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ABSTRACT 

 

Direct sequence-code division multiple access (DS-CDMA) technique is used in cellular 

systems where users in the cell are separated from each other with their unique spreading 

codes. In recent times DS-CDMA has been used extensively. These systems suffers from 

multiple access interference (MAI) due to other users transmitting in the cell, channel inter 

symbol interference (ISI) due to multipath nature of channels in presence of additive white 

Gaussian noise(AWGN). Spreading codes play an important role in multiple access capacity 

of  DS-CDMA system. M-sequences, gold sequences etc., has been traditionally used as 

spreading codes in  DS-CDMA. These sequences are generated by shift registers and periodic 

in nature. So these sequences are less in number and also limits the security. 

 
This thesis presents an investigation on use of new type of sequences called chaotic 

sequences   for DS-CDMA system. These sequences are generated by chaotic maps.  First of 

all, chaotic sequences are easy to generate and store. Only a few parameters and functions are 

needed even for very long sequences. In addition, an enormous number of different 

sequences can be generated simply by changing its initial condition. .  Chaotic sequences are 

deterministic, reproducible, uncorrelated and random-like, which can be very helpful in 

enhancing the security of transmission in communication. This Thesis investigates the 

performance of chaotic sequences in DS-CDMA communication systems using various 

receiver techniques. 

 
Extensive simulation studies demonstrate the performance of the different linear and 

nonlinear DS-CDMA receivers like   RAKE receiver, matched filter (MF) receiver, minimum 

mean square error (MMSE) receiver and Volterra receiver using chaotic sequences and the 

performance have been compared with gold sequences. 
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Chapter-1 

INTRODUCTION 
1.1INTRODUCTION 

Spread spectrum techniques have been wildly used in wired and wireless communications. 

The spreading of the signal spectrum gives us many advantages such as robustness against 

interference and noise, low probability of intercept, realization of Code Division Multiple 

Access(CDMA) and so on. In order to spread the bandwidth of the transmitting signals, 

pseudo-noise (PN) sequences have been used extensively in spread-spectrum communication 

systems [1]. Obviously, the maximal length shift register sequences (M-sequences) and Gold 

sequences are the most popular spreading sequences in spread spectrum systems. This Thesis   

presents chaotic sequences as spreading sequences in DS/CDMA system. The main 

advantages of such usage are increased security of the data transmission and ease of 

generation of a great number of chaotic sequences[2]. Since the PN DS/SS systems are not 

considered the best choice of the message being transmitted, a more effective method, the 

chaotic DS/SS system, is therefore proposed. In the thesis, the focus of the study is heavily 

built upon the theory of chaos. Among the advantages of the use of chaotic sequences in 

DS/SS are the availability of a great numbers, the ease of their generation, and their inherent 

improvement in the security of transmission. These fascinating features of the chaotic DS/SS 

system make itself an alternative to PN sequences in terms of generating more effective 

codes. 

  The chapter begins with an exposition of the principal motivation behind the work 

undertaken in this thesis. Following this, section 1.3 provides a brief literature survey on  

Chaos background. Section 1.4 outlines the contributions made in this thesis. At the end, 

section 1.5 presents the thesis layout. 

 
1.2 MOTIVATION OF WORK 

 
In order to spread the bandwidth of the transmitting signals, the binary pseudo-noise 

(PN) sequences[3] have been used extensively in spread spectrum communication (SS) 

systems. It is a deterministic, periodic signal that is known to both transmitter and receiver, 

whose appearance has the statistical properties of sampled white noise. It appears, to an 

unauthorized listener, to be a similar to those of white noise. Therefore, it is not easily 

intercepted by adversary. 
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Much research has been done over the past decades in order to analyze the properties 

of these sequences and to try to find easier ways to generate the most effective codes. 

Obviously, the maximal length shift register sequences (M-sequences) and Gold sequences 

are the most popular spreading sequences in spread spectrum systems. The M-sequences are 

the longest codes that can be generated with given a shift register of fixed length, that have 

relatively smaller cross-correlation values than the peak magnitude that restrict regretfully to 

their number. The m-sequences have very desirable autocorrelation properties. However, 

large spikes can be found in their cross-correlation functions, especially when partially 

correlated. Another limiting property of m-sequences is that they are relatively small in 

number. Therefore, the number of sequences is usually too small and not suitable for spread 

spectrum systems. Furthermore, another method for generating PN sequences with better 

periodic cross-correlation properties than M-sequence has been developed by Gold [4]. The 

Gold sequences are constructed by taking a pair of specially selected M-sequences. 

