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ABSTRACT 

 

Glycoconjugate vaccines, in which a cell surface carbohydrate from a micro-organism is 

covalently attached to an appropriate carrier protein, are proving to be the most effective 

means to generate protective immune responses to prevent a wide range of diseases (1). In 

this work we extracted the capsular polysaccharides from S. pneumoniae and E. coli by 

culturing in soybean casein digest medium and terrific broth respectively. The 

polysaccharides extracted were purified using tris-magnesium sulphate, DNAse and RNAse 

for removal of nucleic acid. The removal was confirmed spectropho tometrically by 

measuring A260/280 ratio. The protein contamination was removed by precipitation of proteins 

with phenol acetal solution. The residual amount of protein was detected using Bradford 

assay, the residual amount of protein left in the extracted  polysaccharide was found to be 

0.5% and 0.45% in case of S. pneumoniae and E. coli respectively. The polysaccharides 

extracted and purified in this work was finally quantified using sialic acid assay and 

glucuronic acid assay and was confirmed using FTIR analysis. These polysaccharides 

extracted can be further used for conjugate vaccine preparation by conjugating along with 

carrier protein.   
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1. INTRODUCTION 

 

Bacterial infections remain major killers of infants and children (Table-1), particularly in 

developing countries. Several million children die each year due to such infections. The most 

important pathogens are Streptococcus pneumoniae, Haemophilius   influenzae type b, 

Neisseria meningitidis, Salmonella entericus subspecies typhi, Staphylococcus aurous, and 

diarrhoea-causing organisms such as Shigella, Salmonella and Vibrio cholerae. The disease 

profile can be endemic or epidemic, as occurs with Group A meningococcal disease in sub-

Saharan Africa. Disease and mortality are concentrated amongst children in developing 

countries. Each of these pathogens possesses a cell surface capsular polysaccharide (CPS) or 

lipo polysaccharide (LPS) shell, or both, which helps the pathogen to establish an infection. 

The CPS hides cell surface components of the bacterium from the immune system of the 

host, preventing complement activation by cell surface proteins (Roitt 1997) and inhibiting 

phagocytosis. If the bacterium is phagocytosed, the CPS helps prevent bacterial killing. The 

role of LPS as a virulence factor is less well defined. In some cases it has been demonstrated, 

and in other cases it is suspected, that antibodies against a CPS or LPS O-chain will protect 

against infection (2) express CPSs or LPSs of different structures, resulting in a number of 

different serotypes or serogroups. Virulence and pathogenicity may be serotype or 

serogroups dependent, or there may be geographic differences in the clinically relevant 

serotypes. Whilst Haemophilus influenzae disease is caused overwhelmingly by a single 

serotype, the type b, pneumococcal disease is caused by a very large number of the ninety 

known serotypes. Meningococcal disease in developed countries is principally Groups B and 

C, although Groups W135 and Y are becoming increasingly important, and Group A disease 

is virtually unknown (3). Meningococcal Group A strains are, however, responsible for the 

regular meningitis epidemics which plague sub- Saharan Africa. Practically therefore, most 

of the saccharide-derived vaccines must contain multiple carbohydrates structures to provide 

adequate coverage against the disease causing strains. In some cases there is immunological 

cross reactivity between related structures which can provide partial protection. The optimal 

choice of polysaccharide to include in the vaccine is therefore a complex epidemiological 

problem (Robbins et al. 1983). Pneumococcal Types 1 and 5, for example, are important 



 

 

pathogens in South America, but much less important in North America or Europe. For this 

reason, these serotypes were not included in the first 7-valent glycol conjugate vaccines 

licensed (Wyeth’s Prevenar®), but have been included in subsequent 9- and 11-valent glycol 

conjugate vaccines under development. A number of these pathogens, including Neisseria 

meningitidis and Streptococcus pneumoniae, can leave surviving infants with severe 

neurological damage. This may affect as many infants as actually die from the infection. This 

has profound social and economic impacts.  

                        Once it became clear that antibodies against CPSs protect against infection, it 

was a logical step to attempt to use these polysaccharides as immunogens. The first attempts 

were made in the late 1940s (McLeod et al. 1945), but the seemingly miraculous potential of 

antibiotics to control disease postponed development of this field until the late 1960s, when 

antibiotic resistance and the potential for neurological damage in ―antibiotic-cured‖ infants 

became apparent (Cochi et al. 1985). CPS vaccines c learly work, and vaccines of this type 

are licensed and used in many countries, but this approach has several severe limitations. 

Repeating polysaccharides are T cell- independent type 2 (TI-2) immunogens: without the 

involvement of T cells they do not induce immunological memory, avidity maturation and 

isotype switching do not occur, and the antibodies induced, largely IgM and IgG2 (Musher et 

al. 1990, Lortan et al. 1993), are not good activators of complement. Crucially, vaccines of 

this type fail to induce immune responses in infants below the age of about two years, who 

are the major group at risk for these infections, because this aspect of the immune system 

develops relatively late. Repeat vaccination does not lead to increased antibody levels, so 

only one dose is given, but without immunological memory re-vaccination is required at 

regular intervals as antibody levels decline. This is typically every five years. Whilst the 

specificity of the immune response depends upon the structure of the CPS, the magnitude of 

the response depends critically upon its molecular weight. Only very high molecular weight 

polysaccharides are immunogenic and product development focused at first on the isolation 

of material of sufficiently high molecular weight. For this reason, LPS O-chains and low 

molecular weight CPSs, such as those from Staphylococcus aureus, are not effective as 

vaccines. 
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2. LITERATURE REVIEW 

 

2.1. STREPTOCOCCUS PNEUMONIAE 

 Although a common and serious pathogen of humans, the highly host-adapted S. 

pneumoniae is seldom isolated from clinical disease in animals. However, a unique clone of 

capsular serotype 3 is found in the respiratory tract of normal horses and has been associated 

with lower airway disease in combination with other bacteria and respiratory viruses (31,32), 

(fig2). Different case of pneumonias in a neonatal foal has also been reported (33). Equine 

isolates of S. pneumoniae are remarkable because they exhibit deletions in the lytA and ply 

genes for the virulence factors autolysin and pneumolysin and are genetically almost 

identical to each other. Moreover, they are genetically distinct from isolates of S. pneumoniae 

serotype 3 from humans (34). Experimental intratracheal inoculation of ponies is fo llowed by 

fever, cough, ocular and nasal discharge and lesions of lobar pneumonia (35).  

 

                                 

 
 

Fig. 1 – Electron micrograph of Streptococcus pneumoniae and the associated pneumococcal 
capsular polysaccharide (labelled 6). The bacteria shows the typical diplococcus morphology 
of the pneumococcus. Figure reproduced from Skov Sørensen et al. (1988) Infect Immun 56: 

1890-1896 (copyright American Society for Microbiology), with permission 
 

 

 



 

 

2.1.1. Virulence factors 

The well studied virulence factors of S. pneumoniae of human origin as observed in 

mouse models include the capsular polysaccharide, pneumolysin, autolysin, neuraminidase,  

hyaluronidase, cell wall peptidoglycan, teichoic acid and phosphorylcholine (35). A large 

number of surface anchored proteins are also expressed including zinc metalloproteases involved 

in IgA proteolysis and in processing and export of other proteins, peptide permeases AmiA and 

PlpA, neuraminidases NanA and NanB, glycolytic enzymes, fibronectin binding enolase, an 

array of 12 choline binding proteins including PspA, LytA, a protective antigen, an autolysin, 

and Cpp A, an adhesin. A notable feature of the capsular polysaccharide is the presence of D- 

glucose, glucosamine, galactose and sialic acid as repeating unit (65).  

 

 2.1.2. Pathogenesis 

Adhesion of S. pneumoniae to epithelium of the tonsil and soft palate of ponies has been 

noted following experimental infection (35). Invasion may trigger a number of host responses 

including the coagulation cascade with thrombus formation, the complement cascade with 

accumulation of leucocytes, and the chemokine/ cytokine cascade that ultimately leads to 

increased vascular permeability and leukocyte recruitment. Resistance to phagocytosis is 

mediated by a complex polysaccharide capsule that forms a hydrophilic gel on the surface of the 

organism. This gel shields the bacterium from antibodies and complement proteins. In addition, 

capsular sialic acid contributes to the anti phagocytic effect by inhibiting complement 

amplification and alternative pathway activation. Intrinsic complement inactivation mechanisms, 

which degrade C3b bound to the bacterial surface and prevent further C3 deposition, are also 

facilitated by capsular sialic acid. Capsular material has, however, been noted in the alveolar 

macrophages of ponies experimentally infected with S. pneumoniae, indicating that successful 

phagocytosis does take place. It is unclear how this relates to the clinically mild self- limiting 

nature of the naturally occurring respiratory disease of young horses. Alveolar necrosis has also 

been observed in experimentally produced lesions in ponies (35). Toxin involvement in 

pneumococcal pneumonia in humans is suggested by the acute fulminating and toxic clinical 

character of the disease. Neuraminidase may act both to decrease the viscosity of mucus and to 



 

 

alter oligosaccharides of mucosal cells by removing Nacetyl neuraminic acid residues and thus 

expose receptors for bacterial attachment. Increased numbers of 

S. pneumoniae are associated with the stress of race training and with lower respiratory tract 

inflammatory disease suggesting that the host/parasite interaction is opportunistic. Increased 

respiration during intense exercise may result in aspiration of S. pneumoniae from the tonsil and 

soft palate (36). At the same time, impairment of the mucociliary escalator mechanism and fluid 

accumulation may contribute to failure to clear aspirated organisms. Bacteria that proliferate in 

the highly cellular exudates will generate highly inflammatory streptococcal cell wall products. 

The significance in lesion development of the large numbers of S. zooepidemicus often found 

with S. pneumoniae in tracheal aspirates is unknown. It is possible that IgA protease produced by 

S. pneumoniae may destroy protective antibodies that control proliferation of S. zooepidemicus 

(36).  

 

2.1.3. Immuniy  

Much of the information on protective immunity to S. pneumoniae must be interpreted with 

caution since it is based on mouse models. Type-specific capsular antibody produced during 

convalescence is opsonizing and protective. However, capsular polysaccharaide is often poorly 

immunogenic. Protein antigens including PspA, pneumolysin, PsaA, autolysin, the 

neuraminidases, NanA and B, and at least six other surface proteins reactive with human 

convalescent serum and mouse protective (36) may have potential as vaccine components. But 

the conjugation of polysaccharide with a carrier protein shows significant development of 

antibody.     

