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ABSTRACT 
Soft Computing is a term associated with fields characterized by the use of inexact solutions to 

computationally-hard tasks for which an exact solution cannot be derived in polynomial time.  

Almost contrary to conventional (Hard) computing, it is tolerant of imprecision, uncertainty, 

partial truth, and approximation to achieve tractability, robustness and low solution cost. 

Effectively, it resembles the Human Mind. The Soft Computing Techniques used in this project 

work are Adaptive Filter Algorithms and Artificial Neural Networks. 

 An adaptive filter is a filter that self-adjusts its transfer function according to an 

optimizing algorithm. The adaptive filter algorithms used in this project work are the LMS 

algorithm, the RLS algorithm, and a slight variation of RLS, the Modified RLS algorithm.  

 An Artificial Neural Network (ANN) is a mathematical model or computational model 

that tries to simulate the structure and/or functional aspects of biological neural networks. It 

consists of an interconnected group of artificial neurons and processes information using a 

connectionist approach to computation. Several models have been designed to realize an ANN. 

In this project, Multi-Layer Perceptron (MLP) Network is used. The algorithm used for modeling 

such a network is Back-Propagation Algorithm (BPA). 

 Through this project, there has been analyzed a possibility for using the Adaptive Filter 

Algorithms to determine optimum Matched Filter Coefficients and effectively designing Multi-

Layer Perceptron Networks with adequate weight and bias parameters for RADAR Pulse 

Compression. Barker Codes are taken as system inputs for Radar Pulse Compression. In case of 

Adaptive Filters, a convergence rate analysis has also been performed for System Identification 

and in case of ANN, Function Approximation using a 1-2-1 neural network has also been dealt 

with. A comparison of the adaptive filter algorithms has been performed on the basis of Peak 

Sidelobe Ratio (PSR). Finally, SSRs are obtained using MLPs of varying neurons and hidden 

layers and are then compared under several criteria like Noise Performance and Doppler 

Tolerance. 

Keywords: Adaptive, Artificial Neural Network, Matched Filter, System Identification Barker 

Codes, LMS, RLS, MLP, Function Approximation, Back Propagation Algorithm, PSR, SSR, SNR, 

Doppler Shift. 
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1.1 PULSE COMPRESSION 

Pulse Compression is a signal processing technique mainly used in radar, sonar and echography 

to enhance the range resolution as well as the signal to noise ratio. This is achieved by 

modulating the transmitted pulse and then correlating the received signal with the transmitted 

pulse [45]. 
 The technique of Pulse Compression consists of transmitting a pulse which sweeps 

through a range of frequencies with a carefully designed relationship of frequency to time. The 

received reflected pulse is cross-correlated with the digital version of the transmitted pulse and 

the resulting waveform is a narrow pulse of large magnitude. 

 Pulse compression involves transmitting a coded, wideband signal and compressing the 

return signal through filtering, which results in increased signal power and enhanced range 

resolution. Phase codes partition the transmitted pulse into equal segments, or sub pulses, and 

then switch the phase of the signal at specified intervals. In particular, binary phase codes 

switch the phase between two values where an example of a 5-bit bi-phase code is shown in 

Figure 1.1. Such types of bi-phase codes are known as BARKER CODES which are described in 

detail in Section 1.3.4. This waveform represents a carrier frequency being modulated in phase 

every sub pulse between 0 and π according to the code [+ + + - +] where + represents a phase 

of ei0 and represents eiπ. A sub pulse is defined as the time duration of one bit so a 5-bit code as 

shown which is 5 µs in duration will have five 1µs sub pulses. 

 

Figure 1.1: Example of 5-bit Bi-phase Code  
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The amount of compression possible is equivalent to the time-bandwidth product (BT) of the 
code, which is the product of the signal bandwidth and signal total duration. Bandwidth of a 
phase-coded signal is calculated via B=1/ τ where τ is taken to be the code sub pulse length. The 
returned signal power increase is proportional to the code length while the range resolution is 
inversely related to bandwidth. This implies that decreasing sub pulse duration results in a 
corresponding enhancement in range resolution.




The weakness of such systems is in the creation of range sidelobes which are artifacts produced 
by the compression process whereby returns from other ranges contaminate the signal at the 
desired range. The resulting output can cause erroneous estimations of reflectivity, mean 
velocity, and spectral width. Figure 1.2 shows the decoded output for the waveform shown in 
Figure 1.1 if it were passed through a matched filter. In particular, this is one example of a set 
of codes known as Barker codes which have uniformly distributed sidelobes about the mainlobe 
[46]. Barker codes also have the property of producing mainlobes that are higher than the 
sidelobes by a factor of the code length. In this case, the code length is 5 bits so the mainlobe is 
5 times higher than the sidelobes [42]. 
 

 
Figure 1.2: Compressed Phase-Coded Waveform through a Matched Filter  
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1.2 RADAR 
RADAR is an acronym for Radio Detection and Ranging. It is a system that uses radio waves to 
locate a moving or fixed object and primarily determine its range, bearing and height. It 
transmits radio waves that are reflected back from the target and are detected by a receiver. 
 

Components of Radar 
Usually, radar equipments are pulse modulated. Pulse modulated radar consists of the 
following equipments: 

 
Figure 1.3: Radar block diagram 

 Transmitter 
Transmitter is responsible for producing short-duration, high power pulses of radio 
frequency energy at given periodic frequency. An oscillator produces the pulses and a 
pulser provides the repetition frequency. The pulse duration is of the order of 0.1 and 
50 microseconds. During each pulse duration, the transmitter produces a very high peak 
output of 1 MW or more. Transmitter devices used are: 

I. Magnetron 
II. Crossed field amplifier 

III. Klystron 
IV. Travelling wave tube 
V. Solid state amplifier 

 

 Duplexer 
In pulse modulated radars, transmitter and receiver share a common aerial. As the 
transmitter and receiver work mutually exclusively, it creates no problem. Basically, 
duplexer is an electronics transmit-receive switch. 

 
Figure 1.4: Duplexer 
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 Aerial system 
In order that the high peak power output from the transmitter focuses on a small region 
of space, the aerial system produces a very narrow beam of RF energy to scan and 
locate an object. This is done to obtain accurate bearings in both azimuth and elevation. 