The set of sequences having zero auto-correlation and cross-correlation plays an 

important role in typical DS-CDMA systems. A periodic sequence with zero out-of-phase is 

called a perfect or an orthogonal sequence, it can mitigate the multi-path interference. 

Similarly, a set of periodic sequences with zero cross-correlation values is set of uncorrelated 

sequences. However, it is impossible to be found in single sequence spreading code. Recently 

some researchers have given up the use of M-sequences and gone for instead random binary 

sequences. Although the correlation properties of these sequences are not as desirable as the 

ones of M-sequences, which is superior to traditional code in particular designated. 

Even the problem of the number of PN sequences was neglected; there is yet another 

shortcoming of the conventional DS/SS systems that has not been solved. The use of any 

specific kind of binary spreading sequences means that squaring the spread signal would 

remove the signature sequence filtering out only the outspread modulated carrier. That is, the 

communication is easily intercepted by adversary receivers. 

The concept of pseudo-noise sequences, even M sequence and Gold code have been 

comment on what the native properties of security and number be not considered the best 

choice of the message being transmitted. This thesis uses a different type of spreading 

sequence for use in DS-SS systems called chaotic sequences. These sequences are created 

using discrete, chaotic maps [5]. The sequences so generated with both Logistic map and 

Tent Map as well-known, even though completely deterministic and initial sensitive, have 

characteristics similar to those of random noise. Surprisingly, the maps can generate large 

numbers of these noise-like sequences having low cross-correlations. The evaluated 
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performance of the systems will be compared in the presence of additive white Gaussian 

noise noise(AWGN)  for difference number of users. The noise-like feature of the chaotic 

spreading code is very desirable in a communication system. This feature greatly enhances the 

LPI (low probability of intercept) performance of the system. 

1.3 BACKGROUND LITERATURE SURVEY 
 

In the past few decades, there has been a great deal of interest in the study of non-linear 

dynamical system from which chaos developed [6]. The diverse applications of chaos to 

various areas are growing. However, not until the past ten years that chaos is of great interest 

in communication and more research are undergoing in either theory or practice. 

The most significant feature of the chaotic system is its sensitively dependence on its 

initial condition. It is properly illustrated by the finding of Professor E.N. Lorenz, teaching 

Meteorology at MIT. In 1961, Prof. Lorenz attempted to solve a much-simplified model and 

finally he did succeed in simulating real weather patterns for weather predictions. However, 

something drew his attention: when he slightly changed the initial conditions in the model, 

the resulting weather patterns changed completely after a very short period. He discovered 

the fact that very simple differential equations could possess sensitive dependence on initial 

conditions. Through the sensitive dependence of chaotic systems on their initial conditions, a 

large number of uncorrelated, random-like, yet deterministic and reproducible signals can be 

generated. Moreover, since chaotic dynamical system is a deterministic system, disguising 

modulation as noise would be easily made upon its random-like behavior.  

Another very interesting application of the chaotic sequences appears in 

communications, because those sequences have the properties required for spread spectrum 

(SS). The SS is a modulation technique that the information is spreaded in frequency by a 

sequence of bits, here called chips, totally independent of the information. The great 

advantage of this kind of modulation is that, it permits different users to communicate in the 

same band of frequency and at the same time. In this work, we will spread the information by 

using a periodic pseudo-sequence. This modulation is called direct sequence spread spectrum 

(DS-SS). The use of chaotic sequences for spectral spreading in a direct-sequence spread 

spectrum system (DS/SS) has been shown to provide several advantages over conventional 

binary sequences, particularly pseudonoise sequences which are frequently used in digital 

communication. 

  The most important characteristics of the periodic sequence are: the autocorrelation 

and the cross-correlation. The autocorrelation is important in the synchronization between the 

periodic pseudo-sequence generated at the transmitter and at the receiver. The cross-
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correlation of the periodic pseudo-sequences must be zero to obtain communication between 

different users at the same band of frequency and at the same time.  