 

2.2. ESCHERICHIA COLI 

Many types of bacteria produce extracellular polysaccharides (EPSs). Some are secreted 

polymers and show only limited association with the cell surface, whereas others are firmly 

attached to the cell surface and form a discrete structural layer, the capsule, which envelopes the 

cell and allows the bacteria to evade or counteract the host immune system(42). EPSs have 

critical roles in bacterial colonization of surfaces, such as epithelia and medical implants; in 

addition some EPSs have important industrial and biomedical applications in their own right. A 



 

 

resolution structure of the 340 kDa octamer of Wza, an integral outer membrane lipoprotein, 

which is essential for group 1 capsule export in Escherichia coli(fig.3). The transmembrane 

region is a novel alpha-helical barrel. The bulk of the Wza structure is located in the periplasm 

and comprises three novel domains forming a large central cavity. Wza is open to the 

extracellular environment but closed to the periplasm. The  route and mechanism for 

translocation of the capsular polysaccharide.  

 

                                    

                               Fig.2: Pictorial Representation of an E.coli bacteria strain (66).   

 

The late steps in assembly of capsular polysaccharides (CPS) and their translocation to the 

bacterial cell surface are not well understood. The Wza protein was shown previously to be 

required for the formation of the prototype group 1 capsule structure on the surface of 

Escherichia coli serotype K30. Wza is a conserved outer membrane lipoprotein that forms 

multimers adopting a ringlike structure, and collective evidence suggests a role for these 

structures in the export of capsular polymer across the outer membrane. Wza was purified in the 

native form and with a C-terminal hexahistidine tag. WzaHis6 was acylated and functional in 

capsule assembly, although its efficiency was slightly reduced in comparison to the native Wza 

protein (42). Ordered two-dimensional crystals of WzaHis6 were obtained after reconstitution of 

purified multimers into lipids. Electron microscopy of negatively stained crystals and Fourier 

filtering revealed ringlike multimers with an average outer diameter of 8.84 nm and an average 

central cavity diameter of 2.28 nm. Single particle analysis yielded projection structures at an 

estimated resolution of 3 nm, favoring a structure for the WzaHis6 containing eight identical 

subunits (43). A derivative of Wza (Wza*) in which the original signal sequence was replaced 



 

 

with that from OmpF showed that the native acylated N terminus of Wza is critical for formation 

of normal multimeric structures and for their competence for CPS assembly, but not for targeting 

Wza to the outer membrane. In the presence of Wza*, CPS accumulated in the periplasm but was 

not detected on the cell surface. Chemical cross- linking of intact cells suggested formation of a 

transmembrane complex minimally containing Wza and the inner membrane tyrosine autokinase 

Wzc (43).  

 

 

 

Fig.3 A model for the envelope-spanning enzyme complex involved in group 1 capsule 

assembly (67).  

 



 

 

2.2.1. Role in disease 

Virulent strains of E. coli can cause gastroenteritis, urinary tract infections, and neonatal 
meningitis. In rarer cases, virulent strains are also responsible for hæmolytic-uremic syndrome 

(HUS), peritonitis, mastitis, septicemia and Gram-negative pneumonia 

2.2.2. Virulence properties 

 The virulence properties of E. coli are classified in table.1  

Table1. Enteric E.coli (EC) classification on the basis of serological characteristics and 
virulence properties. 

Name Hosts Description 

Enterotoxigenic E. 

coli (ETEC) 
Causative agent of 
diarrhea (without 

fever) in humans, 
pigs, sheep, goats, 

cattle, dogs, and 
horses 

ETEC uses fimbrial adhesins (projections from 
the bacterial cell surface) to bind enterocyte 

cells in the small intestine. ETEC can produce 
two proteinaceous enterotoxins:  

 The larger of the two proteins, LT 

enterotoxin, is similar to cholera toxin in 
structure and function.  

 The smaller protein, ST enterotoxin 

causes cGMP accumulation in the target 
cells and a subsequent secretion of fluid 
and electrolytes into the intestinal lumen.  

ETEC strains are non- invasive, and they do 

not leave the intestinal lumen. ETEC is the 
leading bacterial cause of diarrhea in 

children in the developing world, as well as 
the most common cause of traveler's 
diarrhea. Each year, ETEC causes more 

than 200 million cases of diarrhea and 
380,000 deaths, mostly in children in 

developing countries. 

Enteropathogenic 

E. coli (EPEC) 

Causative agent of 

diarrhea in 

humans, rabbits, 

dogs, cats and 

Like ETEC, EPEC also causes diarrhea, but 

the molecular mechanisms of colonization 

and etiology are different. EPEC lack 

fimbriae, ST and LT toxins, but they utilize 
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http://en.wikipedia.org/wiki/Urinary_tract_infection
http://en.wikipedia.org/wiki/Neonatal
http://en.wikipedia.org/wiki/Meningitis
http://en.wikipedia.org/wiki/Hemolytic-uremic_syndrome
http://en.wikipedia.org/wiki/Hemolytic-uremic_syndrome
http://en.wikipedia.org/wiki/Peritonitis
http://en.wikipedia.org/wiki/Mastitis
http://en.wikipedia.org/wiki/Septicemia
http://en.wikipedia.org/wiki/Pneumonia
http://en.wikipedia.org/wiki/Enterotoxigenic_Escherichia_coli
http://en.wikipedia.org/wiki/Enterotoxigenic_Escherichia_coli
http://en.wikipedia.org/wiki/Fimbria_(bacteriology)
http://en.wikipedia.org/wiki/Enterocyte
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http://en.wikipedia.org/wiki/LT_enterotoxin
http://en.wikipedia.org/wiki/LT_enterotoxin
http://en.wikipedia.org/wiki/LT_enterotoxin
http://en.wikipedia.org/wiki/Cholera_toxin
http://en.wikipedia.org/wiki/ST_enterotoxin
http://en.wikipedia.org/wiki/Cyclic_guanosine_monophosphate
http://en.wikipedia.org/wiki/Lumen_(anatomy)
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horses an adhesin known as intimin to bind host 

intestinal cells. This virotype has an array 

of virulence factors that are similar to those 

found in Shigella, and may possess a shiga 

toxin. Adherence to the intestinal mucosa 

causes a rearrangement of actin in the host 

cell, causing significant deformation. EPEC 

cells are moderately- invasive (i.e. they 

enter host cells) and elicit an inflammatory 

response. Changes in intestinal cell 

ultrastructure due to ―attachment and 

effacement‖ are likely the prime cause of 

diarrhea in those afflicted with EPEC. 

Enteroinvasive E. 

coli (EIEC) 

Found only in 

humans 

EIEC infection causes a syndrome that is 

identical to Shigellosis, with profuse 

diarrhea and high fever. EIEC are highly 

invasive, and they utilize adhesin proteins 

to bind to and enter intestinal cells. They 

produce no toxins, but severely damage the 

intestinal wall through mechanical cell 

destruction. 

Enterohemorrhagic 

E. coli (EHEC) 

Found in humans, 

cattle, and goats 

The sole member of this virotype is strain 

O157:H7, which causes bloody diarrhea 

and no fever. EHEC can cause hemolytic-

uremic syndrome and sudden kidney 

failure. It uses bacterial fimbriae for 

attachment (E. coli common pilus, ECP is 

moderately- invasive and possesses a phage-

encoded Shiga toxin that can elicit an 

intense inflammatory response. 

Enteroaggregative 

E. coli (EAEC) 

Found only in 

humans 

So named because they have fimbriae 

which aggregate tissue culture cells, EAEC 

bind to the intestinal mucosa to cause 

watery diarrhea without fever. EAEC are 

non- invasive. They produce a hemolysin 

and an ST enterotoxin similar to that of 

ETEC. 
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2.2.3. Neonatal meningitis 

It is produced by a serotype of Escherichia coli that contains a capsular antigen called 

K1. The colonisation of the new born's intestines with these stems that are present in the 

mother's vagina, lead to bacteriemia, which leads to meningitis. And because of the absence 

of the igM antibodies from the mother (these do not cross the placenta because they are too 

big), plus the fact that the body recognises as self the K1 antigen, as it resembles the cerebral 

glicopeptides, this leads to a severe meningitis in the neonates(51). 

2.2.4. Gastrointestinal infection 

Transmission of pathogenic E. coli often occurs via fecal-oral transmission.(50-52) 

Common routes of transmission include: unhygienic food preparation,[24] farm contamination 

due to manure fertilization,(53) irrigation of crops with contaminated greywater or raw 

sewage,(54) feral pigs on cropland,(55) or direct consumption of sewage-contaminated 

water.(56) Dairy and beef cattle are primary reservoirs of E. coli O157:H7, and they can 

carry it asymptomatically and shed it in their feces.(57) Food products associated with E. coli 

outbreaks include raw ground beef, raw seed sprouts or spinach, raw milk, unpasteurized 

juice, and foods contaminated by infected food workers via fecal-oral route 

According to the U.S. Food and Drug Administration, the fecal-oral cycle of transmission 

can be disrupted by cooking food properly, preventing cross-contamination, instituting 

barriers such as gloves for food workers, instituting health care policies so food industry 

employees seek treatment when they are ill, pasteurization of juice or dairy products and 

proper hand washing requirements 

Shiga toxin-producing E. coli (STEC), specifically serotype O157:H7, have also been 

transmitted by flies,(59-61) as well as direct contact with farm animals, petting zoo 

animals,[37] and airborne particles found in animal-rearing environments.(62-65) 
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2.2.5. Urinary tract infection 

Uropathogenic E. coli (UPEC) is responsible for approximately 90% of urinary tract 

infections (UTI) seen in individuals with ordinary anatomy. In ascending infections, fecal 

bacteria colonize the urethra and spread up the urinary tract to the bladder as well as to the 

kidneys (causing pyelonephritis),(56) or the prostate in males. Because women have a shorter 

urethra than men, they are 14-times more likely to suffer from an ascending UTI.  

Uropathogenic E. coli utilize P fimbriae (pyelonephritis-associated pili) to bind urinary 

tract endothelial cells and colonize the bladder. These adhesins specifically bind D-galactose-

D-galactose moieties on the P blood group antigen of erythrocytes and uroepithelial cells. 

Approximately 1% of the human population lacks this receptor, and its presence or absence 

dictates an individual's susceptibility to E. coli urinary tract infections. Uropathogenic E. coli 

produce alpha- and beta-hemolysins, which cause lysis of urinary tract cells. 

UPEC can evade the body's innate immune defenses (e.g. the complement system) by 

invading superficial umbrella cells to form intracellular bacterial communities (IBCs). They 

also have the ability to form K antigen, capsular polysaccharides that contribute to biofilm 

formation. Biofilm-producing E. coli are recalcitrant to immune factors and antibiotic 

therapy and are often responsible for chronic urinary tract infections.(57) K antigen-

producing E. coli infections are commonly found in the upper urinary tract.  

