

FAULT TOLERANCE IN DISTRIBUTED
SYSTEMS USING DYNAMIC VOTE

REASSIGNMENT

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF
THE REQUIREMENTS FOR THE DEGREE OF

Bachelor of Technology

In

Computer Science and Engineering

By

BIKASH KUMAR GUPTA

SANGRAM JYOTI BAL

Under the Guidance of

PROF. P.M.KHILLAR

Department of Computer Science and Engineering

National Institute of Technology

Rourkela

National Institute of Technology

Rourkela

CERTIFICATE
This is to certify that the thesis entitled “Fault Tolerance in Distributed Systems
Using Dynamic Vote Reassignment” Submitted by Sangram Jyoti Bal, Roll No
: 10606037 and Bikash Kumar Gupta, Roll No: 10606040 in the partial
fulfillment of the requirement for the degree of Bachelor of Technology in
Computer Science Engineering, National Institute of Technology, Rourkela ,
is being carried out under my supervision.
To the best of my knowledge the matter embodied in the thesis has not been
submitted to any other university/institute for the award of any degree or diploma.

Prof. P.M.Khillar
Date: Department of Computer Science and Engineering

 National Institute of Technology
Rourkela-769008

ACKNOWLEDGEMENT

We avail this opportunity to extend our hearty indebtedness to our guide Prof.

P.M.Khillar , Computer Science Engineering Department, for their valuable

guidance, constant encouragement and kind help at different stages for the

execution of this dissertation work.

We also express our sincere gratitude to Prof. B.Majhi , Head of the Department,

Computer Science Engineering, for providing valuable departmental facilities.

Submitted by:

Bikash Kumar Gupta Sangram Jyoti Bal
Roll No: 10606040 Roll No: 10606037
Computer Science and Engineering Computer Science and Engineering
National Institute of Technology National Institute of Technology
Rourkela Rourkela

CONTENTS

No Page
Abstract i
List of Figures ii
List of Tables iii

Chapter 1 INTRODUCTION 1
 1.1 Overview 2
 1.2 Thesis Objective 3
 1.3 Thesis Organization 4

Chapter 2 LITERATURE REVIEW 5
 2.1 Static Voting 6
 2.2 Majority Based Dynamic Voting 7
 2.3 Dynamic Vote Reassignment 9
 2.4 Group Based Voting 13

Chapter 3 SIMULATION 19
 3.1 Star Topology 22
 3.2 Ring Topology 23
 3.3 Group Topology 24
 3.4 Observations 25

Chapter 4 ALGORITHM 31
 4.1 Genetic Algorithm 32
 4.2 Pseudo code 36

Chapter 5 EXPERIMENTAL RESULTS 40
 5.1 Experimental Results of Algorithm 41
 5.2 Experimental Results of Simulation 44

Chapter 6 CONCLUSION 45

Chapter 7 REFERENCES 48

ABSTRACT

There are several fault tolerant protocols for managing replicated files in the event

of network partitioning due to site or communication link failures. Previously there

has been no software simulation of the voting protocols apart from just stochastic

modeling. In this paper, we simulate and analyze the throughput of message

transfer during the communication. We use various network topologies to

compare the parameters such as throughput, no of packets received and sent during

voting process .We have analyzed the effects of various packet properties. The

analysis provides evidence for the conjecture that the grouping scheme is the

optimal algorithm in the context of the voting protocols. We also compare the

proposed genetic approach for voting assignment with random algorithm proposed

by Akhil Kumar. This comparison shows that genetic voting assignment gives

better availability than random algorithm.

(i)

List of Figures

Fig No Title of Figure Page No

1. Star Topology 22

2. Ring Topology 23

3. Group Topology 24

(ii)

List of Tables

Table No

Title

Page No

1
Comparison between the Genetic algorithm and the

Randomized algorithm for 5 no. of copies
41

2
Comparison between the Genetic algorithm and the

Randomized algorithm for 6 no. of copies
42

3
Comparison between the Genetic algorithm and the

Randomized algorithm for 7 no. of copies
42

4
Comparison between the Genetic algorithm and the

Randomized algorithm for 8 no. of copies
43

5 Maximum Throughput 44

(iii)

Chapter 1

INTRODUCTION

1

1. Introduction

1.1 Overview

Computing systems consist of a variety of hardware and software components that

are bound to fail eventually [8]. In many systems, such component failures can

lead to unanticipated, potentially disruptive failure behavior and to service

unavailability. Some systems are designed to be fault-tolerant: they either exhibit

a well defined failure behavior when components fail or mask component failures

to users that is, continue to provide their specified standard service despite the

occurrence of component failures [9]. To many users temporary errant system

failure behavior or service unavailability is acceptable. There is, however, a

growing number of user communities for whom the cost of unpredictable,

potentially hazardous failures or system service unavailability can be very

significant .Examples include the on-line transaction processing, process control,

and computer-based communications user communities. To minimize losses due to

unpredictable failure behavior or service unavailability, these users rely on fault

tolerant systems. With the ever increasing dependence placed on computing

services, the number of users who will demand fault-tolerance is likely to increase.