 
Figure 1.5: Parabolic Antenna 

 

 Receiver 
This is used to amplify those reflected pulses which are noisy and weak that is of the 
order of few micro-volts, which might not be sufficient to display on the indicator. In 
order to design a receiver with a low noise factor, the receiver has to accept very 
narrow pulses. 

 Indicator 
This is usually a system of two cathode ray tubes (CRT) used to display an image of the 
receiver input. One CRT shows range and bearing while the other shows range and 
height.  

 
 
 Radars in general fall into two categories, monostatic and bistatic. Monostatic radars 
have their transmitter and receiver in the same place assembled together at the same location. 
Bistatic radars are opposite to monostatic ones in that they have their transmitter and receiver 
away from each other. Either way, by means of radar, the existence or presence of an object is 
discovered and detected. This is done through the release of waves from the radar transmitter 
and by the analysis of the returned echo through the receiver. Radar is not only used to 
determine a target position with respect to a fixed point, a reference, but is also used to 
calculate the target speed, shape and size, this is done by extraction of information, which 
usually needs a matched filter [26]. 
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1.3 RADAR PULSE COMPRESSION 

1.3.1 Why RADAR Pulse Compression? 

To determine a target’s shape and size, radar should have sufficient resolution. Resolution is 

proportional to the pulse width, so for high resolution applications a short pulse needs to be 

utilized.  The shorter the pulse, the more accurate the range measurement is. Also the 

maximum range (pulse energy), which is proportional to both peak power and time duration of 

the pulse, has a serious drawback. The drawback is that when the pulse width gets shorter to 

improve resolution, the pulse energy is also reduced. Keeping the peak power fixed degrades 

the range performance. This can be solved easily by increasing the power. But, unfortunately, 

increasing the peak power creates severe problems in the design of high resolution radars, 

because the transmitter technological limitations affect peak power more than they affect the 

average power or the energy of the single pulse. 

 The sensitivity of radar depends on the energy transmitted in the radar pulses. This can 

be expressed in terms of the average transmitted power, i.e., the peak power multiplied by the 

transmitter duty cycle. Although the peak transmitter power may be as high as several hundred 

kilowatts, since most radars transmit very short pulses, the average transmitted power may be 

much less than 1% of this value. Clearly this is not an efficient use of the available transmitter 

power. 

 Without the use of pulse compression, pulse widths cannot be reduced indefinitely. 

Extremely narrow pulse widths result in wide receiver bandwidths and the associated problems 

with noise. Large receiver bandwidths effectively de-sensitize the radar receiver and either 

force the transmitter to transmit higher levels of peak power to compensate, or accept the 

consequential reduction in range. There are always limits on the amount of peak power 

available from the transmitter, as high power transmitters suffer from the following problems: 

1. They need high voltage power supply of the order of kilowatts (kW). 

2. They face the reliability problems like cooling problems and other thermal issues. 

3. Safety issues always arise from both electrocution and irradiation of these equipments. 

4. They are huge in size, weigh more and are obviously very expensive. 

Invariably, a reduction in pulse width leads to a reduction in the maximum range of the radar. 

In short, narrow pulse widths are desirable, but they are not always feasible. Pulse compression 

radars use specific signal processing techniques to provide most of the advantages of extremely 

narrow pulses widths whilst remaining within the peak power limitations of the transmitter. 

The advantages of narrow pulses enjoyed by pulse compression radar are superior range 

resolution and range accuracy. 
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1.3.2 The Concept of RADAR Pulse Compression 

Radar pulse compression, also known as pulse coding, is a signal processing technique designed 

to maximize the sensitivity and resolution of radar systems.  

 Radar pulse compression refers to a family of techniques used to increase the 

bandwidth of radar pulses. In the radar receiver, these echo pulses are `compressed' in the time 

domain, resulting in a range resolution which is finer than that associated with an uncoded 

pulse. 

 A pulse compression radar transmits a long pulse with pulse width T and peak power Pt, 

which is coded using frequency or phase modulation to achieve a bandwidth B, that is large as 

compared to that of an uncoded pulse with the same duration. The transmit pulse width is 

chosen to achieve the single pulse transmit energy, given by Et1=PtT, that is required for target 

detection or tracking. The received echo is processed using a pulse compression filter to yield a 

narrow compressed pulse response with a mainlobe width of 1/B, that doesn’t depend on the 

duration of the transmitted pulse. 

 The ratio of the transmit pulse width to the compressed main lobe width is defined as 

the pulse compression ratio. The pulse compression is approximately TB, where TB is defined as 

the time bandwidth product of the waveform. Typically, the pulse compression ratio and the 

time bandwidth product are large as compared to unity [37]. 

 In simple words, energy content of long-duration, low-power pulse will be comparable 
to that of the short-duration, high-power pulse [24]. 

τ1 «τ2and P1»P2 
 

 

Figure 1.6: Transmitter and Receiver ultimate signals 
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PULSE COMPRESSION WAVEFORM TYPES 

Out of the various ways to code a long duration pulse to the desired bandwidth, the following 

waveforms are more frequently used: 

 Phase Coded Waveform 

The phase-coded waveform divides the pulse into sub pulses of equal duration, each 

having a certain phase. The code sequence selects the phase of each sub pulse as shown 

in Figure 1.7.  

 

Figure 1.7: Phase-modulated waveform after Compression 

Another notation assigns a plus to a nominal carrier phase and a minus to a 180° 

phase-shift. Each segment is assigned unit amplitude and one of the two phases. In 

Figure 1.8, each segment is of duration 1ns. 

 

Figure 1.8: Phase Code Short Segments 

 Linear Frequency-Modulated Waveform 

The linear frequency modulation, or chirp waveform has a rectangular amplitude 

modulation with pulse width τ and a linear frequency modulation with a swept 

bandwidth B applied over the pulse.  

 for 0≤t≤ τ  

Here, fc is starting frequency (Hz), k is the chirp rate (Hz/s) and B= kτ2=1 GHz. 
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Figure 1.9: Chirp 

Choice is driven largely by required complexity of receiver electronics [24]. 
 
 

1.3.3 Matched filter 

Matched filter provides optimum SNR when one is trying to detect a signal in white (Gaussian) 

noise. The matched filter is composed of delay elements, multipliers, adders and coefficients, ai. 

The matched filters at the transmitter and receiver are conjugates of each other for the 

expansion and compression processes. 