2.3. CAPSULAR POLYSACCHARIDE. 

2.3.1. Polysaccharides as T lymphocyte independent antigens 

Immunologically, an antigen can be classified either as T lymphocyte dependent (TD) or 

T lymphocyte independent (TI). Proteins and peptides are usually TD antigens since they 

require stimulation from helper T lymphocytes in order to elicit an immune response. The 

TD antigen is presented to T lymphocytes by the Major Histocompatibility Complex (MHC) 

molecules present on macrophages, B lymphocytes or dendritic cells. TD antigens induce an 

immune response that is long lasting due to formation of memory B and T lymphocytes. The 

http://en.wikipedia.org/wiki/Urinary_tract_infection
http://en.wikipedia.org/wiki/Urinary_tract_infection
http://en.wikipedia.org/wiki/Urinary_tract_infection
http://en.wikipedia.org/wiki/Urethra
http://en.wikipedia.org/wiki/Urinary_tract
http://en.wikipedia.org/wiki/Bladder
http://en.wikipedia.org/wiki/Kidneys
http://en.wikipedia.org/wiki/Pyelonephritis
http://en.wikipedia.org/wiki/Escherichia_coli#cite_note-38
http://en.wikipedia.org/wiki/Prostate
http://en.wikipedia.org/wiki/Pyelonephritis
http://en.wikipedia.org/wiki/Pili
http://en.wiktionary.org/wiki/bind
http://en.wikipedia.org/wiki/Endothelial_cell
http://en.wiktionary.org/wiki/adhesin
http://en.wikipedia.org/wiki/Moiety
http://en.wikipedia.org/w/index.php?title=P_blood&action=edit&redlink=1
http://en.wikipedia.org/wiki/Antigen
http://en.wikipedia.org/wiki/Erythrocytes
http://en.wikipedia.org/w/index.php?title=Uroepithelial&action=edit&redlink=1
http://en.wikipedia.org/wiki/Hemolysis_(microbiology)
http://en.wikipedia.org/wiki/Lysis
http://en.wikipedia.org/wiki/Complement_system
http://en.wikipedia.org/wiki/IBC
http://en.wikipedia.org/wiki/Biofilm
http://en.wikipedia.org/wiki/Antibody
http://en.wikipedia.org/wiki/Antibiotic
http://en.wikipedia.org/wiki/Escherichia_coli#cite_note-40


 

 

antibodies against TD antigens are of high affinity and of multiple isotypes (IgA, IgM, IgG1, 

IgG2a, IgG2b, IgG3). The affinity of an antibody is a thermodynamic parameter that 

quantifies the strength of the association between the antibody and the antigen and depends 

on the structural complementarity of the binding site on the antibody and the binding site on 

the antigen. In contrast to TD antigens, the TI antigens do not give rise to immunological 

memory neither do they require T lymphocytes to induce an immune response. Memory 

responses are characterized by the production of high-avidity antibody, i.e., antibodies 

strongly binding to the antigen. A majority of carbohydrates are categorized as TI antigens in 

nature. The TI antigens are further divided into TI type 1 and TI type 2 based on their 

interaction with B lymphocytes.  TI type 1 antigens are defined as antigens capable of 

inducing proliferation and differentiation of both native and mature B lymphocytes.( 20) 

These antigens activate B lymphocytes and may induce immune respo nses in neonates, 

adults and in mice with an X-linked B lymphocyte defect (xid).(14,19 - 21) Common 

examples of the TI type 1 antigens are the bacterial LPS(14,20 ). Conversely, TI type 2 

antigens are of high molecular mass repetitive polysaccharide structures that exhibit no 

intrinsic B lymphocyte stimulating activity(20) These antigens are also characterized by their 

poor in vivo degradability and inability to stimulate MHC class II restricted T lymphocyte 

help(22,23) TI type 2 antigens will activate only mature B lymphocytes and most likely act 

by cross linking the cell surface immunoglobulin (Ig) of specific, mature B lymphocytes.  

This results in the production of antigen-specific antibodies. However, the TI-type 2 antigens 

are not suitable as vaccines for children below 2 years of age and for adults above 65 years of 

age since these populations do not respond. CPS from S. pneumoniae, N. meningitidis and H. 

influenzae are some examples of TI type 2 antigens.  

 

It was recognized early last century that small molecules, known as haptens, can be made 

immunogenic after conjugation to carrier proteins (4). This principle has since been applied 

successfully to improve the immunogenicity of (poly) saccharides (5,6). We now know that 

the carrier proteins ensure the involvement of T-helper lymphocytes in the activation of the 

hapten- or polysaccharide-specific antibody-producing B lymphocytes (Fig. 2). In contrast to 

small molecules or haptens, polysaccharides (or other macromolecules with a repeating 



 

 

structure) are able to induce an immune response, most likely by directly activating B-

lymphocytes. Antigens that are able to induce an immune response without the involvement 

of T-helper lymphocytes are referred to as TI (thymus- independent) antigens (7) (Table-2). 

TI-2 antigens, such as plain polysaccharides, are not able to activate relatively immature B-

cells. This is in contrast to TI- l antigens, which can activate immature B-cells because of 

their mitogenic activity. Lipopolysaccharides (LPS) are examples of TI- l antigens. 

Conventional T-cells recognize peptide sequences in association with the major 

histocompatibility complex (MHC). Recently, unconventional T-cells were found to 

recognize (glyco) lipids in a CD1-restricted way, γδT-cells were shown to respond to non-

proteinaceous microbial ligands (that may include carbohydrates) in a virtually MHC-

unrestricted way (8). The findings of T-cell regulation of the immune response against 

polysaccharides (9-11) without biochemical demonstration of the specificity of the molecular 

interactions can best be explained by assuming a role for anti- idiotypic antibodies and T-cells 

specific for the idiotopes (carbohydrate mimotopes) or via the newly discovered 

unconventional T-cells. 

The characteristics of polysaccharides described here are reflected in the antibody responses 

found in humans. Plain polysaccharides induce a poor response in infants, and at later ages of 

life the responses are of short duration and cannot be boosted (12-14), and the affinity does 

not mature. To overcome these problems, polysaccharides must be conjugated to carrier 

proteins in order to create effective vaccines. The Haemophilus influenzae type-b capsular 

polysaccharide conjugate vaccine has been successfully introduced in many national 

childhood vaccination programs (15-18). N. meningitidis serogroup C polysaccharide 

conjugate vaccines have now been developed. Clinical trials for these vaccines proved 

successful (19) and, as a result, a number of these vaccines were introduced into the UK 

vaccination schedules in 1999. These conjugate vaccines have already had a significant 

impact on the incidence of meningococcal serogroup C disease in immunized groups (20-21). 

This has led to a better definition of important criteria needed for potent conjugate vaccines. 

Finally, in recent clinical trials, pneumococcal conjugate vaccines have been shown to be 

effective at preventing pneumococcal disease in children (22). In this chapter, we describe 



 

 

details of the preparation of a pneumococcal type 19F polysaccharide-protein conjugate 

vaccine (23). 

 

 

Fig.4: Polysaccharides are poor in activating B-cells to the production of antibodies in 

children younger than 2 yr of age. If antibodies are formed, they are of short duration. For 

conjugate vaccines T-cells are involved in the activation of B-cells. Presumably, the 

conjugate is taken up by polysaccharide-specific B-cells, processed, and presented to carrier-

specific Tcells. The involvement of T-cells results in the activation of B-cells to production 

of antibodies and induction of memory in children younger than 2 yr of age.  

 

Table.2: Characteristics of T-Cell Independent Antigens present in Streptococcus 
pneumoniae strain important for vaccine preparations.  

 

                    Type 1 Type 2 

Bacterial cell-wall components 
Mitogenic or polyclonal B-cell activator 

Stimulate antibody responses in neonates 
Stimulate antibody responses in CBA/N mice 
Examples: lipopolysaccharide and hapten 

derivatives; Brucella abortus 

Polysaccharides, polypeptides, 
polynucleotides 

High mol wt, multiple repeating antigenic 
determinants 
Slowly metabolized 

 Tolerogenic in large doses or soluble form 
Activate alternative complement pathway 

(some) 
Generate few (if any) memory B-cells 
Restriction of isotypes induced 

Lack of affinity maturation 
Lack of T-cell memory 



 

 

Fail to stimulate antibody responses in 
neonates 
Fail to stimulate antibody responses in 

CBA/N mice 
Examples: Pneumococcal polysaccharides; 

 Haemophilus influenzae type b 
polysaccharide; Meningococcal 
polysaccharides 

 

                                                        
 

2.3.2. Polysaccharide structure 

CPSs and LPS O-chains have strict repeating structure, which may consist of either a 

single sugar unit or oligosaccharide units, containing as many as seven or eight sugar 

residues (Kamerling 2000). The repeat units can either be linear or branched and contain non 

carbohydrate substituents such as O-acetyl, glycerol phosphate, or pyruvate ketals. Structural 

heterogeneity may occur as a result of the loss of or migration of labile O-acetyl groups 

between 

sites. Bacterial polysaccharides may contain unusual sugar residues including diamino deoxy 

and branched chain sugars (Lindberg 1990a). As a general rule, CPSs tend to be anionic in 

character whilst LPS O-chains are neutral. The structures of some the repeat units of the 

capsular polysaccharides of clinically important bacteria are shown in Table 3. Whilst these 

vaccines elicit a strong antibody response, it is likely that protection depends upon a 

relatively small proportion of high avidity antibodies, with those directed against the 

saccharide backbone perhaps most important. Whilst antibodies against substituents such as 

O-acetyl groups may predominate, they may be of relatively low avidity and not clinically 

important (Michon et al. 2000). 

 

2.3.3. The molecular mechanism of generation of immune responses against 

polysaccharide 

  The molecular mechanisms by which TI-2 immunogens with repeating structures, such as 

bacterial polysaccharides, stimulate an antibody response have been revealed by the work of 

Snapper and coworkers (24). In brief, the polysaccharide crosslinks approximately 15-20 

surface immunoglobulin molecules (sIg) molecules present on a B cell of appropriate 



 

 

specificity, leading through a series of intermediate protein phosphorylat ion steps to an 

increase in free intracellular calcium. Such a cell is primed to secrete antibody, but a second 

signal is also required. The nature of this second signal has not been well defined, and may 

be different in the case of a natural infection than when a vaccine is used. When this second 

signal is received, the B cells mature into plasma cells and secrete antibodies. There appears 

to be no direct interaction between B cells and T cells. The necessity to crosslink many sIg 

molecules would seem to be the reason why only high mass CPSs are immunogenic. The 

mechanism by which glycoconjugate vaccines elicit an immune response is significantly 

different and is discussed in more detail below, but it is this difference which explains why 

glycoconjugate are so much more effective as vaccines, and why they can be used to 

stimulate an immune response against a much wider variety of carbohydrate immunogens. 

