FAULT TOLERANCE IN DISTRIBUTED
SYSTEMS USING DYNAMIC VOTE
REASSIGNMENT

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF
THE REQUIREMENTS FOR THE DEGREE OF

Bachelor of Technology

In
Computer Science and Engineering

By

BIKASH KUMAR GUPTA

SANGRAM JYOTI BAL
Under the Guidance of
PROF. P.M.KHILLAR

A

o

Department of Computer Science and Engineering
National Institute of Technology

Rourkela



O

National Institute of Technology

Rourkela

CERTIFICATE

This is to certify that the thesis entitl&feault Tolerance in Distributed Systems
Using Dynamic Vote ReassignmentSubmitted bySangram Jyoti Bal, Roll No

: 10606037 and Bikash Kumar Gupta, Roll No: 10606040in the partial
fulfillment of the requirement for the degree Bfachelor of Technologyin
Computer Science EngineeringNational Institute of Technology, Rourkela,

Is being carried out under my supervision.

To the best of my knowledge the matter embodiedha thesis has not been
submitted to any other university/institute for theard of any degree or diploma.

Prof. P.M.Khillar
Date: Department of Computer Science and Eeging
National Institute of Technology
Rourkela-769008



ACKNOWLEDGEMENT

We avail this opportunity to extend our hearty ibideiness to our guiderof.
P.M.Khillar , Computer Science Engineering Department, forrthaluable
guidance, constant encouragement and kind helpifedresht stages for the

execution of this dissertation work.

We also express our sincere gratituderof. B.Majhi, Head of the Department,

Computer Science Engineering, for providing valeat#partmental facilities.

Submitted by:

Bikash Kumar Gupta Sangram Jyoti Bal

Roll No: 10606040 Roll No: 10606037

Computer Science and Engineering Comteence and Engineering
National Institute of Technology National Instgutf Technology

Rourkela Rourkela



No

Abstract

List of Figures
List of Tables

Chapter 1

Chapter 2

Chapter 3

Chapter 4

Chapter 5

Chapter 6

Chapter 7

1.1
1.2
1.3

2.1
2.2
2.3
2.4

3.1
3.2
3.3
3.4

4.1
4.2

5.1
5.2

CONTENTS

INTRODUCTION
Overview

Thesis Objective
Thesis Organization

LITERATURE REVIEW

Static Voting

Majority Based Dynamic Voting
Dynamic Vote Reassignment
Group Based Voting

SIMULATION
Star Topology
Ring Topology
Group Topology
Observations

ALGORITHM
Genetic Algorithm
Pseudo code

EXPERIMENTAL RESULTS
Experimental Results of Algorithm
Experimental Results of Simulation

CONCLUSION

REFERENCES

Page

19
22
23
24

25

31
32
36
40
41
44

45

48



ABSTRACT

There are several fault tolerant protocols for ngamg replicated files in the event
of network partitioning due to site or communicatlmk failures. Previously there
has been no software simulation of the voting moi® apart from just stochastic
modeling. In this paper, we simulate and analyze tttroughput of message
transfer during the communication. We use varioe$wark topologies to

compare the parameters such as throughput, nac&éfsareceived and sent during
voting process .We have analyzed the effects abwarpacket properties. The
analysis provides evidence for the conjecture that grouping scheme is the
optimal algorithm in the context of the voting mootls. We also compare the
proposed genetic approach for voting assignmerit kgihdom algorithm proposed
by Akhil Kumar. This comparison shows that genetiting assignment gives
better availability than random algorithm.
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INTRODUCTION



1. Introduction

1.1 Overview

Computing systems consist of a variety of hardvesne software components that
are bound to fail eventually [8]. In many systerssch component failures can
lead to unanticipated, potentially disruptive fadlubehavior and to service
unavailability. Some systems are designed tbabé-tolerant: they either exhibit
a well defined failure behavior when componentsdaimask component failures
to users that is, continue to provide their spedifstandard service despite the
occurrence of component failures [9]. To many uderaporary errant system
failure behavior or service unavailability is actadpe. There is, however, a
growing number of user communities for whom thetcog unpredictable,
potentially hazardous failures or system servicavanability can be very
significant .Examples include the on-line transattprocessing, process control,
and computer-based communications user communiteeminimize losses due to
unpredictable failure behavior or service unavdltgb these users rely on fault
tolerant systems. With the ever increasing deperlgriaced on computing
services, the number of users who will demand fialdtrance is likely to increase.
The task of designing and understanding fault-tolerdistributed system
architectures is notoriously difficult: one has dtay in control of not only the
standard system activities when all componentsvatk but also of the complex
situations which can occur when some componenisTiae difficulty of this task
can be exacerbated by the lack of clear structucmigcepts and the use of a
confusing terminology. Presently, it is quite conmto see different people use
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different names for the same concept or use the sam for different concepts.
For example, what one person calls a failure, arggperson calls a fault, and a
third person might call an error. Even the termulttdolerant” itself is used
ambiguously to designate such distinct system ptigseas "the system has a well-
defined failure behavior" and "the system maskspmment failures. [8]"

