, namely 

MISQ20, within the framework of the first-order shear deformation theory (FSDT). The element 

was built by incorporating a strain smoothing method into the bilinear four-node quadrilateral 

finite element where the strain smoothing operation was based on mesh-free conforming nodal 

integration. The bending and membrane stiffness matrices were based on the boundaries of  

smoothing cells while the shear term was evaluated by 2×2 Gauss quadrature. Through several 

numerical examples, the capability, efficiency and simplicity of the element were demonstrated.  

 

Ahmet Sinan Oktem, Reaz A. Chaudhuri, [2] (Technical University of Lisbon-2008) used 

Higher-order theory based boundary-discontinuous Fourier analysis of simply supported thick 

cross-ply doubly curved panels. A boundary-discontinuous double Fourier series based solution 

methodology was employed to solve the problem of a HSDT-based thick cross-ply doubly 

curved panel, characterized by a system of five highly coupled linear pa rtial differential 

equations, with the SS1-type simply supported boundary condition prescribed at all four edges. 

For derivation of the complementary solution, the complementary boundary constraints were 

introduced through boundary discontinuities of some of the particular solution functions and 

their partial derivatives. Such discontinuities form a set of measure zero. The present solution 

methodology was based on the fact that the complementary boundary constraints, which are 

inequalities, played as important a role as the prescribed (admissible) boundary conditions, 

which were equalities. The effects of curvature, lamination, material property, thickness as well 

as their interactions were investigated in detail.  

 
Ahmet Sinan Oktem and Reaz A. Chaudhuri (Department of Materials Science and Engineering, 

USA-2008) used higher order shear deformation theory (HSDT) for Sensitivity of the response 

http://www.sciencedirect.com/science?_ob=MathURL&_method=retrieve&_udi=B6WM3-4RJJRJ1-3&_mathId=mml96&_user=1657113&_cdi=6923&_rdoc=1&_acct=C000053917&_version=1&_userid=1657113&md5=70c336d1d67f7e46bc704f898a8f0823
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of thick cross-ply doubly curved panels to edge clamping. . A solution methodology, based on a 

boundary-discontinuous generalized double Fourier series approach, was used to solve a system 

of five highly coupled linear partial differential equations, generated by the HSDT-based 

laminated shell analysis, with the C3-type clamped boundary condition prescribed at all four 

edges. The numerical accuracy of the solution was ascertained by studying the convergence 

characteristics of deflections and moments of a cross-ply spherical panel. The primary focus of 

the present study was to investigate the effect of edge clamping on the response of a thick 

laminated doubly-curved panel, while keeping the surface-parallel edge constraints unaltered.  

 

2.3 OBJECTIVE AND SCOPE OF PRESENT INVESTIGATION 

 

In this project, an analytical solution of frequency characteristics for the free vibration of 

laminated composite cross-ply spherical thin panels is presented. Both the first order shear 

deformation theory and a higher order shear deformation theory as proposed by Reddy and Liu 

were used in the formulation. Compared with classical theory and higher order theories, the first 

order shear deformation theory combines higher accuracy and lower calculation efforts.  

 

2.3.1 Objectives 

 

1. To investigate the effect of different layer configurations on the natural frequency of the 

laminated composite cross-ply thin spherical panels. 

 
2. To compare the results obtained by the first order shear deformation theory and a higher 

order shear deformation theory as proposed by Reddy and Liu. 
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3. To plot the frequency envelopes for the different cross-ply spherical panels. 

2.4.2 Present Work 

 

The present study is carried out to determine the natural frequency of vibration of laminated 

cross-ply spherical panels that are simply supported .The formulation has been done using both 

the first order shear deformation theory and a higher order shear deformation theory as proposed 

by Reddy and Liu. The transverse displacement is assumed to be constant through the thickness. 

The thickness coordinate multiplied by the curvature is assumed to be small in comparison to 

unity and hence negligible. 

 

The governing equations have been developed. These equations are then reduced to the equations 

of motion for spherical panel and the Navier solution has been obtained for cross-ply laminated 

composite spherical panels. The resulting equations are suitably nondimensionalised. The eigen 

value problem is then solved to obtain the free vibration frequencies.  
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CHAPTER - 3 

THEORETICAL FORMULATION 

 

3.1  INTRODUCTION 

 

The present study deals with the free vibration of thin laminated composite cross-ply 

spherical panels. The first order shear deformation theory and a higher order shear deformation 

theory as proposed by Reddy and Liu are used. The displacement components u, v, and w in the 

α,  β, and z directions in a laminate element can be expressed in terms of the corresponding mid-

plane displacement components u°, v° ,w°, and the rotations ɸ1 , ɸ2 of the mid-plane normal 

along α and β axes.  The higher order shear deformation theory is based on a displacement field 

in which the displacements of the middle surface are expanded as cubic functions of the 

thickness coordinate and the transverse displacement is assumed to be constant through the 

thickness. This displacement field leads to parabolic distribution of the transverse shear stresses 

and zero transverse normal strain and hence no shear correction factors are used.  

 

The governing equations including the effect of shear deformation are presented in 

orthogonal curvilinear co-ordinates for laminated composite shells. These equations are then 

reduced to the governing equations for free vibration of laminated composite cross-ply spherical 

shells. The equations are suitably non-dimensionalised. The Navier solution has been used and 

the generalized eigen value problem so obtained in matrix formulation is solved to obtain the 

eigen values which are the natural frequencies.  
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3.2 BASIC ASSUMPTIONS 

 

A set of simplifying assumptions that provide a reasonable description of the behavior of 

thin elastic shells is used to derive the equilibrium equations that are consistent with the assumed 

displacement field. 