 

 

1.4   OBJECT OF THE WORK 
 
The work proposed here intends to test the chaotic sequence based DS-CDMA system[7] for 

different receiver techjniques. This thesis presents an investigation on use of new type of 

sequences called chaotic sequences   for DS-CDMA system. These sequences are generated 

by chaotic maps.  First of all, chaotic sequences are easy to generate and store. Only a few 

parameters and functions are needed even for very long sequences. In addition, an enormous 

number of different sequences can be generated simply by changing its initial condition. . 

Chaotic sequences are deterministic, reproducible, uncorrelated and random-like, which can 

be very helpful in enhancing the security of transmission in communication. 

In this work it is proposed to carry out the following studies. 

Implementation of chaotic sequences for the DS-CDMA downlink receiver. 

Investigate BER performance of different linear and nonlinear receivers for DS-CDMA 

system using chaotic sequences and comparison with gold sequences. 

 
1.5   THESIS OUTLINE 
 
This thesis is organized into six chapters.  Following this introduction, Chapter 2 provides a 

more detail discuss on DS-CDMA system.  Chapter 3 discusses the background of chaotic 

nonlinear systems and generation of chaotic sequences. In Chapter 4, various linear receivers 

like Matched filter, MMSE receiver etc., are studied and   BER performance of   different 

linear receivers using chaotic sequences is evaluated and it is compared with the receivers 

using gold sequences.  Following these BER performances of various nonlinear receivers 

using chaotic sequences has been analyzed in Chapter 5. Finally Chapter 6 provides 

concluding remarks and future work. 
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Chapter-2 

DS-CDMA SYSTEM AND OVERVIEW  
 
2.1    INTRODUCTION 
 
In this section the principle of spread spectrum and its application in multiple access is 

discussed. Multiple access schemes are used to allow many mobile users to share 

simultaneously a finite amount of radio channels in a fixed radio spectrum.  The sharing of 

the spectrum is required to achieve high capacity by simultaneously allocating the available 

bandwidth to multiple users.  

Following this introduction, spread spectrum (SS) communication technique is 

discussed in the section 2.2.  The application of this SS technique to produce a multiple 

access system is described in the section 2.3. The section 2.4 deals with the construction of 

a simplified form of a baseband signal to be transmitted, while section 2.5 considers the 

effects of multipath channel on this signal.  Section 2.6 discusses the simplest receiver 

structure using matched filter (MF). Principle structure of multiuser detector is described in 

section 2.7.  While generation of Gold sequence is discussed in section 2.8 and the chapter 

ends with the concluding remark. 

 
2.2 SPREAD SPECTRUM COMMUNICATION TECHNIQUES 
 
As a simple, expansion of the bandwidth is not sufficient to be termed as the spread spectrum, 

but the bandwidth expansion must be accomplished with the separate signature, or known as 

spreading sequence. Both transmitter and the receiver know this spreading sequence. It is also 

independent of the data bits [8]. All the sequences are   randomly distributed, and there is no 

correlation between any two sequences. 

 Let the sequence of data bits x (n) have the period Tbit and the spreading sequence of 

length M (in this work we have taken a spreading sequence of length 31) generally called 

chips to distinguish them from the data bits have the frequency fchip where fchip >> (1/Tbit). In 

other words it is assumed that fchip>>fbit . 

From the above assumption that the transmitted data is random and independent, the 

power spectral density of the original unspread signal is given by [9] 

                                                                                                                                                    

( )
2

sin (2.1)bit
D bit

bit

fTS f T
fT
π

π
⎛ ⎞

= ⎜ ⎟
⎝ ⎠
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                           Figure 2.1: Spread spectrum concept in frequency domain 

 

And assuming that spreading sequence is pseudorandom in nature, and is given by 

                         ( )
2

sin1 (2.2)chip
SS

chip chip

f f
S f

f f f
π

π
⎛ ⎞

= ⎜ ⎟⎜ ⎟
⎝ ⎠

                                                

The relationship between the above spectral densities is sketched in the Figure 2.1. 

 The increased in performance due to the bandwidth expansion and contraction process is 

termed as processing gain gP .This processing gain can be represented as the ratio of 

bandwidth associated with the spread signal WSS and that of the data signal WD . 