When a system is designed to mask failures, iticoes to perform its specified
function in the event of a failure [9]. A systensaged for well defined behavior
may or may not perform the specified function ia #gvent of a failure; however, it
can facilitate actions suitable for recovery.

One key approach used to tolerate failures is reauicy [8]. In this approach, a
system may employ a multiple number of processegijpie numbers of hardware
components, multiple numbers of copies of data,vatb independent failure

modes

1.2 Thesis Objective
* To simulate the message transfer throughput inouaritopologies using
various packet properties.
 Comparison of the proposed genetic algorithm whk tandom voting
algorithm proposed by Akhil Kumar [7].
 To calculate availabilities under various nodes bphulities using the

proposed genetic algorithm.



1.3 Thesis Organization

This thesis is divided into 7 chapters. Each chrajoeuses on a specific topic in
the field of fault tolerance.

Chapter 1 gives an overview of the overall faulétance issues. It introduces the
concept of fault tolerance and the various typea# falerance mechanisms.
Chapter 2 deals with the literature review of thklated works and illustrate various
protocols used for fault tolerance. It discusses \thrious schemes used for the
vote assignment including the dynamic vote assigrinp®licies. It covers the
group voting mechanism for effective message pgssin

Chapter 3 deals with the simulation work carried ourespect of the thesis
objective. It shows the various parameter perfogeanduring the simulation
period. It also shows the various scenarios cre&bedthe simulation of the
different topologies.

Chapter 4 gives the pseudo code for the proposedtigevoting approach .It
depicts the various methods used in the votingge®.c

Chapter 5 shows the various experimental resudisrésulted from the simulation
of the network topologies. It gives the overviewtloé performance parameters in
the message transfer overhead. The comparison éetthe proposed algorithm
and random algorithm gives the clear picture of pgsformance of the two
algorithms.

Chapter 6 concludes showing conclusion drawn froenvtarious simulation and

experimental results
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2. Literature Review

2.1 Static voting
This static voting is proposed by Gifford [2].

Replicating data at many sites is the common apgpraa the fault tolerance in
distributed systems. Data can still be obtainedhftbe other copies if the original
fails. Commit protocols [10, 11, 12] can be empbbye update multiple copies of
data .While the non-blocking protocol [11, 12] bétcommit protocol family can
tolerate single site failure, it is not resilieatrhultiple site failures, communication
failures and network partitioning. In [10] commitopocols, when a site is
unreachable, the coordinator sends messages rélyeate eventually may decide
to abort the transaction, thereby denying accestata. However, it is desirable
that the sites continue to operate even when aites have crashed [11, 12], or at
least one partition should continue to operater dfte system has been partitioned.
Another well known technique used to manage ref@icadata is the voting
mechanism [2]. With the voting mechanism [13, B#ch replica is assigned some
number of votes and majority of votes must be ctdieé from a process before it
can access a replica. The voting mechanism [13hose fault tolerant than a
commit protocol in that it allows access to dataamthe network partitions, site

failures and message loses without comprisingritegyrity of the data.



Algorithm
. Site i issues a Lock Request to its local lock mgana

. When the lock request is granted, site i sendsta \Request message to all
the sites.

. When a site j receives a Vote Request messagsuies a Lock Request to
its local lock manager. If the local request isnged, then it returns the
version number of the replica (\)\Nand the number of the votes assigned to
the replica (V) to site i.

. Site i decide whether it has the quorum or notebam the replicas received
within a timeout period as follows (P denotes tké &f sites which have

replied).
a. If the request issued was a read,
V=YV,
b. If the request issued was a write,
V=> Vi
c. Where the set of sites Q is determined as follows:
I. M=max{VN; : [EP}

ii. Q={j€P : VN=M}



5. If the site i is not successful in obtaining theoqum, then it issues a
Release _Lock to the local lock manager as welbagltthe sites in P from

whom it has received votes.