      1.  No slippage takes place between the layers.  

      2.  The effect of transverse normal stress on the gross response of the laminate is assumed to 

            be negligible. 

      3.   The line elements of the shell normal to the reference surface do not change their length 

after deformation. 

      4.  The thickness coordinate of the shell is small compared to the principal radii of curvature 

              (z/R1, z/R2 <<<1). 

    5.   Normal to the reference surface of the shell before deformation remains straight, but not  

necessarily normal, after deformation (a relaxed Kirchhoff -Love hypothesis). 

3.3   STRAIN DISPLACEMENT RELATIONS 

 

Figure shows an element of a doubly curved shell. Here (α, β, z) denote the orthogonal 

curvilinear coordinates (shell coordinates) such that α and β curves are lines of curvature on the 

mid surface, z = 0, and z-curves are straight lines perpendicular to the surface, z = 0. For the 

doubly curved shells discussed here, the lines of principal curvature coincide with the co-

ordinate lines. The values of the principal curvature of the middle surface are denoted by K 1 and 

K2 
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Figure 1:  Geometry of laminated shell  

 

 

The position vector of a point on the middle surface is denoted by r and the position of a point at 

distance, z, from the middle surface is denoted by R. The distance, ds, between points (α, β, z) 

and  α dα, β d β, z dzis determined by                                     

 

(ds) ² dr dr                                          (1) 







d
r

d
r

dr








                                                                                                    (2) 
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The magnitude ds of rd  is given in equation (2), the vectors 


r
 and  



r
  are tangent to the 

and β coordinate lines. Then equation (1) can be modified as 

 

  








dd
rr

d
rr

d
rr

ds .2)()( 222


























                                                     (3) 

 The following derivation is limited to orthogonal curvilinear coordinates which coincide with 

the lines of principal curvature of the neutral surface. The third term in equation (3) thus 

becomes 
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Where we define 
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Now the equation (3) becomes 

 

  22

2

22

1

2
)()(  dAdAds                                                                                       (6)    

This equation is called the fundamental form and A1 and A2 are the fundamental form 

parameters, Lame parameters, or surface metrics. The distance, dS, between points (α, β, z) and 

(α dα, β d β, z dzis given by 
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  22

3

22

2

22

1

2
)()()(.. dzLdLdLRdRdds                                                               (7) 
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       and L1, L2, and L3 are the Lame‟s coefficients.  

 











1

11 1
R

z
AL ; 










2

22 1
R

z
AL ;   L3 =1                                                                                   (8) 

 

The vectors


R
 and 



R
 are parallel to the vectors 



r
 and



r
. 

From the figure the elements of area of the cross section are  
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The strain displacement equations of a shell are an approximation, within the assumptions made 

previously, of the strain displacement relations referred to orthogonal curvilinear coordinates. In 

addition, it is assumed that the transverse displacement, w, does not vary with z. According to 

the first order shear deformation theory, the displacement field is given by: 

1
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Here ),,( wvu = the displacement of a point (α, β, z) along the (α, β, z) coordinates; and (u, v, w) 

= the displacements of a point (α, β, 0). Now substituting equation (10) in the strain displacement 

relations referred to an orthogonal curvilinear coordinate system [Kraus-14] we get 
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1  and 2  are the rotations of the normals to the reference surface, z = 0, about the α  and β 

coordinate axes, respectively. The displacement field in equation [10] can be used to derive the 

general theory of laminated shells.  
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3.5 STRESS-STRAIN RELATIONS 

 

The stress-strain relation for the Kth orthotropic layer takes the following form: 
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For an orthotropic material, in which the principal axis direction coincides with the axis of the 

material direction, 

0452616 
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For generalized plane stress conditions, the above elastic moduli 
k

ijQ  is related to the usual 

engineering constants as follows: 
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3.6 STRESS RESULTANTS AND STRESS COUPLES 

 
Let N1 be the tensile force, measured per unit length along   β coordinate line, on a cross section 

perpendicular to α coordinate line. Then the total tensile force on the differential element in the α 

direction is 

  dzdaAN

h

h

2

2

2

121. 

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                                ……………….                                           (15)                         

 

In which h = the thickness of the shell (z = -h/2 and z = h/2 denote the bottom and top surfaces of 

the shell) and da2 is the area of cross section. Using equation (9), the remaining stress resultants 

per unit length are given by: 
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In contrast to the plate theory (where 1/R1 =0,1/R2 = 0), the shear stress resultants, N12 and N21, 

and the twisting moments, M12 and M21, are, in general, not equal. For shallow shells the terms 
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z/R1 and z/R2 can be neglected in comparison with unity. Hence N12 = N21 = N6 and M12 = M21 = 

M6.   

 

                     

Figure 2: stress and moment resultants 

 

The shell under consideration is composed of finite number of orthotropic layers of uniform 

thickness, as shown in Figure 2.(a). In view of assumption 1, the stress resultant in equation [16] 

can be expressed as 
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In which n = the number of layers in the shell; hk and hk-1 is the top and bottom z coordinates 

of the kth
 lamina. 
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Substitution of equation [11] and [13] into equation [17] leads to the following expression for the 

stress resultants and stress couples 
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Here Aij, Bij and Dij denote the extensional, flexural-extensional coupling, and flexural stiffness. 

They may be defined as: 
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For i, j = 1, 2, 4, 5, 6.  

 hk and hk-1 are the distances measured as shown in figure -1 

 

3.7 GOVERNING EQUATIONS 

 

The governing differential equations, the strain energy due to loads, kinetic energy and 

formulations of the general dynamic problem are derived on the basis of Hamilton‟s principle.  

