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ABSTRACT 

 

 Modeling of a complex air vehicle such as a helicopter is very challenging task. This 

is because of the high non-linearity, significant cross-coupling between its two axes, complex 

aerodynamics and the inaccessibility of some of its states and outputs for measurements. It is 

possible to conceive a similar situation in the laboratory with the help of Twin Rotor MIMO 

System (TRMS).  

 While development of the analytical model of the TRMS, various components of the 

system have been modeled individually and then combined.  The various responses of the 

system models have been compared with that of the real time setup. 

 The project is aimed at devising a model of the non-linear MIMO system by using 

Neural Networks. This is because of the efficient modeling approach provided by neural 

networks for highly non-linear systems. The project utilizes Feedback Instruments 

manufactured TRMS for capturing the Input-Output parameters i.e. control voltage, yaw & 

pitch angles, rotor current and position. These data are exploited to train the neural network 

models. This project also compares the efficiency of the two methods of identification. 
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1.1 BACKGROUND 

 

 The TRMS model comprises of a beam pivoted on its base in such y that it rotates 

freely both in the horizontal and vertical planes. There are two rotors, the main and tail ones 

at both ends of the beam, which are driven by DC motors. At the pivot a counterbalance arm 

with a weight at its end is fixed to the beam. The state of the beam is described by four 

process variables: horizontal and vertical angles which are measured by encoders fitted at the 

pivot, and two corresponding angular velocities. [1] 

 There are also two other state variables, the angular velocities of the rotors, which are 

measured by speed sensors coupled with the driving DC motors. The basic difference in the 

laboratory set-up and in an actual helicopter is that the aerodynamic force is controlled by 

changing the angle of attack in a helicopter while in the laboratory set-up the angle of attack 

is fixed. By varying the speed of the two rotors the aerodynamic force can be controlled in a 

TRMS Model. As each rotor affects both the position angles, significant cross-coupling can 

be observed between actions of the rotors. To stabilize the TRMS, the design of the 

controllers is based on decoupling. The TRMS system has been designed to operate with 

external, PC-based digital controller. Communication with the position, speed sensors and 

motors is done by the control computer via a dedicated I/O board and power interface. A real 

time software operating in the MATLAB/Simulink RTW/RTWT environment controls the 

I/O board. [2] 
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1.2 SYSTEM IDENTIFICATION 
 

 System identification incorporates the mathematical tools and algorithms which are 

used for building dynamical models from measured data. Dynamical mathematical model 

implies that it is a mathematical description of the dynamic behaviour of a system in either 

the time or the frequency domain. 

. System Identification is performed by measuring the behaviour of the system and the 

process inputs to the system to try and formulate a mathematical relation between them 

without taking into account the internal processes of the system. 

 For non-linear systems, system modelling is done by assuming a model structure 

beforehand and then estimating the model parameters. We can either specialize the model 

structure for a particular purpose or have a general one that can be used for other devices too. 

The complexity of the model is determined by the parameter estimation. 
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2.1 TRMS DESCRIPTION 

 

  As shown in Figure 2.1, the TRMS mechanical unit comprises of two rotors 

positioned on a horizontal beam with a counterbalance at the pivot. The whole unit is 

attached to the tower which ensures safe helicopter control experiments. 

 

 

 

Fig.  2.1 TRMS Mechanical Unit [4] 
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 Along with the mechanical unit, the electrical unit which is placed under the tower 

plays an important role for TRMS control. Its function is to allow measured signals to be 

transferred to the PC and control signal applications via an I/O card. The mechanical and 

electrical units provide a complete control system setup presented in Figure 2.2. [4] 

 

 

 

Fig. 2.2 TRMS Control System [4] 
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2.2 TRMS MATHEMATICAL MODEL 

 

 The mechanical-electrical model of the TRMS is presented in Figure 3. 

