
1

Slicing of Object-Oriented Software

Thesis submitted in partial fulfillment of

the requirements for the degree

Of

Bachelor of Technology

In

Computer Science and Engineering

By

Biswaranjan Panda

Roll No: 10606020

Sagardeep Mahapatra

Roll No: 10606033

Ved Prakash

Roll No: 10506053

Under the Guidance of

Prof. D. P. Mohapatra

May, 2010

2

Department of Computer Science and Engineering

National Institute of Technology Rourkela

Rourkela, 769008

Certificate

This is to certify that the project entitled “Slicing of object-oriented software”, submitted by

Biswaranjan Panda, Sagardeep Mahapatra and Ved Prakash, B.TECH students in the

Department of Computer Science and Engineering, National Institute of Technology,

Rourkela, India, in the partial fulfillment for the award of the degree of Bachelor of

Technology, is a record of an original research work carried out by them under our

supervision and guidance. The thesis fulfills all requirements as per the regulations of this

Institute and in our opinion has reached the standard needed for submission. Neither this

thesis nor any part of it has been submitted for any degree or academic award elsewhere.

Prof. D. P. Mohapatra

Department of Computer Science and Engineering

National Institute of Technology Rourkela

India – 769008

3

Acknowledgement

On the submission of our Thesis report, we would like to extend our gratitude and sincere

thanks to our supervisor Dr. D.P. Mohapatra, for his constant motivation and support during

the course of our work in the last one year. We truly appreciate and value his esteemed

guidance and encouragement from the beginning to the end of this thesis. He has been our

source of inspiration throughout the thesis work and without his invaluable advice and

assistance it would not have been possible for us to complete this thesis.

We would also like to give our most sincere thanks to Dr. Rajib Mall, Professor, Department

of Computer Science, IIT Kharagpur for his invaluable guidance and advice on the topic. A

special acknowledgement goes to Mr Swarnendu Biswas, a MS scholar at IIT Kharagpur and

Mrs. Mitrabinda Ray, a PhD scholar for her guidance throughout the thesis. Finally, our

sincere thanks to Prof. B. Majhi for motivating us to perform better and better and providing

us with all the resources required to carry out the thesis.

Biswaranjan Panda

Sagardeep Mahapatra

Ved Prakash

4

Abstract

Software maintenance activities generally account for more than one third of time during the

software development cycle. It has been found out that certain regions of a program can cause

more damage than other regions, if they contain bugs. In order to find these high-risk areas,

we use slicing to obtain a static backward slice of a program. Our project deals with the

implementation of different intermediate graphical representations for an input source

program such as the Control Dependence Graph, the Program Dependence Graph, the Class

Dependence Graph and the System Dependence Graph.

Once a graphical representation of an input program is obtained, slicing is performed on the

program using its System Dependence Graph and a two pass graph reachability algorithm

proposed by Horwitz, to obtain a static backward slice.

