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Abstract 

A study has been conducted on the kinetics of drying of vegetables in a fluidized bed drier. The 

experiments had been conducted on vegetables in a fluidized bed drier with a conical bed. 

Various parameters like time of drying, temperature of air, flow velocity of air and material to be 

dried were varied and the drying rates were determined. The drying rates were then compared to 

two thin layer drying models ‘Page’ and ‘Wang and Singh). The coefficient of determination (R2) 

and root mean square error (RMSE) were evaluated. The models can appropriately describe the 

drying kinetics of vegetables considering the different experimental conditions. The effective 

diffusivity was determined using the Fick’s model. A correlation was developed between the 

moisture ratio and the parameters. The values obtained from the correlation were compared to 

the experimental values which gave deviation within experimental limits. Finally the effect of 

each parameter on the drying rate was determined 

 

KEYWORDS: temperature, drying, diffusivity, Fick’s second law 
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NOMENCLATURE 

t :           Drying time, second 
Uo        : Velocity of the fluidizing medium, m/s. 
∆t : Drying time interval, 
Umax : Maximum fluidization velocity, m/s 
θ : Temperature , ºC 
R2 : Coefficient of determination 
RMSE : Root mean square error 
k : Drying rate constant 
n : Model constant 
Mt : Moisture content at anytime (kg water/kg dry solid) 
Mo : Initial moisture content (kg water/kg dry solid) 
Me : Equilibrium moisture content of samples (kg water/kg dry solid) 

 
 
 

Abbreviations  

MR : Moisture ratio 
Cal : Calculated 
Exp : Experimental 
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Chapter 1 

INTRODUCTION 

Drying is a method of preserving food by reducing water activity, thus preserving foods by 

avoiding microbial growth and deteriorative chemical reactions. The Drying Process leads to 

reduction of the moisture content in solids, to maintain their consistency in storage and transport. 

The main purposes of drying are to increase shelf life, reduce packaging and storage costs, lower 

transporting weights, improve sensory qualities, store flavors, and preserve nutritional value. For 

storage purposes, the moisture content of materials must fall within a suitable range so that they 

do not undergo any type of deterioration or alterations in quality or characteristics. To achieve 

the desired moisture content, the material must be dried. 

Drying is a process of simultaneous heat and mass transfer. Heat required for evaporation, is 

supplied to the particles of the material and moisture vapor is removed from the material into the 

drying medium. Heat is transported by convection from the surroundings to the particle surfaces, 

and from there, by conduction, further into the particle. Moisture is transported in the opposite 

direction as a liquid or vapor on the surface; it evaporates and passes on by convection to the 

surroundings. [Ozbey et. al (2005)] 

The heat needed for drying is supplied to the material by one of the following methods: 

• Radiation drying. 

• Convective drying (using a drying medium, i.e., air). 

• Contact drying (by conduction from a surface that is in direct contact with the material to 

be dried).  

Drying requires high energy input because of the high latent heat of vaporization of water and 

low energy efficiency of industrial dryers. Lot of energy is wasted in inefficient drying. 

Fluidization is the operation by which fine solids are transformed into a fluid like state through 

contact with a gas or solid. The process of fluidization with hot air is highly attractive for the 

drying of different materials. Fluidized beds are currently used commercially for drying such 
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materials as granular materials, cereals, polymers, chemicals, pharmaceuticals, fertilizers, 

crystalline products and minerals. 

An induced draught is created by means of blower and fresh air is sucked into the unit. This hot 

air stream expands the material at certain velocity and creating turbulence in the product. The 

Fluidization produces full agitation of solid particles by hot air; thereby heat transfer is extremely 

high and uniform. The product is dried fast without appreciable loss of heat. Filter bags prevent 

particle escaping from the dryer. 
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Chapter 2 

LITERATURE REVIEW 

2.1 Previous work on fluidized bed drying 

Drying refers to the removal of moisture or liquid from a wet solid by transferring this moisture 

into a gaseous state. In most drying operations, water is the liquid evaporated and air is the 

drying medium. 

When a wet solid is subjected to thermal drying, two processes occur simultaneously: 

• Transfer of energy from the surrounding environment to evaporate the surface moisture. 