Processing of zwitterionic capsular polysaccharides by an MHC II pathway has very recently 

been suggested (Cobb et al. 2004).  

 

2.3.4. Carrier Protein 

A variety of proteins, including bacterial pili, outer membrane proteins (OMPs), and 

excreted toxins of pathogenic bacteria, preferably in toxoid form, have been employed as 

carriers for carbohydrate antigens. Most popular as carrier proteins are tetanus and diphtheria 

toxoids, which are readily available and accepted for human use. However, the use of 

detoxified bacterial toxins as carrier proteins has some disadvantages. The process of 

chemically detoxifying produces lot-to-lot variations. Thus, physical and 

chemical properties of the toxin can be substantially modified, which can affect the 

conjugation efficiency. Conjugation of these proteins with large amounts of saccharide may 

further affect protein conformational features and inactivate T- and/or B-cell epitopes. This 

might limit the amount of saccharide to be coupled to the protein, since a precondition of the 

conjugation is to maintain the T-cell activating properties of the 

carrier protein. Bacterial toxins offer advantages over their corresponding toxoids if cytotoxic 

effects can be reduced by the conjugation itself. Alternative carrier proteins have been 

developed, such as CRM197, a nontoxic analog of diphtheria toxoid (37-38). These proteins 

have the same advantages as native toxins—light or heavy loading of saccharide is possible 

without influencing the carrier characteristics. Although diphtheria and tetanus toxin-



 

 

derivatized proteins have proven to be successful carrier proteins, both in animal and human 

studies, such problems as hypersensitivity or suppression of anti-carbohydrate response 

caused by the pre-existence of anti-carrier antibodies may still be a matter of concern, 

especially when a broad range of saccharides is analyzed (39-43). These negative effects 

could become more evident when conjugated carrier proteins are tested in polyvalent or 

combination vaccine formulations. The use of a carrier protein derived from the homologous 

bacterial species from which the polysaccharide was obtained would avoid possible 

problems. Furthermore, a homologous carrier protein may afford protection by itself that 

would enhance the protective action of the anti-polysaccharide immunity through synergistic 

action. In addition, homologous T help will be boosted on infection. It may be necessary to 

develop and use multiple carrier proteins as an approach to reduce interference when more 

than one conjugate vaccine is used; alternative carrier proteins, such as Bordetella pertussis 

fimbriae, have been used experimentally (44-45). Alternatively, the use of synthetic peptides 

corresponding to T-cell of proteins may be a viable approach to circumvent the phenomena 

described previously (46-48). However, to be able to induce an immune response across 

HLA barriers in the human population, synthetic polypeptides containing multiple epitopes 

from proteins would have to be used. 

 

2.3.5. Coupling Chemistry (Linkage) 

To confer a TD character to a saccharide, it must be coupled to a carrier protein through a 

covalent bond. Other strong, noncovalent couplings or associations with proteins have not 

proven to be as effective in reaching that goal. There are numerous existing or potential 

techniques available for the conjugation of bio-organic molecules, including saccharides and 

proteins (74–81). A large variety of these, often derived from pioneering research in affinity 

chromatography, have been used for the preparation of conjugate vaccines (24), including 

mainly reductive amination, amidation, and etherification reactions, but also the formation of 

disulfide, thiocarbamoyl, O-alkylisourea, or diazo couplings, among others. Conjugates 

obtained by reductive amination (82–84), amidation (85), the formation of a thioether bond 

(21,86–88), or a combination of these (89,90) have been shown to be highly stable. However, 

at present, it is uncertain whether some other types of linkage (e.g. disulfide bonds) have 



 

 

enough stability in vivo. New techniques, sometimes adapted from other areas of 

biochemical research, constantly broaden the choice a lready available (91–99). Because of 

the lability of some saccharide components, coupling conditions should be as mild as 

possible. Accordingly, reaction parameters (pH, temperature, reaction time, and chemical 

reagents), should be chosen with the goal of avoiding the denaturation of protein or unwanted 

hydrolysis of saccharides. The stability of the linkage formed by conjugation is also of 

paramount importance. Significant decoupling during storage could lead to loss of 

immunogenicity or of the TD character of the conjugate. The choice of a coupling chemistry 

is also largely driven by the model of conjugate that is needed, namely a well-defined 

neoglycoprotein or a crosslinked lattice (24,25). The former is obtained by activation of a 

single end of the saccharide, and is generally more efficient for the coupling of 

oligosaccharides or short polysaccharides (100,101). The latter is obtained by random 

activation at several points on the saccharide chain, and is the more practical approach for the 

coupling of large polysaccharides. This model appears also to be the most appropriate for 

reducing the TI character of a polysaccharide, by controlling the length of continuous chains 

of intact RU in the conjugate. It should be noted that, in some rare instances, a well-defined 

crosslinked lattice can be obtained when a saccharide is amenable to specific activation of 

both ends of the chain—e.g. by periodate- induced depolymerization (82,83). When 

conjugating oligosaccharides, it is often desirable to use a spacer arm (e.g., adipic acid 

dihydrazide, diaminobutane, or 6-aminohexanoic acid) as a linker between the saccharide 

and the protein in order to avoid the shielding of important saccharide epitopes by the 

secondary structure of the carrier protein. A spacer can also p rovide greater efficiency of 

coupling with polysaccharides by reducing steric hindrance of activated moieties (86,102–

104). In turn, a spacer can create a neo-antigenic structure that may be either harmless or 

toxic (e.g. aromatic spacer), or may lead to the unnecessary production of large amounts of 

nonprotective antibodies on immunization with the conjugate. Other considerations that 

influence the choice of a coupling chemistry include the availability of active groups on both 

the saccharide and the carrier protein, or the practical feasibility of introducing new ones by 

chemical or enzymatic modifications. Moreover, unrelated groups must be deactivated after 



 

 

conjugation, to avoid uncontrolled reactions within the conjugate itself and with body tissues 

after immunization. 

 

2.3.6. Saccharide-to-Protein Ratio 

The spacing and density of the saccharide on the protein are likely to have major impacts 

on the ability of the conjugate to induce an immune response. Once the saccharide antigen is 

coupled to the carrier protein, measuring the relative ratio of those two moieties will provide 

some information about the conjugate structure. To obtain accurate data, it is essential that all 

free (uncoupled) material is removed from the final reaction mixture. This can be 

accomplished by ultrafiltration, liquid chromatography, electrophoresis, or differential 

precipitation. In some instances, it may be difficult to separate native polysaccharides from 

conjugates, since both components have high mol wts that are not always a menable to 

chromatographic separation. If a conjugate contains appreciable amounts of free 

polysaccharide, dose calculations for animal experiments become unreliable. In addition, the 

presence of a comparatively large amount of the TI form of the saccharide antigen, together 

with its coupled TD form, can have adverse effects on the immune response (105–107). 

Long-term storage of a conjugate can equally lead to partial depolymerization or decoupling 

of the saccharide antigen, which in turn will affect the saccharide-to-protein ratio. For a neo-

glycoprotein model, the saccharide-to-protein ratio provides valuable information about the 

number of attachment points on the carrier. It then becomes possible to compare several 

conjugates with different ratios (25,41,108), and to evaluate the importance of the shielding 

of protein epitopes. With high saccharide-to-protein ratios, essential carrier epitopes may be 

hidden from the immune system, preventing recognition of the conjugate as a TD antigen 

(24–26,102). For a lattice model, since activation points are randomly distributed on the 

saccharide, information about linkage points to the protein is not readily available. Additional 

tests are needed, such as the titration of remaining activated groups on the carrier. 

Attachment points can also be measured when amino acids become covalently modified in 

such a way that physical (e.g., NMR) or chemical analysis is able to detect a change in their 

structure (86,109). It is equally difficult to measure the extent of crosslinking or the length of 

intact saccharide chains between attachment points. Other characteristics, such as the actual 



 

 

mol wt of the conjugate, particularly if physical aggregation has taken place, certainly play a 

role in the way the conjugate is processed by the immune system. Finally, it should be 

emphasized that an optimal conjugation scheme must be determined for each particular 

saccharide and protein combination (25). 

2.3.7. Polysaccharide vaccines in clinical use today 

Three families of CPS vaccines are in widespread clinical use at present, whilst a fourth 

against Haemophilus influenzae type b (Hib) infection was used as a short term measure 

before the introduction of Hib conjugates. The simplest CPS vaccine, against typhoid, 

contains the so-called Vi (for virulence) antigen as its sole component, but with, typically, 

lactose present as a stabiliser. Clinical trials of the Salmonella typhiVi polysaccharide in 

Nepal indicated an efficacy of approximately 70%, which is similar to older whole cell 

vaccines against typhoid but the side effects of the polysaccharide vaccine are much less 

severe (25). Vaccines containing two (Groups A and C), three (Groups A, C and W135) or 

four meningococcal (Groups A, C, Y and W135) CPSs are licensed. In developed countries 

they are currently used for control of outbreaks, but vaccination is required by Muslims 

undertaking the Hajj pilgrimage to Mecca. These vaccines are also used to control epidemic 

Group A meningitis in sub-Saharan Africa (Anonymous 2002a).  

         The pneumococcal polysaccharide vaccine is a blend of 23 serotype-specific 

polysaccharides, and is used in developed countries to protect the elderly from pneumonia. 