                                                   (2.3)SS bit
P

D chip

W Tg
W T

= =  

The processing gain (PG) is normally expressed in decibel form as 

                                                            GP=10 log10 (gP)                                (2.4) 

The SS signal is largely tolerant to external interfering factors, there will be degradation in 

performance as the number of SS signals in the same cell increases.  

 

. To make a good comparison, the background noise is expressed in terms of a modified form 

of signal to noise ratio (SNR), it takes account the processing gain. 

                                              ( )2

10
0

10 log 2 (2.5)b
P

E g
N

σ=  
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Where Eb/N0  is the signal to Gaussian noise ratio, and σ 2 is the Gaussian noise variance.  

 

 

2.3 DS-CDMA TRANSMITTER PRINCIPLES 
 
The simplest transmitter for downlink of a DS-CDMA is shown in the Figure 2.3. The 

transmitted signal , at time t = nT(s kL n+ ) bit is constructed by coherently summing the  

spreading sequence of each user,    i,nC by  that users bit i(k)x  over all active users , to give 

                                                             

                                             i ,n i

1

( )  (k )    ( 2 .6 )
U

i

s k L n C x
=

+ = ∑
 

                                                           
   Figure 2.2: Simplified synchronous DS-CDMA downlink transmitters for U active users 

 

In the uplink case the process is same except that the users are no longer synchronized, and 

which is modeled by inserting user-specific time delay on the resulting spread signal. 

 
2.4 MULTIPATH CHANNEL BACKGROUND 
 
The received signal consists of direct line of site (LOS) components and a few non LOS 

components. In addition to background noise, the received signal consists of a combination of 

individual reflected signals from the obstacles, like buildings etc, between the transmitter and 

the receiver and those arrives at various delays, according to the length of each associated RF 
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paths [10]. This situation is called multipath channel. This is also time varying, due to the 

motion of the receiver with respect to the transmitter. 

                          
 Figure 2.3: Example of multipath, the received signal consists of many reflections and 

                    delayed versions of the transmitted signal. 

 

2.4.1 Channel effects 

There are two main parameters of the channel, first is the range of frequency over which the 

channel effects remain same, called the coherence bandwidth, denoted as f0, and the time 

duration over which the channel response is invariant is called the coherence time and 

denoted as T0. These may be calculated from the two dual functions S(τ), the multipath 

intensity profile and S(ν), the Doppler power spectral density, which are the measure of the 

received signal power as the function of delay time τ and the Doppler shift ν  respectively.  

                                                                                                                                                
2.5 DS-CDMA RECEIVER PRINCIPLES 
 
The work of the receiver is to recover the data x(n) by converting the spectrum of the 

received signal vector ( )ny . This is done by multiplying the received signal with the    

required spreading sequence, which is generated locally by the receiver. The received signal, 

consisting of Mr chips is passed to the block of delay elements, where Z-1 represents a delay 

of one chip, until the complete Mr chip signal has been read. These values are then passed to 

multiplier block in parallel, which forms the scalar product of ( )ny  and the tap weight 

vector rMC∈ω , where Mr is the number of tap weights, in this Figure 2.4 it is 8. This finite 

impulse response block produces a soft output ( )nx~ , which is then passed through the 

decision block to give a hard estimate, ( )nx̂ , of the original data bit x(n).      
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                         Figure 2.4: DS-CDMA correlator receiver with 8 tap weights 

This is the structure of simplest receiver, commonly known as MF receiver with L tap 

weights   , matched to the original spreading sequence of the desired user. In 

practice, synchronization of the chip level signal is a highly non-trivial process. The 

performance of this receiver has been shown to degrade considerably as the number of 

simultaneously transmitting users increases . Hence improving the capacity of SS systems is 

achieved either by reducing the total interference by enhancing the single user detection 

methods or by making use of multiple access interference (MAI) through improved 

interference cancellation or multiuser detection technique (MUD). 