 

3.7.1 GOVERNING DIFFERENTIAL EQUATIONS 

 

The equation of motion is obtained by taking a differential element of the shell as shown in 

Figure 1. The figure shows an element with internal forces like membrane (N 1, N2, and N6), 

shearing forces (Q1, and Q2) and the moment resultants (M1, M2 and M6). 
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3.7.1.1 Strain energy 

 

The strain energy of a differential shell element can be written as,  

 dVU
z

.
2

1
5544662211  


       ……………..                              (20) 

dV = Volume of shell element 
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The variation of strain energy U is given by 

 dVU
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
        ……………                     (22) 

The equation [22] is independent of the material property. Substituting the variation of strain 

function and dV in equation (20),  
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The variation of strain energy is given as: 

 

 
z

MwNMwNkMNkMNU 2626161622

0

2211

0

11[
2

1



 

                                                        .]11 215

2

24

1

1  ddAA
R

z
Q

R

z
Q 



















   ……..        (24)

 

Substituting for ....,,, 21

0

2

0

1 kk .in equation (24) and integrating the resulting expression, the 

equation becomes, 
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3.7.1.2   Kinetic energy 

 

If U be the displacement vector, the kinetic energy of the shell element is given by,  

dVUUT
v
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 .
2
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                                                            …………                       (26) 

where  is the mass density and 


U  represents differentiation with respect to time.  

12211 nWnUnUU   




 
ddAA

tt

h

t

w

t

v

t

uh
T ..

122
21

2

2

2

1

2222

 























































































  …                          (27) 

The variation of kinetic energy is given as 
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       ………                           (28) 

This equation contains time derivatives of the variations, ie 


u etc. To eliminate these terms, 

integrating equation (28) by parts (The variations of limits t = t1 and t = t2 must vanish) and 



National Institute of Technology , Rourkela  25 
 

neglecting the terms  


1

3
12h  and  



2

3
12h  which represent rotatory inertia, the above 

equation reduces to, 
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               …………….                     (29) 

 

If the shell is subjected to both body and surface forces and if q1,q2 and 
nq  are the components 

of body and surface forces along the parametric lines, then the variation of work done by the 

external loads are, 
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  

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3.7.2 HAMILTON’S PRINCIPLE 

 

The equations of equilibrium are derived by applying the dynamic version of the principle of 

virtual work that is the Hamilton‟s Principle.  

It states that among the set of all admissible configurations of system, the actual motion makes  

the quantity dtL

t

t

.
2

1

  stationary, provided the configuration is known at the limits t = t1 and t = t2. 

Mathematically this means    dtL

t

t

.
2

1

  

Here, L is called Lagrangian and is equal to    L= T - (U –V)                           ……….            (31) 
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Where, T = Kinetic energy, U= Strain energy, V= potential of all applied loads (= 0, because of 

free vibration),  = Mathematical operation called variation. It is analogous to partial 

differentiation. It is clear from equation [31] that the Lagrangian consists of kinetic, strain energy 

and potential of applied loads. 

 

3.7.3 EQUATIONS OF EQUILIBRIUM 

 

By applying the dynamic version of the principle of virtual work (Hamilton‟s Principle), 

integrating the displacement gradients by parts in the resulting equation and setting the 

coefficient of  u,  v,  w, 
1 ,

2  to zero separately, the following equations of equilibrium 

are obtained 
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3.7.3.1 SPHERICAL SHELLS 

 

The governing equations derived in orthogonal curvilinear coordinates in the previous section for 

general shell element is reduced for spherical shell. The equatio n of motion is represented in 

terms of displacements. 

 

Figure 3: Geometry and co-ordinate system 

 

3.7.3.2   Equations of equilibrium for laminated composite spherical shell 

 

For the spherical shell configuration shown in figure 3, the co-ordinates are given. The Lame 

parameters A1 = A2 = 1(for thin shells) and the principal curvatures K 1 = K2 = 1/R, where „R‟ is 

the radius of the mid-surface of the spherical shell. 
                                         

 

The equations of motion in terms of the stress resultants and stress couples obtained from 

Equations (32) become, 
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The strain displacement relations (11.b) are substituted in the equations for the stress resultants 

and stress couples given in equation (18). Since the solution for the equations of motion is done 

by using the Navier solution, therefore such a solution exist only for specially antisymmetric 

cross ply  laminates for which the following laminate stiffness are zero.  

 

   

 

The expression for the stress resultants and stress couples so obtained are then substituted into 

the equations of motion (33). The equation of motion in terms of the displacements hence 

reduces to 
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                                                                                     …………………..    (34) 

 

3.8 HIGHER ORDER SHEAR DEFORMATION THEORY 

 

The geometry of the layered shell is shown in figure 1 and 2(a). α,β and z are the orthogonal 

curvilinear coordinate such that  α and β are the principle lines of curvature on the reference 

surface,which is the mid surface for the present analysis. The value of the principle curvature of 

the middle surface are denoted by 21 KandK  . 

The line element is given by 

    222

2

2

2

22

1

2

1

2 11 dzdzKAdzKAds                        ……………………    35 

Where jA  and jK   are the lame parameters and principle curvature respectively and are the 

functions of  α,β only. The spherical panel under consideration is composed of „n’ orthotropic 
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layers of uniform thickness. The displacement field relations as proposed by Reddy and Liu [24 ] 

are  
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                                         ……………    35.a 

Where t is the time ,  wvu ,,  are the displacement along the  z,, coordinates (u,v,w) are the 

displacements of a point on the middle surface and 
1 and

2 are the rotation at z=0of normals to 

the midsurface with respect to  and  axes,respectively.The displacement field in equation 

(35.a) are so chosen that the transverse shear strains will be quadratic functions of the thickness 

coordinates, z and the transverse normal strain will be zero.  