There is active discussion about exactly how effective these vaccines are for that purpose: 

some recent metastudies have cast doubt upon its efficacy (26). It is known that, for genetic 

reasons, some vaccinees are incapable of generating an immune response against some of the 

serotypes (Musher et al. 1998). This appears to be linked to the very limited genetic diversity 

of the immune response to polysaccharides. The elderly population appear to produce 

antibodies of lower avidity (Romero-Steiner et al. 1999). Despite their limitations, 

polysaccharide vaccines 

are available, have moderate efficacy in appropriate populations, are generally cheap (Fleck 

2003, Plans 2002) and have an excellent safety record. Glycoconjugate vaccines against 

meningococcal Group C and against seven pneumococcal serotypes have been licensed, 



 

 

whilst glycoconjugate vaccines against other meningococcal CPSs, more pneumococcal 

serotypes and typhoid are in development 

 

2.3.8. Glyco conjugate vaccines  

The means to increase the immunogenicity of polysaccharides was first discovered by 

Avery and Goebel in 1931 (Avery and Goebel 1931) – covalent attachment of the 

polysaccharide to an appropriate protein carrier, to form a conjugate. Such conjugates 

provide T cell-dependent immunogenicity against the saccharide hapten. With the 

involvement of T cells, immunological memory is invoked, avidity maturation and isotypes 

switching occurs, to generate complement-activating antibody isotypes such as IgG1 

(Wuorimaa et al. 2001). The avidity of the antibodies elicited is much higher than those from 

polysaccharide vaccines. Crucially, since a different arm of the immune system is involved, 

that used to process protein immunogens, glycoconjugate vaccines are effective in young 

infants. Multiple immunizations are necessary to provide the required immune response, but 

not regular revaccination. In the UK the vaccination regime for Hib conjugate vaccines is at 

two, three and four months, and a booster at 18 months has recently been introduced to 

ensure long term protection. The mechanism by which glycoconjugates stimulate an immune 

response involves an initial binding of the conjugate to the surface immunoglobulin (sIg) of 

B cell with appropriate specificity for the saccharide hapten (Siber 1994). This complex is 

internalised and the carrier protein degraded by proteolytic enzymes. Suitable peptides are 

trans- ported to and displayed by MHC II complexes. The peptide- loaded MHC II complex is 

recognised by T cells, which then provide appropriate signals through direct interactions of 

cell surface proteins and through cytokine signalling processes, to induce maturation of the B 

cell into an antibody secreting plasma cell. The role of dendritic cells in the process is not yet 

defined, and the process is probably different in adults who have already been exposed to the 

saccharide immunogens – glycoconjugate vaccines typically invoke an antibody response in 

adults after a single dose (27). Since crosslinking of surface immunoglobulin molecules is 

not required, glycoconjugate vaccines can be produced from small saccharide chains. In 

many cases, the glycans attached in the conjugate are oligosaccharides prepared by 

degradation of the original polysaccharide (28). In addition, glycoconjugates can be produced 



 

 

from relatively low molecular weight oligosaccharides related to the repeating polymers (29), 

or the short glycans of LPS O-chain (Gupta et al. 1998), or low molecular weight capsular 

polysaccharides such as those expressed by Staphylococcus aureus (Fattom et al. 2004). It 

has been shown possible to make effective glycoconjugate immunogens from low molecular 

weight oligosaccharides such as those present on the lipo-oligosaccharides of pathogens such 

as a Neisseria meningitidis (Mieszala et al. 2003). The same glycoconjugate technology has 

been used to prepare immune therapeutics to slow the redevelopment of cancer follo wing 

chemotherapy, prepared from the glycan chains of glycolipids overexpressed by tumour cells 

(Musselli et al. 2001). Further discussion of cancer immunotherapeutics is outside the remit 

of this review. The first glycoconjugate vaccines against Haemophilus influenzae type b were 

licensed in the late 1980s. They arose from the academic work of Porter Anderson and of 

others (30). The Anderson approach involved reductive amination of periodate-generated 

aldehyde-terminated oligosaccharides to a carrier protein. In modern preparations, CRM197, 

a genetically toxoided variant of diphtheria toxin is used. The resulting glycoconjugate is 

approximately 90 kDa in size, is approximately 30% carbohydrate and contains an average of 

six glycan chains per carrier protein. It is similar in size and saccharide content to many 

serum proteins, and can be termed a ―neo-glycoconjugate‖ vaccine. Another approach, 

originally developed by Hilleman (Tai et al. 1987) and commercialised by Aventis Pasteur 

and GSK, involves random activation of the polysaccharide with cyanogen bromide, addition 

of linker such as 6-aminocaproic acid or adipic acid dihydrazide linker, and attachment to an 

appropriate carrier protein – typically tetanus toxoid. As there are multiple activation points 

within each polysaccharide and multiple linkage points on each carrier protein, the resulting 

conjugate is a crosslinked network of polysaccharide and protein with a molecular weight of, 

on average, 5×106  Da. Such a vaccine can be described as a ―crosslinked network‖. The 

third approach uses conjugation of size-reduced polysaccharide to LPS-depleted vesicles of 

outer membrane proteins – a ―vesicle vaccine‖. Thus there are three fundamentally different 

structures for these conjugates, which are illustrated as cartoons in Figure- 3. The immune 

responses elicited by these different structural variants are generally similar,  all are T cell-

dependent immunogens, although the vesicle-based vaccines seem to be characterized by a 

stronger antibody response following the first immunisation, a less pronounced booster effect 



 

 

on subsequent immunisations, and that the antibodies produced tend to be of lower avidity to 

than those produced by the other two structural types (Schlesinger and Granoff 1992), and 

different light chain V regions are used (Granoff et al. 1993). The time course for the 

development of an antibody response following administration of different Hib conjugate 

vaccines. Usually only two doses of the vesicle vaccines and a booster dose are given. These 

conjugate vaccines proved extremely effective at preventing disease in those countries which 

have adopted them as part of mass vaccination programmes, so that Hib meningitis, which 

had been the most common form of neonatal meningitis in developed countries, has been 

almost completely eradicated. The startling effectiveness of these vaccines stimulated a 

demand that their usage be expanded to other countries, with a WHO target of global 

coverage (Anonymous 1998). Trial introduction of Hib vaccination into some developing 

countries highlighted the fact that the disease burden due to this organism had been seriously 

underestimated. It had also become clear that glycoconjugate vaccines were an effective 

generic technology which could be used to protect against a wide variety of other pathogens, 

if the conjugates were made. 

 



 

 

 
Fig.5: Pictorial representations of different structural types of glycoconjugate vaccines.  

 
As shown in Figure 5(a) neoglycoconjugate vaccine is produced by coupling of 

oligosaccharides to an appropriate carrier protein such as CRM197. Typical CRM197 

conjugates contain an average of six chains per carrier protein. Whilst monofunctional 

activated oligosaccharides such as those produced by active ester chemistry are incapable of 

crosslinking protein, bifunctional oligosaccharides produced by periodate oxidation may lead 

to occasional crosslinks. In Figure 5 (b) a crosslinked network conjugate vaccine is showed. 

Random multiple activation of the polysaccharide and coupling to a carrier protein leads  to 

multiple crosslinks between the macromolecules to form a network of very high molecular 

weight. In Figure 5(c) a vesicle-based vaccine is shown, in which size-reduced 

polysaccharide is coupled to a LPS-depleted vesicle comprised of outer membrane proteins. 

There are multiple linkages between the saccharide chain and the ―carrier protein‖.  
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3. MATERIALS AND METHODS 

 

3.1. General 

This chapter describes materials used and outlines the experimenta l design for culture of 

S.pneumoniae and E. coli, extraction and purification of capsular polysaccharide.  

 

3.2 Glassware and Apparatus 

All glass wares (Conical flasks, Measuring cylinders, Beakers, Petri plates and Test tubes 

etc.) are purchased from Mr Vinoy of San Medico Ltd (Kolkata, India) under the name 

Borosil. The equipment and apparatus used throughout the experiment are listed in 

Annexure-I. 

 

3.3 Chemicals and Reagents  

Thimerosal (Himedia), terrific broth , formaldehyde , PBS, sodium deoxycholate , 

ethanol, Tris-MgSO 4 buffer , hydroxymethylamino-methane (Himedia) , tryptic soy broth, 

phenol-acetate solution , ribonuclease-A 0.75 mg (Sigma-Type 1-AS, R-5503), hydrochloric 

acid, methyl- Cellosolve , acidified butan-1-ol , ethylene glycol, dimethyl sulphoxide, 

dimethyl formamide, thiobarbituric acid, periodic acid, sodium arsenite, m-hydroxydiphenyl 

solution, sodium tetraborate, sulfamic acid.  

3.3. Culture Organism 

The microbes Strepococcus pneumoniae and E. coli was purchased from IMTECH 

Chandigarha. These organisms are and subsequently sub cultured in soybean casein digest 
and terrific broth respectively.  

 
 

 

 

 

 

 

 

 

 

 

 

 



 

 

Table.3:  Composition of Soybean casein digest broth(pH 7.3)for S. pneumoniae culture  

 

 

   

Table.4:Composition of Terrific Broth for Escherichia coli culture  

                             

Ingredients Grams/Litre 

Protein hydrolyzate NZ amine   12.0 

Yeast extract                                                      24.0 

Dipotassium hydrogen phosphate  9.4 

Potassium dihydrogen phosphate                       

 

2.2 

       

3.5. Extraction and purification of PS 

The extraction and subsequent purification of the PS is carried out using the following 

procedure:  

CPS was prepared from S. pneumoniae and E. coli strains (obtained from IMTECH 

Chandigarh) in 5- liter flasks containing 2 liters of tryptic soy broth and terrific broth 

respectively and incubated at 37°C for 18 to 24 h. Growth was stopped by adding 

formaldehyde to a final concentration of 0.2% (wt/vol); then the cells are separated by 

centrifugation at  4 0 c  for 15 min min at 6000rpm and washed 2 to 3 times with PBS, then  

cells were lysed with sodium deoxycholate (0.1%, wt/vol) . The mixture was centrifuged for 

15 minutes at 17,000g in the cold (4°C). The supernatant is collected and ethanol was added 

to a concentration of 25%. This material was then centrifuged for 2 hours at 17,000 xG (4°C) 

and the supernatant was collected. Ethanol, at four times the volume of the supernatant was 

added and was incubated at 4° C overnight. 

Ingredients Grams/litre 

Casein peptone 17.0 

Soy peptone 3.0 

Sodium chloride 5.0 

Dipotassium hydrogen phosphate               2.5 

Glucose 2.5 



 

 

3.6. Removal of Nucleic Acids  

The material is centrifuged for 5 minutes at 2800 xG (4° C.). The sediment is collected 

and    

resuspended in Tris-MgSO 4 buffer at one-fourth the volume originally used to extract the 

paste.  

The composition of the Tris buffer is as follows per liter of distilled water: tris-  

hydroxymethylamino-methane (Himedia) 6 gm MgSO 4 .7H 2 O 246 mg thimerosal 

(Himedia)  

50 mg. The pH is adjusted to 7.0±0.2 with concentrated hydrochloric acid.  

Deoxyribonuclease I 1.5 mg (Sigma D-0876) and ribonuclease-A 0.75 mg (Sigma-Type 1-

AS, R-5503) per 100 gm of original wet paste are added and incubated for 18 hours at 37° C.  

3.7. Removal of Proteins  

The material is further processed to remove protein components by adding an equal 

volume of phenol-acetate solution (135 ml of 10 percent (w/v) sodium acetate combined with 

454 gms of phenol). The material is then shaken for 30 minutes (4° C.), centrifuged for 15 

minutes at 17,000 xG and the aqueous phase collected. Two additional phenol extractions are 

conducted.  

The material at this stage constitutes the bulk liquid capsular polysaccharide (PS) and is 

stored at -20° C. until further processing.  

 

3.8. Sialic acid assay of polysaccharide 

Among the colorimetric methods in use for the quantification of sialic acid (N-

acetylneuraminic acid) the thiobarbituric acid test gives the highest molar extinction 

coefficient and thus is the most sensitive. However, the fading character of the chromophore 

and the necessity to extract it with acidified butan-1-ol are inconvenient. In addition the 

thiobarbituric acid assay lacks the uniformity of colour development with the different sialic 

acid analogues (N-acetyl-, N-glycollyl-neuraminic acid and their O-acetylsubstituted forms). 