The task of designing and understanding fault-tolerant distributed system

architectures is notoriously difficult: one has to stay in control of not only the

standard system activities when all components are well, but also of the complex

situations which can occur when some components fail. The difficulty of this task

can be exacerbated by the lack of clear structuring concepts and the use of a

confusing terminology. Presently, it is quite common to see different people use

2

different names for the same concept or use the same term for different concepts.

For example, what one person calls a failure, a second person calls a fault, and a

third person might call an error. Even the term "fault-tolerant" itself is used

ambiguously to designate such distinct system properties as "the system has a well-

defined failure behavior" and "the system masks component failures. [8]"

When a system is designed to mask failures, it continues to perform its specified

function in the event of a failure [9]. A system designed for well defined behavior

may or may not perform the specified function in the event of a failure; however, it

can facilitate actions suitable for recovery.

One key approach used to tolerate failures is redundancy [8]. In this approach, a

system may employ a multiple number of processes, multiple numbers of hardware

components, multiple numbers of copies of data, etc with independent failure

modes.

1.2 Thesis Objective

• To simulate the message transfer throughput in various topologies using

various packet properties.

• Comparison of the proposed genetic algorithm with the random voting

algorithm proposed by Akhil Kumar [7].

• To calculate availabilities under various nodes probabilities using the

proposed genetic algorithm.

3

1.3 Thesis Organization

This thesis is divided into 7 chapters. Each chapter focuses on a specific topic in

the field of fault tolerance.

Chapter 1 gives an overview of the overall fault tolerance issues. It introduces the

concept of fault tolerance and the various types fault tolerance mechanisms.

Chapter 2 deals with the literature review of the related works and illustrate various

protocols used for fault tolerance. It discusses the various schemes used for the

vote assignment including the dynamic vote assignment policies. It covers the

group voting mechanism for effective message passing.

Chapter 3 deals with the simulation work carried out in respect of the thesis

objective. It shows the various parameter performances during the simulation

period. It also shows the various scenarios created for the simulation of the

different topologies.

Chapter 4 gives the pseudo code for the proposed genetic voting approach .It

depicts the various methods used in the voting process.

Chapter 5 shows the various experimental results that resulted from the simulation

of the network topologies. It gives the overview of the performance parameters in

the message transfer overhead. The comparison between the proposed algorithm

and random algorithm gives the clear picture of the performance of the two

algorithms.

Chapter 6 concludes showing conclusion drawn from the various simulation and

experimental results

4

Chapter 2

LITERATURE REVIEW
Static Voting

Majority Based Dynamic Voting

Dynamic Vote Reassignment

Group Based Voting

5

2. Literature Review

2.1 Static voting

This static voting is proposed by Gifford [2].

Replicating data at many sites is the common approach in the fault tolerance in

distributed systems. Data can still be obtained from the other copies if the original

fails. Commit protocols [10, 11, 12] can be employed to update multiple copies of

data .While the non-blocking protocol [11, 12] of the commit protocol family can

tolerate single site failure, it is not resilient to multiple site failures, communication

failures and network partitioning. In [10] commit protocols, when a site is

unreachable, the coordinator sends messages repeatedly and eventually may decide

to abort the transaction, thereby denying access to data. However, it is desirable

that the sites continue to operate even when other sites have crashed [11, 12], or at

least one partition should continue to operate after the system has been partitioned.

Another well known technique used to manage replicated data is the voting

mechanism [2]. With the voting mechanism [13, 14], each replica is assigned some

number of votes and majority of votes must be collected from a process before it

can access a replica. The voting mechanism [13] is more fault tolerant than a

commit protocol in that it allows access to data under the network partitions, site

failures and message loses without comprising the integrity of the data.

6

Algorithm

1. Site i issues a Lock_Request to its local lock manager.

2. When the lock request is granted, site i sends a Vote_Request message to all

the sites.

3. When a site j receives a Vote_Request message, it issues a Lock_Request to

its local lock manager. If the local request is granted, then it returns the

version number of the replica (VNj) and the number of the votes assigned to

the replica (Vj) to site i.

4. Site i decide whether it has the quorum or not, based on the replicas received

within a timeout period as follows (P denotes the set of sites which have

replied).

a. If the request issued was a read,

Vr=∑Vk

b. If the request issued was a write,

Vw=∑Vk

c. Where the set of sites Q is determined as follows:

i. M=max{VN j : j€P}

ii. Q={j€P : VNj=M}

7

5. If the site i is not successful in obtaining the quorum, then it issues a

Release_Lock to the local lock manager as well as to all the sites in P from

whom it has received votes.

6. If site i is successful in obtaining the quorum, then it checks whether its cop

of the file is current. A copy is current if its version number is equal to M. If

the copy is not current, a current copy is obtained from a site that has a

current copy. Once a current copy is available locally, site I performs the

next step.

7. If the request is a read, site i reads the current copy available locally. If the

request is a write, site i updates the local copy. Once all the accesses to the

copy are performed, site i updates VNi, and sends all the updates and VNi to

all the sites in Q. Note that a write operation updates only current copies.