 

 

Fig. 2.3 TRMS phenomenological model [4] 

 

 Usually, phenomenological models tending to be nonlinear, which means that at least 

one of the states (i – rotor current, θ – position) is an argument of a nonlinear function. So as 

to present such a model as a transfer function (a form of linear plant dynamics representing a 

control system), it has to be linearised. As shown in the electrical-mechanical diagram in 

Figure 2.3 the following non-linear model equations can be derived. [4] 
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 The motor momentum is described by an approximated first order transfer function in 

Laplace Domain: 

Equations that refer to the horizontal plane motion are as follows: 
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The phenomenological model parameters having been chosen experimentally, makes the 

TRMS nonlinear model a semi-phenomenological model. The following table gives the 

approximate parameter values. [4] 

 

Table 2.1 TRMS Model Parameters [4] 

 

The limits of the control signal are set to [–2.5V- +2.5V]. 
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2.3 TRMS SYSTEM SCHEMATIC 

 

 The TRMS is a Multiple Input Multiple Output (MIMO) plant. The simplified 

schematic of the TRMS is presented in Figure 2.4. 

 

Fig. 2.4 TRMS Simplified System Schematic 

 

 The TRMS has two control inputs- U1 and U2. As it can be seen from Figure 2.4 the 

dynamics of cross couplings between the rotors are the key features of the TRMS. The 

position state variable of the beams is measured with the help of incremental encoders, which 

provides for a relative position signal. Setting proper initial conditions is hence important 

every time the Real-Time TRMS simulation is run. [4] 
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3.1 TRMS MODEL IDENTIFICATION 

 

 As we already know from the previous section, there is significant cross-coupling 

between rotors in the nonlinear MIMO plant (shown in Figure 2.4. The model can be treated 

as two linear rotor models with two linear couplings in-between in order to keep the 

identification simple. Therefore four linear models have to be identified: two for the main 

dynamics path from U1 to ψ and U2 to φ and cross coupling dynamics paths from U1 to φ and 

U2 to ψ. 

  There are a few important things that has to be kept in mind when carrying out an 

identification experiment:  

3.1.1 Stability Problem: 

 For an unstable plant the identification has to be carried out with a working controller, 

which introduces more problems that will be discussed in later sections. The identification is 

much simpler if the plant is stable and therefore we do not have to work with a controller.   

 

3.1.2 Structure Choice: 

 Structure choice happens to be a very important aspect of the identification. It 

depends on the choice of the numerator and denominator order of the transfer function for 

linear models. It is applicable for both continuous and discrete systems. The structures are 

also divided in terms of the error term description: ARX, ARMAX, OE and BJ in the cases of 

the discrete model. 

 

 



13 
 

3.1.3 Sampling Time:  

 The sampling time choice is very important for both the identification and the control. 

It can neither be too short nor can it be too long. Because of the quantization effect 

introduced by the AD, the identification quality might be influenced by very short sampling 

time. Furthermore for smaller sampling time the software and hardware has to be faster and 

more memory is required. However elimination of aliasing effects will be allowed for short 

sampling time and thus introduction of anti aliasing filters will not be required. Inclusion of 

all of the dynamics will not be allowed for long sampling times. 

 

3.1.4 Excitation Signal:  

 The choice is pretty much simple for the linear models the excitation. White noise is 

used quite frequently by designers. But it is often not allowed for industrial applications. 

White noise holds very broad frequency content so identification of the whole dynamics of 

the plant can be done easily. Thus white noise is quite attractive. Several sinusoids with 

different frequency levels can be added to produce a desired excitation signal if the dynamics 

are not too complex.   

 

3.1.5 Identification Method: 

 The “Least Mean Square (LMS)” method and the “Instrumental Variable” method are 

the commonly used methods. The LMS method is the very much popular and is applied in 

Matlab. The error between the model and the plant output is minimized using this method. 

The optimal model parameters, for which the square of the error is minimal is the result of the 

identification.  [4] 
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4.1 MAIN PATH PITCH ROTOR IDENTIFICATION 

 

 

Introduction:  

 

 This model describes the relation between the control voltage U1 and the angle ψ. 