We investigated the effect of the water-miscible organic solvents ethylene glycol, dimethyl 

sulphoxide, dimethyl formamide and methyl- Cellosolve on the thiobarbituric acid 

chromophore. 



 

 

3.9. Uronic acid assay. 

Uronic acid in the form of galacturonic acid is a major component of the capsular 

polysaccharide. Quantitative measurement of total uronic acid is commonly done using 

colorimetric methods after first hydrolyzing the polysaccharides in sulfuric acid and 

extrapolating from the standard glucuronic acid curve  

 

3.10. FTIR analysis of the samples. 

Finally, the presence polysaccharide was confirmed by detecting the functional groups in the 

repeating monomer unit characteristic for the polysaccharide.  
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RESULTS AND DISCUSSION 
 
 

 
 
 

 
 

 
 

 
 

 
 

 
 

 



 

 

 
 

 
 

4. RESULTS AND DISCUSSION 
 

4.1. Culture and extraction 

  The microbes Strepococcus pneumoniae and E. coli was subsequently sub cultured in 

soybean casein digest and terrific broth respectively. The growth curve are studied after 18 

hours of culture the growth are stopped by formaldehyde and centrifuged. After 

centrifugation  

The PS are extracted by adding sodium deoxycholate  

                      

Fig.6: Characteristic growth curve of Escherchia coli observed as absorbance at 660nm as a 

function of time.  

 



 

 

                     

Fig.7: Characteristic growth curve of Streptococcus pneumoniae observed as absorbance at 

660nm as a function of time. 

 

4.2 Purification of PS 

4.2.1. Bradford assay 

The Bradford assay, a colorimetric protein assay, is based on an absorbance shift in the 

dye Coomassie when the previously red form coomassie reagent changes and stabilizes into 

coomassie blue by the binding of protein. The (bound) form of the dye has an absorption 

spectrum maximum historically held to be at 595 nm. The cationic (unbound) forms are 

green or red while binding of the dye to protein stabilizes the blue anionic form. The increase 

of absorbance at 595 nm is proportional to the amount of bound dye, and thus to the amount 

(concentration) of protein present in the sample.  

 

4.2.2. Removal of nucleic acid  

Before removing the nucleic acid the solution of polysaccharide, nucleic acid and protein 

are analyzed for protein and nucleic acid content. The Bradford assay graph shows the 

concentration of protein in the solution. The graph shows the concentration of protein in 

polysaccharide solution of S. pneumoniae and E. coli as approximately 36µg and 48µg per 

ml of the extracted PS mixture respectively  

 

http://en.wikipedia.org/wiki/Colorimetric
http://en.wikipedia.org/wiki/Assay
http://en.wikipedia.org/wiki/Absorbance
http://en.wikipedia.org/wiki/Coomassie
http://en.wikipedia.org/wiki/Absorption_spectrum
http://en.wikipedia.org/wiki/Absorption_spectrum
http://en.wikipedia.org/wiki/Absorption_spectrum
http://en.wikipedia.org/wiki/Nanometre
http://en.wikipedia.org/wiki/Cation
http://en.wikipedia.org/wiki/Anion


 

 

                           

Fig.8: The concentration of protein in polysaccharide extract of Streptococcus pneumoniae 

and Escherichia coli extra plotted from BSA standard curve.  

 

4.2.3. Nucleic acid contamination 

The ratio of absorbance at 260:280 is commonly used to assess the purity of protein 

solution with respect to nucleic acid contamination, since protein ( in particular, the aro matic 

amino acid) tends to absorb at 280nm. After solution becomes nucleic acid free it is assayed 

for the nucleic acid contamination shown in table.5  

 

Table.5: Results of the nucleic acid contamination in different polysaccharide extracts of S. 

pneumoniae and E.coli detected by absorbance ratio at 260nm and 280nm.  

Wave 

length in nm  

                absorbance               260:280 

S. pneumoniae E.coli S. pneumoniae E.coli 

250 0.56 0.52  

 

      1.355 

 

 

1.619 

260 0.61 0.68 

270 0.42 0.40 

280 0.45 0.42 

290 0.34 0.38 

 



 

 

Table.6: Values of standard of nucleic acid contamination and their 260:280 absorbance ratio. 
 

% protein %nucleic acid 260:280 ratio 

100 0 0.57 

95 5 1.06 

90 10 1.32 

70 30 1.73 

 

After removal of nucleic acid the sample are further processed for nucleic acid 

contamination and the result are shown in the table.7 and compared with the standard 

260:280 ratio table 

 

 

 

 

Table 7: Results of nucleic acid contamination in the polysaccharide extracts after nucleic 

acid removal using Nucleases 

 

Wave 

length in nm  

                Absorbance             260:280 ratio 

S. pneumoniae E.coli S. pneumoniae E.coli 

250 0.251 0.214  

 

      0.5548 

 

 

0.572 

260 0.253 0.242 

270 0.372 0.325 

280 0.456 0.423 

290 0.339 0.397 

. 

 

4.2.4. Removal of protein 

The mixture when treated with tris MgSO4 and DNAse and RNAse the nucleic acid are 

dissolved and the concentration of protein subsequently increased due to DNAse and RNAse                        
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Fig.9: Increased concentration of protein after removal of nucleic acid by DNAse and RNAse  

             plotted from BSA standard curve 

The material is further processed to remove protein components by adding an equal 

volume of phenol-acetate solution (135 ml of 10 percent (w/v) sodium acetate combined with 

454 gms of phenol). The material is then shaken for 30 minutes (4° C.), centrifuged for 15 

minutes at 17,000 xG and the aqueous phase collected. Two additional phenol extractions are 

conducted. The material at this stage constitutes the bulk liquid capsular polysaccharide (PS) 

and is stored at -20° C. until further processing. 

Table.8: Concentration of protein obtained using Bradford assay after protein removal using 

phenol acetal precipitation.  

Conc.

µg 

5 5.5 6 6.5 7 7.5 8 8.5 9 9.5 10 S.p 

0.18 

E.coli 

0.22 

Abs  .039 .042 .047 .049 .053 .057 .061 .067 .07 .073 .78 .0043 .0062 

  



 

 

 

Fig.10: Concentration of protein obtained using Bradford assay after protein removal using 

phenol acetal precipitation. 

4.3. Sialic acid assay for PS  

The quantification of sialic acid (N-acetylneuraminic acid) the thiobarbituric acid test is 

the most sensitive. However, the fading character of the chromophore and the necessity to 

extract it with acidified butan-1-ol are inconvenient. In addition the thiobarbituric acid assay 

lacks the uniformity of colour development with the different sialic acid analogues (N-acetyl-

, N-glycollyl-neuraminic acid and their O-acetylsubstituted forms). We investigated the 

effect of the water-miscible organic solvents ethylene glycol, dimethyl sulphoxide, dimethyl 

formamide and methyl- Cellosolve on the thiobarbituric acid chromophore. Although both 

the Warren (1959) and Aminoff (1961) procedures are able to measure the sialic acid with an 

accuracy of ±1 %, they react only with free sialic acid, which must therefore be released by 

acid hydrolysis or neuraminidase digestion. To extend the usefulness of the test, several 

scaled-down versions of the standard Warren (1959) assay were developed (Bretscher, 1971; 

Hahn et al., 1974), which used 0.05-0.025 times the sample and reagent volumes. Although 

the fluorimetric assay of Hess & Rolde (1964) is capable of detecting submicrogram 



 

 

concentrations of sialic acid, it requires acid hydrolysis for 24h at 100°C for maximum 

efficiency. The alkaline condition is necessary to convert thiobarbituric acid-resistant O-

acetylated sialic acid variants into reactive neuraminates.  

 
4.3.1. Acid hydrolysis for the liberation of sialic acid  
 

Samples of polysaccharide with sialic acid were hydrolysed in 0.025 or 0.05M-H2S04, the 

pH being rigorously maintained between 1.6 and 2.0. Hydrolysis was performed at 80°C for 

60 minutes. 

 

4.3.2. Thiobarbituric acid assay for sialic acid 

 
Periodate/thiobarbituric acid assay is a modification of the Aminoff (1961) assay, and 

covers a range of 0.3-20µg of sialic acid. The final volume varies according to the sialic acid 

content of the test material. If sialic acid content of the test material is low(less than 2 %), the 

acid-hydrolysed material, usually 1 mg/ml, containing up to 3 µg of sialic acid in sample 

volumes of 0.2 ml, can be measured by the micro-method. The sample (0.2ml) is oxidized by 

addition of 0.05 ml of 25µM-periodic acid/62.5mM-H2SO4 at 370C for 30min. Oxidation is 

terminated by the addition of 0.05 ml of 2% (w/v) sodium arsenite/0.5M-HCI. This is 

followed by the addition of 0.1 ml of 6% (w/v) thiobarbituric acid, adjusted to pH 9.0 with 

NaOH, to give a final concentration of at least 1 %. The chromophore is developed by 

heating the reaction mixture in a boiling-water bath for 7.5min. The colour is intensified by 

the addition of an equal volume of dimethyl sulphoxide, bringing the total volume to 0.8 ml.  

 

For PS with high sialic acid content the method may be used.  As shown in Figure 11 the 

effect of organic solvents on the spectrum of thiobarbituric acid  chromophore of N-

acetylneuraminic acid was investigated using Ethylene glycol, dimethyl sulphoxide; 

dimethylformamide (water-miscible solvents); acidified butanol ('water- immiscible' solvent). 

Solvent volume exceeded that of the sample mixture by a factor of 10, because at this 

proportion butanol becomes miscible with water and does not give phase separation, 

allowing direct comparison of spectra. N-Acetylneuraminic acid (100µg) in 2ml of water 

reacted with 0.5ml of periodate, 0.5ml of arsenite and 1.0 ml of thiobarbituric acid reagents; 



 

 

O.5ml of this test mixture was added to 5ml of the respective organic solvents. The inset 

shows yield of chromophore as a function of the percentage of solvent/tota l test volume. 

Therefore, the we deduced that the volume used in spectrophotometry can be increased by 

the addition of more dimethyl sulphoxide (4ml or more; see Fig. 11), to obtain a final range 

of 1-2, µg of sialic acid/ml. In manipulations requiring several pH adjustments, as in alkaline 

de-O-acetylation, it is most convenient to use the macro-method. In this, 1.0ml batches of the 

processed material, 0.25ml of periodate, 0.25ml of arsenite, 0.5ml of thiobarbituric acid 

reagent and 2.5ml of dimethyl sulphoxide are used. The A549 and A532 were measured. Other 

steps in the procedure, including preparation of the reagents, followed the original procedure 

of Aminoff (1961).  