: 1n nw ≤ ≤ L

  
2.6 PSEUDO NOISE (PN) DS/SS SYSTEM 
 
Spread spectrum signals for digital communications were originally invented for military 

communication, but nowadays are used to provide reliable communication in a variety of 

commercial applications including mobile and wireless communications, which provide 

resistance to hostile jamming, hide the signal by transmitting it at low power, or make it 

possible for multiple users to communicate through the same channel. .In conventional 

DS/SS, in order to spread the bandwidth of the transmitting signals, the binary pseudo-noise 

(PN) sequences have been used extensively in spread spectrum communication (SS) systems. 

It is a deterministic, periodic signal that is known to both transmitter and receiver, whose 

appearance has the statistical properties of sampled white noise. It appears, to an unauthorized 

listener, to be a similar to those of white noise. Therefore, it is not easily intercepted by 

adversary. 

The basic elements of a pseudo-noise DS/SS systems are illustrated in Figure 1 as the 

following. 
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                                                   Figure 2.5   PN  DS/SS system 

 

The channel encoder and decoder, the modulator and demodulator are the basic elements of a 

conventional digital communication system. The two pseudorandom generators, interfacing 

with the modulator and demodulator, were employed by the spread spectrum system to 

produce a pseudorandom or pseudonoise (PN) binary-valued sequence that is used to spread 

the transmitted signal in frequency at the modular and to despread the received signal at the 

demodulator. 
 
2.7  PSEUDO-RANDOM SEQUENCES 
 
A pseudorandom(PN) sequence is a code sequence of 1’s and 0’s whose autocorrelation has 

properties similar to those of white noise. Some of the popular PN sequences are Maximal 

length shift register sequences(m-sequences), gold sequences etc., 

 
2.7.1 Maximal length shift register Sequence (m-sequence) 
 
Maximal length shift register sequences are by definition, the longest codes that can be 

generated by a given shift register or a delay element of a given length. In binary shift register 

sequence generators, the maximum length sequence is 2n-1 chips, where n is the number of 

stages in the shift register. A shift register sequence generator consists of a shift register 

working in conjunction with appropriate logic, which feeds back a logical combination of the 

state of two or more of its stages to input. The output of a sequence generator, and the 

contents of its n stages at any sample (clock) time, is a function of the outputs of the stages  

  
  O/p Information

  se
 

quence    Channel 
  encoder 

  Modulator  Channel  
 Decoder 

Channel Demodulator 

  Pseudorandom  
       generator 

  Pseudorandom  
       generator 

 10



Number 
 Of 
Stages 

Code 
Length 

Maximal  
Taps 

2 3 [2,1] 
3 7 [3,1] 
4 15 [4,1] 
5 31 [5,2][5,4,3,2][5,4,2,1] 
6 63 [6,1][6,5,2,1][6,5,3,2] 
7 127 [7,1][7,3][7,3,2,1][7,4,3,2] 

[7,6,4,2][7,6,3,1][7,6,5,2][7,6,5,4,2,1][7,5,4,3,2,1] 
8 255 [8,4,3,2][8,6,5,3][8,6,5,2] 

[8,5,3,1][8,6,5,2][8,7,6,1] 
[8,7,6,5,2,1][8,6,4,3,2,1] 

9 511 [9,4][9,6,4,3][9,8,5,4][9,8,4,1] 
[9,5,3,2][9,8,6,5][9,8,7,2] 
[9,6,5,4,2,1][9,7,6,4,3,1] 
[9,8,7,6,5,3] 

10 1023 [10,3][10,8,3,2][10,4,3,1][10,8,5,1] 
[10,8,5,4][10,9,4,1][10,8,4,3] 
[10,5,3,2][10,5,2,1][10,9,4,2] 

11 2047 [11,1][11,8,5,2][11,7,3,2][11,5,3,5] 
[11,10,3,2][11,6,5,1][11,5,3,1] 
[11,9,4,1][11,8,6,2][11,9,8,3] 

12 4095 [12,6,4,1][12,9,3,2][12,11,10,5,2,1] 
[12,11,6,4,2,1][12,11,9,7,6,5] 
[12,11,9,5,3,1][12,11,9,8,7,4] 
[12,11,9,7,6,][12,9,8,3,2,1] 
[12,10,9,8,6,2] 

13 8191 [13,4,3,1][13,10,9,7,5,4] 
[13,11,8,7,4,1][13,12,8,7,6,5] 
[13,9,8,7,5,1][13,12,6,5,4,3] 
[13,12,11,9,5,3][13,12,11,5,2,1] 
[13,12,9,8,4,2][13,8,7,4,3,2] 