Generally all the real time simulations are carried out using a sampling time of Ts = 0.001 [s]. 

But since plant dynamic response is relatively slow, the identification of the discrete model is 

carried out with the sampling time of Ts = 0.1[s].  

  The identification experiment is carried out using the model called 

MainPitch_Ident.mdl in the Matlab Toolbox. The function of the model is to excite the 

TRMS and record its response. This excitation signal comprises of several sinusoids. Two 

signals are collected in the form of vectors and are available in the Workspace.  

 

 

Task:  

 

 The identification experiment was conducted and data was collected. The model was 

identified using the Matlab identification interface. The graphs generated of the transient 

response, step response analysis, frequency response, pole and zeros map, and model 

residuals give a clear idea of the quality of the response. 
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Results:  

 The following results were obtained in the experiment conducted. 

 

Fig. 4.1 Step Response 

 

Fig. 4.2 Frequency Response 
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Fig. 4.3 Autocorrelation of Residuals for Output y1 

 

Fig. 4.4 Poles & Zeroes 
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Fig. 4.5 Measured & Simulated Model Output 

Discrete Transfer function thus obtained: 

 

 

 

Continuous Transfer function thus obtained: 

 

 

 

Sampling time: 0.1 [s]. 
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Discussions:  

Figure 4.1 shows the Step Response of the Main Path Pitch Rotor Identification. It basically 

gives knowledge of how the system behaves in time when the inputs change from zero to one 

in a relatively short span of time. In this case the system is stable because it settles down to 

give a steady output by reaching another steady state in a short span of time. Fig 4.2 shows 

the Frequency Response of the system, which is the measure of a system’s output spectrum 

with respect to its input signal. In this case a Bode Plot has been drawn to plot the magnitude 

(measured in dB) and the phase (measured in radians) versus frequency. Fig 4.3 shows the 

Autocorrelation of the output, which means that it is the cross-correlation of the output signal 

with itself observed as a function of a time lag with itself. Fig 4.4 is the Poles and Zeroes map 

which shows the position and number of poles and zeroes of the transfer function. If any of 

the position of these poles or zeroes were to be changed, then it would have great 

implications on the Step Response of the system. Fig 4.5 is the comparison between the 

measured and simulated output which is a comparison between the control and real time 

experiments. While the control experiments have been done in perfect setup, external factors 

come into picture in case of the real time experiment. In this case, the graphs being nearly 

similar, the real time experimental results have little error.                        
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4.2 MAIN PATH YAW ROTOR IDENTIFICATION 

 

Task:  

 The identification experiment was conducted using the MainYaw_Ident.mdl in 

Matlab and data was collected. The model was identified using the Matlab identification 

interface. The graphs generated of the transient response, step response analysis, frequency 

response, pole and zeros map, and model residuals give a clear idea of the quality of the 

response. 

 

Results:  

 The following results were obtained in the experiment conducted. 

 

Fig. 4.6 Step Response 
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Fig. 4.7 Frequency Response 

 

Fig. 4.8 Autocorrelation of Residuals for Output y1 
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Fig. 4.9 Poles & Zeroes 

 

Fig. 4.10 Measured & Simulated Model Output 
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Discrete Transfer function thus obtained: 

 

 

 

Continuous Transfer function thus obtained: 

 

 

 

Sampling time: 0.001 [s]. 
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Discussions:  

 Fig 4.6 shows the Step Response of the Main Path Yaw Rotor Identification. It 

basically gives knowledge of how the system behaves in time when the inputs change from 

zero to one in a relatively short span of time. In this case the system is stable because it settles 

down to give a steady output by reaching another steady state in a short span of time. Fig 4.7 

shows the Frequency Response of the system, which is the measure of a system’s output 

spectrum with respect to its input signal. In this case a Bode Plot has been drawn to plot the 

magnitude (measured in dB) and the phase (measured in radians) versus frequency. Fig 4.8 

shows the Autocorrelation of the output, which means that it, is the cross-correlation of the 

output signal with itself observed as a function of a time lag with itself. Fig 4.9 is the Poles 

and Zeroes map which shows the position and number of poles and zeroes of the transfer 

function. If any of the position of these poles or zeroes were to be changed, then it would 

have great implications on the Step Response of the system. Fig 4.10 is the comparison 

between the measured and simulated output which is a comparison between the control and 

real time experiments. While the control experiments have been done in perfect setup, 

external factors come into picture in case of the real time experiment. In this case, the graphs 

vary at some points; hence the real time experimental results have some error.                        