 To generate a phase coded signal, a narrow pulse is fed to the matched filter, which is 

continuously clocked into a delay component whose number of stages is equal to the number 

of elements in the sequence. Then output of each stage is multiplied by weights, ai which is 

either +1 or -1 according to the coding or reference sequence. The summation circuit provides 

the output correlation function or stretched pulse. 

  The received echo is processed by compression or matched filter which is part of the 

receiver that is specifically designed to maximize the output SNR and to compress then received 

phase coded signal to a sub-pulse width. The co-efficient of the compression filter is the inverse 

of the received signal [26].  

 

Figure 1.10 (a): Matched filter at the transmitter side 
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Figure 1.10 (b): Matched filter at the receiver side 

1.3.4 Barker Code 

A special class of binary code is the Barker code. The peak of the autocorrelation function is N, 

and the minimum peak side lobe magnitude is 1, where N is the number of sub pulses or length 

of the code [26].  

The process of stretching and then compressing a Barker code of length 7 using 

matched filters at the transmitter and the receiver is shown in Figure 1.11. 

 

Figure 1.11 (a): Matched filter coefficient of a Barker code of length 7 at the transmitter side 

 

 

Figure 1.11 (b): Stretched signal 
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Figure 1.11 (c): Matched filter coefficient of a Barker code of length 7 at the receiver side 

 

Figure 1.11 (d): Matched filter processing a received signal 

 

 

Figure 1.11 (e): Compressed Signal 

 

For Barker Codes,  
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Figure 1.12: Binary Phase decoder for Pulse Compression 

Correlation process may be performed in analog or digital domain. A disadvantage of this approach is 

that the data acquisition system (A/D converter) must operate at the full system bandwidth. 

Other codes and filters used in case of RADAR Pulse Compression are: 

 Ternary 

They include 0, which corresponds to the absence of a segment, in addition to +1 and -1 

in Barker Codes. 

 Combined Barker Code 

It uses whatever codes are available; then it modulates the transmitted pulse at 

multiple levels so that each segment of the code is again coded with another Barker 

code. 

 Complementary Sequences 

They consist of two sequences or codes of the same length N whose autocorrelation 

functions are added together resulting in an output with a peak value of 2N with no 

sidelobes. 

 Mismatched Filter 

It is used to suppress the sidelobes. Its coefficients are real numbers unlike matched 

filter, so multipliers are used instead of adders and subtractors. It has greater length 

than the matched filter to get acceptable results. The greater the length, the higher is 

the compression ratio. 

 Inverse Filter 

It is used for minimizing the Integrated Sidelobe Level (ISL), which compares the total 

power contained within the sidelobes to the mainlobe. It can be implemented directly 

on the output of the matched filter. 

 Nonmatched Filter 

It has been demonstrated that a weighted network can be designed to reduce sidelobes 

to an arbitrary low level. The matched filter is designed by a sub pulse filter whose 

impulse response resembles the code sub pulse, and a correlator that is achieved as a 

tapped delay line whose weights are matched to the coded pulse phases. 
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 Two-Sample Sliding Window Adder TSSWA 

It reduces the side lobe for the polyphase codes. TSSWA compresses the pulse not to 

the width of a single sub pulse but to that of several sub pulses by reducing the 

bandwidth. It is added after the auto-correlator of the binary code. 

 

The thesis is organized as follows: 

Chapter 2 first deals with Adaptive Filters and the LMS, RLS and the modified RLS 

algorithms. Further, MATLAB simulations regarding convergence analysis of LMS and 

RLS algorithms with respect to System Identification are performed. This is followed by 

Comparison of the three algorithms on the basis of PSR levels obtained by using Barker 

codes as inputs to Matched Filter. 

Chapter 3 deals with Artificial Neural Networks. The virtues and limitations of ANN, 

different types of Neuron Models, Network Architecture, Perceptron Learning Rule, 

Implementation of Function Approximation using ANN, the Back Propagation Algorithm 

and its application in training different MLPs to determine the optimum values of 

weights and biases for Radar Pulse Compression are described in detail. Finally, Tables 

and MATLAB simulations corresponding to Convergence Performance, SSR Performance, 

Noise Performance and Doppler Tolerance are provided for comparison of different 

MLPs containing 1 and 2 hidden layers of neurons. 

Chapter 4 consists of Conclusion and Future Work. 

Finally, all possible References have been listed in Bibliography.  
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Chapter 2 
Adaptive Filters and their application to 

RADAR Pulse Compression 
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2.1 ADAPTIVE SYSTEMS 

An adaptive automation is a system whose structure is alterable or adjustable in such a way 

that its behavior or performance improves through contact with its environment. The objective 

of this circuit is to adjust the sensitivity of the receiver as the average incoming signal strength. 

The receiver is thus able to adapt to a wide range of input levels and to produce a much 

narrower range of output intensities. 

 The general characteristics of adaptive systems are: 

1. They can automatically adapt to the changing environments and changing system 

requirements. 

2. They can be trained to perform specific filtering and decision-making tasks. 

3. Due to the above reasons, they do not need the elaborate synthesis procedures unlike 

nonadaptive systems. 

4. They can extrapolate a behavioral model to deal with new situations after having been 

trained on a finite and often small number of training signals and patterns. 

5. They can repair themselves to a limited extent, i.e., they can adapt around certain kinds 

of internal defects. 

6. They are structurally nonlinear systems with time-varying parameters. 

7. They are usually more complex in architecture and are difficult to analyze than 

nonadaptive systems, but they offer substantially increased system performance with 

unknown or time varying input signal characteristics. 

 

2.1.1 OPEN- AND CLOSED-LOOP ADAPTATION 

The open-loop adaptive process involves making measurements of input or environmental 

characteristics, applying this information to a formula or a computational algorithm, and using 

the results to set the adjustments of the adaptive system. 

 
Figure 2.1: Open Loop Adaptive System 
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Closed-loop adaptation, on the other hand, involves automatic experimentation with 

these adjustments and knowledge of their outcome in order to optimize a measured system 

performance. The latter process may be called adaptation by “performance feedback”. 

 
Figure 2.2: Closed Loop Adaptive System 

 

 

2.2 THE ADAPTIVE LINEAR COMBINER 

The adaptive linear combiner, or nonrecursive adaptive filter, is fundamental to adaptive signal 

processing and is the single most important element in “learning” systems and adaptive 

processes in general. 

 A general diagram of the adaptive linear combiner is shown in Figure 2.3. 