• Transfer of internal moisture to the surface of the solid and its subsequent evaporation 

due to process 1. 

In process 1, the removal of water from the surface as vapor depends on the external conditions 

of temperature, air humidity and flow, area of exposed surface. In process 2, the movement of 

moisture internally inside the solid is a function of the physical nature of the solid, its moisture 

content and the bed temperature. [Satish S et. al (2005)] 

Recent developments of the regime of fluidization and subsequent design modifications have 

made fluidized bed drying a desirable choice among other dryers. However, like other types of 

conventional convective drying processes, fluidized bed drying is a very energy intensive 

process in industry. The efficiency of a conventional drying system is usually low, depending on 

the inlet air temperature and other conditions. It is, therefore, desirable to improve the efficiency 

of the drying process to reduce the overall consumption of energy. 

Fluidized drying of granular products of solids can be either batch wise or continuous. Batch 

operation is preferred for small scale production and for heat sensitive materials. Fluidized bed 

dryers are widely used in a number of industry sectors to dry finely divided 50–5000 μm 

particulate materials. Compared with other drying techniques, fluidized bed drying offers many 

advantages. .[Ozbey et. al (2005)] 
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Many studies have been conducted to determine the parameters that affect drying. The way these 

parameters affect the drying has also been analysed. The main parameters that have been studied 

have been temperature of air, velocity of air, material to be dried, size of the particles, time of 

drying etc. These parameters help us in optimizing the drying process to reduce the cost and 

drying times.  Also, the increasing cost of energy over recent years has prompted and received 

great attention in order to increase the convective heat transfer rates in the process equipment. 

The effect of temperature was more critical than that of the other parameters and could reduce 

the drying time substantially. Thomas and Varma (1992) experimentally investigated fluidized 

bed drying of granular cellular materials and compared the experimental results for batch and 

continuous fluidized bed drying investigated at different temperatures and flow rates of the 

heating medium, particle size and mass of solids in a fluidized bed type dryer. As the product is 

in close contact with the drying air at low temperature, and also for short duration, the physical 

and chemical properties of the products are generally not affected and therefore the dryer can 

effectively be used for heat sensitive products. Due to the continuous movements of product 

during drying, lump formation, case hardening etc. are minimized. 

Watano et al.(1998) experimentally studied the drying of wet granules in an agitating fluidized 

bed type dryer that has a tapered fluidized bed with an agitator blade turning on a central axis 

installed at the bottom of the cylindrical vessel to impart a tumbling and circulating motion to the 

granules. The effects of the conditions on the properties of the granules such as the mass median 

diameter, yield, shape and density of the granules were investigated under various air 

temperatures, air velocities and agitator rotational speeds. The relationships between the 

operating conditions and the drying rates were also examined.  

Palancz et. al(1983) proposed a mathematical model for continuous fluidized bed drying based 

on the two-phase theory of fluidization. According to this theory, the fluidized bed is divided 

into two phases, a bubble phase and an emulsion phase, which consists of gas and solid particles 

Thus, higher inlet temperatures of drying air can be used which lead to shorter drying times. The 

enthalpy and the entropy of drying air also increase leading to higher energy efficiency. But 

increasing inlet air temperature should be limited to obtain good quality dried material. It was 

experimentally observed by Hajidavalloo et. al (2000) that as the inlet air temperature increased 
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the grain temperature also increases. The final temperature of the material after long time spans 

becomes almost equal to the temperature of inlet drying air. 

Drying of biological materials, like fruit and vegetables, in a spouted or spout-fluidized bed is an 

extremely complicated process due to the simultaneous phenomena of heat, mass and momentum 

transfer which occurs inside each particle in the bed and transfer phenomena between solid and 

gas phases of the circulating bed being the mixture of dried granulated material and air. 