 

 

 

 

 

 



25 
 

4.3 CROSS PATH PITCH ROTOR IDENTIFICATION 

 

 

 

Introduction: 
 
 
 The identification experiment was carried out using the model called 

CrossPitch_Ident.mdl. This model excites the TRMS with U1 and records its response φ – 

yaw angle. The excitation signal is composed of several sinusoids. Two signals are collected 

in the form of vectors and are available in Workspace. 

 

 

Task:  

 

 The identification experiment was conducted and data was collected. The model was 

identified using the Matlab identification interface. The graphs generated of the transient 

response, step response analysis, frequency response, pole and zeros map, and model 

residuals give a clear idea of the quality of the response. 

 

 

Results:  

 

 The following results were obtained in the experiment conducted. 
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Fig. 4.11 Step Response 

 

Fig. 4.12 Frequency Response 
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Fig. 4.13 Autocorrelation of Residuals for Output y1 

 

Fig. 4.14 Poles & Zeroes 
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Fig.  4.15 Measured & Simulated Model Output 

Discrete Transfer function thus obtained: 

 

 

 

Continuous Transfer function thus obtained: 

 

 

 

Sampling time: 0.1 [s]. 
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Discussions:  

Fig 4.11 shows the Step Response of the Main Path Yaw Rotor Identification. It basically 

gives knowledge of how the system behaves in time when the inputs change from zero to one 

in a relatively short span of time. In this case the system is stable because it settles down to 

give a steady output by reaching another steady state in a short span of time. Fig 4.12 shows 

the Frequency Response of the system, which is the measure of a system’s output spectrum 

with respect to its input signal. In this case a Bode Plot has been drawn to plot the magnitude 

(measured in dB) and the phase (measured in radians) versus frequency. Fig 4.13 shows the 

Autocorrelation of the output, which means that it, is the cross-correlation of the output signal 

with itself observed as a function of a time lag with itself. Fig 4.14 is the Poles and Zeroes 

map which shows the position and number of poles and zeroes of the transfer function. If any 

of the position of these poles or zeroes were to be changed, then it would have great 

implications on the Step Response of the system. In this case there are no zeroes. Fig 4.15 is 

the comparison between the measured and simulated output which is a comparison between 

the control and real time experiments. While the control experiments have been done in 

perfect setup, external factors come into picture in case of the real time experiment. In this 

case, the graphs vary at very few points; hence the real time experimental results have some 

or little error.                        
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4.4 CROSS PATH YAW ROTOR IDENTIFICATION 

 

 

 

Introduction: 
 
 
 The identification experiment was carried out using the model called 

CrossYaw_Ident.mdl. This model excites the TRMS with U2 and records its response ψ – 

pitch angle. The excitation signal is composed of several sinusoids. Two signals are collected 

in the form of vectors and are available in Workspace. 

 

 

Task:  

 

 The identification experiment was conducted and data was collected. The model was 

identified using the Matlab identification interface. The graphs generated of the transient 

response, step response analysis, frequency response, pole and zeros map, and model 

residuals give a clear idea of the quality of the response. 