5

TABLE OF CONTENTS

1 Introduction 09

1.1 Motivation for our project 10

1.2 Objective of our project 10

1.3 Organization of the project 10

2 Basic Concepts 12

2.1 Program Representation 12

2.1.1 Control flow graph 12

2.1.2 Data dependence graph 13

Reaching definition 13

Computation of reaching definition 14

2.1.3 Control Dependence graph 15

Construction of the post-dominator tree 16

2.1.4 Program Dependence Graph 16

2.1.5 System Dependence Graph 17

2.1.6 Extended System Dependence Graph 18

2.2 Slicing 19

2.2.1 Slicing Criterion 19

2.2.2 Types of slicing 19

Static and dynamic slicing 19

Forward and backward slicing 20

2.2.3 Difference between static and dynamic slicing 20

2.2.4 Difference between forward and backward slicing 21

3 Related work 22

4 Slicing of object-oriented programs 24

4.1 Construction of the intermediate representation 24

4.1.1 Algorithm for construction of CFG 24

4.1.2 Algorithm for computation of DDG 25

4.1.3 Algorithm for construction of CDG 25

4.1.4 Algorithm for construction of ClDG 25

4.1.5 Algorithm for construction of SDG 26

4.2 Two-pass backward slicing algorithm 27

6

5 Implementation and results 28

5.1 Tools used 28

5.1.1 Eclipse 28

5.1.2 ANTLR 29

5.1.3 Graphviz 29

5.2 Data Structures used 29

5.3 Screenshots of implementation 30

5.3.1 Implementation of CFG 33

5.3.2 Implementation of PDG 33

5.3.3 Implementation of SDG 35

5.3.4 Implementation of ClDG 35

5.4 Result of the graph reachability algorithm 37

5.5 Graph of the implementation 37

6 Conclusion and future work 38

6.1 Conclusion 38

6.2 Future Work 38

References

7

List of Abbreviations

 ANTLR : Another tool for language recognition

CFG : Control flow graph

DDG : Data dependence graph

CDG : Control dependence graph

PDG: Program dependence graph

SDG: System dependence fgraph

CLDG : Class dependence graph

ESDG : Extended system dependence graph

sdom : semi-dominator

idom : immediate dominator

8

List of figures and tables

Figure 2.1: Control flow graph of a sample program 12

Figure 2.2: Data dependence graph for a sample program 13

Figure 2.3: Computation of reaching definition for the program in figure 2.2 14

Figure 2.4: Corresponding post-dominator tree for the control flow graph 16

Figure 2.5: Corresponding program dependence graph for the sample program 17

Figure 2.6: A sample program 20

Figure 5.1: Class node 30

Figure 5.2: Class func_call 30

Figure 5.3: A sample program 31

Figure 5.4: A sample program 31

Figure 5.5: A sample program 32

Figure 5.6: A sample program 32

Figure 5.7: Screenshot of implementation of program in Figure 5.3 33

Figure 5.8: Screenshot of implementation of program in Figure 5.4 34

Figure 5.9: Screenshot of implementation of SDG of Example 5.5 35

Figure 5.10: Screenshot of implementation of ClDG of Example 5.6 36

Table 5.11: Table showing average slicing time in the two pass graph

 reachability algorithm for a number of programs with different 37

 number of lines in the source code

Figure 5.12: Graph of the slicing algorithm 37

9

Chapter 1

Introduction

Most of the transactions performed in today‟s world use different types of software solutions.

These software solutions are becoming quite complex and their quality have been primarily

bounded by the cost and time factors. Also, the focus of building software has seen a

dramatic drift from using traditional procedural techniques to object-oriented techniques.

Object oriented technique, no doubt modularizes the program, but at the same time, it is very

complex and difficult to debug and test for errors. It has been found that almost 50% of the

softwares built today go unused because of their inability to meet the above mentioned

constraints, which in turn results in a huge loss of time, money and manpower. Software

testing activities are hence very essential for the construction of reliable software.

Various methods have been developed to test softwares for errors. These methods apply

different approaches toward software testing which use various intermediate forms.

Intermediate graph representation of a program is one such convenient representation. It

includes various graphs like control flow graph, data dependence graph, control dependence

graph, program dependence graph, system dependence graph, etc to represent the program

structure and the relations between different program constructs. This representation can be

further used in different areas of software engineering that includes activities like slicing,

program debugging, software testing, regression testing, etc.

Slicing is an important technique which has a wide range of applications in software testing.

Basically, slicing is a technique for simplifying programs by focusing on selected aspects of

semantics. It is method of program analysis which is used to extract a set of statements in a

program which is relevant for a particular computation. This set of statements is called a

program slice. Various type of slicing strategies exist such as forward slicing, backward

slicing, static slicing, dynamic slicing, etc. These different slicing techniques have different

application domains such as software maintenance, software optimization, program analysis,

information flow control, etc.

10

1.1 Motivation for our project

Usually testing of the software products is carried out in various levels to identify all defects

existing in the software product. However, for most practical systems, even after

satisfactorily carrying out the testing process, we cannot guarantee that a software product is

error free. This situation is caused by the fact that input data domain of most software

products is very large. Hence, it is practically impossible to test the software exhaustively

with all the sample test cases. It is quite obvious that not all the lines in the source code

contribute to the error at a particular location. We therefore need not consider the whole

source code in the testing process and only focus on those areas that are more likely to have

caused the error. In order to find these high-risk areas, we need to construct an intermediate

representation of a sample input program called as the dependence graph, slice the graph

obtained and distribute the testing efforts accordingly.

1.2 Objective of our project

Our objective is to construct the intermediate representation of a sample input program and

use it to find a static backward slice of any statement in the program.

1.3 Organization of the project

The rest of the project is organized as follows:

Chapter 2

We present the basic concepts related to the intermediate representation of a graph, like the

control flow graph, data dependence graph, control dependence graph, program dependence

graph, system dependence graph and extended system dependence graph that is used to

represent the input program. We also cover some basic concepts of slicing and its different

types.

Chapter 3

In this chapter we review some of the related work done in this area.

11

Chapter 4

In this chapter, we present the different proposed algorithms that are required for the

construction of the intermediate graph representation along with our algorithm to compute the

system dependence graph. We also discuss a two-pass slicing algorithm proposed by Larsen

and Harrold [2] to compute the static backward slice of a statement in an object oriented

program.

Chapter 5

In this chapter we give an overview about Eclipse, ANTLR and Graphviz, the tools that we

have used in our project and also present the implementation details of our project which are

concerned with the construction of the intermediate representation and the static backward

slicing of a program and finally discuss the results.

Chapter 6

We conclude the project and discuss the future work that can be done in this area.

12

Chapter 2

Basic Concepts

In this chapter we discuss the basic concepts and terminologies associated to our work and

that are used in later sections.