Moreover, the particles of wet material undergo significant shrinkage which affects changes in 

both the shape and dimensions of the solid. Hot air drying of fruit and vegetables usually 

provokes changes in physical, chemical, nutritional and biological properties and modifies the 

characteristics of food products. In most cases these changes are dependent on moisture content, 

temperature and time of exposition. An understanding of the transfer phenomena taking place 

during the drying of fruit and vegetables in rotating beds would result in the formulation of 

adequate mathematical models to optimize the process – leading to improved product quality and 

a reduction in process costs. Numerous analytical and numerical models have been proposed by 

various authors to study heat and moisture transfer analysis during drying of different solid 

objects. Reviews of several different mathematical models have been published. In most cases, 

the authors employed the finite element method (FEM) for studying temperature and moisture 

distributions within the wet solids during the drying and control volume (CV) technique to study 

hydrodynamics and transfer phenomena in fluidized and spouted beds[Białobrzewski et. al 

(2008)] 

2.2 Advantages of fluidized bed drying 

• The even flow of fluidized particles permits continuous, automatically controlled, 

large- scale operation with easy handling of feed and product. 

• There are no mechanical moving parts, that is, it is low maintenance. 

• By rapid exchange of heat and mass between gas and particles, overheating of heat 

sensitive products is avoided. 

• Heat transfer rates between fluidized bed and immersed objects, such as heating 

panels, are high. 
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• Rapid mixing of solids leads to nearly isothermal conditions throughout the fluidized 

bed, and thus reliable control of the drying process can be achieved easily. 

• It can be operated under lower temperatures. 

 

2.3 Disadvantages of some fluidized bed dryers 

• In conventional fluidized bed, large column heights are required and formation of 

channels. 

• The principal limitation with the superheated steam drying is the high operating 

temperature, large equipment like boiler for generating steam, electrical heater for 

converting saturated steam to super heated steam. 

• Agitation fluidized bed dryer consumes high electrical energy for rotation of agitator 

blade. 

• Freeze drying and contact adsorption drying is not suitable for large-scale production 

because of high operation costs. 

 

2.4 Mathematical modeling of drying curves 

The moisture ratio (MR) of vegetables was obtained using the equation below: 

MR = (Mt- Me) / (Mo – Me)                           …………………..(1) 

where Mt is the moisture content at anytime (kg water/kg dry solid), Mo is the initial moisture 

content (kg water/kg dry solid) and Me is the equilibrium moisture content of samples (kg 

water/kg dry solid). 

Drying curves obtained were fitted to two moisture ratio thin layer models, namely Page and 

Wang and Singh. Simplification of the general series solution of Fick’s second law generally 

leads to the two models. 

The Page model is an empirical modification of the simple exponential model successfully used 

to describe the drying characteristics of a variety of agricultural materials like red chilli, pigeon 

pea, carrot and okra by Gupta et al (2002) 
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The Page model is given as 

MR = (Mt- Me) / (Mo – Me) = exp(-ktn)                           …………….…………(2)                

where t is the drying time (hr), and k and n are constants in the model 

The Wang and Singh model as is a second order polynomial model which has been used to 

characterize the drying kinetics of mushrooms by Walde et al (2005) 

The Wang and Singh model is given as 

MR = (Mt- Me) / (Mo – Me) = 1 + at + bt2    …………………..(3)  

where a and b are coefficients of the model and t is the drying time (hr),. 

2.5 Estimation of moisture diffusivity 

The Fick’s second law of diffusion was used to estimate the effective diffusivity considering 

constant moisture diffusivity, infinite slab geometry and uniform initial moisture distribution 

(Crank, 1975): 

ܴܯ ൌ ଼
గమ ∑ ଵ

ሺଶேାଵሻమ exp ሾሺ∞
ேୀ െ ሺ2ܰ  1ሻଶߨଶݐܦሻ/4ܮଶሿ ……………..(4) 

where D is the effective diffusivity (m2/s), L is the half-thickness of the slice samples (m) and n  

is a positive integer. This equation (4) can be simplified by taking the first term of series 

solution: 

   MR= (8/π2) exp (π2Dt/4L2)                       …………………..(5) 
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Chapter 3 

EXPERIMENTAL SETUP 

 3.1 Schematic representation of fluidized bed drier 

The setup is a tapered fluidized bed drier consisting of Air Compressor, Air Distributor, Heater, 

Inlet Air Temperature Sensor, Tapered Bed, Outlet Air Temperature Sensor 

 

Figure 3.1 Apparatus in the set-up: 1 Air Compressor; 2 Heater; 3 Air inlet to the bed; 4 Inlet air 
temperature sensor; 5 Tapered Fluidized Bed; 6 Outlet Hot Air Temperature Sensor; 7 Hot Air 
outlet; 8 Timer. 