Site i then issues a Release_Lock request to its local lock manager as well as

to all the sites in P.

8. All the sites receiving the updates perform the updates on their local copy

and on receiving a Release_Lock request, release the locks

2.2 Majority Based Dynamic Voting

This protocol is proposed by Jajodia and Mutchler [5].

Version number: The version number of a replica at a site i is an integer that

counts the number of successful updates to the replica at i. VNi is initially set at

zero and is incremented b one at every successful updates to the replica at i. VNi is

8

initially set at zero and is incremented by one at every successful update.

Number of Replicas updated: It is an integer that almost always reflects the

number of replicas the number of replicas participating in the most recent update

RUi is initially equal to the number of replicas.

Distinguished sites list: The distinguished sites list [5] at a site i is a variable that

stores ID’s of one or more sites. The contents of DSi depend on RUi. When RUi is

even, DSi identifies the replica that is greater than all the other replicas that

participated in the most recent update of the replica at site i. When RUi is odd, DSi is

nil except when RUi =3, in which case DSi lists the three replicas that participated

in the most recent update from which a majority is needed to allow access to data.

Outline of the protocol:

1. Site i issues a Lock_Request to its local lock manager.

2. If the lock is granted, site i sends a Vote_Request message to all the sites.

3. When a site j receives the Vote_Request message, it issues a Lock_Request

to its local lock manager. If the lock is granted, site j sends the values of

VN j, RUj and DSj to site i.

4. From all the responses, site i decides whether it belongs to the distinguished

partition, described shortly.

5. If site i does not belong to the distinguished partition [5], it issues a

Release_Lock request to its local lock manager and sends Abort messages to

all the other sites that responded. A site, on receiving a Abort message,

issues a Release_Lock request to its local lock manager.

9

6. If site i does not belong to the distinguished partition, it performs the update

if its local copy is current. Otherwise, site i obtain a current copy from one

of the other sites and then perform the update. Note that along with the

replica update, VNi , RUi and DSi . It then issues a Release_Lock request to

the local lock manager.

7. When a site j receives a commit message, it updates its replica, updates the

variables VNj, RUj and DSj and issues a Release_Lock request to the local

lock manager.

2.3 Dynamic Vote reassignment protocols

The actual idea was proposed by Gifford [2] but was discussed in detail by

Barbara, Garcia-Molina, and Spauster [16].

Barbara et al. [4,15] categorized the Dynamic vote reassignment into two types:

Group consensus

The sites in the active group agree upon the new vote assignment using either a

distributed algorithm or bi selecting a coordinator to perform the task. Since the

outside the majority group didn’t receive any votes.

Because this method relies on active group participation, the current system

topology will be known before deciding the vote assignments [4, 15, 16]. by using

that information

10

Autonomous Reassignment

Each node makes its own decision about changing its votes and picking a new vote

value, without regarding the rest of the nodes [15,16]. Before the change is made

final, though, the node must collect a majority of votes.

The Protocols

The protocols for autonomous vote reassignment [4, 9, 15, 16] are what guarantee

mutual exclusion. Once a node picks a new vote value, a vote changing protocol is

invoked to install the change. The vote changing protocol uses the vote collecting

protocol to ensure that enough votes have been collected to validate the change. In

addition, the vote collecting protocol is used for all other operations requiring

majority approval.

Protocol P1. Vote increasing. The initiator (node i)

1. Send the new vote value along with [15,16] Vi and Ni to the rest of the nodes

with which node i can communicate.

2. Wait for a majority of acknowledgments to arrive (whether or not a majority

of votes has been received by node i is determined by following protocol P2

[16]), and then install the change in the local voting vector, that is update

V i[i] and increase the version number Ni[i] by 1.

Protocol P2. Vote Collecting

Assume node i is collecting votes to decide upon an event. In this case, each voting

11

node j will send i two vectors, the voting vector Vj and a version vector Nj.

Another vector vi is maintained where vi[j] indicates the votes of j as determined b

site i upon the collection of votes. An entry Ni[j] represents the version number for

the value Vi[j] at site i. Node i decide upon the votes of node k (~6) using the

following rules:

(a) If i receives Vj and Nj, then vi[j] = V j[j]. Also, change Vi[j] to V j[j] and Ni[j] to

Nj[j] if either of the following two conditions applies:

V j[j] > V i[j] or V j[j] < V i[j] and Nj[j] > N i[j].

The first condition is simply that of Scenario One. Vj[j] > V i[j] indicates that j has

increased its votes since i last determined Vi[j]. The version number is irrelevant in

this case, since it provides no additional information.

In the second case, Vj[j] < V i[j] indicates that either j has decreased its votes or an

increase at k has not yet been approved or has been timed out. If, however, Nj[j] >

Ni[j], then Vj[j] reflects a later decrease of votes at k or a failed vote increase

attempt, and this new information should be recorded.