 

Figure 2.3: General Form of Adaptive Linear Combiner 
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 It consists of an input signal vector with elements x0, x1, ….., xL, a corresponding set of 

adjustable weights w0,w1, ….., wL, a summing unit, and a single output signal, y. The procedure 

for adjusting or adapting the weights is called a “weight adjustment”, “gain adjustment” or 

“adaptation procedure”. The combiner is called “linear” because for a fixed setting of the 

weights, its output is a linear combination of the input components. 

2.2.1 INPUT SIGNAL AND WEIGHT VECTORS 

The inputs may be obtained simultaneously from L+1 different signal sources or they could be 

L+1 sequential samples from the same signal source and their corresponding outputs are 

computed. 

Single Input: :   Xk xk xk-1, xk-L
T 

    

 

Figure 2.4: Adaptive Linear Combiner in the form of Single-input adaptive transversal filter 

Multiple Inputs:  Xk x0k, x1k, ….., xLk]
T 

    

 

Figure 2.5: Multiple Input Adaptive Linear Combiner with bias weight w0k 
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Correspondingly, there is a weight vector for both single and multiple inputs given by: 

 

Vectorially,  

   

2.2.2 DESIRED RESPONSE AND ERROR 

The method of deriving the error signal by means of the desired response input is shown in 

Figure 2.6. 

 

Figure 2.6: Multiple Input Adaptive Linear Combiner with desired response and error signals 

The output signal, yk, is simply subtracted from the desired signal, dk, to produce the error 

signal ek. [10] 

2.2.3 THE PERFORMANCE FUNCTION 

The error signal with time index k is 

 

The Mean Square Error (MSE) is defined as 

W 

Assuming R to be non-singular, the optimal weight vector W*= R-1P 

The minimum mean square error is now obtained as: 

W* 
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2.3 ADAPTIVE FILTER ALGORITHMS 

These are the algorithms which work in nonstationary as well as stationary signal environments 

and are meant to “track” as well as “seek” the minimum point on the performance surface. The 

adaptive filter algorithms that have been used in this project include: 

1. THE LMS ALGORITHM 

The LMS algorithm, or Least Mean Squares algorithm, is an algorithm for descending on 

the performance surface. The LMS algorithm is important because of its simplicity and 

ease of computation, and because it does not require off-line gradient estimations or 

repetitions of data. If the adaptive system is an adaptive linear combiner, and if the 

input vector Xk and the desired response dk are available at each iteration, the LMS 

algorithm is usually the best choice for many different applications of adaptive signal 

processing. 

DERIVATION OF THE LMS ALGORITHM 

The adaptive linear combiner is applied in two basic ways, depending on whether the 

input is available in parallel (multiple inputs) or serial (single input) form. 

In both cases, we have the combiner output, yk as a linear combination of the input 

samples. We have 

Єk = dk - Xk
TWk 

where Xk is the vector of input samples in either of the two configurations. 

 

 To develop an adaptive algorithm using the method, we would estimate the 

gradient of ζ = E (Єk
2) by taking differences between the short term averages of Єk

2. 

Instead, to develop the LMS algorithm, we take Єk
2 itself as an estimate of Єk. Then, at 

each iteration in the adaptive process, we have a gradient estimate of the form  

 

∇’k = -2 ЄkXk 

The derivatives of Єk with respect to the weights follow from the error signal equation. 

 With this simple estimate of the gradient, we can now specify a steepest – 

descent type of adaptive algorithm. Now, we have 

Wk+1 = Wk + 2µ ЄkXk 

This is the LMS algorithm. 

µ is the gain constant that regulates the speed and stability of adaptation. Since the 

weight changes at each iteration are based on imperfect gradient estimates, we would 

expect the adaptive process to be noisy; that is, it would not follow the true line of 

steepest descent on the performance surface. 

1/ λmax> µ>0 where λmax is the largest eigen value. [10] 
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2. THE RLS ALGORITHM 

The Recursive Least Squares, or the RLS algorithm, is another adaptive filter algorithm 

which converges to the optimum filter values faster than the LMS algorithm. 

The update formula. The simplest approach to updating W0
k is the following procedure: 

a) Update Rss via  

Rss,k+1 = Rss,k+X (k) Xt(k) 

 

b) Update Pss via 

Pss,k+1= Pss,k+d (k) X(k) 

 

c) Invert Rss,k+1 

 

d) Compute W0
k+1via 

W0
k+1=Rss,k+1

-1
 Pss ,k+1 

 

 

The autocorrelation matrix and the cross correlation are updated and then used to 

compute W0
k+1. While direct, this technique is computationally wasteful. Approximately 

N3+2N2+N multiplications is required at each update where N is the impulse response 

length , and of that N3 are required for the matrix inversion if done with the classical 

Gaussian elimination technique. 
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The RLS algorithm. We can write down step by step procedure for updating W0
k .This 

set of steps is efficient in the sense that no unneeded variable is computed and that no 

needed variable is computed twice. We do, however, need assurance that Rk
-1 exists. 

The procedure than goes as follows: 

i. Accept new samples x (k), d (k). 

ii. Form X (k) by shifting x (k) into the information vector. 

iii. Compute the a priori output y0(k): 

y0 (k) = W0t
k X (k). 

iv. Compute the a priori error e0(k): 

e0 (k) =d (k) - y0 (k). 

v. Compute the filtered information vector Zk: 

Zk= Rk
-1X (k). 

vi. Compute the normalized error power q: 

q=Xt (k) Zk. 

vii. Compute the gain constant v: 

v= 1/ (1+q). 

viii. Compute the normalized filtered information vector Zk’: 

Zk’=v. Zk. 

ix. Update the optimal weight vector W0
k  to W

0
k+1: 

W0
k+1= W0

k + e0 (k) Zk’. 

x. Update the inverse correlation matrix Rk
-1 to Rk+1

-1 in preparation for the next 

iteration: 

Rk+1
-1 = Rk-

1- Zk’ Zk
t. 

 

In most of the cases, a much simpler approach for Rk
-1 is used. 

RN-1
-1= IN 

where is a large positive constant and IN is the N by N identity matrix. Since Rk+1
-1 

almost certainly will not equal, this inaccuracy will influence the final estimate of Rk and 

Wk. [4] 
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3. THE MODIFIED RLS ALGORITHM 

In this design, there has been used an analogy with application of the RLS algorithm as 

an adaptation mechanism in transversal structure adaptive filters implementation, one 

such filter being presented in Figure 2.7. 