The functions i  and i are determined using the coordination that the transverse shear stresses  

4 and 5 vanish on the top and bottom surfaces of the shell; 
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                                                                          ……………..   35.b 

For shells laminated of orthotropic layers, the conditions (35.b) are equivalent to the requirement 

that the corresponding strain be zero on these surfaces. The transverse shear strains of ashell with 

two principle radii of curvature are given by 
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Substituting for wvu ,,  from equation  35.a in the above equation and neglecting the term 

multiplied by zK1 and zK2 . We have, 
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Substituting equation 35.e into equation 35.a 
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Now substituting equation [35.f] in strain displacement relations referred to an orthogonal 

curvilinear coordinate system, we get 
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Where, 
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Where 1  and 2  are the rotations of the normals to the reference surface, z = 0, about α and β 

coordinate axes, respectively. The stress-strain relations are as given in equation (13).  

3.8.1 STRESS RESULTANTS AND STRESS COUPLES 

Stress resultants and stress couples are defined by the integrals of the stresses over each lamina 

thickness and summation of the expressions over the thickness consisting of „n‟ laminas  
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In which n = the number of layers in the shell; hk and hk-1 [fig 2(a)] is the top and bottom z 

coordinates 

of the kth lamina. 

 

Substituting of equation [36.a] and [13] into equation [37] leads to the following expression for 

the stress resultants and stress couples 
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where Aij, Bij , etc. are the laminate stiffnesses expressed as
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3.8.2 Equations of equilibrium for the laminated composite spherical shell 

 

For the spherical shell configuration shown in figure 3, the co-ordinates are given. The Lame 

parameters A1 = A2 = 1 and the principal curvatures K1 =  K2 = 1/R ,where „R‟ is the radius of 

the mid-surface of the spherical shell.  

By applying the dynamic version of the principle of virtual work (Hamilton‟s Principle), 

integrating the displacement gradients by parts in the resulting equation and setting the 

coefficient of  u,  v,  w,
1 ,

2  to zero separately, the equations of equilibrium become: 
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The inertias iI   , i=1, 2, 3, 4, 5   are defined by the equations,  
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Where „ k ‟  is the density of the material of the kth layer.  

The strain displacement relations (36.b) are substituted in the equations for the stress resultants 

and stress couples given in equation (37.a). Since the solution for the equations of motion is done 

by using the Navier solution, therefore such a solution exists only for specially antisymmetric 

cross ply laminate for which the following laminate stiffnesses are zero.  

 

 

 

The expression for the stress resultants and stress couples so obtained are then substituted into 

the equation of motion (38). The equation of motion in terms of the displacements hence reduces 

to 
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3.9 BOUNDARY CONDITIONS  

 

Up to now, the analysis has been general without reference to the boundary 

conditions.Considering the line integrals while integrating by parts the displacement gradient in 

the Hamilton principle ,the boundary conditions at an edge α =constant and β =constant are 

obtained .For reasons of simplicity, only simply supported boundary condition are considered 

along all edges for the shell. The boundary conditions for the simply supported spherical shell 

are obtained as given below 

                                              

                                                            N1 = 0 , v = 0 , w = 0, 

 

Following the Navier solution procedure, the following solution form which satisfies  

the boundary conditions in equations is assumed: 
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where ,
b

n

a

m
nm





  ,  and U, V, W,  

1 and 
2 are the maximum amplitudes, m and n 

are known as the axial half wave number and circumferential wave number respectively. This 

implies during vibration, the shell generators are assumed to subdivide into m half waves and the  

circumference subdivide into 2n half waves.  

Introducing the expressions [40] into the governing equations of motion in terms of 

displacements [34] and [39], the following equation in matrix form is obtained, which is a 

general eigen value problem. 

                

                                                   XMXC 2         ………………………….       (41) 

Where, 

 

2      is the eigenvalue 

{X}    is a column matrix of amplitude of vibration or eigenvector.  

[C]     and [M] are 5 x 5 matrices.  

The coefficients of the matrices are described in Appendix 1 

For convenience, the elements of the above matrices are suitably non-dimensionalised as follows 
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(- (bar) on top indicates non-dimensionalised quantities) 
And 
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.,.........,, 321




 

III  are the non-dimensionalised quantities 
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After non –dimensionalising the terms, the equation [41] in matrix form can be written as given 

below 
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                                                   XωXH
2

                                                                (45) 

 

Where, 

          

     CMH

Q

b

1

2

22
2










                                                                                                          (46)

 

A non-trivial solution for the column matrix  X  will give the required eigenvalues, which are 

the values of the square of the frequency parameter   in the present case. The lowest value of 

  is of particular interest. 
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CHAPTER- 4 

NUMERICAL RESULTS AND DISCUSSIONS 

 

4.1 INTRODUCTION 

 

The frequency parameters are calculated by using a computer program for vibration of laminated 

composite spherical shells. The results obtained using the present theory are compared to earlier 

results and are tabulated. The numerical values of the lowest value of frequency parameter are 

presented for various shell parameters in this chapter to study the effect of number of layers, the 

orientation of layers and the „a/h‟ ratio on frequency. The frequency envelopes are plotted as a 

function of „R/a‟.  For the all above studies, the results of the present theory are compared with 

those of the results obtained by a higher order shear deformation theory as proposed by J.N. 

Reddy. 