(b) If i does not receive Vj, then vi[j] = V k[j] for k such that Nk[j] = max {Np[j] :

p€G}, where G is the set of all sites from which site i has received replies. That is,

k assume the newest value among the voting group for the vote value of node j. In

addition, i modify its entry Vi[j] to equal Vk[j] and Ni[j] to equal Nk[j].

Protocol P3. Vote Decreasing The same as P1, except that:

The initiator sends Vi and Ni along with its vote decrease. Upon successfully

12

collecting a majority of votes, the initiator increases Ni[i] by one and sets the Vi[i]

to the new value.

Policies

These policies were proposed by Barbara et al. [16]

The Overthrow Technique

Vote increasing under the overthrow technique [16] is straightforward. Consider a

system in which node x has gone down, while the rest of the nodes are still up.

(This can be considered as a partition of the system into two groups, with x in one

group and the rest of the nodes in the other.) Let v, be the number of votes that

node x has. Let TOT be the total number of votes in the system and MAJ the

majority of votes. Assuming TOT is odd, MAJ = (TOT + 1)/2 [16]. If node a is the

node supplanting X, the new number of votes for a, v: will have to be such that it

covers the voting power that a had before (v,), plus the voting power of x, plus the

increase in the total number of votes. If a increases its votes by 2vx, the total

number of votes will be TOT ’ = TOT + vx, and MAJ ’ = MAJ + vx. It can be

shown that all the majority groups that used x can be formed using a instead:

The Alliance Technique

There are many variations of the alliance technique [16]. We describe three here.

In general, we want to give each node a fraction of the voting power of a node that

has been excluded from the majority group. As in the overthrow technique, we

want to be sure to give out at least 2u, votes in the majority group, enough to

counteract those votes that node x holds plus the number of votes node x could

13

have contributed if it were in the active group. Of course, we can always assign a

surplus of votes to each node. One possibility is to assign 2v votes to every

member of the active group; or we can assign vx votes to each member of the

active group, and assign 2u, votes when there is just one node left. Another

possibility is to spread 2v votes out. Say N = number of nodes in the majority

group. Then, give each node in the active group ┌2v/N ┐ votes (henceforth

referred to simply as 2v/N). If need be, N can be estimated by the nodes. This may

not be as good as possible in terms of resilience to failures [16], but is certainly not

dangerous. No matter what the strategy, we have to be careful when there are only

two nodes left in the majority group. In that situation, it is senseless to give each

node the same number of votes, since if they lose communication with each other,

their extra votes will only cancel each other out and no group may have a majority.

Instead, it is better to pick one node and give it 2u, votes. We can use a priority

mechanism to handle this case

2.4 Group Based Voting

This voting mechanism is proposed by Agarwal and Jalote [6].

In the previous voting algorithm, the site initiating the operation has to

communicate with all the nodes incurring high communication costs. In this

algorithm [6] the sites are divided into intersecting or overlapping groups. In the

absence of failures the site initiating the operation communicates with the sites of

its group thus reducing the communication costs. This algorithm suggests a method

for constructing such logical groups and show that the message overhead of any

operation in a system of N nodes is O (√n), when there are no or few failures in the

system.

14

Logical group formation

Let the number of groups be n. Let the n groups in the system be referred to as

Gi (i=1…n). Each group has the cardinality n-1. This formation ensures that the

site has to communicate with its own group members to have a read or write

operation in case of no failures. Two numbers are chosen from this group and form

combinations. Assume that the number of nodes be n (n-1)/2.

Then one-one mapping [6] is performed from number of nodes to number of

combinations generated. If a node is mapped to combination (i, j), then it belongs

to group i and j and in no other group. This ensures that the each group has the

cardinality n-1 since there is only n-1 combinations in the set 1…n for containing

number i.

Consider 15 nodes in a system. These nodes can be grouped as follows. The groups

obtained by this grouping are shown below.

Group 1: (1, 2, 3, 4, 5)

Group 2: (1, 6, 7, 8, 9)

Group 3: (2, 6, 10, 11, 12)

Group 4: (3, 7, 10, 13, 14)

Group 5: (4, 8, 11, 13, 15)

Group 6: (5, 9, 12, 14, 15)

15

Voting Algorithm

Let us discuss the read quorum condition.

For this the requesting site should get the current version of the replica from the

group. Therefore it should have the access to all the groups in the system which

can be guaranteed if it can access at least one member in each group.

A set of nodes R satisfies the read quorum if for all i (i= 1...n), for some j, such that

I ij є R. That is at least one site from each group participates in read quorum.

Clearly, if R is Gi, then R satisfies the read quorum.

Also, a read quorum can be satisfied if vote from one node from each group can be

collected.

A set of nodes R satisfies the write quorum if for some i such that for all j (j =

1...n), Iij є R, That is all the sites of particular group participates in the write

quorum.

The write availability can be improved if the site initiating the operation can

distinguish between the site failures and network partitions.

Suppose that a set of sites R is participating in the operation and a set of sites F is

reported to have failed.

Then R and F together satisfy the write quorum if

1. A write set is available, that is, for some i such that for all j (j=1…n), Iij є

(RUF)

16

2. R satisfies the read quorum condition.

Read Algorithm

1. Send read request to all nodes in Gi and wait for replies.

2. Let R be the set of node replied. If some of the intersecting node of a

particular group is not present in R then look for a node in the group of the

missing intersecting nodes and send the read request.