14 16,383 [14,12,2,1][14,13,4,2][14,13,11,9] 
[14,10,6,1][14,11,6,1][14,12,11,1] 
[14,6,4,2][14,11,9,6,5,2] 
[14,13,6,5,3,1][14,13,12,8,4,1] 
[14,8,7,6,4,2][14,10,6,5,4,1] 
[14,13,12,7,6,3][14,13,11,10,8,3] 

15 32,767 [15,13,10,9][15,13,10,1][ 15,14,9,2] 
[15,1][15,9,4,1][15,12,3,1][15,10,5,4] 
[15,10,5,4,3,2][15,11,7,6,2,1] 
[15,7,6,3,2,1][15,10,9,8,5,3] 
[15,12,5,4,3,2][15,10,8,7,5,3] 
[15,13,12,10][15,13,10,2][15,12,9,1] 
[15,14,12,2][15,13,9,6][15,7,4,1] 
[15,4][15,13,7,4] 

 
                      Table 2.1: Feedback connections for linear m-sequences 
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fed back at the preceding sample time. Feedback connections have been tabulated for 

maximal code generators for 3 to 15 stages and listed in Table 3.1. 

Implementation 

Linear feedback shift registers (LFSR) can be implemented in two ways. The Fibonacci 

implementation consists of a simple shift register in which a binary-weighted modulo-2 sum 

of the taps is fed back to the input. (The modulo-2 sum of two 1-bit binary numbers yields 0 

if the two numbers are identical and 1 if they differ: 0+0=0, 0+1=1, 1+1=0.) 

 

gm=1 

    Output

gm-1 
 

gm-2 
 

gm-3 g2 
 

 
g1
 

g0=1 

 

 

 

 

 

 

Figure 2.6: Fibonacci implementation of LFSR

For any given tap, weight gi is either 0, meaning "no connection," or 1, meaning it is fed 

back. Two exceptions are g0 and gm, which are always 1 and thus always connected. Note that 

gm is not really a feedback connection, but rather is the input of the shift register. It is 

assigned a feedback weight for mathematical purposes. The Galois implementation consists 

of a shift register, the contents of which are modified at every step by a binary-weighted 

value of the output stage. 

2.7.2 Gold sequences 

For CDMA applications, m-sequences are not optimal. For CDMA, we need to construct a 

family of spreading sequences, one for each which, in which the codes have well-defined 

cross-correlation properties. In general, m-sequences do not satisfy the criterion. One popular 

set of sequences that does are the Gold sequences. Gold sequences are attractive because only 

simple circuitry is needed to generate a large number of unique codes. 

A Gold sequence is constructed by the XOR of two m-sequences with the same clocking. 

Figure 2.7 shows the schematic for Gold code generation. 
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SRG 2 

Code 1 

Code 3= 
Code1⊕code2 

Code 2 

Clock 

SRG 1 

 

                     Figure 2.7: Gold code sequence generator configuration 

To achieve increased capacity, at an expense of altering the correlation properties slightly, a 

pair of m-sequences may be used to generate a set of Gold sequence , which have the 

property that the cross-correlation is always equal to –1, when the phase offset is zero. Non-

zero phase offset produces a correlation value from one of the three possible values. In this 

work a pair of specially selected m-sequences (where m = 5) is taken, and performing the 

modulo-2 sum of the two sequences for each of the L=2m-1 cyclically shifted version of one 

sequence relative to the other sequence. Thus L Gold sequence is generated as illustrated in 

Figure 2.8. 

                     Figure 2.8 Generation of Gold sequences of length 31 

 
In this section we discussed about the basic principles of SS communication and 

implementation of the DS-CDMA. The transmitter and receiver structure have been 

discussed. In this section we also reviewed the Gold sequence generation. By far, the 

maximum-length shift-register sequences (m-sequence) are the most widely known binary PN 

code sequences. The most undesirable property of m-sequence is that they are relatively small 

in number. For example, for a sequence of N=63, there are only 6, and for N=255, there are 

only 16 possible different sequences to use. Therefore, m-sequences are not suitable for PN 

DS/SS systems. 
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     A generation of Pseudo-noise is core for spread spectrum systems. The classical M-

sequences and Gold sequences are not suitable, since their number and security is not friendly 

to DS-SS systems.  