2.1 Program Representation

In this section, we study about the intermediate representation of a sample program and the

methods followed to construct this representation.

2.1.1 Control Flow Graph

A Control Flow Graph is a directed graph with a unique entry node START and a unique exit

node STOP, where each node is a statement in the program. There is a directed edge from

node P to node Q in the control flow graph if control may flow from block P directly to block

Q. Edges in a CFG are of two types. An edge is called a T edge, if control flows along that

edge when the predicate at the origin evaluate to true and vice versa [15].

Figure 2.1: Control flow graph for the sample program

13

2.1.2 Data Dependence Graph

 Data dependence over a control flow graph exists from node X to Y if the following

conditions are satisfied [15]

 Node X defines variable, say V

 Node Y uses the variable V for computation

 Control can flow from X to Y and along the flow path and there should not be any

intervening definition of the variable V.

If node Y is data dependent on node X, then X is called the reaching definition of Y.

Figure 2.2: Data dependence graph for the sample program

Reaching Definition

If in a program, node Y is data dependent on node X, i.e. a variable defined at X is used at Y,

then, X is said to be the reaching definition of Y. For computation of reaching definition,

14

every node is assigned a unique label, which is usually a number. We also use define some

terminologies that will be used for the computation of the reaching definitions [15].

Computation of Reaching Definition [15]

Different sets are needed for the computing reaching definition as mentioned by Steindl [15].

Definition 2.1 Def-set: The definition set of variable x contains as its elements the labels of

all definitions that define x.

Definition 2.2 Gen-set: The gen-set of statement S contains as its elements the labels of all

definitions that are generated by S.

Definition 2.3 kill-set: The kill-set of statement S contains as its elements the labels of all

definitions that are killed by S.

Definition 2.4 in-set: The in-set of statement S contains as its elements the labels of all

definitions that reach S.

Definition 2.5 out-set: The out-set contains as its elements the labels of all definitions that

leave S.

Figure 2.3: Computation of reaching definition for the program in Figure 2.2

15

2.1.3 Control Dependence Graph

Before presenting the concepts of control dependence, it is essential to understand the

concepts of post-dominance, immediate post-dominator and post-dominator tree. We discuss

each of them one by one.

Definition 2.6 Post-dominator: In a directed graph with exit node STOP and beginning node

START, we say that a node P in the graph post-dominates another node Q in the same graph,

if and only if all paths from Q to STOP has to pass through P. We call P, a post-dominator of

Q [15].

Definition 2.7 Immediate Post-dominator: We call P the immediate post-dominator of Q, if

and only if P is the post-dominator of Q, P is not equal to Q, and there is no other node R in

the graph, such that P is a post-dominator of R and that is itself a post-dominator of Q [15].

Definition 2.8 Post-dominator tree: The post-dominator tree of a directed graph G with exit

node STOP is the tree that consists of the nodes of G, has the root STOP, and has an edge

between nodes P and Q if P immediately post-dominates Q. To construct the post-dominator

tree, we need to find out the immediate post-dominators of each node in the control flow

graph. This has been illustrated taking one simple example. Following is a CFG and its

corresponding post-dominator tree has been shown [15].

16

Figure 2.4: Corresponding post-dominator tree for the control flow graph

 Construction of the post-dominator tree

 To construct the post-dominator tree, we need to find out the immediate post-

dominators of each node in the control flow graph.

 Finding out the post-dominators in the control flow graph is same as finding out the

dominators in the reverse control flow graph.

 Immediate dominator of each node is determined by using the concept of semi-

dominators.

2.1.4 Program dependence graph

The program dependence graph G [4, 13, 14] of a program P is the graph G = (N, E), where

each node n belonging to N represents a statement of the program P. The graph contains two

kinds of directed edges: control dependence edges and data dependence edges. A control (or

data) dependence edges (m, n) indicates that n is control (or data) dependent on m. Note that

the PDG of a program P is the union of a pair of graphs: Data dependence graph and control

flow graph of P [6].

17

2.1.5 System dependence graph

Figure 2.5: Corresponding program dependence graph for the sample program

The PDG cannot handle procedure calls. Horwitz et al [4, 13, 14] introduced the System

Dependence Graph (SDG) representation which models the main program together with all

associated procedures. SDG is actually a collection of PDGs. For programs without

procedure calls, the PDGs and SDGs are similar. For construction of an SDG, first the PDGs

of all the procedures are constructed individually and then the SDG is constructed by

integrating all the PDGs [6].

SDG takes the help of different types of nodes to model procedure calls and parameter

passing [2]. They include the following:

18

 Procedure call statements are represented by call site nodes in the program.

 Actual-in and actual-out nodes represent the input and output parameters at call site.

 They are control dependent on the call-site nodes.

 Formal-in and formal-out nodes represent the input and output parameters at called

procedures. They are control dependent on procedure‟s entry node.