3. Read from the node having the current copy.

Write Algorithm

1. Send a write request to all the nodes in the group. Let R be the nodes replied

and F be the nodes that failed. Then T=RUF.

2.

• If the intersecting node is present in T then check if it is missing in

R. if it is missing in R, then check for the nodes in the other group

of the particular missing intersecting node and send read request

and wait for replies.

• If the intersecting node is not present in T then find the nodes of

the other group of the missing intersecting node and send write

request to all the nodes of that group and get all replies. If the write

set is met then try collecting read quorum.

3. Write to all the operational node of the write set.

17

Performance Evaluation

Let the no of nodes be T in the system and we have n groups such that T = n (n-

1)/2. We have already seen [6] that the cardinality of each group is n-1 .Now from

the equation 1 solving the quadratic equation we get

 n =
��√����

�
 from which n =

��√����

�
 satisfies the equation

since cardinality is n-1 therefore the communication cost is O (n-1) i.e.

O (
2

8T+ 1- 1) = O (√T)

18

Chapter 3

SIMULATION
19

4. Simulation

QualNet [18] is a network simulation tool that simulates wireless and wired packet

mode communication networks. QualNet Developer is a discrete event simulator

used in the simulation of MANET, WiMAX networks, satellite networks, and

sensor networks, among others. QualNet has models for common network

protocols that are provided in source form and are organized around the OSI Stack.

 Global Simulation Parameters

• Version
• Experiment Name
• Maximum Simulation Time
• Random Number Seed
• Coordinate System
• Terrain Corners
• Terrain Dimensions
• Irregular Terrain
• Node Placement
• Protocol Stack
• Statistics Filtering
• Mobility Options
• Mobility Position Granularity
• Application Setup File

20

Topology simulation

In the Qualnet Simulation environment we placed nine nodes representing the

devices in the fault tolerant network according to the different topologies. We

simulated three different topologies that star , ring and group topologies.

In the star we connected the nine nodes through a single hub and tested for

different packets such CBR, FTP, CBR receive. The average distance between the

nodes is around 1000 meters. We designed the network using the qualnet designer

user interface and placed the nodes accordingly.

 In ring topology we connected each adjacent node with each other. The

average distance between the nodes is around 1000 metres.We tested for different

packets such CBR, FTP, CBR receive.

In Group topology we created group by taking three nodes in a group and

each group connected to the other through a hub. The average distance between the

nodes is around 1000 metres.We tested for different packets such CBR, FTP, CBR

receive.

In all of the topologies we simulated for the average throughput rates for

varying node density.

21

3.1 Star topology

22

Figure 1

3.2 Ring Topology

Figure 2

23

3.3 Group Topology

Figure 3

24

3.4 Observations

The following graphs are the results of the scenario simulation [18] which shows

the various configurations of the network topologies along with the different

packet properties.

In the graph 1 we get throughput rate corresponding to the no of nodes in the

ring topology for the TCP protocol. In graph 2 it shows the throughput rate

corresponding to the no of nodes in the star topology for the TCP protocol. In

graph 3 it shows the throughput rate corresponding to the no of nodes in the group

topology for the TCP protocol. In graph 4 it shows the throughput rate

corresponding to the no of nodes in the ring topology for the CBR (constant bit

rate) packets transmission.

In graph 5 it shows the throughput rate corresponding to the no of nodes in

the star topology for the CBR (constant bit rate) packets transmission. In graph 6 it

shows the throughput rate corresponding to the no of nodes in the Group topology

for the CBR (constant bit rate) packets transmission. In graph 7 it shows the

throughput rate corresponding to the no of nodes in the Ring topology for the CBR

(constant bit rate) receive packets transmission. In graph 8 it shows the throughput

rate corresponding to the no of nodes in the star topology for the CBR (constant bit

rate) receive packets transmission. In graph 9 it shows the throughput rate

corresponding to the no of nodes in the Group topology for the CBR (constant bit

rate) receive packets transmission.

 25

TCP in Ring topology

Graph 1

TCP in Star topology

Graph 2

 26

TCP in Group Topology

Graph 3

CBR in Ring Topology

Graph 4

27

CBR in Star topology

Graph 5

CBR in Group Topology

Graph 6

28

CBR receive in Ring topology

Graph 7

CBR receive in Star topology

Graph 8

29

CBR receive in group topology

Graph 9

30

Chapter 4

ALGORITHM
31

4. Algorithm

4.1 The Genetic Algorithm

 Introduction

A genetic algorithm [18] (GA) is a search technique used in computing to find

exact or approximate solutions to optimization and search problems. Genetic

algorithms are categorized as global search heuristics. Genetic algorithms are a

particular class of evolutionary algorithms (EA) that use techniques inspired by

evolutionary biology such as inheritance, mutation, selection, and crossover.