3.2 Tapered Fluidized Bed Dryer 

The bed is shaped like a truncated cone with bottom diameter is 12.1 cm where as the top 

diameter is 21.96 cm. The reactor height is 20 cm. The tapered angle is 14°. 

The gas distributor was 2mm thick with 2mm perforations. A fine wire mesh of 0.2mm openings 

was spot welded over the distributor plate to arrest the flow of solids from the fluidized bed into 

the air chamber. Air from the blower was heated and fed into the air chamber and into the 
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fluidization column. The electrical heater consisted of multiple heating elements of 2 KW rating. 

The timer is provided in which time can be maintained from 0- 80 min. 

3.3 Temperature controller 

A temperature controller, provided to the air chamber, facilitated the control of air temperature to 

± 0.5° C, for the operating range of 40-110° C.    

3.4 Air movement  

The selection and sizing of a fan to move air through a dryer is very important. The major 

resistance to the flow of air comes from the grain bed. The pressure drop through the bed support 

is of lesser effect, particularly for deep beds. The pressure drop across a grain bed is a function of 

the air velocity and the grain itself 
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Chapter 4 

MATERIALS AND METHOD 

4.1 Materials 

Fresh green peas (Pisum Sativum), Potato (Solanum Tuberosum) were used. The peas were 

spherical in shape whereas the potato were cut into a cuboid shape of size 2 ൈ 1 ൈ 0.5 cm 

Air at a temperature of 26 ºC (ρ = 1.178 kg m-3 and μ = 1.8ൈ10-5 kg m-1s-1) used as the fluidizing 

medium. 

 4.2 Method 

A fluidized-bed was used for the drying of all samples. The fluidized bed dryer was connected to 

a heat pump dehumidifier system. The drying conditions of 50 °C, 60 °C, 70 °C, were set by the 

temperature controller in the heat pump dehumidifier system, and the drying set-up was run for 

10 minutes to achieve steady state conditions of drying before material introduction. The hot air 

velocity passing through the material bed was kept at a constant value of 3.8 ms-1 for a single set 

experiment, it was also changed by flow control valves for required  three levels of 0.975, 1.95, 

2.875 ms-1 for  drying experiments. Samples were taken out at regular interval of 10 minutes 

from the dryer for taking the readings of weight reduction and changes in volume. 
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Chapter 5 

RESULTS AND DISCUSSIONS 

5.1 Results 

 5.1.1 Scope of the experiment 

Parameters: Four parameters (time, velocity of air, material of solid and temperature of air) are 

represented in Table 1.  

Application of Walde Equation: The observations have been applied to Walde Equation 

(equation 3) and the constants ‘a’ and ‘b’ with R2 and RMSE have been calculated within 

experimental limits. 

Application of Page Equation: The observations have been applied to Page Equation (equation 2) 

and the constants ‘k’ and ‘n’ with R2 and RMSE have been calculated within experimental limits. 

Application of Fick’s second Law of Diffusion: The observations have been applied to Fick’s 

second Law of Diffusion (equation 5) and the constants ‘k’ and Diffusivity, ‘D’ with R2 and 

RMSE have been calculated within experimental limits. 

Correlation plots: By changing one variable at a time and keeping the rest constant, a correlation 

has been developed; and the calculated and experimental values were compared.   

(All iterations have been performed using the ‘Trust-Region Algorithm’ in Matlab 7 ®) 
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Table 5.1 enlists the variation of parameters that were employed during the course of the 
experimental work. 

Table 5.1: Scope of the Experiment 

Sl. No Material Temperature ( ºC) Velocity(ms-1) Time(min) 
1. 