4.2 SOLUTION OF EIGEN VALUE PROBLEM AND COMPUTERPROGRAM 

 

The equation (41) represents a general Eigen value problem, where  2  is the Eigen value and 

{X} is the eigenvector. For convenience the equation (41) is non-dimensionalised. Then if the 

equation is pre multiplied by   1

M , (where the bar indicates the non- dimensionalised form), one 

obtains the following standard eigenvalue problem,  

 

    XXH
2


 

 

Where, 
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     CMH

Q

b

1

2

22
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



 

 

A non trivial solution for the column matrix  X  will give the required eigenvalues, which are 

the values of the square of the frequency parameter   in the present case. The lowest values of  

   is of particular interest (for a set of fixed shell parameters, many values of 
2

  can be 

obtained). 

A standard subroutine in the computer program to find the eigenvalue of matrices has been used, 

which consists of root power method of iteration with Wielandt‟s deflection technique. The 

program will be called RTPM, which is capable of finding the required number of roots in 

descending order. The change of the sign of the determinant value is checked for values of one 

percent on either side of the root to verify the convergence. The RTPM program gives the 

highest value of eigenvalue first, so if the  M matrix is taken as    HC
1

 , then the highest value 

of  












2

1


is obtained, that is the lowest value of  

2

  and   which is of particular interest. These 

programs are written in FORTRAN language.  

 

4.3 NUMERICAL RESULTS AND DISCUSSION 

 

4.3.1   The Validation of the Formulation and Numerical Results  

 

Using the formulation developed in the previous sections, numerical studies are carried out. The 

lowest value of the frequencies has been calculated at first for two layers , three layers and four 

layers  laminated composite spherical shells for various values of  R/a  and a/h by first and 
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Higher order shear deformation theories. These results are compared with earlier available 

results in tables. This also serves as to check on the validity of the present theory, as the results 

are mostly agreeable.  

 

                        Figure 4. 1 :  Direction and cross section of panels     

 

Table 4.1 shows the comparison of present results and those of J .N. Reddy [15] for the non 

dimensional frequency parameter 
2

2

42
2

hE

a 
  of [0/90], [0/90/0] and [0/90/90/0] simply 

supported spherical shell. The geometrical and material properties used are 

1,25.0,2.0,5.0,25 1222232213122211  EGEGGEE  

These tables (4.1-4.6) shows that the present theory by higher order gives slightly higher values 

of frequency parameter when compared with the first order  theory[15] for all R/a values and a/h 

values. For all the panels, a/b=1 and RRR  21 . 
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Table 4. 1:  Comparison of lowest nondimensional Frequency Parameter  
2

2

42
2

hE

a 
 

  

for 

a [0°/90°] simply Supported Laminated composite spherical Shell (a/h=100) 

 

                     Error in Percentage = 100 * (Present Theory – J N Reddy)/ J N Reddy 

 

Table 4. 2 : Comparison of lowest Nondimensional Frequency Parameter  
2

2

42
2

hE

a 
  for a 

[0°/90°/0°] simply Supported Laminated composite spherical Shell (a/h=100)  

 

R/a 

 

J N Reddy 

Present Theory 

First order Error in % Higher order 

Error in 

% 

1 125.99 125.99 0 126.138 0.12 

2 68.075 68.074 -0.001 68.161 0.13 

3 47.265 47.216 -0.104 47.325 0.13 

4 36.971 36.967 -0.011 37.026 0.15 

5 30.993 30.988 -0.016 31.042 0.16 

10 20.347 20.337 -0.049 20.389 0.21 

10^30 15.183 15.169 -0.09 15.225 0.28 
 

 

R/a 

 

J N Reddy 

Present Theory 

First order Error in % Higher order Error in % 

1 125.930 125.930 0 126.041 0.09 

2 67.362 67.362 0 67.506 0.21 

3 46.002 46.000 -0.004 46.189 0.41 

4 35.228 35.228 0 35.464 0.67 

5 28.825 28.825 0 29.108 0.98 

10 16.706 16.706 0 17.175 2.81 

10^30 9.687 9.687 0 10.469 8.07 
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Table 4. 3:  Comparison of lowest Nondimensional Frequency Parameter  
2

2

42
2

hE

a 
  for a 

[0°/90°/90°/0°] simply Supported Laminated composite spherical Shell (a/h=100)  

 

R/a 

 

J N Reddy 

Present Theory 

First order Error in % Higher order Error in % 

1 126.330 126.323 -0.006 126.47 0.11 

2 68.294 68.293 -0.001 68.385 0.13 

3 47.415 47.411 -0.008 47.485 0.15 

4 37.082 37.082 0 37.149 0.18 

5 31.079 31.079 0 31.145 0.21 

10 20.380 20.380 0 20.449 0.34 

10^30 15.184 15.184 0 15.262 0.51 
 

 

 

 

Table 4. 4:   Comparison of lowest Nondimensional Frequency Parameter  
2

2

42
2

hE

a 
  for a 

[0°/90°] simply Supported Laminated composite spherical Shell (a/h=10) 

 

 
R/a 

 

J N Reddy 

Present Theory 

First order Error in % Higher order Error in % 

1 14.481 14.452 -0.2 15.100 4.27 

2 10.749 10.743 -0.06 11.288 5.01 

3 9.961 9.715 -2.47 10.296 3.36 

4 9.410 9.409 -0.01 9.926 5.48 

5 9.231 9.230 -0.01 9.745 5.57 

10 8.984 8.984 0 9.500 5.74 

10^30 8.900 8.900 0 9.423 5.88 
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Table 4. 5:   Comparison of lowest Nondimensional Frequency Parameter  
2