6. If site i is successful in obtaining the quorunertht checks whether its cop
of the file is current. A copy is current if itsrg@n number is equal to M. If
the copy is not current, a current copy is obtaifreth a site that has a
current copy. Once a current copy is available llpcaite | performs the

next step.

7. If the request is a read, site i reads the curepy available locally. If the
request is a write, site i updates the local c@uyce all the accesses to the
copy are performed, site i updates;Vahd sends all the updates and, YN
all the sites in Q. Note that a write operation atpd only current copies.
Site i then issues a Release_Lock request toatd lock manager as well as

to all the sites in P.

8. All the sites receiving the updates perform theatpsl on their local copy

and on receiving a Release_Lock request, releadedths

2.2 Majority Based Dynamic Voting

This protocol is proposed by Jajodia and Mutchigr [

Version number. The version number of a replica at a site i isirgeger that
counts the number of successful updates to thecaept i. VN is initially set at

zero and is incremented b one at every succegsfialtes to the replica at i. VN
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initially set at zero and is incremented by oneadry successful update.

Number of Replicas updated It is an integer that almost always reflects the
number of replicas the number of replicas partiingain the most recent update

RU; is initially equal to the number of replicas.

Distinguished sites list The distinguished sites list [5] at a site i igaaiable that
stores ID’s of one or more sites. The contents §fdepend on RJUWhen RYis
even, D% identifies the replica that is greater than ak thther replicas that
participated in the most recent update of the capi site i. When RiJodd, DSis

nil except when RU=3, in which case Ddists the three replicas that participated

in the most recent update from which a majorityageded to allow access to data

Outline of the protocol:

1. Site iissues a Lock_Request to its local lock gana

2. If the lock is granted, site i sends a Vote_Reguesgtsage to all the sites.

3. When a site j receives the Vote Request messagsuis a Lock Request
to its local lock manager. If the lock is grantsede j sends the values of
VN;, RU and D$to site i.

4. From all the responses, site i decides whethezldrgs to the distinguished
partition, described shortly.

5. If site i does not belong to the distinguished igart [5], it issues a
Release Lock request to its local lock managersamds Abort messages to
all the other sites that responded. A site, onivetg a Abort message,
Issues a Release_Lock request to its local lockagpam

9



6. If site i does not belong to the distinguished ipar, it performs the update
if its local copy is current. Otherwise, site i aiot a current copy from one
of the other sites and then perform the updatee Nioat along with the
replica update, VN RU and D$. It then issues a Release_Lock request to
the local lock manager.

7. When a site j receives a commit message, it updistesplica, updates the
variables VN RU and D$ and issues a Release_Lock request to the local

lock manager

2.3 Dynamic Vote reassignment protocols

The actual idea was proposed by Gifford [2] but vdscussed in detail by
Barbara, Garcia-Molina, and Spauster [16].

Barbara et al. [4,15] categorized the Dynamic vetssignment into two types:
Group consensus

The sites in the active group agree upon the new &ssignment using either a
distributed algorithm or bi selecting a coordinatorperform the task. Since the

outside the majority group didn’t receive any votes

Because this method relies on active group padimp, the current system
topology will be known before deciding the voteigsments [4, 15, 16]. by using

that information

10



Autonomous Reassignment

Each node makes its own decision about changingtes and picking a new vote
value, without regarding the rest of the nodeslap,Before the change is made

final, though, the node must collect a majorityofes.
The Protocols

The protocols for autonomous vote reassignmer,[45, 16] are what guarantee
mutual exclusion. Once a node picks a new voteeyawote changing protocol is
invoked to install the change. The vote changirgqmol uses the vote collecting
protocol to ensure that enough votes have beeaatetl to validate the change. In
addition, the vote collecting protocol is used &if other operations requiring
majority approval.

Protocol P1. Vote increasingThe initiator (node i)

1. Send the new vote value along with [15,168Nd N to the rest of the nodes
with which node i can communicate.

2. Wait for a majority of acknowledgments to arriven@ther or not a majority
of votes has been received by node i is deternmyddllowing protocol P2
[16] ), and then install the change in the locaing vector, that is update

Vi[i] and increase the version numbef[iNoy 1.