Peas 
 

50 3.8 30 

2. 60 3.8 30 
3. 70 3.8 30 

4 

60 
 

3.8 30 

5 2.85 30 
6 1.9 30 

7 0.95 30 

8 

3.8 
 

10 

9 20 
10 30 

11 40 
12 50 

13 Moong 
 

50 3.8 
 

30 
 14 60 

15 Potato 
 

50 3.8 
 

30 
 16 60 
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5.1.2 Observations 

Table 5.2 shows the results of modeling the experimental data using Page Equation (2) 

Table 5.2: Calculating the parameters of Page Equation from our observation 

Temperature Flow Rate a b R2 RMSE 

50 ºC 

3.8 -0.03177 0.0002331 0.9995 0.00938 
2.85 -0.03266 0.000253 0.9993 0.01122 
1.9 -0.03378 0.0002745 0.9997 0.00772 
0.95 -0.03141 0.0002234 0.9989 0.0146 

 

60 ºC 

3.8 -0.03282 0.0002545 0.9997 0.00762 
2.85 -0.03089 0.0002142 0.9988 0.01467 
1.9 -0.02886 0.0001741 0.9989 0.01406 
0.95 -0.0278 0.0001486 0.9958 0.02782 

 

70 ºC 

3.8 -0.03095 0.0002174 0.9994 0.01019 
2.85 -0.03195 0.0002358 0.9984 0.01714 
1.9 -0.02956 0.0001871 0.9987 0.01533 
0.95 -0.02856 0.0001673 0.9992 0.0119 

 

Table 5.3 shows the results of modeling the experimental data using Walde Equation (3) 

 Table 5.3: Calculating the parameters of Walde Equation from our observation 

Temperature Flow Rate k n R2 RMSE 

50 ºC 

3.8 0.01111 1.436 0.9927 0.03657 
2.85 0.01365 1.379 0.9921 0.03764 
1.9 0.01426 1.378 0.9934 0.03463 
0.95 0.00873 1.509 0.9945 0.03207 

 

60 ºC 

3.8 0.01192 1.424 0.994 0.03324 
2.85 0.01002 1.46 0.9908 0.04095 
1.9 0.00849 1.492 0.9893 0.0442 
0.95 0.00711 1.539 0.984 0.05441 

 

70 ºC 

3.8 0.01141 1.42 0.9908 0.04067 
2.85 0.00886 1.509 0.9969 0.02428 
1.9 0.00908 1.478 0.9892 0.04439 
0.95 0.00773 1.518 0.9909 0.04076 
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Table 5.4 shows the results of modeling the experimental data using Fick’s Second Law of 

Diffusion (5) to determine diffusivity.  

Table 5.4: Application of Fick’s Second Law of Diffusion to determine diffusivity  

Temperature Flow Rate k D R2 RMSE 

50 ºC 

3.8 1.04 -0.0048 0.9689 0.07537 
2.85 1.034 -0.0048 0.9732 0.06944 
1.9 1.034 -0.005 0.9749 0.06759 
0.95 1.047 -0.0048 0.9644 0.0816 

 

60 ºC 

3.8 1.039 -0.0049 0.9715 0.07232 
2.85 1.041 -0.0047 0.9648 0.08023 
1.9 1.046 -0.0045 0.9597 0.08558 
0.95 1.048 -0.0044 0.9502 0.09593 

 

70 ºC 

3.8 1.038 -0.0047 0.9681 0.07574 
2.85 1.038 -0.0047 0.9681 0.07574 
1.9 1.043 -0.0046 0.9611 0.08413 
0.95 1.043 -0.0046 0.9611 0.08413 
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Figure 5.1: Plot of Moisture Ratio (MR) vs. Drying Time (mins) at 50 ºC fitted in accordance to 
Walde and Page Equations with a flow rate of (a) 3.8 ms-1  (b)  2.85 ms-1  (c) 1.95 ms-1  (d) 0.95 
ms-1 

 

    

(b)

(c)  (d)

(a) 
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Figure 5.2: Plot of Moisture Ratio (MR) vs. Drying Time (mins) at 60 ºC fitted in accordance to 
Walde and Page Equations with a flow rate of (a) 3.8 ms-1  (b)  2.85 ms-1  (c) 1.95 ms-1  (d) 0.95 
ms-1 

 

 

 

(a) 

(b)