 

 

Figure 11 Effect of organic solvents on the spectrum of thiobarbituric acid using Ethylene 

glycol, dimethyl sulphoxide; dimethylformamide (water-miscible solvents); acidified butanol 

('water- immiscible' solvent). 



 

 

 

 

Fig.12: Calibration plot of N-acetylneuraminic acid S. pneumoniae by modified 

thiobarbituric acid micro-assay 

 

 
 

 

        
 

Fig.13: Calibration plot of N-acetylneuraminic acid of E.coli  by modified thiobarbituric acid 
micro-assay 



 

 

Fig.12 and 13 shows the calibration plot of N-acetylneuraminic acid of S. pneumoniae 

(fig.12) and E. coli (fig.13) by our modified thiobarbituric ac id micro-assay. For this 0.2ml of 

sample, 0.05ml of periodic acid, O.05ml of sodium arsenite, 0.1 ml of thiobarbituric acid 

reagent and 0.4ml of dimethyl sulphoxide were used. Each test mixture was read at the 

absorption maximum for sialic acid (549nm).  

 
4.3.3. Alkaline treatment for analytical de-O-acetylation 

 
A sample of PS in water is mixed with an equal volume of 0.1M-NaOH and kept for 

20min at room temperature (21°C). To terminate the reaction, the pH is adjusted to 1.6-2.0 

with 0.1M-H2SO4. If 0.1M-NaOH is used (0.05M final concentration), the incubation period 

is extended to 60min (see Fig. 14). After alkaline treatment, the sialic acid of the sample is 

liberated by acid hydrolysis at 80°C for 1 h. Samples of the thus processed material, 

containing approx. 1.75 or 8.8µg of sialic acid, are used in our micro- or macro-modification 

of the thiobarbituric acid assay. Alkaline treatment after the acid hydrolysis is similar, but 

requires initial neutralization of the acid and adjustment to acidic pH for the assay. 

 

 

 
Fig.14: Progress curve of de-O-acetylation of sialic acid under different alkaline conditions.  

 
 

 



 

 

4.3.4. Application of water-miscible organic solvents 

 
To circumvent the precipitation and the necessity for partitioning, and to stabilize the 

chromophore, attempts were made to use the following water miscible organic solvents: 

ethylene glycol, dimethyl sulphoxide, dimethylformamide and methyl-Cellosolve. Fig. 4 

indicates that the above solvents can substitute successfully for acidified butanol, s ince 

nearly identical absorption spectra are obtained. Methyl-Cellosolve has been applied for the 

extraction of the chromophore by Saifer & Gerstenfeld (1962); however, we found it inferior 

to the other listed solvents, because it yields some precipitate, and thus centrifugation is still 

necessary. 

 This reagent is an excellent solvent of most PS and also of the reagents used in the 

thiobarbituric acid assay. Because there is no phase separation or precipitation, no 

centrifugation is needed. Since the chromophore is distributed in the total reaction volume, 

the concentration of dye is only 50% of that obtained with an equal volume of acidified 

butanol. The inset in Fig.11 indicates that for optimal colour yield with dimethyl sulphoxide 

at least 50% of the total volume must consist of the organic solvent. However, a great 

advantage is that the colour is stable for days. This eliminates the uncertainties associated 

with the fading character of the chromophore of acidified butanol extraction and allows 

dilution with additional dimethyl sulphoxide and accurate measurement if a particular sample 

gives too high absorbance. 

 

4.3.5. Analytical aspects of alkaline de-O-acetylation by using our dimethyl 

sulphoxide/thiobarbituric acid method 

Another deficiency of the routine thiobarbituric acid spectrophotometric assay is its lack 

of uniformity of colour yield with the different sialic acids (N-acetyl-, N-glycollyl-

neuraminic acid and their O-acetyl-substituted forms) (49). The O-acetyl groups of N-acetyl-

O-acetylneuraminic acids are cleaved under very mild alkaline conditions (Neuberger & 

Ratcliffe, 1972), converting these sialic acids into their thiobarbituric acid-sensitive N-acetyl 

forms. 

Fig.14 illustrates the progress of alkaline de-O-acetylation at various concentrations of 

NaOH, followed by acid hydrolysis and thiobarbituric acid reaction. As Fig.14 indicates, 



 

 

without alkaline treatment, only 56% of the sialic acid was reactive in the thiobarbituric acid 

assay, whereas at completion of the alkaline reaction(20minfor 0.1 M-NaOH or 50min for 

0.05M-NaOH), the de-O-acetylated neuraminic acid reacted in the thiobarbituric acid assay 

with an efficiency equal to that of the N-acetyl form, resulting in 100% recovery. Total 

recovery was confirmed by the resorcinol assay, a test capable of detecting both the N-acetyl 

and the O-acetyl forms of both free and bound sialic acids. The gradual disappearance of the 

O-acetyl content on alkaline saponification was followed by the hydroxamic acid method of 

Hestrin (1949) for acetyl ester groups. The decrease of acetyl esters was proportional to the 

thiobarbituric acid-colour increment. Both reactions followed first-order kinetics. With 

0.05M-NaOH, both reactions reached one-half completion in 12.5 min. 

By using 0.05M-H2SO4 the time-curve of acid hydrolysis of PS with N-acetylneuraminic 

acid alone indicates that the amount of N-acetylneuraminic acid liberated from the PS is 

maximal within 30min and declines thereafter (Gibbons, 1963). Acid hydrolysis under the 

same conditions gave a thiobarbituric acid maximum only after 2h. Alkaline treatment with 

0.1 M-NaOH before the acid hydrolysis allows all the sialic acid to react and peak efficiency 

to be achieved in 30min, when destruction of free N-acetylneuraminic acid is still negligible. 

Nearly complete recovery of all sialic acids was confirmed by the resorcinol method. 

Alkaline treatment after acid hydrolysis also yielded the same alkaline increment, suggesting 

that the acidhydrolysed fraction already contained the non chromogenic O-acetylneuraminic 

acid in a free form that became fully chromogenic (de-O-acetylated) on the subsequent 

alkaline treatment. Alkaline treatment preceding acid hydrolysis de-O-acetylates in situ and 

provides more N-acetylneuraminic acid for acid hydrolysis and direct thiobarbituric acid 

reaction. Thus the 'alkali' curves in Fig. 8 are a composite of release of N-acetylneuraminic 

acid, release of the O-acetylated (alkaline post-treatment) or de-Oacetylated (alkaline pre-

treatment) neuraminic acid and of decay. Results with PS under identical conditions 

indicated that liberation of O-acetylneuraminic acid by acid hydrolysis is not universal. PS 

also yielded an abnormal hydrolysis curve, which could be corrected by preceding alkaline 

treatment, probably removing the O-acetyl group while the sialic acid is still PS bound. 

However, alkaline treatment after acid hydrolysis did not give the increment. This aberrant 



 

 

behaviour suggests that the O-acetyl derivative of neuraminic acid in PS is not liberated by 

acid hydrolysis. 

In contrast with our short and mild alkaline treatment, de-O-acetylation for extended time or 

at elevated temperature  may lead to a false thiobarbituric acid-positive reaction, unrelated to 

sialic acid. Gibbons (1963) used 0.05M-Na2CO3 at 100°C for 80min. Under these harsher 

conditions alkaline treatment produces isosaccharinic acid from 1-4- linked aldoses (such as 

lactose or maltose) if present. These, like sialic acid, yield formylpyruvic acid on periodate 

oxidation and give the same chromophore (at 549 nm) with thiobarbituric acid (Barkeretal., 

1967). However, under the mild alkaline conditions used in our tests, these sugars did not 

give the red chromophore and could not lead to false results.  

 

 

Fig.15: Standard curve of sialic acid showing concentration of sialic acid. The final 
concentrations of sialic acid in the sample are 7.2µg and 5.8µg for S. pneumoniae and E. coli 

respectively.   
 

 

4.4. Determination of uronic acid 



 

 

Uronic acid in the form of galacturonic acid is a major component of the capsular  

polysaccharide. Quantitative measurement of total uronic acid is commonly done using 

colorimetric methods after first hydrolyzing the polysaccharides in sulfuric acid (Ahmed and 

Labavitch, 1977; Selvendran et al., 1979). However, there is a major problem with the older 

methods of determining uronic acid content. Neutral sugars and their degradation products 

from acid hydrolysis can interfere in the colorimetric determination of uronic acids. The 

procedure developed by Filisetti-Cozzi and Carpita (1991) solves the problem, allowing 

uronic acids to be determined in up to ten times their weight of neutral sugars.  

 

4.4.1. Hydrolyze polysaccharide 

Add 1 ml concentrated sulfuric acid to the tube containing PS and cap. Set up a reagent 

control tube containing only 1 ml concentrated sulfuric acid and carry this through all the 

procedures. Place the tubes in an ice bath and stir the contents for 5 min.  Add another 1 ml 

concentrated sulfuric acid to the tube and stir on ice for 5 min. Then add 0.5 ml water and stir 

for 5 min on ice. 

Add another 0.5 ml water and stir for 5 min on ice. Dilute the contents of each tube with 

water to 10 ml in a 10-ml volumetric flask. Transfer to a 15-ml centrifuge tube and centrifuge 

for 10 min at 2000 × g, room temperature, to pellet any unhydrolyzed material.  

 

4.4.2. Perform colorimetric assay  

Set up three 15-ml borosilicate glass tubes. For the reagent control, set up two tubes. 

Take aliquots of 400 µl from each hydrolysate supernatant and reagent control and place in 

the respective tubes. Add 40 µl of 4 M sulfamic acid/potassium sulfamate solution, pH 1.6, to 

all the tubes. Vortex contents of the tubes. Then add 2.4 ml of 75 mM sodium tetraborate in 

sulfuric acid solution to all the tubes. Vortex vigorously. Place the tubes in a 100°C water 

bath (boiling) for 20 min, then cool by plunging tubes into an ice bath for 10 min. Add 80 μl 

m-hydroxydiphenyl solution to 2 tubes of each sample and the 2 reagent control tubes. Add 

to the third tube of each sample 80 μl of 0.5% NaOH (this is the sample control). Vortex the 

contents of the tubes three times; ensure they are mixed well. Between 10 min and 1 hr after 

complete mixture, read the absorbances at 525 nm against the reagent control. Subtract the 

values for the sample controls from their corresponding sample absorbances 



 

 

 

4.4.3. D-Galacturonic acid standards 

Make up a stock standard solution and generate a standard curve from this. Prepare a 

stock solution of 20 mg/ml of galacturonic acid by weighing 20 mg of the dried D-

galacturonic acid into a vial and adding 1 ml of water to dissolve (this stock solution can be 

stored frozen). Then prepare a 200 µg/ml solution by taking 100 µl of the stock solution and 

adding 9900 µl  of water. Use this solution to prepare the dilution series in Table  

 

 

 

 

 

Table.9: Concentration and absorbance table of standard glucoronic acid and test samples 

showing the concentration of uronic acid in the polysaccharide extract of Streptococcus 

pneumoniae and Escherichia coli 

Concentratio
n of 
galacturonic 

acid (µ 
g/400 µl) 

Volume of 
200 µg/ml 
galacturonic 

acid solution 
(µl) 

Volume 
of water  
(µl) 

Absorb
ance at 
525 nm 

Absorbance of test 
sample 

 

 

Concentration 
of uronic acid in 
µg 

S.pneumo
niae 

E.coli  s.pneu
moniae 

E. 
coli 

5.0   125 1875 0.14  

 
     0.2 

 

 
  0.26 

 

 
    12 
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10.0  250 1750 0.18 

15.0  375 1625 0.23 

20.0  500 1500 0.27 

30.0  750 1250 0.36 

40.0  1000 1000 0.43 
 
 

 



 

 

 
 
Fig.16: Standard curve of glucoronic acid showing concentration of uronic acid in the 
samples of Streptococcus pneumoniae and Escherichia coli polysaccharide.  