Protocol P2 Vote Collecting
Assume node i is collecting votes to decide upoewant. In this case, each voting

11



node j will send i two vectors, the voting vectoy &d a version vector ;N
Another vector Ms maintained wherey] indicates the votes of j as determined b
site i upon the collection of votes. An entnfjNepresents the version number for
the value Yj] at site i. Node i decide upon the votes of nddé~6) using the
following rules:

(a) If i receives Yand N, then Wj] = V|[j]. Also, change ¥j] to V;[j] and N[j] to
N;[]] if either of the following two conditions apjels:

Villl > Villl or Vji] < Villl and N[j] > Ni[j].

The first condition is simply that of Scenario ONgj] > V[j] indicates that j has
increased its votes since i last determingg.Mhe version number is irrelevant in

this case, since it provides no additional inforiorat

In the second case,[)} < V|[j] indicates that either j has decreased its votean
increase at k has not yet been approved or hastimeed out. If, however, |§] >
Ni[], then Vj[j] reflects a later decrease of votes at k or iledavote increase
attempt, and this new information should be readrde

(b) If i does not receive jVthen \j] = V\[j] for k such that N[j] = max {Ny[j] :
p€G}, where G is the set of all sites from whictesihas received replies. That is,
k assume the newest value among the voting graughéovote value of node j. In
addition, i modify its entry \j] to equal \{[j] and N[j] to equal N([j].

Protocol P3. Vote Decreasinghe same as P1, except that:
The initiator sends Mand N along with its vote decrease. Upon successfully
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collecting a majority of votes, the initiator inases Ni] by one and sets the;[{f

to the new value.

Policies

These policies were proposed by Barbara et al. [16]
The Overthrow Technique

Vote increasing under the overthrow technique j&@traightforward. Consider a
system in which node x has gone down, while thé oéshe nodes are still up.
(This can be considered as a partition of the aysi¢o two groups, with x in one
group and the rest of the nodes in the other.)vl.déte the number of votes that
node x has. Let TOT be the total number of votesha system and MAJ the
majority of votes. Assuming TOT is odd, MAJ = (TG@T1)/2 [16]. If node a is the
node supplanting X, the new number of votes for: ayill have to be such that it
covers the voting power that a had before (v,)s phe voting power of x, plus the
increase in the total number of votes. If a incesads votes by 3y the total
number of votes will be TOT ' = TOT +vand MAJ ' = MAJ + y. It can be
shown that all the majority groups that used xlmamformed using a instead:

The Alliance Technique

There are many variations of the alliance techniq&. We describe three here.
In general, we want to give each node a fractiothefvoting power of a node that
has been excluded from the majority group. As ia dlverthrow technique, we
want to be sure to give out at least 2u, voteshen rhajority group, enough to

counteract those votes that node x holds plusuh#&er of votes node x could
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have contributed if it were in the active group. @firse, we can always assign a
surplus of votes to each node. One possibilityoisassign 2v votes to every
member of the active group; or we can assigmvotes to each member of the
active group, and assign 2u, votes when there 36 gme node left. Another
possibility is to spread 2v votes out. Say N = nambf nodes in the majority
group. Then, give each node in the active grqtgy/N 4 votes (henceforth
referred to simply as 2v/N). If need be, N can sen@ated by the nodes. This may
not be as good as possible in terms of resiliendailures [16], but is certainly not
dangerous. No matter what the strategy, we habe twareful when there are only
two nodes left in the majority group. In that sttas, it is senseless to give each
node the same number of votes, since if they logentunication with each other,
their extra votes will only cancel each other aud @ao group may have a majority.
Instead, it is better to pick one node and givRuit votes. We can use a priority

mechanism to handle this case

2.4 Group Based Voting
This voting mechanism is proposed by Agarwal anotd46].

In the previous voting algorithm, the site initragi the operation has to

communicate with all the nodes incurring high comioation costs. In this

algorithm [6] the sites are divided into intersegtior overlapping groups. In the
absence of failures the site initiating the operattommunicates with the sites of
its group thus reducing the communication coBltss algorithm suggests a method
for constructing such logical groups and show thatniessage overhead of any
operation ira system of Modes is On), when there are no or few failures in the

system.

14



Logical group formation
Let the number of groups be n. Let the n grougkensystem be referred to as

G; (i=1...n). Each group has the cardinality n-1. This formatemsures that the
site has to communicate with its own group memhkersave a read or write
operation in case of no failures. Two numbers amsen from this group and form

combinations. Assume that the number of nodes (bely/2.