(c)  (d)
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Figure 5.3: Plot of Moisture Ratio (MR) vs. Drying Time (mins) at 70 ºC fitted in accordance to 
Walde and Page Equations with a flow rate of (a) 3.8 ms-1  (b)  2.85 ms-1  (c) 1.95 ms-1  (d) 0.95 
ms-1 

 

 

 

 

        

(a)  (b)

(c)  (d)
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Figure 5.4: Plot of Moisture Ratio (MR) vs. Drying Time (mins) at 50 ºC fitted in accordance to 
Fick’s 2nd law to calculate diffusivity with a flow rate of (a) 3.8 ms-1  (b)  2.85 ms-1  (c) 1.95 ms-1  
(d) 0.95 ms-1 

 

 

 

 

        

(a)  (b)

(c) 

(d)
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Figure 5.5: Plot of Moisture Ratio (MR) vs. Drying Time (mins) at 60 ºC fitted in accordance to 
Fick’s 2nd law to calculate diffusivity with a flow rate of (a) 3.8 ms-1  (b)  2.85 ms-1  (c) 1.95 ms-1  
(d) 0.95 ms-1 

 

 

 

 

 

        

(a) 

(b)

(c) 
(d)
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Figure 5.6: Plot of Moisture Ratio (MR) vs. Drying Time (minutes) at 70 ºC fitted in accordance 
to Fick’s 2nd law to calculate diffusivity with a flow rate of (a) 3.8 ms-1  (b)  2.85 ms-1  (c) 1.95 
ms-1  (d) 0.95 ms-1. 
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Figure 5.8: Plot showing Moisture Removed as 
a function of temperature 
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 Figure 5.7: Plot showing Moisture Removed 
as a function of time 
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Table 5.5: Moisture Removed 
(grams) vs. Time (minutes) 

Table 5.6: Moisture Removed 
(grams) vs. Temperature (ºC) 
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Velocity (ms-1) Moisture 
removed (grams)

 0.95 34 
 1.9 35.5 
2.85 40 
3.8 42 

 

 

    

 

 

 

 

 

Material Density 
(g cm-3) 

Moisture 
Removed (grams) 

Potato 1.08 52 
Moong 1.03 46 

Peas 1.05 44.5 
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 Figure 5.9: Plot showing Moisture Removed as 
a function of velocity of air flow. 
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Figure 5.10: Plot showing Moisture Removed 
as a function of density 

Table 5.7: Moisture Removed 
(grams) vs. velocity (ms-1) 

Table 5.8: Moisture Removed 
(grams) vs. density (g cm-3) 
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Table 5.9: Observed Data & Comparison of   Calculated Value of Moisture Ratio ‘MR’ 
with experimental ‘MR’ value 

Time 
(minutes) 

Temperatur
e (ºC) 

Velocity 
(ms-1) 

Density   
(g cm-3) K MR 

(experimental) 
MR 

(calculated)
% 

deviation
10 60 2.85 1.05 82.620 13 12.84839 1.16626 
20 60 2.85 1.05 145.75 22.5 22.91271 -1.83427 
30 60 2.85 1.05 203.16 32.5 32.13922 1.110083 
40 60 2.85 1.05 257.14 40 40.86057 -2.15141 
50 60 2.85 1.05 308.71 44 49.22454 -11.874 
40 50 2.85 1.05 232.86 37 36.93273 0.181823 
40 60 2.85 1.05 257.14 40 40.86057 -2.15141 
40 70 2.85 1.05 279.63 44.5 44.50567 -0.01275 
40 60 0.95 1.05 216.43 34 34.27849 -0.81909 
40 60 1.9 1.05 241.30 35.5 38.29576 -7.87538 
40 60 2.85 1.05 257.14 40 40.86057 -2.15141 
40 60 3.8 1.05 269.02 42 42.78384 -1.86627 
40 60 2.85 1.08 278.28 52 44.28512 14.8363 
40 60 2.85 1.03 243.64 46 38.67611 15.92151 
40 60 2.85 1.05 257.14 44.5 40.86057 8.178505 

 

K= (time)0.819(temperature)0.544(velocity)0.156(density)0.2803 

  

 

 

 

 

 

 

 

 

 

 

MR=0.143[(time)0.819(temperature)0.544(velocity)0.156(density)0.2803] ………….. (6) 
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Figure 5.11: Correlation plot of moisture ratio (MR) vs. system parameters 
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5.2 Discussion 

There have been certain deviations in the calculated value from the experimental values because 

of the shortcomings like: 

1. The velocity controller in the drier is not accurate enough.  

2. The temperatures of the solid falls down when we removed it to take the weight reading. 

3. The atmospheric moisture changes from day to day, thus the mass transfer rate of 

moisture does not remain constant on all days even if our parameters were kept constant. 