 

 

4.4.4. m-Hydroxydiphenyl solution 

 

Weigh out 0.15 g of 3-phenylphenol into a 100-ml volumetric flask, dissolve in <100 ml 

of 0.5% (w/v) sodium hydroxide (see recipe) then adjust the final volume to 100 ml with 

0.5% sodium hydroxide. Store in a dark bottle (or wrap the bottle in aluminum foil) at 4°C. 

The solution is stable for 1 month 

 

4.4.5. Sodium hydroxide, 5% (w/v) 

 

Place 0.5 g of NaOH into a 100-ml volumetric flask. Add 20 ml water to dissolve the 

pellets and then adjust the volume to 100 ml with water. The reagent was prepared freshly.  

 

4.4.6. Sodium tetraborate solution, 75 mM 

 

To prepare 100 ml of 75 mM solution, weigh out 1.501 g of sodium tetraborate (mol. wt., 

201.2) into a 100-ml volumetric flask and add ∼90 ml concentrated sulfuric acid, and place a 

stopper in the flask. Stir until dissolved then adjust the final volume to 100 ml with sulfuric 

acid. 



 

 

 

4.4.7. Sulfamic acid/potassium sulfamate solution, 4 M (pH 1.6) 

 

Weigh out 38.84 g of sulfamic acid (mol. wt.,  97.09) and stir vigorously in 50 ml of 

water. Add saturated KOH dropwise until the sulfamic acid has dissolved. Allow the 

sulfamic acid solution to cool and then carefully adjust the pH to 1.6 with saturated KOH. 

Adjust the volume to 100 ml with water to give a final concentration of 4 M. Store at room 

temperature 

 

 

4.5. FTIR analysis 
 

It is an acronym of Fourier Transfer Infrared spectroscopy. It may also called Infrared 

spectroscopy which is a chemically- specific analysis used to identify chemical compound 

and substituent groups. 

The application of traditional infrared spectroscopy to low concentration measurements, 

such as ambient air measurements, is limited by several factors. First is the significant 

presence of water vapour, CO2 and methane, which strongly absorb in many regions of the 

infrared (IR) spectrum. Consequently, the spectral regions that can easily be used to search 

for pollutants are limited to 760-1300cm-1, 2000-2230 cm-1, and 2390-3000 cm-1. Another 

problem is that the sensitivity is not enough to detect very small concentrations in the sub-

ppm level. Finally, spectral analysis was difficult since subtraction of background spectra had 

to be carried out manually.  

The degree of absorption/transmission of infrared radiation at each wavelength is 

quantitatively related to the number of absorbing/transmitting molecules in the sample . 

Since there is a linear relationship between the absorbance/transmittance and the number of 

absorbing/transmitting  molecules, multicomponent quantitative analysis of  mixtures is 

feasible. 
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Fig. 17: FTIR spectroscopy analysis of Streptococcus pneumoniae polysaccharide 
extracted showing the transmittance trough at different wave number.  
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Fig. 18: FTIR spectroscopy analysis of Escherichia coli polysaccharide extracted 
showing the transmittance trough at different wave number 

 
The FTIR results of S. pneumoniae showed in figure, has transmittance at wave numbers  

3585, 3545 cm−1 for O – H stretch of alcohol, 3337 cm−1 N - H of amines, 1638, 1605 

cm−1 of carboxylate and 1200–850 cm−1 of carbohydrate which is characteristic of 

capsular polysaccharides to be extracted in this work.  

Also, the FTIR results of E. coli showed in figure. 17, has transmittance at wave numbers 

3632,3619cm -1 for O – H stretch1596 cm-1 for carboxylate, 1498,1473 for N – O stretch 

and 850 – 1200cm-1 for carbohydrate. 

 

4.6. Discussion  
Streptococcus pneumoniae and Escherichia coli are responsible for various 

invasive and non invasive diseases in the humans especially in children of age group of 

two to eight. The main antigenic part that causes the pathogenicity is the capsular 

polysaccharide. The large structure of polysaccharide hides the cell surface antigen and 

also protects the bacteria from phagocytosis by macrophages. This polysaccharide is T- 

cell independent so unable to activate the B–cell for antibody against it (36).  



 

 

The structure of this bacterial antigen is similar to some part of the brain due to 

which the host immunity is unable to detect the antigen as it considers it as a part of the 

human body. So to activate the antigens and make it T-cell dependent, it has to be 

conjugated with a carrier protein such as tetanus toxoid which has a number of activating 

sites (37). 

A number of methods are employed for the extraction and purification of capsular 

polysaccharide from different bacteria. In this thesis work the extraction and purification 

of capsular polysaccharides from Streptococcus pneumoniae and Escherichia coli was 

done using simple methods so that the preparation of conjugate vaccines becomes less 

tedious and cost effective. 

In this method the extracted polysaccharides were purified by removing the nucleic 

acid using Nucleases and protein content by precipitation of the proteins present. The 

final concentration of nucleic acid contamination was determined by 260:280 absorbance 

ratios and it was found that no nucleic acid contamination was present in both the 

extracts. In the following step of protein removal by precipitation it was found that the 

protein contamination in the final sample was negligible. Finally, the presence of the 

specific polysaccharides was confirmed by sialic acid assay and uronic acid assay which 

showed the presence of polysaccharide at a concentration of 12 and 18µg for 

Streptococcus pneumoniae and Escherichia coli respectively. 

Further FTIR analysis was used in this work for the confirmation of the extracted 

compound and the respective transmittance at the specific wave number characteristic for 

the functional groups documented in the composition of the polysaccharides of the two 

strains was confirmed to be present in the compound extracted through this thesis work.  

Below the repeating unit in case of S. pneumoniae and E.coli polysaccharide and the 

respective molecular weight of the compounds which form the repeating units is shown 

(62). 

              [Glucose—Glucosamine----Galactose]---[Glucose----Glucosamine-----Galactose]                       

                                 Galactose                                            Galactose 

                                  Sialic acid 



 

 

Chemical Compound Molecular Weight 

Glucose 180 

Glucosamine 179.17 

Galactose 180.16 

Sialic acid 309.27 

Acetamido-2deoxy D 

mannose 

221.21 

D-Glucuronic acid 194.14 

   

Using the above values we got the total molecular weight of the repeating unit in the 

polysaccharides as 1748.25. The fraction of sialic acid present in one repeating unit was 

found to be 0.1769 (309.27/1748.25). As earlier shown, the amount of sialic acid 

quantified in the final obtained polysaccharide was 7.2µg and 5.8 µg in case of S. 

pneumoniae and E.coli respectively (Fig.15). By simple mathematical calculation one can 

find out the amount of total polysaccharide from the amount of sialic acid present in the 

extract.  

 

Total amount of Polysaccharide: 

In case of S. pneumoniae = 7.2/0.1769 = 40.70 µg/ml  

In case of E.coli = 5.8/0.1769 = 32.78 µg/ml  

 

Similarly, from the amount of glucoronic acid one can calculate the amount of total 

polysaccharide in the extract.  

 

The repeat sequence of the poly saccharide in the sample where glucoronic acid is present 

is: 

D-Glucos -----Galactose-----D-Glucuronic acid----Acetamido-2deoxy D mannose 

D-Glucose 



 

 

Using the above values we got the total molecular weight of above shown 

repeating unit in the polysaccharides as 1135.67. The fraction of glucuronic acid present 

in one repeating unit was found to be 0.1709 (194.14/1135.67). As earlier shown, the 

amount of glucuronic acid quantified in the final obtained polysaccharide was 12µg and 

18µg in case of S. pneumoniae and E.coli respectively (Table.9). By similar 

mathematical calculation the total polysaccharide from the amount of glucuronic acid 

present in the extract is thus calculated. 

 

Total amount of Polysaccharide: 

In case of S. pneumoniae = 122/0.1709 = 70.22 µg/ml  

In case of E.coli = 18/0.1709 = 105 µg/ml  

Therefore we report that the concentration of polysaccharides in the final purified 

extract of S. pneumoniae and E.coli respectively is much higher than the amount of 

protein contamination quantified (0.18 µg/ml and 0.22 µg/ml respectively, (Table.8).  

 

Results indicate that the polysaccharide of interest is extracted in sufficient 

amount and can be considered enough for proceeding toward conjugate vaccine 

preparation after due lyophilization or concentration of the polysaccharide.  
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CONCLUSION 
 

 

 

 

 

 

 

 
 

 

 



 

 

5. CONCLUSION 
 

 

In conclusion, extraction and purification of capsular polysaccharide from 

Streptococcus pneumoniae and Escherichia coli was accomplished successfully. The 

polysaccharide was quantified using sialic acid and uronic acid assays. A qualitative 

analysis using Infrared spectroscopy confirmed the presence of polysaccharide in the 

sample. This method would be useful for obtaining antigens from the capsule of any 

organism that has capsular polysaccharide.  The polysaccharide prepared using this 

method is expected to be avirulent; however, a successful conjugate preparation using 

multivalent protein will enable the polysaccharide to increase its antigenicity.  
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ANNEXURE - I 

 

 

LIST OF EQUIPMENTS USED 

 

Instruments  Make 

Analytical Balance Afcoset ER-200A 

pH meter Systronics 

Ultra Low Temperature  

freezer 

Remi-RQFP 265 

Ultra pure water system Millipore 

Spectrophotometer(UV/Vis) Systronics 2203 

Double beam 

Refrigerator Whirlpool 

Ultra Centrifuge Remi-C24BL 

Water bath LAUDA Ecoline-

staredition RE-104 

Vortex Mixer Genie 

Magnetic stirrer Spint 

 

 