Different edges are used to link the above nodes in a system dependence graph as proposed

by Larsen and Harrold [2]. They are as follows:

 Call edges link the call-site nodes with the procedure entry nodes.

 Parameter-in edges link the actual-in nodes with the formal-in nodes.

 Parameter-out edges link the formal-out nodes with the actual-out nodes.

 Summary edges are added to represent the transitive dependencies that arise due to

procedure calls.

The SDG can be extended further to implement object-oriented features. The graph that we

obtain is called the extended system dependence graph and has been discussed below.

2.1.6 Extended system dependence graph

The extended system dependence graph is used to represent the programs with object

oriented features that include data hiding, inheritance, polymorphism, etc. It is also called as a

Class dependence graph (CLDG) [2].

A CLDG captures the control and data dependence relationships that can be determined about

a class without the knowledge of calling environments. Each method in a CLDG is

represented by a procedure dependence graph. Each method has a method entry vertex that

represents the entry into the method. A CLDG also contains a class entry vertex that

determines the entry into the class. The class entry vertex is connected to the method entry

vertex for each method in the class by a class member edge. Class entry vertices and class

member edges let us quickly access the method information when a class is combined with

another class or system [2].

In a CLDG, each method entry is expanded by adding formal-in and formal-out vertices.

Formal-in vertices are used for each formal parameter that is added and formal-out vertices

for each formal reference parameter that is modified by the method. Additionally, formal-in

19

and formal-out vertices are also added for global variables referenced in the method. Since

the class‟s instance variables are accessible to all methods in the class, we treat them as

global to methods in the class and we add formal-in and formal-out vertices for all reference

variables referenced in the method. However, the exception to this representation for instance

variable is that formal-in vertices for the instance variables in the class constructor and

formal-out vertices for the instance variables in the class destructor are omitted [2].

2.2 Slicing

Program slicing is a method of program analysis which is used to extract a set of statements

in a program which is relevant for a particular computation. This set of statements is called a

program slice. It therefore, computes the statements which affect the value of a variable at a

particular point in the program. Program slicing was originally introduced by Mark Weiser as

“a method for automatically decomposing programs by analyzing their data flow and control

flow starting from a subset of a program‟s behavior, slicing reduces that program to a

minimal form that still produces that behavior. The reduced program called a slice is an

independent program guaranteed to represent faithfully the original program within the

domain of the specified subset of the behavior.” The input to the program slicing algorithm is

usually an intermediate representation of the sample program that is to be tested, and the

output is program slice [15].

2.2.1 Slicing criterion

Slicing is always carried out or computed with reference to a slicing criterion. The slicing

criterion is represented as <S, V>. S is the statement whose slice is to be computed and V is

the variable that has been used at S [15].

2.2.2 Types of slicing

Program slicing is broadly categorized into the following types.

Static and dynamic slicing

In static slicing, the input program is statically analyzed to compute the program slice i.e.

static slicing method considers all possible input values while computing program slices [6,

20

7, 8]. The input values are not restricted in any manner and therefore predicates may evaluate

to either true or false. Since all possible input values are considered, it is a conservative

method for computation of program slices. Dynamic slicing is a method for computing a

program slice with respect to a particular sequence of execution of a program [9, 10, 11, 12].

Since only a particular execution sequence is considered, the predicate value may either

evaluate to true or false. Therefore, only the actual slices are computed for a particular input

[15].

Forward and backward slicing

This type of slicing computes the program slice that consists of statements in a program

which are affected by the value of a variable at a particular statement in the program. So, if

<S, V> is the slicing criterion, then the slice for <S, V> is the set of all the statements that are

potentially affected by the value of the variable V at statement S. This type of slicing

computes the program slice that consists of statements in a program which affects the value

of a variable at a particular statement in the program. So, if <S, V> is the slicing criterion,

then the slice for <S, V> is the set of all the statements that potentially affect the value of the

variable V at statement S [15].

2.2.3 Difference between static and dynamic slicing

Consider the following example.

 s1: main() {

 s2: int x = 10;

 s3: int y = 20;

 s4: x = x + y;

 s5: if (x>y) {

 s6: x = x – y;

 s7: y = 2 * y;

 s8: }

 s9: else {

 s10: y = y / 2;

 s11: }

 s12: }

Figure 2.6: A sample program

21

Let us consider the statement s5. The static slice of s5 consists of s6, s7 and s10. But, the

dynamic slice of s5 will consist of s6 and s7 or s10 only depending on whether s5 evaluates

to true or false since a dynamic slice is always computed with respect to a particular

execution of the program. Consider the above case and assume the value of x to be 10 and the

value of y to be 5. Now, since x is greater than y, during the execution of the statement s5

will evaluate to true and hence the slice of s5 will compute of statements s6 and s7 [15].