 

 

Results:  

 

 The following results were obtained in the experiment conducted. 
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Fig. 4.16 Step Response 



32 
 

 

Fig. 4.17 Frequency Response 

 

Fig. 4.18 Poles & Zeroes 
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Fig.  4.19 Measured & Simulated Model Output 

Discrete Transfer function thus obtained: 

 

 

 

Continuous Transfer function thus obtained: 

 

 

 

Sampling time: 0.1 [s]. 
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Discussions:  

 

Fig 4.16 shows the Step Response of the Main Path Yaw Rotor Identification. It basically 

gives knowledge of how the system behaves in time when the inputs change from zero to one 

in a relatively short span of time. In this case the system is somewhat unstable because of the 

high non linearity and cross-couplings of the axes. Fig 4.17 shows the Frequency Response of 

the system, which is the measure of a system’s output spectrum with respect to its input 

signal. In this case a Bode Plot has been drawn to plot the magnitude (measured in dB) and 

the phase (measured in radians) versus frequency. Fig 4.18 shows the Autocorrelation of the 

output, which means that it, is the cross-correlation of the output signal with itself observed 

as a function of a time lag with itself. Fig 4.19 is the Poles and Zeroes map which shows the 

position and number of poles and zeroes of the transfer function. If any of the position of 

these poles or zeroes were to be changed, then it would have great implications on the Step 

Response of the system. In this case there are no zeroes. Fig 4.20 is the comparison between 

the measured and simulated output which is a comparison between the control and real time 

experiments. While the control experiments have been done in perfect setup, external factors 

come into picture in case of the real time experiment. In this case, the graphs vary at some 

points; hence the real time experimental results have error. 
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5.1 INTODUCTION TO SYSTEM IDENTIFICATION 

USING NEURAL NETWORK MODELS 

 

 Neural Networks (NNs) comprise of networks of neurons, for e.g. as in human brains. 

Artificial Neurons are physical devices or mathematical constructs, which are often crude 

approximations of the neurons found in a brain. Artificial Neural Networks (ANNs) are 

networks of Artificial Neurons; physical devices or simulated on computers and behave as 

approximations to the parts of a real brain. Practically an ANN is a parallel computational 

system comprising of simple processing elements inter-connected in a particular way to 

perform a specific task. 

 These powerful computational devices are extremely efficient due to massive 

parallelism. As they have the capability to learn and generalize from training data, therefore 

there is no need for tedious programming and lengthy calculations. Extremely fault tolerant 

and noise tolerant, they possess the ability to cope with situations which normal symbolic 

systems have difficulty to deal with. 

 Taking assumptions, a discrete-time multivariable non-linear control system with m 

outputs and r inputs can be represented by the multi variable NARMAX model: 

 

y(t) =f {y(t - 1), ... , y(t – ny), u(t - 1), ... , u(t – nu),e(t - 1), ... , e(t – ne)} + e(t) 

where y(t), u(t) and e(t) are the system output, input and noise vectors, respectively; ny, nu 

and  ne are the maximum lags in the output, input and noise respectively; e(t) is a zero-mean 

independent sequence; and f( • ) is some vector-valued non-linear function. [3] 
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 The input-output relationship is dependent upon the non-linear function f(•). In 

reality, f( •) is generally very complex and knowledge of the form of this function is often not 

available. The solution is to approximate f(•) using some known simpler function, and in the 

present study we consider using neural networks to approximate non-linear systems governed 

by the model 

y(t) =f(y(t - 1), ... , y(t – ny) , u(t - 1), ... , u(t – nu) +e(t) 

It can be noticed that the later equation is a slightly simplified version of the former one 

because only additive uncorrelated noise is considered. [3] 

 Neural networks used for function approximation purposes are feed forward type 

networks, typically with one or more hidden layers between the inputs and outputs. Every 

layer comprises of some computing units known as nodes. The network inputs are passed on 

to each node in the first layer. Then the outputs of the first layer nodes are passed to the 

second layer, and so on. Hence the network outputs the outputs of the nodes lying in the final 

layer. Generally all the nodes in a layer are completely connected to the nodes in adjacent 

layers, but there is no inter-connection within a layer. The I/O relationship of each hidden 

node is determined by the connection weights Wi, a threshold parameter Il and the node 

activation function  a( •), as follows: [3] 

y =a(Σ Wi Xi +µ) 