This is the key idea in solving combinatorial optimization problems by this

technique. Iterative improvement (or greedy) algorithms tend to “dead-end” in

locally optimal solutions; however, the genetic algorithm approach makes it

possible to come out of such dead-ends and look for still better solutions

A typical genetic algorithm requires:

1. a genetic representation of the solution domain,

2. a fitness function to evaluate the solution domain

Initialization

Initially many individual solutions are randomly generated to form an initial

population. The population size depends on the nature of the problem, but typically

contains several hundreds or thousands of possible solutions.

32

Selection

During each successive generation, a proportion of the existing population is

selected to breed a new generation. Individual solutions are selected through a

fitness-based process, where fitter solutions (as measured by a fitness function) are

typically more likely to be selected. Certain selection methods rate the fitness of

each solution and preferentially select the best solutions. Other methods rate only a

random sample of the population, as this process may be very time-consuming.

Reproduction

For each new solution to be produced, a pair of "parent" solutions is selected for

breeding from the pool selected previously. By producing a "child" solution using

the above methods of crossover and mutation, a new solution is created which

typically shares many of the characteristics of its "parents". New parents are

selected for each new child, and the process continues until a new population of

solutions of appropriate size is generated. Although reproduction methods that are

based on the use of two parents are more "biology inspired", some research

suggests more than two "parents" are better to be used to reproduce a good quality

chromosome. These processes ultimately result in the next generation population

of chromosomes that is different from the initial generation. Generally the average

fitness will have increased by this procedure for the population, since only the best

organisms from the first generation are selected for breeding, along with a small

proportion of less fit solutions, for reasons already mentioned above.

33

Termination

This generational process is repeated until a termination condition has been

reached. Common terminating conditions are:

• A solution is found that satisfies minimum criteria

• Fixed number of generations reached

• Allocated budget (computation time/money) reached

• The highest ranking solution's fitness is reaching or has reached a plateau

such that successive iterations no longer produce better results

• Manual inspection

• Combinations of the above

Fitness function

The main objective in the vote assignment problem is to find an assignment of

votes that maximizes the availability. We shall assume that both read and write

quorums are equally important, and hence each quorum is set equal to a majority of

the sum of all votes. The vector whose availability is maximum is selected as the

solution of the problem

Chromosome

A chromosome consists of a specific vote assignment or a vector of n votes (V1,,

V2, . . ., Vn) here Vi is the vote assigned to site i. A chromosome change is

produced by selecting a pair of votes; say V and U, from this vector and

performing one of the following two operations:

34

Mutation

A common method of implementing the mutation operator involves generating a

random variable for each vote in a sequence. This random variable tells whether or

not a particular vote will be modified. This mutation procedure, based on the

biological point mutation, is called single point mutation.

Crossover

A single crossover point on both parents’ vote vectors and chromosome is selected.

All data beyond that point in either vector is swapped between the two parent

vectors. The resulting vectors are the children.

For example, say n is 5, and the two vote vector is V1 (2,2,1,1,1) and V2(2,1,1,3,1).

By respectively applying the two operations above to V1 and V2, the following

states are produced:

Mutation: VC1= mutated child of V1

 = (2, 1, 1, 2, 1)

 VC2= mutated child of V2

 = (2, 3, 1, 1, 1)

Crossover: crossover child of V1 and V2

 = (2, 1, 1, 1, 1), (2, 2, 1, 3, 1)

35

4.2 Pseudo code

public double p[]= {0.95,0.90,0.85,0.80,0.75,0.75,0.70,0.70};

public TreeSet<String> popu ;

public String chromosome ;

public TreeSet<String> popu1;

public double best_avail=0.0;

public String combo;

public String temp_chromosome;

public double avail (String s){

 Double avail = 0;

 int sum=0;

 for (int j=0;j<s.length();j++){

 Sum=sum+ (s.charAt (j)-48);

 }

 sum=sum/2;

 double product=0;

for (int i0=0;i0<=1;i0++)

for (int i1=0;i1<=1;i1++)

for (int i2=0;i2<=1;i2++)

 for (int i3=0;i3<=1;i3++)

 for (int i4=0;i4<=1;i4++)

36

 for (int i5=0;i5<=1;i5++)

 for (int i6=0;i6<=1;i6++)

 for (int i7=0;i7<=1;i7++)

if((i0*s.charAt(0)+i1*s.charAt(1)+i2*s.charAt(2)+i3*s.charAt(3)+i4*s.charAt(4)+i5*

s.charAt(5)+i6*s.charAt(6)+i7*s.charAt(7))> sum){

product = (i0*p[0]+(1-i0)*(1-p[0]))*(i1*p[1]+(1-i1)*(1-p[1]))*(i2*p[2]+(1-

i2)*(1-p[2]))*(i3*p[3]+(1-i3)*(1-p[3]))*(i4*p[4]+(1-i4)*(1-

p[4]))*(i5*p[5]+(1-i5)*(1-p[5]))*(i6*p[6]+(1-i6)*(1-p[6]))*(i7*p[7]+(1-

i7)*(1-p[7]));

 avail = avail + product ;

}

return avail;