2.2.4 Difference between forward and backward slicing

Taking the same example of 2.5, we can find the forward slice of s6 to consist of s7, s8 and

s11 (if static slicing is used), because these are the statements that can be potentially affected

by s6. Similarly, the backward slice of s6 consists of s2, s3 and s4 because they determine the

value of s6 [15].

22

Chapter 3

Related Work

Many theories have been proposed regarding the intermediate representation and also many

ways have been defined to obtain the representation. In 1987, Ferrante [4] proposed an

algorithm for the construction of the control dependence graph by using the control flow

graph and the post-dominator tree for an input program. In 1979, Lengauer and Tarjan [1]

introduced a fast algorithm to determine the dominator tree of the control flow graph of a

program. Their algorithm to find the dominator tree used the concept of immediate

dominators and semi-dominators for every node. Computation of semi-dominator is used as

an intermediary step in the immediate dominator computation. They also introduced several

properties of semi-dominators and immediate dominators.

Different theories have been proposed for slicing as well. In 1982, Weiser [8] defined slice

with respect to a slicing criterion <S, V>, where S is a program point and V is subset of

variables at that point. The slices he computed are primarily executable programs and were

obtained by removing zero or more statements from the original program. In his proposed

algorithm he used data flow analysis of the control flow graph of the program to compute

inter-procedural and intra-procedural slices.

Another definition of the slicing criterion was given by Ottenstein and Ottenstein [18] that

defined a slicing criterion as <s, v> where s is a program point and v is a variable defined at

v. They used a graph reachability algorithm to compute a static slice which consisted of the

statements that affect the variable v at the program point s.

 Horwitz et al [2] constructed an inter-procedural program representation called the system

dependence graph and came up with the two pass static backward slicing algorithm to find

out the static backward slice of a statement in an object-oriented program. This algorithm is

more precise than the previous one proposed by Ottenstein because it uses the summary

information at the call site nodes to account for the calling context of the procedure. In the

first pass of the two pass graph reachability algorithm, he traversed along the summary edges

to slice across the cal vertices that have transitive dependencies on actual-in vertices. In the

23

second pass the methods in the program are marked by traversing along the parameter-out

edges.

Larsen and Harrold [2], in 1996, enhanced the system dependence graph to represent object-

oriented software and used the two phase algorithm of Howritz et al with minor modifications

to compute static slices. However, this did not address the dynamic aspects of slicing. A

forward slice on a slicing criterion <s, v> is defined as a set of all statements which are

affected by the variable v at the program point s.

In 2006, Jehad Al Dallal introduced a method for computing intra-procedural static forward

slices by traversing the dependence graphs only once. In this algorithm called as the

ComputeAllForwardSlices, he used a function called ComputeAFSlice and each node in the

PDG is associated with an empty set before applying the algorithm. After the algorithm is

applied, the set associated with a node n consists of the lines of code included in the slice

computed at node n . It builds the set associated with each node in the PDG incrementally as

the function called ComputeAFSlice is applied recursively.

But the slicing techniques described above were for sequential programs. However, most

softwares developed today are concurrent and distributed in nature. For slicing these

programs different forms of slicing algorithms which are suitable for slicing concurrent

programs are required. However, very less work ha been reported for the same till now.

24

Chapter 4

Slicing of object-oriented programs

Our objective is to find a static backward slice of a sample program. In order to implement

the two pass slicing algorithm proposed by Larsen and Harrold [2], we need to have an

intermediate representation of the sample program i.e. the system dependence graph of the

program. We first construct the control flow graph of the program. Then, we construct the

data and control dependence graphs and merge them to obtain the program dependence

graphs. Then we construct the class dependence graph and finally the system dependence

graph. We elaborate each step in this chapter. Our work can be mainly divided into two steps:

 Construction of the intermediate representation

 Static backward slicing using the two pass slicing algorithm by Larsen and Harold [2]

4.1 Construction of the intermediate representation

We present some algorithms used for the construction of the intermediate representation.

4.1.1 Algorithm for construction of CFG

To construct the control flow graph we need to determine the true and false edges from every

node. Control flows along the true edge if the value of the predicate evaluates to true and vice

versa. Following are the steps in constructing the CDG:

Step 1: A Pending stack is taken which is initially set to NULL.

Step 2: When an expression is encountered, a node is created for the expression and it is

inserted into the pending stack.

Step 3: When the next new expression is encountered, this node is popped out from the stack

and an edge is created between this popped node and the node for the new expression.

Step 4: While dealing with conditional statements, after the end of the „if‟ block, the „if‟ node

is inserted into the pending stack and if a „else‟ is encountered, then the pending stack is

saved to some temporary variable and assigned to null. And then the false edge of the

corresponding „if‟ block is inserted into it. When the „else‟ block ends, the temporary stack

and the current pending stack are merged.