 

 
Figure 2.7: Adaptive transversal filter structure 

It should be noted that the obtained sidelobe suppression filter is not adaptive, but just 

in its coefficients evaluation; an approach known from adaptive filter synthesis is being 

utilized.[25] 

 Utilizing the standard RLS algorithm in a stationary scenario, an optimal filter is 

obtained in the sense of the mean square sidelobes level suppression. In order to 

improve the filter performance in the sense of the peak sidelobe values suppression, a 

modification of the standard RLS procedure has been performed by introducing a 

criterion: 

|ek| ≥ TH 
 

where TH represents the threshold value to which the instantaneous error value is being 

compared. If the error is greater than or equal to the threshold value, a correction of the 

estimated filter coefficients vector Wk is being performed. If the error value is under the 

threshold, the correction is not being performed. 

The Threshold is calculated as: 

TH = δ MAX_ERRj, where 

MAX_ERRj = max (err) and the constant δ has a value close to 1 and it affects the convergence 

rate. [25] 
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2.4 SYSTEM IDENTIFICATION 

SYSTEM: A collection of components which are coordinated together to perform a function. A 

system is a defined part of the real world. Interactions with the environment are described by 

inputs, outputs and disturbances. 

  The process of System Identification involves designing a filter by generating its 

coefficients using an algorithm (in this project, only adaptive filter algorithms are used) based 

on the given input and the desired output. [27] 

 

 

 

Figure 2.8: Block Diagram for System Identification 

 



28 
 

2.4.1 CONVERGENCE RATE COMPARISON OF THE LMS AND RLS 

ALGORITHMS IN SYSTEM IDENTIFICATION 

 

 

Figure 2.9: Simulation demonstrating faster convergence of RLS over LMS 

 

 

 It can be clearly pointed out that the convergence rate of RLS algorithm is much higher 

than that of the LMS algorithm. System Identification, i.e., the convergence of the weight 

parameters of the system to optimum values or coefficients for appropriate input-output 

mapping, is achieved much more quickly in case of RLS than that of LMS.  
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2.5 RADAR PULSE COMPRESSION using ADAPTIVE FILTER 

ALGORITHMS 

The algorithms are executed repeatedly for 1000 iterations. The weights of all the layers are 

initialized to random values between ±0.1 and the value of µ is taken as 0.01. δ for Modified 

RLS algorithm is taken to be 0.995. 

TABLE 2.1: 

Filter Comparison Parameters [Peak Side Lobe (PSR)] for the LMS, RLS and modified RLS 

method evaluation for Barker Codes of different lengths with filter lengths taken same as that 

of the code 

Length of 
Barker Code 

Filter Length PSR (dB) using 
LMS algorithm 

PSR (dB) using 
RLS algorithm 

PSR (dB) using 
modified RLS 

algorithm 

2 2 -5.8451 -6.0134 -6.0149 

3 3 -10.2940 -10.4536 -12.0224 

4 4 -9.3423 -9.5414 -12.0169 

5 5 -16.0997 -16.2561 -18.0383 

7 7 -16.7238 -17.1423 -18.0397 

11 11 -19.2555 -19.7760 -21.7645 

13 13 -23.8592 -24.0037 -25.7404 
 

 

 

 

Figure 2.10: Filter Output Signals for Barker Code of Length 2 
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Figure 2.11: Filter Output Signals for Barker Code of Length 3 

 

 

 

Figure 2.12: Filter Output Signals for Barker Code of Length 4 
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Figure 2.13: Filter Output Signals for Barker Code of Length 5 

 

 

 

Figure 2.14: Filter Output Signals for Barker Code of Length 7 
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Figure 2.15: Filter Output Signals for Barker Code of Length 11 

 

 

 

 

Figure 2.16: Filter Output Signals for Barker Code of Length 13 
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Chapter 3 
Artificial Neural Networks and their 

application to RADAR Pulse Compression  
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3.1 BIOLOGICAL INSPIRATION 

The artificial neural networks are only remotely related to their biological counterparts. Here, 

we describe only those characteristics of brain function that have inspired the development of 

artificial neural networks. 
 The brain consists of a large number (approximately 1011) of highly connected elements 

(approximately 104 connections per element) called neurons. These neurons have three 

principal components: the dendrites, the cell body and the axon. 

 The dendrites are tree-like receptive networks of nerve fibers that carry electrical signals 

into the cell body.  

 The cell body effectively sums and thresholds these incoming signals. 

 The axon is a single long fiber that carries the signal from the cell body out to other 

neurons. 

 The point of contact between an axon of one cell and a dendrite of another cell is called 

a synapse. 

It is the arrangement of neurons and the strengths of the individual synapses, determined by a 

complex chemical process that establishes the function of the neural network. 

 

Figure 3.1: Schematic Diagram of Biological Neurons 

Some of the neural structure is defined at birth. Other parts are developed through learning, as 

new connections are made and others waste away. [29] 
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3.2 DEFINITION and PROPERTIES 

  A neural network is a massively parallel distributed processor made up of simple 

processing units which has a natural tendency for storing experiential knowledge and making it 

available for use. It can be likened to the brain in two aspects: 

1. Knowledge is acquired by the network from its environment through a learning process. 

2. Interneuron connection strengths known as synaptic neurons are used to store the 

acquired knowledge. [28] 

Following are the useful properties and capabilities of neural networks: 

1. Non-linearity 

A neural network, made up of an interconnection of nonlinear neurons, is itself 

nonlinear. Moreover, the nonlinearity is of a special kind in the sense that it is 

distributed throughout the network. 

2. Input-Output Mapping 

The network is presented with a random example and the synaptic weights are 

modified to minimize the difference between the desired response and the actual 

response of the network. The training of the network s repeated for many examples 

till there are no further significant changes in the synaptic weights. 

3. Adaptivity 

When a neural network is trained to operate in a specific environment, it can be 

easily retrained to deal with minor changes in the operating conditions. When it 

operates in a non-stationary environment, a neural network may be designed to 

change its synaptic weights in real time. 

4. Evidential response 

A neural network not only helps in pattern classification but also provides 

information about the confidence in the decision made which can be used to reject 

ambiguous patterns. 

5. Contextual information 

The structure and activation state of a neural network is representative of the 

knowledge contained in it. Each neuron in the network is potentially affected by the 

activity of its neighboring neurons. 