Then one-one mapping [6] is performed from numbemnades to number of
combinations generated. If a node is mapped to cahbn (i, j), then it belongs
to group i and j and in no other group. This ensuhat the each group has the
cardinality n-1 since there is only n-1 combinasion the set 1...n for containing

number i.

Consider 15 nodes in a system. These nodes cambgegl as follows. The groups

obtained by this grouping are shown below.
Group 1: (1, 23,4,5)

Group 2: (1,6, 7,8,9)

Group 3 (2, 6,10, 11, 12)

Group 4 (3,7, 10, 13, 14)

Group 5: (4, 8, 11, 13, 15)

Group 6 (5, 9, 12, 14, 15)

15



Voting Algorithm
Let us discuss the read quorum condition.

For this the requesting site should get the curvension of the replica from the
group. Therefore it should have the access tohallgroups in the system which

can be guaranteed if it can access at least ondoare@meach group.

A set of nodes Ratisfies the read quorum if for all i (i= 1...”r some j, such that
lj € R. That is at least one site from each group pp&ties in read quorum.
Clearly, if Ris G, then Rsatisfies the read quorum.

Also, a read quorum can be satisfied if vote frare aode from each group can be

collected.

A set of nodes Ratisfies the write quorum if for somesuch that for all j (] =
1..n), || € R, That is all the sites of particular group papttes in the write

quorum.

The write availability can be improved if the siatiating the operation can

distinguish between the site failures and netwaniifons.

Suppose that a set of sites R is participatindiéndperation and a set of sites F is

reported to have failed.
Then R and F together satisfy the write quorum if

1. A write set is available, that is, for some i such that forj §#1...n), |; €
(RUF)
16



2. Rsatisfies the read quorum condition.
Read Algorithm

1. Send read request to all nodes il wait for replies.

2. Let R be the set of node replied. If some of thersecting node of a
particular group is not present in R then lookdanode in the group of the
missing intersecting nodes and send the read reques

3. Read from the node having the current copy.

Write Algorithm

1. Send a write request to all the nodes in the grbapR be the nodes replied
and F be the nodes that failed. Then T=RUF.

» |If the intersecting node is present in T then chédks missing in
R. if it is missing in R, then check for the nodeshe other group
of the particular missing intersecting node anddsesad request
and wait for replies.

» |If the intersecting node is not present in T thewl the nodes of
the other group of the missing intersecting nodd send write
request to all the nodes of that group and getaglles. If the write
set is met then try collecting read quorum.

3. Write to all the operational node of the write set.

17



Performance Evaluation

Let the no of nodes be T in the system and we hageups such that T = n (n-
1)/2. We have already seen [6] that the cardinalitgach group is n-1 .Now from

the equation 1 solving the quadratic equation vie ge

1+v8T+1

. 1+v8T+1
n= ‘2 from which n = >

satisfies the equation

since cardinality is n-1 therefore the commundacatost is O (n-1) i.e.

O (¥ 8T+21- 1)=0@T)

18
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4. Simulation

QualNet [18] is a network simulation tool that simulateseless and wired packet
mode communication networkQualNet Developer is a discrete event simulator
used in the simulation of MANET, WIMAX networks, teite networks, and
sensor networks, among others. QualNet has modelscdmmon network

protocols that are provided in source form andoaganized around the OSI Stack.

Global Simulation Parameters

Version

Experiment Name
Maximum Simulation Time
Random Number Seed
Coordinate System
Terrain Corners

Terrain Dimensions
Irregular Terrain

Node Placement

Protocol Stack

Statistics Filtering

Mobility Options

Mobility Position Granularity
Application Setup File

20



Topology simulation

In the Qualnet Simulation environment we placedennmodes representing the
devices in the fault tolerant network accordingthe different topologies. We

simulated three different topologies that stang nd group topologies.

In the star we connected the nine nodes throughgdeshub and tested for
different packets such CBR, FTP, CBR receive. Ténerage distance between the
nodes is around 1000 meters. We designed the retvgarg the qualnet designer

user interface and placed the nodes accordingly.

In ring topology we connected each adjacent nodk @ach other. The
average distance between the nodes is around 186631We tested for different
packets such CBR, FTP, CBR receive.

In Group topology we created group by taking thmedes in a group and
each group connected to the other through a hubaVhrage distance between the
nodes is around 1000 metres.We tested for diffgrackets such CBR, FTP, CBR
receive.

In all of the topologies we simulated for the agerahroughput rates for

varying node density.