25

4.1.2 Algorithm for computation of DDG

The data dependence graph is constructed to represent various data dependencies between the

different program constructs. So, construction of the DDG basically consists of an algorithm

to determine the various reaching definitions for statements in a program. The following

algorithm is used to compute the reaching definition of all the nodes in a CFG:

Step 1: In a first traversal over the control flow graph, one computes the definition set of

each variable that has been defined and the gen and kill sets for each statement.

Step 2: In another traversal, one computes the reaching definitions in a syntax-directed

manner and inserts links from the usage nodes of variables to all its reaching definitions.

4.1.3 Algorithm for construction of CDG

To construct the CDG, we have used the approach suggested by Ferrante et al. [4]. They

introduced the concept of post-dominator tree for the construction of the CDG. A post-

dominator tree is equivalent to the dominator tree of the reverse CFG. The algorithm

suggested by Lengauer and Tarjan [1] can be used for the construction of the dominator tree.

The steps used in the construction of the CDG are as follows:

Step 1: Reverse the control flow graph

Step 2: Construct the dominator tree based on the algorithm suggested by Lengauer and

Tarjan [1]

Step 3: Construct the control dependence form the post-dominator tree and the CFG.

4.1.4 Algorithm for construction of ClDG

For the construction of the ClDG, we use an algorithm proposed by Larsen and Harrold [2]:

Step 1: In a ClDG, a node for the class entry vertex is constructed.

Step 2: All members of the class are identified, nodes are constructed for them and they are

connected with the class entry vertex.

Step 3: In case of methods belonging to the class, add the class members as formal-in

parameters that are used inside the method.

26

4.1.5 Algorithm for construction of SDG

A program dependence graph cannot handle inter-procedural calls. Hence, it is extended to

construct an SDG to facilitate inter-procedural calls. For this, we implement the parameter-in,

parameter-out, summary and call edges and formal-in, formal-out, actual-in and actual-out

vertices so as to form an SDG. When a function is defined, the formal parameters passed to

the function are stored as its formal-in parameters. Similarly when a function is called, the

arguments passed constitute its actual-in parameters. The formal-out vertices are added to the

system dependence graph for each formal reference parameter that is modified by the

method. For every corresponding formal-out vertex there is an actual-out vertex.

The pseudo-code of our algorithm to construct the SDG parameters is as follows:

Algorithm: construct_SDG

Input: formal_in_list, event

Global: global_formal_out_list, final_formal_out_list, affecting_me_list

Output: system dependence graph with formal out and summary edges

if (event = function start)

 while (event = new variable encountered)

 node <- new node

 if (type[var] = modified_var)

 create _node (var)

 add (node, global_formal_out_list)

 end if

 end while

 while (node1 = extract_node (formal_in_list))

 while (node2 = extract_node (global_formal_out_list)

 if (node1.var = node2.var)

 add (node2, final_formal_out_list)

 end if

 end while

 end while

end if

if (event = function start)

 while (event = new variable encountered)

 node <- new node

27

 if (type[var] = modified_var)

 node1 = create_node (var)

 node1.affecting_me_list = affecting_me_list

 else

 if (type[var] = used_var)

 add (var, affecting_me_list)

 end if

 end if

 end while

 while (node1 = extract_node (formal_in_list))

 while (node2 = extract_node (global_formal_out_list)

 if (node1.affecting_me_list = node2.affecting_me_list)

 add (node2, affecting_me_list)

 end if

 end while

 end while

end if

4.2 Two-pass backward slicing algorithm

Every slicing algorithm uses a slicing criterion which is generally represented by <S, V>,

where S is the statement and V may be a variable or a function call. If V is a variable, then V

must be defined at that statement, else it must be called at S. The static backward slice of a

statement in a program is then calculated using a two pass graph reachability algorithm

proposed by Horwitz [19]. The first phase of the algorithm identifies vertices that reach S

which may be in the same procedure or in another procedure that calls that procedure. We

ignore those vertices that reach S through the procedure call in the first phase and identify

them in phase 2. Here, we implement the algorithm proposed by Larsen and Harrold [2].

Pass 1: In the first pass of the slicing algorithm, we traverse through all the edges except the

parameter-out edges. The summary edges are used to slice across all the call vertices, because

summary edges represent the transitive dependencies between the actual-in and actual-out

vertices.

Pass 2: In the second pass of the algorithm, we traverse through the parameter-out edges to

descend into the different functions or procedures.

28

Chapter 5

Implementation and results

In this chapter we present the details of our implementation and the results that include

different screenshots of the construction of the intermediate representation of the input

program and also the average time taken for different sample programs inputted to two pass

backward slicing algorithm to compute the static backward slice of a statement. We also

present an overview of the tools and some of the data structures we have used.

5.1 Tools used

We use the following tools in order to implement and code the programs and finally to get the

intermediate representation.