6. Fault tolerance 

Damage of a neuron or its connecting links impair the quality of recall of a stored 

pattern. However, a neural network exhibits a graceful degradation in performance 

rather than catastrophic failure. 
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7. VLSI implementability 

A neural network, being a massively parallel structure, can make fast computations. 

VLSI provides a means of capturing this behavior in a hierarchical fashion. 

8. Uniformity of analysis and design 

Neural networks enjoy universality as information processors, so the same notation 

is used in all domains involving the application of neural networks.  

9. Neuro-biological analogy 

The design of a neural network is motivated by analogy with the brain which is living 

proof that fault tolerant parallel processing is not only physically possible but also 

fast and powerful. 

3.3 NEURON MODEL 

3.3.1 Single-Input Neuron 

A single-input neuron is shown in Figure 3.2. The scalar input p is multiplied by the scalar 

weight w to form wp, one of the terms that is sent to the summer. The other input, 1, is 

multiplied by a bias b and then passed to the summer. The summer output, often referred to as 

the net input, goes into a transfer function, which produces the scalar neuron output. 

 

Figure 3.2: Single Input Neuron 

Comparing this with the biological neuron discussed previously, the weight w corresponds to 

the strength of a synapse, the cell body is represented by the summation and the transfer 

function, and the neuron output a represents the signal on the axon. 

The neuron output is calculated as:  
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3.3.2 Transfer Functions 

The transfer function may be a linear or a nonlinear function of n. A particular transfer function 

is chosen to satisfy some specification of the problem that the neuron is attempting to solve. A 

variety of transfer functions are tabulated below. 
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3.3.3 Multiple-Input Neuron 

Typically, a neuron has more than one input. A neuron with R inputs is shown in Figure 3.3. The 

individual inputs p1, p2, …, pR are each weighted by corresponding elements w1,1, w1,2, …, w1,R of 

the weight matrix W. 

 

Figure 3.3: Multiple Input Neuron 

The neuron has a bias b, which is summed with the weighted inputs to form the net input n: 

 

This expression can be written in matrix form: 

 

where the matrix W for the single neuron case has only one row. 

Now the neuron output can be written as 

 

A multiple-input neuron using abbreviated notation is shown in Figure 3.4. 

 

Figure 3.4: Multiple Input Neuron, Abbreviated Notation 
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3.4 NETWORK ARCHITECTURES 

Commonly one neuron, even with many inputs, may not be sufficient. We might need five or 

ten, operating in parallel, in what we will call a “layer”. This concept of a layer is discussed 

below. 

3.4.1 A Layer of Neurons 

A single-layer network of S neurons is shown in Figure 3.5. Note that each of the R inputs is 

connected to each of the neurons and that the weight matrix now has S rows. 

 

Figure 3.5: Layer of S Neurons 

 

The layer includes the weight matrix, the summers, the bias vector b, the transfer function 

boxes and the output vector a. 

 Each element of the input vector is connected to each neuron through the weight 

matrix W. Each neuron has a bias bi, a summer, a transfer function f and an output ai. Taken 

together, the outputs form the output vector a. 

 The input vector elements enter the network through the weight matrix W: 
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The S-neuron, R-input, one-layer network also can be drawn in abbreviated notation in Figure 

3.6. 

 

Figure 3.6: Layer of S Neurons, Abbreviated Notation 

3.4.2 Multiple Layers of Neurons 

In a network with several layers, each layer has its own weight matrix W, its own bias vector b, 

a net input vector n and an output vector a. 

 

Figure 3.7: Three-Layer Network 

As shown in Figure 3.7, there are R inputs, S1 neurons in the first layer, S2 neurons in the 

second layer, etc. As noted, different layers can have different numbers of neurons. 

The outputs of layers one and two are the inputs for layers two and three. Thus layer 2 can be 

viewed as a one-layer network with R = S1 inputs, S = S2 neurons, and an S1x S2 weight matrix 

W2. The input to layer 2 is a1, and the output is a2. 
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A layer whose output is the network output is called an output layer. The other layers 

are called hidden layers. The network shown above has an output layer (layer 3) and two 

hidden layers (layers 1 and 2). 

The same three-layer network discussed previously also can be drawn using our 

abbreviated notation, as shown in Figure 3.8. 

 

Figure 3.8: Three-Layer Network, Abbreviated Notation 

 

3.5 PERCEPTRON LEARNING RULE 

3.5.1 LEARNING RULES 

By learning rule we mean a procedure for modifying the weights and biases of a network. The 

purpose of the learning rule is to train the network to perform some task. There are many types 

of neural network learning rules. They fall into three broad categories: supervised learning, 

unsupervised learning and reinforcement (or graded) learning. 

 In supervised learning, the learning rule is provided with a set of examples (the training 

set) of proper network behavior: 

{p1, t1}, {p2, t2}, …, {pQ,tQ} 

where pq is an input to the network and tq is the corresponding correct (target) output. As the 

inputs are applied to the network, the network outputs are compared to the targets. The 

learning rule is then used to adjust the weights and biases of the network in order to move the 

network outputs closer to the targets. 
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 Reinforcement learning is similar to supervised learning, except that, instead of being 

provided with the correct output for each network input, the algorithm is only given a grade. 

The grade (or score) is a measure of the network performance over some sequence of inputs. 

 In unsupervised learning, the weights and biases are modified in response to network 

inputs only. There are no target outputs available. Most of these algorithms perform some kind 

of clustering operation. They learn to categorize the input patterns into a finite number of 

classes. [29] 

3.5.2 PERCEPTRON ARCHITECTURE 

The general perceptron network is shown in Figure 3.9.  

 

Figure 3.9: Perceptron Network 

The output of the network is given by 

 

A vector composed of the elements of the ith row of W: 

 

 

We can partition the weight matrix: 
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Single-Neuron Perceptron 

A two-input perceptron with one neuron is shown in Figure 3.10. 

 

Figure 3.10: Two-Input/Single Output Perceptron 

 

The decision boundary is determined by the input vectors for which the net input n is zero: 

 

Multiple-Neuron Perceptron 

Note that for perceptrons with multiple neurons, as in Figure, there will be one decision 

boundary for each neuron. The decision boundary for neuron will be defined by 

 

A single-neuron perceptron can classify input vectors into two categories, since its output can 

be either 0 or 1. A multiple-neuron perceptron can classify inputs into many categories. Each 

category is represented by a different output vector. Since each element of the output vector 

can be either 0 or 1, there are a total of 2S possible categories, where S is the number of 

neurons. 
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3.6 FUNCTION APPROXIMATION 

Neural networks can also act as function approximators. In control systems, for example, 

the objective is to find an appropriate feedback function that maps from measured inputs 

to control outputs. In adaptive filtering, the objective is to find a function that maps from 

delayed values of an input signal to an appropriate output signal. 