2

42
2

hE

a 
  for a 

[0°/90°/0°] simply Supported Laminated composite spherical Shell (a/h=10) 

 

 

 

R/a 

 

J N Reddy 

Present Theory 

First order Error in % Higher order Error in % 

1 16.115 15.782 -2.07 16.586 2.92 

2 13.382 12.889 -3.68 13.352 -0.22 

3 12.731 12.182 -4.31 12.546 -1.45 

4 12.487 11.925 -4.50 12.251 -1.89 

5 12.372 11.800 -4.62 12.107 -2.14 

10 12.215 11.629 -4.79 11.911 -2.49 

10^30 12.162 11.572 -4.85 11.845 -2.61 

 

Table 4. 6:  Comparison of lowest Nondimensional Frequency Parameter  
2

2

42
2

hE

a 
  for 

a [0°/90°/90°/0°] simply Supported Laminated composite spherical Shell (a/h=10)  

 

 

R/a 

 

J N Reddy 

Present Theory 

First order Error in % Higher order Error in % 

1 16.172 16.146 -0.16 16.957 4.85 

2 13.447 13.440 -0.05 13.849 2.99 

3 12.795 12.718 -0.60 13.081 2.24 

4 12.552 12.551 -0.01 12.802 1.99 

5 12.437 12.436 -0.01 12.666 1.84 

10 12.280 12.280 0 12.479 1.62 

10^30 12.226 12.227 0.01 12.416 1.55 
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From the results presented in this table, it is clear that the present FSDT results are in excellent 

agreement with those obtained by Reddy [25]. But for a/h=10 and [0°/90°/0°] layer composite 

shell, the values of frequency parameters by present formulation  are slightly lower than values 

of frequency parameter as obtained by Reddy [15]. 

 

4.3.2 NUMERICAL RESULTS 

 

4.3.2.1: Influence of layer configuration of composites 

 
When the spherical shell is made of composite material, the influence of the layer configuration 

should be considered since it is one of the most important characteristics of a composite material. 

Usually layers are made of different isotropic materials, and their principal directions may also 

be oriented differently. For laminated composites, the fiber directions determine layer  

orientation. In this section, however, the discussion is made for simplified case where the 

spherical shells are composed of two ,three and four  layer cross-ply laminated composite panels. 

 

Table 4.7:  Nondimensional frequency parameter 
22

212
2

Q

b
  for laminated composite 

symmetric spherical panel for different layers.  

R/a a/h  2-layer 3-layer 4-layer 

First Higher First Higher First Higher 

1 
100 

1.258 1.259 1.258 1.259 1.262 1.263 

10 
1.443 1.508 1.576 1.657 1.613 1.694 

2 
100 

0.673 0.675 0.679 0.68 0.682 0.683 

10 
1.073 1.127 1.287 1.333 1.342 1.383 

3 100 
0.459 0.462 0.472 0.472 0.474 0.474 
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10 
0.97 1.029 1.217 1.253 1.270 1.307 

4 
100 0.352 0.354 0.369 0.37 0.37 0.372 

10 
0.939 0.991 1.191 1.224 1.254 1.279 

5 
100 0.288 0.292 0.309 0.310 0.310 0.311 

10 
0.922 0.973 1.179 1.209 1.242 1.265 

10 
100 0.167 0.170 0.203 0.204 0.204 0.204 

10 
0.897 0.949 1.162 1.189 1.226 1.246 

10^30 
100 0.097 0.105 0.152 0.152 0.152 0.152 

10 
0.889 0.941 1.156 1.183 1.221 1.240 

 

In Table 4.7   two ,three and four layered anti-symmetric laminated composite spherical shell has 

been analysed. The nondimensionalised frequency parameter is
22

212
2

Q

b
   and „a/h‟ value is 

100 and 10. The result obtained by the present theory by first order shear deformation theory is 

slightly lower than that obtained by higher order shear deformation theory. From the table 4.7,the 

nondimensionalised frequency is increasing with increase in number of layers for each R/a and 

a/h values. 

4.3.2.2 Influence of physical parameters  

 
There are generally many physical and geometrical parameters which influence the frequency 

characteristics of spherical panels. Physical parameters include the material properties and 

boundary conditions. The major geometrical parameters include the length (a), radius (R), and 

thickness (h). In this section, discussions are made on the influence of the geometrical length 

ratio R/a and thickness ratio a/h on the frequency characteristics of the laminated composite 

spherical shells. 
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Figure 4. 2 : Variation of the natural frequencies    with radius to length ratios (R/a) for  

                   cross ply laminated shell with a/b=1 , RRR  21 and a/h = 100 

 

Figure 4.2 shows the variation of the natural frequency „ ’ with the radius- length ratios (R/a) 

and constant length-to-thickness (i.e. a/h =100) for the laminated composite spherical shell with 

the simply supported boundary condition at the edges. It is observed that for spherical shell the 

natural frequency parameter rapidly increases as the radius- length ratios of the shell decreases. 

Figure 4.3 shows the variation of the natural frequency „ ’ with various radius- length ratios 

(R/a) and constant length-to-thickness (i.e. a/h =10). It is observed that for spherical shell if the 

thickness of the shell is increased the natural frequency parameter slightly increases for the 

different radius - length ratios.  
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Figure 4. 3 : Variation of the natural frequencies    with radius to length ratios (R/a) for  

                   cross ply laminated shell with a/b=1 , RRR  21 and a/h = 10  

 

4.3.3.3 First and Higher order shear deformation theory 

 

The lowest value of the frequencies has been calculated at first for two layers , three layers and 

four layers  laminated composite spherical shells for various values of  „R/a‟  and „a/h‟ by first 

and Higher order theories.  Figure 4.4 and figure 4.5 shows the variation of the natural 

frequencies   with the radius to length ratios (R/a) for different number of laminates and for 

constant a/h=100 for the spherical panel with the simply supported boundary condition at both 

edges. The overlapping of the graphs illustrate that the there is not much difference in frequency 

by the first and higher order shear deformation theory for a/h=100. There is a slight difference 

for a/h=10, with the higher order theory showing higher values. It is further observed that the 
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influence of the length ratio R/a on the natural frequency of the spherical shell is larger than that 

of the thickness ratio a/h. 