 Eclipse

 ANTLR

 Graphviz

5.1.1Eclipse

Eclipse is a multi-language software development environment comprising an integrated

development environment and an extensible plug-in system. It is written primarily in Java

and can be used to develop applications in Java and, by means of the various plug-ins, in

other languages as well, including C, C++, COBOL, Python, Perl, PHP, and others. The IDE

is often called Eclipse ADT for Ada, Eclipse CDT for C, Eclipse JDT for Java and Eclipse

PDT for PHP. The most important feature of Eclipse is its plug-in system. We can integrate

different plug-in tools into the eclipse environment and can be used them in the applications.

Examples of a few such plug-ins are ANTLR, C/C++ development tool, etc. It is also simple

to use as we need not install it. The only thing that we have to do it is to download Eclipse

and run the eclipse.exe file. We prefer the language C++ for coding because of the support

for object oriented features (which C does not have) and for dynamic memory allocation.

Moreover, it is faster than Java. But since CDT is not a C/C++ compiler, we have to

29

download and install MinGW, a C/C++ compiler which is available as a plug-in for Eclipse

to compile our code. Eclipse detects and configures MinGW automatically [5].

5.1.2 ANTLR

ANTLR stands for “ANother Tool for Language Recognition”. It is a top-down parser

generator that uses LL (*) parsing. ANTLR takes as input a grammar that specifies a

language and generates as output, source code for a recognizer for that language. ANTLR

supports code in C, Java, Python, and C#. It provides a single consistent notation for

specifying lexers, parsers and tree parsers. This is in contrast with other parser/lexer

generators and adds greatly to the tool's ease of use.

ANTLR mainly produces two files a lexer and a parser file. These files may be a java or C or

C++ files. By default ANTLR produces java files. To produce the output files in C++ we

need to add the line language = "Cpp"; in options of the grammar file [5].

5.1.3 Graphviz

Graphviz is a tool that can pictorially represent a graph. We have used this tool in our project

to visualize our final output in a better way i.e. in the form of a pictorial graph instead of a

adjacency matrix or adjacency list. The output of the program is converted into a form that is

recognizable by graphviz and is written into an output file in the same format. Graphviz reads

from the output file in order to generate the graph that the user can visualize [5].

5.2 Data structures used

In our implementation, we start the construction of the control dependence graph from an

input control flow graph and then proceed to construct the program dependence graph,

system dependence graph and class dependence graphs. Hence, the data structures used in the

construction of these graphs are basically those which have been used to implement the

control flow graph.

In a control flow graph every program construct has been represented in the form of a node.

Every node has some common attributes like the node number, node type, node parent, etc.

Also, different program constructs have specific attributes of their own. For example,

function call may have specific attributes like actual-in and actual-out parameters, pointers to

30

the called function, etc. We make a class node which has all these common attributes. The

class node has been represented below:

class node {

 public:

 int node_no;

 int node_type;

 node *next;

 node *parent;

};

Figure 5.1: Class node

In the figure 5.1, the attribute node_no stores the serial count of the program construct as

encountered in the control flow graph and the node_type store the type of the program

construct (like function, class, global variable, local variable, etc). For implementation of the

program construct, we include certain additional attributes as in the following example.

Class func_call : private base node {

public:

char *name;

node *called_fun;

node *arg;

};

Figure 5.2: Class func_call

In figure 5.2 the attributes called_fun represents the pointer to the function definition for the

corresponding function call. The attribute arg represents the actual argument passed through

the function call. Similarly, there are other classes like class, formal_param, local_var, etc.

5.3 Screenshots of implementation

Different screenshots of the implementation of the various dependence graphs have been

shown taking a few examples.

31

 main() {

 int a;

 int b;

 a =10;

 if (a>5)

 b = a + a;

 cout << b;

 }

Figure 5.3: A sample program

main() {

 int a, b, c;

 a= 10;

 b = 1;

 if (a>5) {

 while (a<20) {

 a = a+1;

 b = b * a;

 }

 }

 cout << b;

 }

Figure 5.4: A sample program

32

main() {

 int a = 10, b;

 b = add(a,3);

 }

 int add(int x, int y) {

 x = x + y;

 return x;

 }

Figure 5.5: A sample program

class A{

 int add(int x, int y) {

 x = x + y;

 return x;

 }

 void display() {

 cout << x;

 }

};

Figure 5.6: A sample program

33

5.3.1 Implementation of CFG

Figure 5.7: Screenshot of implementation of program in Figure 5.3

5.3.2 Implementation of PDG

34

35

5.3.3 Implementation of the SDG

Figure 5.9: Screenshot of implementation of SDG of Figure 5.5

5.3.4 Implementation of the ClDG

36

37

5.4 Result of graph reachability algorithm

Serial No. Number of lines in the program Average slicing time (micro seconds)

1 10 470.2

2 20 481.2

3 50 563.6

4 70 590.4

5 100 1047.2

6 120 1250.8

7 140 1277.5

8 170 1335.2

9 200 1750.5

Figure 5.11: Table showing average slicing Vs number of lines

5.5 Graph of the implementation

Figure 5.12: Graph of the slicing algorithm

From the graph we can conclude that as the size of the input program increases, the average

slicing time also increases. There may be even a sudden increase in the average slicing time

as in our case, because of the complexity of the input program.