}

public void mutate(){

 Iterator<String> itr = popu.iterator();

 String p1,p;

 popu1.clear ();

 While (itr.hasNext ()){

 p= itr. Next ();

 p1 = p.replace (p.charAt (2),(p.charAt(4)));

 p1 = p1.replace (p.charAt (4),(char) (p.charAt(2)+1));

 popu1.add (p1);

 }

 itr = popu1.iterator ();

While (itr.hasNext ()){

37

popu.add(itr. Next ());

}

 popu1.clear ();

 }

 public void crossover (){

 Iterator<String> itr = popu.iterator ();

 String p1;

 String p2;

 While(itr.hasNext()){

 p1= itr. Next();

 If(itr.hasNext())

 p2= itr. Next();

 else break;

 String p3 = p1.substring(0, 3)+p2.substring(3);

 String p4 = p2.substring(0, 3)+p1.substring(3);

 popu1.add(p3);

 popu1.add(p4);

 }

popu.clear();

itr = popu1.iterator ();

While (itr.hasNext()){

 popu.add (itr. Next ());

}

 }

 public void checkAvail(){

38

Iterator<String> itr = popu.iterator();

String s;

 while(itr.hasNext()){

 s=itr. Next();

 double new_avail = avail(s);

 if (new_avail>best_avail){

best_avail=new_avail;

 combo=s;

}

}

 System.out.println (best_avail);

 System.out.println (combo);

}

 The array p[] consists of the site probabilities. The popu data structure

contains the total population of the various voting configuration assignment to

sites. The method avail () checks the availability of the given configuration and

stores best configuration in the best_avail variable. The method mutate () performs

the mutation operation for the genetic approach. The method crossover () perform

the crossover operation for the genetic approach.

39

Chapter 5

EXPERIMENTAL RESULTS

40

5. Experimental Results

5.1 Experimental results of Algorithm

We implemented the algorithm by coding it in java and calculating the availability
by varying the no. of copies and site reliabilities. We then compared our values
with the randomized algorithm [7] and plotted the table as below.

Table 1 Comparison between the Genetic algorithm and the Randomized algorithm for 5 no. of copies

of copies Site Reliabilities genetic random

5

5

5

5

5

5

5

5

0.8,0.8,0.8,0.8,0.9

0.8,0.8,0.8,0.9,0.9

0.98,0.94,0.90,0.85,0.80

0.90,0.85,0.80,0.75,0.70

0.74,0.68,0.62,0.58,0.54

0.97,0.90,0.81,0.73,0.65

0.96,0.94,0.90,0.68,0.60

0.97,0.96,0.94,0.93,0.90

0.99984

0.99992

0.99999

0.99977

0.99389

0.99994

0.99996

0.99999

0.99855

0.99855

0.99996

0.99857

0.97828

0.99970

0.99985

0.99998

41

Table 2 Comparison between the Genetic algorithm and the Randomized algorithm for 6 no. of copies

of copies Site Reliabilities genetic random

6

6

6

6

6

0.50,0.60,0.60,0.80,0.80,0.70

0.95,0.93,0.90,0.85,0.80,0.78

0.68,0.67,0.64,0.63,0.62,0.58

0.97,0.87,0.79,0.73,0.68,0.60

0.98,0.97,0.95,0.92,0.92,0.90

0.99903

0.99999

0.99775

0.99997

0.99999

.99070

.99999

.99775

.99997

.99999

Table 3 Comparison between the Genetic algorithm and the Randomized algorithm for 7 no. of copies

of
copies

Site Reliabilities genetic random

7

7

7

7

7

0.97,0.90,0.85,0.70,0.68,0.65,0.60

0.89,0. 86,0.80,0.75,0.70,0.65,0.57

0.89,0.89,0.87,0.70,0.70,0.64,0.57

0.95,0.90,0.85,0.80,0.75,0.70,0.65

0.90,0.90,0.60,0.60,0.60,0.60,0.60

0.99999

0.99996

0.99997

0.99999

0.99989

0.99994

0.99966

0.99980

0.99995

0.99928

42

 Table 4 Comparison between the Genetic algorithm and the Randomized algorithm for 8 no. of copies

Graph 10

43

0.995

0.996

0.997

0.998

0.999

1

1.001

5 6 7 8

A
va

ila
bi

lit
y

No. of nodes

Comparison between Genetic and Randomized

Algorithm

Genetic

Randomized

of
copies

Site Reliabilities genetic random

8

8

8

0.97,0.90,0.85,0.70,0.68,0.65,0.60,0.60

0.90,0.90,0.85,0.85,0.80,0.80,0.70,0.70

0.95,0.90,0.85,0.80,0.75,0.75,0.70,0.70

0.99999

0.99999

0.99999

0.99999

0.99999

0.99999

5.2 Experimental Results of Simulation

Based on the simulation of different topology like star, ring, group topology we
found the maximum throughput in each of the case and plotted the table.