21



3.1 Star topology

Figure 1
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3.2 Ring Topology

Figure 2
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3.3 Group Topology

Figure 3
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3.4 Observations

The following graphs are the results of the scensimulation [18] which shows
the various configurations of the network topolsgigong with the different

packet properties.

In the graph 1 we get throughput rate corresponttirige no of nodes in the
ring topology for the TCP protocol. In graph 2 hosvs the throughput rate
corresponding to the no of nodes in the star tapolimr the TCP protocol. In
graph 3 it shows the throughput rate correspontiirtge no of nodes in the group
topology for the TCP protocol. In graph 4 it showse throughput rate
corresponding to the no of nodes in the ring togypltor the CBR (constant bit

rate) packets transmission.

In graph 5 it shows the throughput rate correspantlo the no of nodes in
the star topology for the CBR (constant bit rat@gkets transmission. In graph 6 it
shows the throughput rate corresponding to thefmmdes in the Group topology
for the CBR (constant bit rate) packets transmissio graph 7 it shows the
throughput rate corresponding to the no of noddkerRing topology for the CBR
(constant bit rate ) receive packets transmisgrograph 8 it shows the throughput
rate corresponding to the no of nodes in the sfaglogy for the CBR (constant bit
rate) receive packets transmission. In graph 9hdws the throughput rate
corresponding to the no of nodes in the Group twgpofor the CBR (constant bit

rate) receive packets transmission.
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TCP in Ring topology

Graph 1
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TCP in Group Topology

Graph 3
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CBR in Star topology
Graph 5
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CBR receive in Ring topology

Graph 7
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CBR receive in group topology

Graph 9
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4. Algorithm

4.1 The Genetic Algorithm
Introduction

A genetic algorithm18] (GA) is a search technique used in computing td fin
exact or approximate solutions to optimization asehrch problems. Genetic
algorithms are categorized as global search hasisGenetic algorithms are a
particular class of evolutionary algorithms (EApthuse techniques inspired by

evolutionary biology such as inheritance, mutats®iection, and crossover.

This is the key idea in solving combinatorial op#iation problems by this
technique. lterative improvement (or greedy) aldpons tend to “dead-end” in
locally optimal solutions; however, the genetic caithm approach makes it
possible to come out of such dead-ends andfimostill better solutions

A typical genetic algorithm requires:
1. a genetic representation of the solution domain,
2. a fitness function to evaluate the solution domain

Initialization

Initially many individual solutions are randomly rgggated to form an initial
population. The population size depends on thereatiithe problem, but typically

contains several hundreds or thousands of possiléons.
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Selection

During each successive generation, a proportiorthef existing population is
selected to breed a new generation. Individualteois are selected through a
fitness-based process, where fitter solutions (@asored by a fithess function) are
typically more likely to be selected. Certain sétat methods rate the fitness of
each solution and preferentially select the bdsttisns. Other methods rate only a

random sample of the population, as this processhmavery time-consuming.
Reproduction

For each new solution to be produced, a pair oféipd solutions is selected for
breeding from the pool selected previously. By pi@dg a "child" solution using
the above methods of crossover and mutation, a swwtion is created which
typically shares many of the characteristics of "parents”. New parents are
selected for each new child, and the process aoegimntil a new population of
solutions of appropriate size is generated. Alttorgproduction methods that are
based on the use of two parents are more "biologpiied", some research
suggests more than two "parents" are better tosbd to reproduce a good quality
chromosome. These processes ultimately resulteam#éxt generation population
of chromosomes that is different from the initighgration. Generally the average
fitness will have increased by this procedure lfer population, since only the best
organisms from the first generation are selectedfeeding, along with a small

proportion of less fit solutions, for reasons atiganentioned above.

33



Termination

This generational process is repeated until a teati@n condition has been

reached. Common terminating conditions are:

A solution is found that satisfies minimum criteria

Fixed number of generations reached

Allocated budget (computation time/money) reached

The highest ranking solution's fitness is reaclondias reached a plateau
such that successive iterations no longer prodattertresults

Manual inspection

Combinations of the above
Fitness function

The main objective in the vote assignment problentoi find an assignment of
votes that maximizes the availability. We shallusse that both read and write
guorums are equally important, and hence each qu@set equal to a majority of
the sum of all votes. The vector whose availabibtynaximum is selected as the

solution of the problem
Chromosome

A chromosome consists of a specific vote assignroerat vector oh votes(Vy,
Vo ..., W) here V is the vote assigned to site A chromosome change is
produced by selecting a pair of votes; sayaWd U from this vector and

performing one of the following two operations:
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Mutation

A common method of implementing the mutation operatvolves generating a
random variable for each vote in a sequence. Bmdam variable tells whether or
not a particular vote will be modified. This mutati procedure, based on the

biological point mutation, is called single pointitation.
Crossover

A single crossover point on both parents’ vote eecand chromosome is selected.
All data beyond that point in either vector is syeg between the two parent

vectors. The resulting vectors are the children.