0

200

400

600

800

1000

1200

1400

1600

1800

2000

10 20 50 70 100 120 140 170 200

No. of lines Vs Average Slicing Time in microseconds

No. of lines Vs Average
Slicing TIME

38

Chapter 6

Conclusion and future work

6.1 Conclusion

We implemented the structure of a Program Dependence Graph using a graphical user

interface. After that we implemented a Class Dependence Graph and a System Dependence

Graph as proposed by Horwitz [19] to handle features of a class and inter-procedural calls.

Once an intermediate representation is obtained, we implemented the two-pass graph

reachability algorithm proposed by Larsen and Harrold [2] to compute a static backward slice

for a sample input program and obtained the average slicing times for different sample input

programs.

6.2 Future work

The class dependence graph constructed only models how a class entry node is connected to

its members. This can further be extended to handle other object-oriented features like

polymorphism, inheritance and exception handling. Our work can also be used to handle

aspect oriented programs. The intermediate representation can be used to select test cases in

regression testing, for software debugging and in many other applications.

39

References

[1] Lengauer T. and Tarjan R. E., A fast algorithm for finding dominators in a flow graph,

ACM Transactions on Programming Languages and Systems, Vol. 1, No. 1, July 1979.

[2] Larsen L., Harrold M. J., Slicing Object-Oriented Software, Proceedings of the 18
th

international conference on Software Engineering, Pages 495-505, 1996.

[3] Biswas S., Mall R., Sathpathy M., Sukumaran S., A model-based test selection approach

for embedded applications, ACM SIGSOFT Software Engineering Notes, Pages 1-9, May 15

2009.

[4] Ferrante J., Ottenstein K. J., Warren J. D., The Program Dependence Graph and its use in

Optimization, ACM Transactions on Programming Languages and Systems, Vol. 9, No. 3,

July 1987.

[5] Mittal M., Implementation of A Model for Application to Regression Test Case Selection,

Mtech thesis, Indian Institute of Technology, Kharagpur, May, 2009.

[6] Kumawat K. L., Prioritization of Program Elements based on their Testing Requirements,

Btech thesis, National Institute of Technology, Rourkela, May, 2009.

[7] Xu B., Qian J., Zhang X., Wu Z., and Chen L., A Brief Survey of program slicing, ACM

SIGSOFT Software Engineering Notes 30, Pages 1-36, February 2005.

[8] Weiser M., Programmers use slices when debugging, Communication of ACM25, Pages

446-452, July 1982.

[9] Zhang X., Gupta R., and Zhang Y., Efficient forward computation of dynamic slices using

Reduced ordered binary decision diagrams, International conference of Software

Engineering, 2004.

[10] Agrawal H., DeMillo R, A., and Spafford E. H., Debugging with dynamic slicing and

40

Backtracking, Software Practice and Experience 23, Pages 589-616, June 1993.

[11] Dhamdhare D.M., Gururaja K., and Ganu P. G., A compact education history for

dynamic slicing, Information Processing Letters 85, Pages 145-152, 2003.

[12] Korel B., and Rilling J., Dynamic Program Slicing Methods, Information and Software

Technology 40, Pages 155-163, 1998.

[13]Ball T, The Use of Control Flow and Control Dependence in Software Tools, PhD thesis,

Computer Science Department, University of Wisconsin-Madison, 1993.

[14] Song Y., and Huynh D., Forward Dynamic Object-Oriented Slicing, Application

Specific Systems and Software Engineering and Technology(ASSET‟99), IEEE CS Press, 1999.

[15] Steindl C., Program Slicing for Object Oriented Programming Languages, PhD thesis,

Johannes Kepler University, Linz, 1999.

[16] Trew T., What Design Policies Must Testers Demand from Product Line Architectures?

International Workshop on Software Product Line Testing (SPLIT), Pages 51-57, 2004.

[17] J.Jenny Li, Prioritize code for testing to improve code Coverage of complex software,

in proceedings of the 16th IEEE International Symposium on Software Reliability

Engineering (ISSRE05), Pages 75-84.

[18] Ottenstein K. J., Ottenstein L. M., The program dependence graph in a software

development environment, Proceedings of ACM SIGSOFT/SIGPLAN Software Engineering

Symposium on Practical Software Development Environments, Pages 85-97, July 1995.

[19] Horwitz S., Reps T., Binkley D., Interprocedural slicing using dependence graphs, ACM

Transactions on Programming Languages and Systems, Pages 26-60, January 1990.

[20] Dallal J. A., An Efficient Algorithm for Computing all Program Forward Static Slices,

World Academic of Science, Engineering and Technology 16, 2006