Table 5 Maximum Throughput

Topology TCP CBR CBR Receive
Star Topology 1.02*107 4.25*104 3.4*104
Ring Topology 3.5*106 4.25*104 3.4*104

Group Topology 1.15*107 4.25*104 3.4*104

44

Chapter 6

CONCLUSION

45

6. CONCLUSION

From the table 5 we conclude that in using TCP packets star topology shows the

maximum throughput in comparison to ring topology .The maximum throughput in

ring topology is 3.5* 106 bits/sec where as the maximum throughput in star

topology is 1.02*107 bits/sec . Also we observed that using CBR packets the

throughput is almost of equal value in all topologies. The group scheme has the

maximum throughput of all the topologies due to its less overhead of packet

transferring to its neighborhood. The group topology has 1.15*107 bits/sec as

maximum throughput among the various nodes in operation.

The optimal assignment of votes to sites so as to maximize overall availability is

an important issue. From table 1-4 we found that a miniscule 1% increase in

availability from 0.98 to 0.99 is quite large in terms of system availability. On the

other hand, it can also be viewed as a decrease in the probability of the system

being inaccessible from 0.02 to 0.01, reflecting a 50% decrease in down time.

Viewed in this manner, the increase in availability from 0.98 to 0.99 is a dramatic

improvement. Hence, even small increases in availability are useful. In this paper

we described and tested a genetic algorithm for vote assignment. The algorithm

runs very fast, and extensive comparisons with a random algorithm show that its

performance is excellent. Although testing was restricted to 9 sites, this approach

looks very promising even for a larger number of sites.

46

Because it runs fast, a Genetic vote assignment algorithm like the one described

here would make it possible to dynamically change the assignment of votes to sites

as the network changes, rather than maintaining a certain fixed assignment.

47

REFERENCES

[1] Davidson, S., Garcia-Molina, H., and Skeen, D. , “Consistency in partitioned

networks.,” ACM Computing. Survey. 17, 3 (Sept. 1985), 341-370.

[2] Gifford, D. K., “ Weighted voting for replicated data.,” In Proceedings of the

Seventh Symposium on Operating Systems Principles (Pacific Grove, Calif., Dec.

1979). ACM, New York, 1979, pp.150-162..

[3] Garcia-Molina, H. “Reliability issues for fully replicated distributed databases.”

IEEE Comput.15,9 (Sept. 1982), 34-42.

[4] Barbara, D., Garcia-Molina, H., and Spauster, A., “Policies for dynamic vote

reassignment,” Proc. IEEE Conf. on Distributed Computing, pp. 37-44, 1986

[5] Jajodia, S., and Mutchler, D. “Integrating static and dynamic voting protocols

to enhance file availability.” In Proceedings of the Fourth International Conference

on Data Engineering (Los Angeles, Feb. 1988). IEEE, New York, 1988, pp. 144-

153.

[6] Agarwal, G., and Jalote, P., ” An Efficient Protocol for Voting in Distributed

Systems,” Proceedings of the 12th International Conference on Distributed

Computing Systems, June 1992, pp. 640-647

 [7] Kumar, A., “A Randomized Voting Algorithm,” Proceedings of the 11th
International Conference on Distributed Computing Systems, May 1991, pp. 412-
419

48

 [8] Christian, F., “Understanding Fault-Tolerant Distributed Systems,”
Communications of the ACM, vol. 34, no. 1, Jan. 1989, pp. 93-97

[9] Singhal, M., and Shivaratri, N. G., “Advanced Concepts in Operating
Systems,” Tata McGraw-Hill 2001, New York, pp. 330-368

[10] Gray, J. N., “Notes on Data Base Operating Systems,” Operating Systems An
Advanced Course, Springer-Verlag, 1979, New York, pp. 393-481

[11] Skeen, D., “Non Blocking Commit Protocols,” Proceedings of the ACM
SIGMOD International Conference on Management of Data, 1981, pp. 133-142

[12] Skeen, D., “A Formal Model of Crash Recovery in a Distributed System,”
IEEE Transactions on Software Engineering, vol. 9, no.3, May 1983, pp. 219-228

[13] Jajodia, S., and Mutchler, D., “Dynamic voting,” In Proceedings of the ACM
SIGMOD International Conference on Management of Data (May 1987). ACM,
New York, 1987, pp. 227-238.

[14] Jajodia, S., and Mutchler, D., “Enhancements to the voting algorithm,” Proc.
19th Int’l. Conf. on Very Large Data Bases, pp. 399-406, September 1987

[15] Barbara, D., Garcia-Molina, H., and Spauster, A., “Protocols for dynamic vote
reassignment,” Proc. 5th ACM Symp. On Principles of Distributed Computing, pp.
195-205, 1986

[16] Barbara, D., Garcia-Molina, H., and Spauster,A., “ Increasing Availability
Under Mutual Exclusion Constraints with Dynamic Vote Reassignment.,”ACM
Transactions on Computer Systems,vol.7,no. 4, Nov. 1989,pp. 394-426

[17].Garcia Molina and D.Barbara, “How to assign votes in a Distributed System”,
Journal of the ACM, vo1.32, no. 4, pp. 841-860, October 1985

[18] http://en.wikipedia.org/

49