Consider, the two layer, 1-2-1 network shown in Figure 3.11. The transfer function for 

the first layer is log-sigmoid and the transfer function for the second layer is linear. 

 and  

 

Figure 3.11: Example of Function Approximation Network 

Let us take the nominal values of the weights and biases for this network as: 

, , ,  

 

The network response for the above parameters is: 
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The centers of the steps occur where the net input to a neuron in the first layer is zero: 

 

 

Figure 3.12 illustrates the effects of parameter changes on the network response. The blue 

curve is the nominal response. The other curves correspond to the network response when one 

parameter at a time is varied over the following ranges: 

  

 

 

Figure 3.12: Effect of Parameter Changes on Network Response 
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3.7 THE BACK-PROPAGATION ALGORITHM 

The first step is to propagate the input forward through the network: 

 

 for m=0,1,…,M-1 

 

The next step is to propagate the sensitivities backward through the network: 

 

, for m=M-1, …., 2,1. 

Finally, the weights and biases are updated using the approximate steepest descent rule: 

 

 [29] 

3.7.1 RADAR PULSE COMPRESSION using Back-Propagation Algorithm in Multi-

Layer Perceptron (MLP) for 13-bit BARKER CODE 

In this method, 13-bit Barker Codes are taken as input to the MLP Network. The training is 

performed for 1000 epochs. The weights of all the layers are initialized to random values 

between ±0.1 and the value of η is taken as 0.99. 

The logistic function is used as activation function for both hidden and output neurons and is 

represented by, 

 

The training of the network and hence, the updation of the weights and biases is done using the 

Back-propagation Algorithm. 

 The SSRs are then obtained by varying the number of neurons in the hidden layers and 

the number of hidden layers. They are then compared on the basis of the following criteria: 
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A. Convergence Performance 

The mean square error plots corresponding to different number of neurons in the 

hidden layer for MLP containing 1 hidden layer are shown in Figure 3.13. 

 

   (a)      (b) 

Figure 3.13: Mean Square Error plots for (a) 3 neurons and (b) 9 neurons in the hidden layer 

The mean square error plots corresponding to different number of neurons in the 

hidden layers for MLP containing 2 hidden layers are shown in Figure 3.14. 

   

(a) (b) 

Figure 3.14: Mean Square Error plots for (a) 3-5 and (b)7- 9  neurons in MLP containing 2 

Hidden Layers 

 

0 200 400 600 800 1000
10

-5

10
0

Mean Square Error using MLP

Epochs

M
e
a
n
 S

q
u
a
re

 E
rr

o
r(

lo
g
1
0
)

0 200 400 600 800 1000
10

-5

10
0

Mean Square Error using MLP

Epochs
M

e
a
n
 S

q
u
a
re

 E
rr

o
r(

lo
g
1
0
)

0 200 400 600 800 1000
10

-5

10
-4

10
-3

10
-2

10
-1

Mean Square Error using MLP

Epochs

M
e
a
n
 S

q
u
a
re

 E
rr

o
r(

lo
g
1
0
)

0 200 400 600 800 1000
10

-5

10
0

Mean Square Error using MLP

Epochs

M
e
a
n
 S

q
u
a
re

 E
rr

o
r(

lo
g
1
0
)



48 
 

B. SSR Performance 

Signal-to-sidelobe Ratio (SSR) is the ratio of peak signal amplitude to maximum sidelobe 

amplitude. 

TABLE 3.1: 

SSR Comparison in dB for different number of neurons in MLP containing 1 Hidden 

Layer 

Number of Neurons in the Hidden Layer SSR (dB) 

5 43.9851 

9 47.5564 

13 47.0187 

19 48.5771 

 

 

 

 

TABLE 3.2: 

SSR Comparison in dB for different number of neurons in MLP containing 2 Hidden 

Layer 

Number of Neurons in the 
1st Hidden Layer 

Number of Neurons in the 
2nd  Hidden Layer 

SSR (dB) 

3 7 47.8964 
5 13 49.0722 

7 15 47.1429 

11 19 42.8630 
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C. Noise Performance 

The additive white Gaussian noise is added to input signal code. Consequently, the 
output is degraded and SSR is decreased gradually. The SSRs for different SNRs are 
tabulated and SSR vs. SNR graphs are plotted. 

 
TABLE 3.3: 

SSR Comparison in dB for different SNRs for different number of neurons in MLP 
containing 1 Hidden Layer 

 

Number of 
neurons in 

the HIDDEN 
LAYER 

SNR = 1 
dB 

SNR = 5 
dB 

SNR = 10 
dB 

SNR = 15 
dB 

SNR = 20 
dB 

SNR = 25 
dB 

1 0.2697 13.965 37.8197 41.6916 43.2368 43.5327 

3 1.1668 19.8091 37.8114 40.8114 42.1449 42.8214 

5 4.1712 20.1232 38.7173 41.4815 42.6685 43.2707 

7 2.041 21.6259 39.8674 42.653 43.7414 44.2466 

9 5.3084 27.8965 41.0523 44.582 45.9905 46.7106 

11 3.5948 14.7718 32.9811 44.0575 46.1658 46.4402 

13 9.0224 21.303 37.0488 43.7983 46.2642 46.7362 

15 3.7224 15.8543 35.0372 44.1597 46.3064 46.5465 

17 3.8924 16.8811 37.886 44.3849 45.8557 46.1104 

19 5.6383 20.9294 36.2993 43.0907 45.8804 47.3765 

20 4.0719 16.1363 33.6252 43.4301 46.2728 46.8659 

  
 
 
 

  
   (a)      (b) 
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TABLE 3.4: 

SSR Comparison in dB for different SNRs for different number of neurons in MLP containing 2 
Hidden Layers 

 