4. It was not possible to cut potatoes into perfect cuboids. 

5. The peas obtained do not have uniform initial moisture all the time and they vary greatly 

in their sizes.  

6. Finally, human errors might have come up when taking the readings. 
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Chapter 7 

CONCLUSIONS 

The following are the findings of the present studies: 

1. Walde’s and Page’s correlations for drying efficiency were found to be applicable over a 

wide range of parameters with errors within experimental limits. 

2. An increase in air temperature increases significantly the drying rate for all the materials. 

This increase in the constant drying rate is attributed to the increase in surface 

temperature of the particle resulting in higher surface humidity and an increased 

evaporation from the surface. 

3. An increase in gas velocity rate increases the drying rate due to a decrease in gas film 

resistance surrounding the particle. 

4. The solids initial moisture content influences the drying rate, Solids with high initial 

moisture content will have less dry solids i.e., fewer number of particles, and have 

reduced drying rate per unit weight of initial charge. 

5. It was observed that drying rate reduces with time or with the reduction of moisture 

content the product’s moisture content reduces over time 

6. A correlation was found between the moisture ratio and the parameters which gives 

results comparable to experimental values and can be applied to pilot studies and even 

industries. 
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  A I   

APPENDIX 

Temperature = 50 ºC 

 Flow Rate = 3.8 m/s Flow Rate = 2.85 m/s Flow Rate = 1.9 m/s Flow Rate=0.95 m/s 
Time 

(minutes) 
Weight 
(GM) 

Moisture 
Lost (GM) 

Weight 
(GM) 

Moisture 
Lost (GM) 

 

Weight 
(GM) 

Moisture 
Lost (GM) 

Weight 
(GM) 

Moisture 
Lost (GM) 

0 100 0 100 0 100 0 100 0 
10 87 13 87 13 88 12 90 10 
20 77 10 78 9 79 9 81 9 
30 67.5 9.5 69 9 71.5 8.5 73 8 
40 60.5 7 63 6 65.5 6 67 6 
50 56.5 4 59 4 62.5 3 64 3 

 

Temperature = 60 ºC 

 Flow Rate = 3.8 m/s Flow Rate = 2.85 m/s Flow Rate = 1.9 m/s Flow Rate=0.95 m/s 
Time 

(minutes) 
Weight 
(GM) 

Moisture 
Lost (GM) 

Weight 
(GM) 

Moisture 
Lost (GM) 

 

Weight 
(GM) 

Moisture 
Lost (GM) 

Weight 
(GM) 

Moisture 
Lost (GM) 

0 100 0 100 0 100 0 100 0 
10 86 14 87 13 89 11 90 10 
20 75 11 77.5 9.5 80 9 82 8 
30 65 10 67.5 10 72 8 74 8 
40 58 7 60 7.5 64 8 66 6 
50 54 4 56 4 60 4 63 3 

 



 

  A II   

Temperature = 70 ºC 

 Flow Rate = 3.8 m/s Flow Rate = 2.85 m/s Flow Rate = 1.9 m/s Flow Rate=0.95 m/s 
Time 

(minutes) 
Weight 
(GM) 

Moisture 
Lost (GM) 

Weight 
(GM) 

Moisture 
Lost (GM) 

 

Weight 
(GM) 

Moisture 
Lost (GM) 

Weight 
(GM) 

Moisture 
Lost (GM) 

0 100 0 100 0 100 0 100 0 
10 85 15 87 14 88 12 90 10 
20 74 11 73 10 79 9 81.5 8.5 
30 63.5 10.5 63 10 70 9 73.5 8 
40 55 8.5 55.5 7.5 62 8 66.5 7 
50 50 5 51 4.5 58 4 62.5 4 
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