 

Figure 4. 4 : Variation of the natural frequencies    with radius to length ratios (R/a) for  

                    cross ply laminated shell with a/b=1 , RRR  21 and a/h = 100 

 
 

Figure 4. 5 : Variation of the natural frequencies    with radius to length ratios (R/a) for  

                    cross ply laminated shell with a/b=1 , RRR  21 and a/h = 100 
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Figure 4. 6 : Variation of the natural frequencies    with radius to length ratios (R/a) for  

                    cross ply laminated shell with a/b=1 , RRR  21
and a/h = 10 

 
 

Figure 4. 7 : Variation of the natural frequencies    with radius to length ratios (R/a) for  

                    cross ply laminated shell with a/b=1 , RRR  21 and a/h = 10 
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Figure 4.6 and figure 4.7 shows the variation of the natural frequencies   with the radius to 

length ratios (R/a) for different number of laminates and for constant a/h=10. It is observed that 

the nondimensionalised frequency obtained by using higher order shear deformation theory is 

slightly higher than that obtained by first order shear deformation theory.  

 

4.4   FREQUENCY ENVELOPES FOR CROSS –PLY SPHERICAL PANELS  

 

The frequency envelopes for m=1 and for two- layer ,three- layer, four- layer, five- layer 

and eight- layer cross ply spherical panels for a length to thickness ratio (a/h) of 100, as the 

function of radius to length  ratios (R/a) are plotted in figure 4.8. The first layer properties are 

given in table 4.8.  
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                 Figure 4. 8 : Frequency envelopes of cross-ply spherical panels a/h=100 

. 
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Table 4. 8: Material properties (first layer) of laminated spherical panels. 

psiE 6

1 10  psiE 6

2 10  
12  psiG 6

12 10  psiG 6

23 10  psiG 6

13 10    

25.00 1.0 0.25 0.5 0.2 0.5 1.0 

 

Table 4. 9: Comparison of dimensionless frequency parameters of spherical panels  

R/a Values of dimensionless frequency 

Parameters   

Shell cross-section % increase in 

frequency 

1 Maximum   =    3.869 
Minimum    =    3.307 

Panel-5 
Panel-3 

17 

2 Maximum   =    2.677 

Minimum    =    1.711 

Panel-5 

Panel-3 

56.46 

3 Maximum   =    1.738 
Minimum    =    1.051 

Panel-5 
Panel-3 

65.37 

4 Maximum   =    1.024 

Minimum    =    0.657 

Panel-5 

Panel-3 

55.86 

5 Maximum   =    0.503 
Minimum    =    0.402 

Panel-5 
Panel-3 

25.12 

10 Maximum   =    0.359 
Minimum    =    0.167 

Panel-4 
Panel-1 

115 

10^30 Maximum   =    0.197 

Minimum    =    0.097 

Panel-5 

Panel-1 

103 

 

It is seen from figure 4.8 that the eight layered panel gives the highest values of frequency 

parameter when compared with all other panels except for a value of R/a=10, where three layer 

gives the maximum value. The three layered panel (panel-2) gives the minimum frequency 

parameter of all panels for R/a<5. For values of R/a>8, the two layered panel (panel-1) gives the 

minimum value of frequency parameter for all panels. In fact, the frequency parameters of panel-

2, panel-3 and panel-4 are equal for values of R/a=10^30. Panel 1 and 3 shows close frequency 

envelopes for R/a<5.  
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Figure 4. 9 : Frequency envelopes of cross-ply spherical panels a/h=10 
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Table 4. 10: Comparison of dimensionless frequency parameters of spherical panels  

R/a Values of dimensionless frequency 

Parameters   

Shell cross-section % increase in 

frequency 

1 Maximum   =    10.048 
Minimum    =    5.400 

Panel-4 
Panel-5 

86.10 

2 Maximum   =    8.002 

Minimum    =    4.978 

Panel-4 

Panel-5 

60.75 

3 Maximum   =    6.069 
Minimum    =    4.621 

Panel-4 
Panel-5 

31.34 

4 Maximum   =    4.252 

Minimum    =    3.210 

Panel-5 

Panel-2 

32.46 

5 Maximum   =    2.751 
Minimum    =    1.878 

Panel-5 
Panel-2 

46.50 

10 Maximum   =    2.222 

Minimum    =    0.897 

Panel-3 

Panel-1 

147.7 

10^30 Maximum   =    1.232 
Minimum    =    0.889 

Panel-4 
Panel-1 

38.58 

 

From figure 4.9, the five layered panel gives the highest values of frequency parameter when 

compared with all other panels except for a value of R/a=4, 5, 10, where eight and four layer 

gives the maximum value. The eight layered panel (panel-5) gives the minimum frequency 

parameter of all panels for R/a<3.5. For values of R/a between 3.5 and 5.5, the three layered 

panel (panel-2) gives the minimum value of frequency parameter for all panels. The two layered 

panel (panel-1) gives the minimum frequency parameter of all panels for R/a>5. 