For example, sagis 5, and the two vote vector is;¥2,2,1,1,1) and ¥2,1,1,3,1).
By respectively applying the two operations abowevi and \4, the following

states are produced:
Mutation: VC= mutated child of Y
=(2,1,1,2,1)
VG= mutated child of Y
=(2,3,1,1,1)
Crossover: crossover child of ¥nd \4

=(2,1,1,1,1),(2,2,1,3,1)
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4.2 Pseudo code

public double p[]= {0.95,0.90,0.85,0.80,0.75,0.78000.70};
public TreeSet<String> popu ;

public String chromosome ;

public TreeSet<String> popul;

public double best_avail=0.0;

public String combo;

public String temp_chromosome;

public doubleavail (String sX
Double avail = 0;
int sum=0;
for (int j=0;j<s.length();j++){
Sum=sum+ (s.charAt (j)-48);
}
sum=sum/2;
double product=0;
for (int i0=0;i0<=1;i0++)
for (int i1=0;i1<=1;i1++)
for (int i2=0;i2<=1;i2++)
for (int i3=0;i3<=1;i3++)
for (int 14=0;i4<=1;i4++)
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for (inti5=0;i5<=1;i5++)

for (inti6=0;i6<=1;i6++)

for (inti7=0;i7<=1;i7++)
if((i0*s.charAt(0)+il*s.charAt(1)+i2*s.charAt(2)+i3*s.charAt(3)+i4*s.charAt(4)+i5*
s.charAt(5)+i6*s.charAt(6)+i7*s.charAt(7))> sum){

product = (i0*p[0]+(1-10)*(1-p[0]))*(i1*p[1]+(1-11)*(1-p[1]))*(i2*p[2]+(1-
i2)*(1-p[2]))*(i3*p[3]+(1-13)*(1-p[3])) *(i4*p[4]+(1-i4)*(1-
p[4]))*(i5*p[5]+(1-15)*(1-p[5]))*(i6*p[6]+(1-16)*(1-p[6]))*(i7*p[7]+(1-
i7)*(1-p[71));

avail = avail + product ;

}
return avail;
}
public void mutate(){

[terator<String> itr = popu.iterator();
String p1,p;
popul.clear ();
While (itr.hasNext ()){
p=itr. Next ();
pl = p.replace (p.charAt (2),(p.charAt(4)));
pl =pl.replace (p.charAt (4),(char) (p.charAt(2)+1));
popul.add (p1);
}
itr = popul.iterator ();

While (itr.hasNext ()){
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popu.add(itr. Next ());

}
popul.clear ();

}
public void crossover ( ){
[terator<String> itr = popu.iterator ();
String p1;
String p2;
While(itr.hasNext()){
pl=itr. Next();
If(itr.hasNext())
p2=itr. Next();
else break;
String p3 = p1l.substring(0, 3)+p2.substring(3);
String p4 = p2.substring(0, 3)+p1.substring(3);

popul.add(p3);
popul.add(p4);
}
popu.clear();

itr = popul.iterator ();
While (itr.hasNext()){

popu.add (itr. Next ());

}
public void checkAvail(){
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[terator<String> itr = popu.iterator();
String s;
while(itr.hasNext()){
s=itr. Next();
double new_avail = avail(s);
if (new_avail>best_avail){
best_avail=new_avail;

combo=s;

}

System.out.println (best_avail);

System.out.println (combo);

The arrgy] consists of the site probabilities. Tpapu data structure
contains the total population of the various voticwnfiguration assignment to
sites. The methodvail () checks the availability of the given configuratiand
stores best configuration in thest_avail variable. The methochutate () performs
the mutation operation for the genetic approacte miethodcrossover () perform

the crossover operation for the genetic approach.
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EXPERIMENTAL RESULTS

40



5. Experimental Results

5.1 Experimental results of Algorithm

We implemented the algorithm by coding it in javel a&alculating the availability
by varying the no. of copies and site reliabiliti88e then compared our values
with the randomized algorithm [7] and plotted tablé as below.