 

 The objective of this process is to carry out system identification of the TRMS by 

using neural networks. The input (u) of interest is the control voltage applied to the TRMS 

while the output (y) is the yaw or pitch angle as the case maybe. In the identification 

framework, we assume that the TRMS can be represented in discrete input-output form by 

the identification structure: 
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y(k)= a1(k-1)+a2y(k-2)…+any(k-n)+a1u(k-1)+a2u(k-2)…+anu(k-n)+ϵ(k) 

 

 In our experiment, firstly a set of data was collected experimentally. Then the output 

of the system was corrupted by Gaussian white noise with SNR (Signal-to-Noise Ratio) 

25dB. Then system was trained using 500 input-output data pairs and result was obtained. 
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5.2 MAIN PATH PITCH ROTOR IDENTIFICATION 

 

Program Code: 

% Adding Gaussian white noise to system output  

yn=awgn(y,25); 

% y - system output 

% yn - system output corrupted by noise 

figure(1) 

plot(1:N,y,1:N,yn,'r');     

for k=1:(N-2) 

    input(1,k)=yn(k+1); 

    input(2,k)=yn(k); 

    input(3,k)=u(k+1); 

    input(4,k)=u(k);   

    target(k)=yn(k+2); 

end 

% Creating a feedforward NN 

net=newff(minmax(input),[1],{'purelin'}); 

net.trainparam.goal=1e-3; 

% Train the NN 

net=train(net,input,target); 

% Trained NN's weights and biases 

net.IW{1} 

net.b{1} 

% Output of trained NN for training input 
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ytraincap=sim(net,input); 

ytraincap=[0 0 ytraincap]; 

figure(2) 

plot(1:N,ytraincap,'r',1:N,y); 

% Testing-input generation (step) 

u1=ones(1,N); 

y1(1)=0;y1(2)=0;y1(3)=0;y1(4)=0; 

for k=5:N 

    y1(k)=0.8305*y1(k-4)-1.8*y1(k-3)+0.1683*y1(k-

2)+1.788*y1(k-1)+0.008894*u1(k-4)-0.003293*u1(k-3); 

end 

for k=1:(N-2) 

    input1(1,k)=y1(k+1); 

    input1(2,k)=y1(k); 

    input1(3,k)=u1(k+1); 

    input1(4,k)=u1(k);   

    target1(k)=y1(k+2); 

end 

% Testing NN 

ycap=sim(net,input1); 

ycap=[0 0 ycap]; 

% y1 - system output 

% ycap - NN output  

% u1 - test input 

figure(3) 

plot(1:N,u1,1:N,ycap,'r',1:N,y1,'g'); 
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Results: 

 
Fig. 5.1 Actual Vs Corrupted Signal 

 
Fig. 5.2 System Output Vs NN Output 
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Fig. 5.3 Best Training Performance 

 
 
 
Discussion: 
 
Fig 5.1 shows the comparison between the actual signal and the corrupted signal. The 

corrupted signal has Gaussian white Noise with SNR 25dB. Fig 5.2 shows the comparison 

between the system output and the Neural Network Output. Fig 5.3 shows the Best Training 

Performance plot. 
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5.3 MAIN PATH YAW ROTOR IDENTIFICATION 

 

Program Code: 

% Adding Gaussian white noise to system output  

yn=awgn(y,1); 

% y - system output 

% yn - system output corrupted by noise 

figure(1) 

plot(1:N,y,1:N,yn,'r');     

for k=1:(N-2) 

    input(1,k)=yn(k+1); 

    input(2,k)=yn(k); 

    input(3,k)=u(k+1); 

    input(4,k)=u(k);   

    target(k)=yn(k+2); 

end 

% Creating a feedforward NN 

net=newff(minmax(input),[1],{'purelin'}); 

net.trainparam.goal=1e-3; 

% Train the NN 

net=train(net,input,target); 