The panel giving maximum and minimum frequency parameters at selected R/a values with the 

percentage increase in frequencies are tabulated in table 4.9 and 4.10 for a/h=100,10. By simply 

changing the orientation and number of layers, the values of frequency parameter may be varied. 

In table 4.9, at R/a =10, panel-4 has higher value of frequency parameter compared to panel-1. 
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4.4.1 Comparison of results by First and Higher order shear deformation theory  

 

The dimensionless frequencies have been calculated for different laminated composite spherical 

shells for various values of „R/a‟ and „a/h‟ by the first and higher order theories. Figure 4.10 and 

figure 4.11 shows the variation of the dimensionless natural frequencies   with the radius to 

length ratios (R/a) by both theories. In figure 4.10, the overlapping of the graphs illustrate that 

there is not much difference in frequency by the first and higher order shear deformation theory 

for a/h=100 (4- layer).In figure 4.10, the frequency envelope shows the values of dimensionless 

frequency obtained by first order shear deformation theory is slightly higher than higher order 

deformation theory for 4- layer laminated composite spherical panel ,this is because of the 

influence of a/h ratio. 

          Figure 4. 10 : Frequency envelopes of cross-ply (4- layer) spherical panels a/h=100 
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       Figure 4. 11 : Frequency envelopes of cross-ply (4- layer) spherical panels a/h=10 
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CHAPTER-5 

CONCLUSION 
 

The free vibration problem of laminated thin spherical panels is analyzed in this study by using 

both the first order shear deformation theory and a higher order shear deformation theory as 

proposed by Reddy and Liu. The higher order shear deformation theory is based on a 

displacement field in which the displacements of the middle surface are expanded as cubic 

functions of the thickness coordinate and the transverse displacement is assumed to be constant 

through the thickness. This displacement field leads to parabolic distribution of the transverse 

shear stresses and zero transverse normal strain and hence no shear correction factors are used.  

The thickness coordinate multiplied by the curvature is assumed to be small in comparison to 

unity and hence negligible. The governing equations have been developed. These equations are 

then reduced to the equations of motion for spherical panel and the Navier solution has been 

obtained for cross-ply laminated composite spherical panels. The resulting equations are suitably 

nondimensionalised. The eigen value problem is then solved to obtain the free vibration 

frequencies. The lowest frequency is considered in all cases.  

The illustrative examples of spherical shells with simply supported boundary conditions  

for convenience are considered. Versatility and validity of first order shear deformation and 

higher order shear deformation theory are also aptly illustrated by comparing the results from the 

present work with the corresponding results in previous studies using quite different alternative 

approaches. It is observed that there is a very good agreement between various sets of results.  

The effects of the radius to length ratio, circumferential wave number, length to thickness ratio, 

composite lamination, and geometrical properties were investigated on the vibration 
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characteristics of thin spherical panels. From the analysis of the result presented in previous 

section the following concluding remarks can be drawn: 

 

1. For the simply supported laminate the effect of 
11E is most dominant on dispersion in the 

natural frequencies and effect of 
12  is least dominant. Out of all the natural frequencies, 

the fundamental frequency is most sensitive to changes in 
11E . 

2. The natural frequencies rapidly increases with circumferential mode number „n‟,obtained 

from frequency envelope curve.  

3. The influence of radius to length ratio on natural frequency of the spherical shell is larger 

than that of length to thickness ratio. 

4. The natural frequencies obtained by first order shear deformation theory is c lose to the 

values that obtained by higher order shear deformation theory for a/h=100. But in the 

case of a/h=10, the value obtained by first order shear deformation theory is slightly 

lower than higher order shear deformation theory.  

5. For a/h =100, the eight layered panel gives the highest values of frequency parameter 

when compared with all other panels except for a value of R/a =10, where three layer 

gives the maximum value. The three layered panel (panel-2) gives the minimum 

frequency parameter of all panels for R/a<5. For values of R/a>8, the two layered panel 

(panel-1) gives the minimum value of frequency parameter for all panels. In fact, the 

frequency parameters of panel-2, panel-3 and panel-4 are equal for values of R/a=10^30. 

Panel 1 and 3 shows close frequency envelopes for R/a<5.  

6. For a/h =10, the five layered panel gives the highest values of frequency 

parameter when compared with all other panels except for a value of R/a=4, 5, 10, where 
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eight and four layer gives the maximum value. The eight layered panel (panel-5) gives 

the minimum frequency parameter of all panels for R/a<3.5. For values of R/a between 

3.5 and 5.5, the three layered panel (panel-2) gives the minimum value of frequency 

parameter for all panels. The two layered panel (panel-1) gives the minimum frequency 

parameter of all panels for R/a>5. 
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FUTURE WORK  

 

The formulation in the present study can be used to evaluate the vibration characteristics for 

forced vibration of spherical shells with different boundary conditions. The present study is 

discussed about the open type spherical shells/panels, so it can be extended for closed type cross 

ply laminated spherical shell.  It can also be used to analyse the buckling load of the simply 

supported spherical panels.  
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APPENDIX 

 

The non-dimensionalised coefficients of the [ Cij ] and [ Mij ] matrices  of  First order shear 

deformation theory are given below 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



National Institute of Technology , Rourkela  69 
 

 

 

 

 

 

 

 

 

 

 

  

 

The elements of the  M  matrices, which are not given above, are zero. The value of shear 

correction factor 2

22

2

11, KK  is  5/6 
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The non-dimensionalised coefficients of the [ Cij ] and [ Mij ] matrices  of  Higher order shear 

deformation theory are given below, 
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The elements of the  M  matrices, which are not given above, are zero.    