Table 1 Comparison between the Genetic algorithm and the Randomized algorithm for 5 no. of copies

0.8,0.8,0.8,0.8,0.9 0.99984 0.99855
0.8,0.8,0.8,0.9,0.9 0.99992 0.99855
0.98,0.94,0.90,0.85,0.80 0.99999 0.99996
0.90,0.85,0.80,0.75,0.70 0.99977 0.99857
0.74,0.68,0.62,0.58,0.54 0.99389 0.97828
0.97,0.90,0.81,0.73,0.65 0.99994 0.99970
0.96,0.94,0.90,0.68,0.60 0.99996 0.99985

5
5
5
5
5
5
5
5

0.97,0.96,0.94,0.93,0.90 0.99999 0.99998
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Table 2 Comparison between the Genetic algorithm and the Randomized algorithm for 6 no. of copies

050060060080080070

0.95,0.93,0.90,0.85,0.80,0.78

0.68,0.67,0.64,0.63,0.62,0.58
0.97,0.87,0.79,0.73,0.68,0.60
0.98,0.97,0.95,0.92,0.92,0.90

0 99903
0.99999
0.99775
0.99997
0.99999

Table 3 Comparison between the Genetic algorithm and the Randomized algorithm for 7 no. of copies

copies

0.97,0.90,0.85,0.70,0.68,0.65,0.60
0.89,0. 86,0.80,0.75,0.70,0.65,0.57
0.89,0.89,0.87,0.70,0.70,0.64,0.57
0.95,0.90,0.85,0.80,0.75,0.70,0.65

0.90,0.90,0.60,0.60,0.60,0.60,0.60
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0.99999
0.99996
0.99997
0.99999
0.99989

0.99994
0.99966
0.99980
0.99995
0.99928



Table 4 Comparison between the Genetic algorithm and the Randomized algorithm for 8 no. of copies

copies

097090085070068065060060 099999 099999

0.90,0.90,0.85,0.85,0.80,0.80,0.70,0.70 }0.99999 0.99999
0.95,0.90,0.85,0.80,0.75,0.75,0.70,0.70 J0.99999 0.99999

Graph 10
Comparison between Genetic and Randomized
Algorithm
1.001
1
-B’ 0.999
E 0.998
C;U H Genetic
<L 0.997 ® Randomized
0.996 -
0.995 -
5 6 7 8
No. of nodes
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5.2 Experimental Results of Simulation

Based on the simulation of different topology li&&r, ring, group topology we
found the maximum throughput in each of the casepdoited the table.

Table 5 Maximum Throughput

Topology TCP CBR CBR Receive
Star Topology 1.02*10 4.25*1¢ 3.4*1(
Ring Topology 3.5%10 4.25*1d 3.4*10'

Group Topology 1.15*10 4.25*1¢ 3.4*10'

44



45

Chapter 6

CONCLUSION



6. CONCLUSION

From the table 5 we conclude that in using TCP etscktar topology shows the
maximum throughput in comparison to ring topologlge maximum throughput in
ring topology is 3.5* 1D bits/sec where as the maximum throughput in star
topology is 1.02*10 bits/sec . Also we observed that using CBR packets
throughput is almost of equal value in all topoésyi The group scheme has the
maximum throughput of all the topologies due to léss overhead of packet
transferring to its neighborhood. The group topgldias 1.15*10 "Ysec as

maximum throughput among the various nodes in djp@ra

The optimal assignment of votes to sites so asaximmize overall availability is

an important issue. From table 1-4 we found thatiaiscule 1% increase in
availability from 0.98 to 0.99 is quite large inrtes of system availability. On the
other hand, it can also be viewed as a decreasigeiprobability of the system
being inaccessible from 0.02 to 0.01, reflecting(0® decrease in down time.
Viewed in this manner, the increase in availabiiityn 0.98 to 0.99 is a dramatic
improvement. Hence, even small increases in avhijabre useful. In this paper
we described and tested a genetic algorithm foe astsignment. The algorithm
runs very fast, and extensive comparisons withnalomn algorithm show that its
performance is excellent. Although testing wasrigsid to 9 sites, this approach

looks very promising even for a larger number tdssi
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Because it runs fast, a Genetic vote assignmeptiddg like the one described
here would make it possible to dynamically chargeassignment of votes to sites

asthe network changes, rather than maintaining aicefixed assignment.
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