% Trained NN's weights and biases 

net.IW{1} 

net.b{1} 

% Output of trained NN for training input 
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ytraincap=sim(net,input); 

ytraincap=[0 0 ytraincap]; 

figure(2) 

plot(1:N,ytraincap,'r',1:N,y); 

% Testing-input generation (step) 

u1=ones(1,N); 

y1(1)=0;y1(2)=0;y1(3)=0; 

for k=4:N 

    y1(k)=0.89*y1(k-3)-2.771*y1(k-2)+2.88*y1(k-

1)+0.0003014*u1(k-2)+0.0248*u1(k-3); 

end 

for k=1:(N-2) 

    input1(1,k)=y1(k+1); 

    input1(2,k)=y1(k); 

    input1(3,k)=u1(k+1); 

    input1(4,k)=u1(k);   

    target1(k)=y1(k+2); 

end 

% Testing NN 

ycap=sim(net,input1); 

ycap=[0 0 ycap]; 

% y1 - system output 

% ycap - NN output  

% u1 - test input 

figure(3) 

plot(1:N,u1,1:N,ycap,'r',1:N,y1,'g'); 
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Results: 
 

 

Fig. 5.4 Actual Vs Corrupted Signal 
 

 

Fig. 5.5 System Output Vs NN Output 
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Fig. 5.6 Best Training Performance 
 

 
 
Discussion: 
 
Fig 5.4 shows the comparison between the actual signal and the corrupted signal. The 

corrupted signal has Gaussian white Noise with SNR 25dB. Fig 5.5 shows the comparison 

between the system output and the Neural Network Output. Fig 5.6 shows the Best Training 

Performance plot. 
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5.4 CROSS PATH PITCH ROTOR IDENTIFICATION 

 

Program Code: 

% Adding Gaussian white noise to system output  

yn=awgn(y,25); 

% y - system output 

% yn - system output corrupted by noise 

figure(1) 

plot(1:N,y,1:N,yn,'r');     

for k=1:(N-2) 

    input(1,k)=yn(k+1); 

    input(2,k)=yn(k); 

    input(3,k)=u(k+1); 

    input(4,k)=u(k);   

    target(k)=yn(k+2); 

end 

% Creating a feedforward NN 

net=newff(minmax(input),[1],{'purelin'}); 

net.trainparam.goal=1e-3; 

% Train the NN 

net=train(net,input,target); 

% Trained NN's weights and biases 

net.IW{1} 

net.b{1} 

% Output of trained NN for training input 



48 
 

ytraincap=sim(net,input); 

ytraincap=[0 0 ytraincap]; 

figure(2) 

plot(1:N,ytraincap,'r',1:N,y); 

% Testing-input generation (step) 

u1=ones(1,N); 

y1(1)=0;y1(2)=0; 

for k=3:N 

    y1(k)=-0.9191*y1(k-2)+1.916*y1(k-1)+0.005052*u1(k-2); 

end 

for k=1:(N-2) 

    input1(1,k)=y1(k+1); 

    input1(2,k)=y1(k); 

    input1(3,k)=u1(k+1); 

    input1(4,k)=u1(k);   

    target1(k)=y1(k+2); 

end 

% Testing NN 

ycap=sim(net,input1); 

ycap=[0 0 ycap]; 

% y1 - system output 

% ycap - NN output  

% u1 - test input 

figure(3) 

plot(1:N,u1,1:N,ycap,'r',1:N,y1,'g'); 

 



49 
 

Results: 

 

Fig. 5.7 Actual Vs Corrupted Signal 
 

 

Fig. 5.8 System Output Vs NN Output 
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Fig. 5.9 Best Training Performance 
 
 
 
 
 
Discussion: 
 
Fig 5.7 shows the comparison between the actual signal and the corrupted signal. The 

corrupted signal has Gaussian white Noise with SNR 25dB. Fig 5.8 shows the comparison 

between the system output and the Neural Network Output. Fig 5.9 shows the Best Training 

Performance plot. 
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5.5 CROSS PATH YAW ROTOR IDENTIFICATION 