Number 
of 

Neurons 
in the 

1st 
Hidden 
Layer 

Number 
of 

Neurons 
in the 
2nd 

Hidden 
Layer 

SNR = 1 
dB 

SNR = 5 
dB 

SNR = 
10 dB 

SNR = 
15 dB 

SNR = 
20 dB 

SNR = 
25 dB 

1 7 0.2528 19.9088 38.8952 44.43 46.5858 47.5633 

1 9 0.2491 18.6388 38.3571 44.2721 46.6339 47.697 

3 5 0.7931 26.7053 41.6806 44.6777 45.6661 46.13 

3 7 0.8571 23.3123 39.2065 43.3445 45.4384 46.5497 

3 11 1.0718 24.1717 41.3911 44.161 45.456 46.1385 

3 13 1.1708 25.2417 41.7626 44.3733 45.644 46.3287 

5 7 3.2947 31.4379 44.5597 46.6117 47.4279 47.8162 

5 11 6.1551 30.6118 44.9987 47.3169 47.6638 47.8564 

5 13 2.6059 28.2152 42.344 46.6218 48.3791 48.8482 

7 5 4.0385 32.1655 44.0806 46.5317 46.7455 46.8645 

7 9 6.0823 28.6948 43.1656 46.423 46.7295 46.901 

7 11 4.9971 28.6378 43.6993 46.4641 46.7298 46.878 

9 9 7.7688 31.5765 40.5437 42.1913 42.64 42.8459 

9 11 1.6952 29.5374 38.532 41.5926 42.7712 42.7854 

9 13 10.1014 36.188 41.4107 42.9554 43.2066 43.3471 

11 11 7.1214 27.6626 36.7747 40.1591 41.2757 41.6925 

13 13 1.3079 20.3109 37.3078 39.6308 40.1491 40.2645 

 

Figure 3.15: SSR vs. SNR plots for (a) 3-5 and (b) 7- 9 neurons in MLP containing 2 Hidden 

Layers 
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D. Doppler Tolerance 

The Doppler tolerance of a system comes into picture when the frequency and/or phase 

of individual elements of the phase code are shifted.  

In the extreme case, the code word is no longer matched with the replica, if the 

last element is shifted by 180 degree. For 13-bit barker code, the code is changed from 

(1,1,1,1,1,-1,-1,1,1,-1,1,-1,1) to (-1,1,1,1,1,-1,-1,1,1,-1,1,-1,1) and is fed to the networks. 

The SSR is then calculated for different number of neurons in MLP containing 1 and 2 

Hidden Layers. 

TABLE 3.5: 

Doppler Shift Performance in dB for MLP containing 1 Hidden Layer 

 

Number 
of 

Neurons 
in the 

Hidden 
Layer 

SSR 
(dB) 

without 
Doppler 

Shift 

Doppler 
Shift 

Performance 
(dB) 

1 43.5978 16.428 

3 43.6296 15.6874 

5 43.9851 19.9215 

7 44.795 14.472 

9 47.5564 14.9114 

11 46.7855 20.5069 

13 47.0187 14.4894 

15 46.8489 14.7814 

17 46.4311 14.1242 

19 48.5771 11.2608 

20 47.1648 15.0015 
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Figure 3.16: Compressed Waveforms for Doppler Tolerance taking (a) 3 neurons and (b) 11 

neurons in the hidden layer 

TABLE 3.6: Doppler Shift Performance in dB for MLP containing 2 Hidden Layers 

 

Number 
of 

Neurons 
in the 

1st 
Hidden 
Layer 

Number 
of 

Neurons 
in the 
2nd 

Hidden 
Layer 

SSR 
(dB) 

without 
Doppler 

Shift 

Doppler 
Shift 

Performance 
(dB) 

1 1 43.7655 15.3624 

1 9 47.7636 15.9011 

3 7 47.8964 18.2616 

3 11 46.9781 16.3934 

5 13 49.0722 14.8157 

5 17 48.0935 19.6598 

5 19 48.0697 19.7777 

7 1 43.9423 24.8851 

7 3 45.9211 21.2999 

7 7 46.5009 22.1625 

7 15 47.1429 21.6014 

7 19 46.6 20.5478 

9 13 43.5131 24.2562 

11 11 41.745 17.6705 

11 19 42.863 24.5693 

13 9 39.4495 21.0713 

13 13 40.3331 23.2751 

13 15 44.5892 27.0364 
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Figure 3.17: Compressed Waveforms for Doppler Tolerance taking (a) 3-11 and (b)7- 1 

neurons in the 2 hidden layers 
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Chapter 4 
CONCLUSION AND FUTURE WORK 
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CONCLUSION: 

From the analysis of the PSRs obtained in case of Radar Pulse Compression using Adaptive Filter 

Algorithms, the following points can be inferred: 

 Given any adaptive algorithm, increasing the length of the Barker Code improves the 

PSR level. 

 For a particular length of the Barker Code, the Modified RLS filter provides the minimum 

PSR (dB) and demonstrates the fastest convergence of the three adaptive filters. 

In case of Artificial Neural Networks used for Radar Pulse compression: 

 Increasing the SNR level in an MLP at first leads to a corresponding non-linear increase 

in SSR. Beyond a certain SNR level, the SSR tends to attain a steady state value. 

 For 13-bit Barker Code, MLP containing a hidden layer of 11 neurons has the maximum 

Doppler Tolerance of 20.5069 dB. 

 For 13-bit Barker Code, MLP containing 11 and 19 neurons in the 1st and 2nd hidden 

layers respectively has the maximum Doppler Tolerance of 24.5693 dB. 
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FUTURE WORK: 

The scope of Future Work is outlined below: 

1. Varying filter lengths for different Barker Codes can be taken and a corresponding 

comparison of PSRs using LMS, RLS and Modified RLS algorithms can be analytically 

performed. 

2. Other Adaptive Filter Algorithms, viz., IRLS, DIRLS algorithms etc., can be used for 

obtaining the matched filter coefficients in RADAR Pulse Compression. 

3. Other codes, viz., Ternary, Combined Barker Code or Complementary Sequences, can be 

used for Radar Pulse Compression.  

4. Filters such as Mismatched Filter, Inverse Filter, Nonmatched Filter, TSSWA, can be used 

in cascade with matched filter for better Pulse Compression results. 

5. SSRs corresponding to MLPs containing more than 2 hidden layers of neurons can be 

obtained and compared. 

6. Other neural network models such as Radial Basis Function Networks, Recurrent 

Networks, etc., can be implemented with various activation functions for training and 

determination of SSRs. 
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