 

Program Code: 

% Adding Gaussian white noise to system output  

yn=awgn(y,25); 

% y - system output 

% yn - system output corrupted by noise 

figure(1) 

plot(1:N,y,1:N,yn,'r');     

for k=1:(N-2) 

    input(1,k)=yn(k+1); 

    input(2,k)=yn(k); 

    input(3,k)=u(k+1); 

    input(4,k)=u(k);   

    target(k)=yn(k+2); 

end 

% Creating a feedforward NN 

net=newff(minmax(input),[1],{'purelin'}); 

net.trainparam.goal=1e-3; 

% Train the NN 

net=train(net,input,target); 

% Trained NN's weights and biases 

net.IW{1} 

net.b{1} 

% Output of trained NN for training input 
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ytraincap=sim(net,input); 

ytraincap=[0 0 ytraincap]; 

figure(2) 

plot(1:N,ytraincap,'r',1:N,y); 

% Testing-input generation (step) 

u1=ones(1,N); 

y1(1)=0;y1(2)=0; 

for k=3:N 

    y1(k)=-1.019*y1(k-2)+1.985*y1(k-1)+0.001475*u1(k-2)-

0.0007785*u1(k-1); 

end 

for k=1:(N-2) 

    input1(1,k)=y1(k+1); 

    input1(2,k)=y1(k); 

    input1(3,k)=u1(k+1); 

    input1(4,k)=u1(k);   

    target1(k)=y1(k+2); 

end 

% Testing NN 

ycap=sim(net,input1); 

ycap=[0 0 ycap]; 

% y1 - system output 

% ycap - NN output  

% u1 - test input 

figure(3) 

plot(1:N,u1,1:N,ycap,'r',1:N,y1,'g'); 
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Results: 

 

Fig. 5.10 Actual Vs Corrupted Signal 

 

 

Fig. 5.11 System Output Vs NN Output 
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Fig. 5.12 Best Training Performance 
 

 

 

Discussion: 
 

Fig 5.10 shows the comparison between the actual signal and the corrupted signal. The 

corrupted signal has Gaussian white Noise with SNR 25dB. Fig 5.11 shows the comparison 

between the system output and the Neural Network Output. Fig 5.12 shows the Best Training 

Performance plot. 
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CONCLUSION 

 

 Modelling of physical systems are essential in the design of a controller for its 

analysis and future applications. In this investigation the system identification of an 

experimental system, Twin Rotor MIMO System, Feedback Instruments Ltd, using both 

analytical and neural network based methods has been developed. While development of the 

analytical model of the TRMS, various components of the system have been modelled 

individually and then combined.  The various responses of the system models have been 

compared with that of the real time setup.  

 Neural network’s ability to model complex non-linear MIMO system has been 

demonstrated. We know that neural networks provide an excellent platform to approximate 

any complex non-linear system with reasonable accuracy. In the project we therefore 

demonstrate the generation of input-output data pair using the laboratory model and use them 

for modelling using neural networks. 

 In our neural network modelling the Levenberg–Marquardt algorithm (LMA) is used 

which provides a numerical solution to the problem of minimizing the approximation 

function on this nonlinear system model, over a space of parameters of the function. These 

minimization problems arise especially in least squares curve fitting and nonlinear 

programming. The LMA interpolates between the Gauss–Newton algorithm (GNA) and the 

method of gradient descent. The LMA is more robust than the GNA, which means that in 

many cases it finds a solution even if it starts very far off the final minimum. On the other 

hand, for well-behaved functions and reasonable starting parameters, the LMA tends to be a 
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bit slower than the GNA. LMA can also be viewed as GNA improved with trust region 

approach. 

 We have compared both the methods of identification i.e. the analytical and neural 

network. Although both the methods have given us quite accurate results, the neural network 

approach provides for a better identification as it is extremely fault tolerant and noise tolerant 

and possess the ability to cope with situations which normal symbolic systems have difficulty 

to deal with. 
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