2.8  CONCLUSION 

This chapter reviewed the basic principles of SS communications and described the 

implementational aspects of DS-CDMA. The simplified transmitter structure for downlink 

scenario has been outlined, the model for communication channel is introduced.  Simplest 

chip level processed MF receiver has been discussed in brief.  Process of generation of 31 

chip Gold sequence was described at the end. 
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Chapter-3 

INTODUCTION TO CHAOTIC SYSTEMS  
 
3.1 INTRODUCTION 
 
In the past few decades, there has been a great deal of interest in the study of non-linear 

dynamical system from which chaos developed. The diverse applications of chaos to various 

areas are growing. However, not until the past ten years that chaos is of great interest in 

communication and more research are undergoing in either theory or practice. 

The most significant feature of the chaotic system is its sensitively dependence on its 

initial condition. It is properly illustrated by the finding of Professor E.N. Lorenz, teaching 

Meteorology at MIT. In 1961, Prof. Lorenz attempted to solve a much-simplified model and 

finally he did succeed in simulating real weather patterns for weather predictions. However, 

something drew his attention: when he slightly changed the initial conditions in the model, 

the resulting weather patterns changed completely after a very short period. He discovered 

the fact that very simple differential equations could possess sensitive dependence on initial 

conditions.  

Following this introduction, Chaotic system is discussed in the section 3.2. The 

section 3.3 deals with the Chaotic sequences. Chaotic maps like Logistic and Tent map are 

disucussed in section 3.4. Section 3.5 gives an idea of correlation properties of Chaotic 

sequences .The generation of binary Chaotic sequences and application of them to DS-

CDMA  is  described in the section 3.6. 

 
3.2 CHAOTIC SYSTEM 
 
A chaotic dynamical system is an unpredictable, deterministic and uncorrelated system that 

exhibits noise-like behavior through its sensitive dependence on its initial conditions, which 

generates sequences similar to PN sequence. The chaotic dynamics have been successfully 

employed to various engineering applications such as automatic control, signals processing 

and watermarking. Since the signals generated from chaotic dynamic systems are noise-like, 

super sensitive to initial conditions and have spread and flat spectrum in the frequency 

domain, it is advantageous to carry messages with this kind of signal that is wide band and has 

high communication security. Then, numerous engineering applications of secure 

communication with chaos have been developed. 
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3.3 CHAOTIC SEQUENCES 
 
A chaotic sequence [11] is non-converging and non-periodic sequence that exhibits noise-like 

behaviour through its sensitive dependence on its initial condition. Chaotic systems have 

sensitive dependence on their initial conditions. A large number of uncorrelated, random-like, 

yet deterministic and reproducible signals can be generated by changing initial value. These 

sequences so generated by Chaotic systems are called chaotic sequences. Chaotic sequences 

are real valued sequences. Since the spreading sequence in a Chaotic Spread Spectrum(SS) is 

no longer binary, the application of the chaotic sequences in DS-CDMA  is thus limited. A 

further attempt to transform continuous values to binary ones by using digital encoding 

technique is therefore used to adopt it in DS-CDMA. Some criteria are performed. Moreover, 

since chaotic dynamical system is a deterministic system, disguising modulation as noise 

would be easily made upon its random-like behavior. The use of chaotic sequences for 

spectral spreading in a direct-sequence spread spectrum system (DS/SS) has been shown to 

provide several advantages over conventional binary sequences, particularly pseudo-noise 

sequences which are frequently used in digital communication. 

 
3.4 CHAOTIC MAPS 
 
This thesis proposes a different type of spreading sequence for use in DS-SS systems called 

chaotic sequences. Chaotic sequences are created using discrete, chaotic maps. Some of the 

popular chaotic maps are logistic map , tent map etc., The sequences so generated with both 

Logistic map[12] and Tent Map[13] as well-known, even though completely deterministic 

and initial sensitive, have characteristics similar to those of random noise. Surprisingly, the 

maps can generate large numbers of these noise-like sequences having low cross-correlations. 

The noise-like feature of the chaotic spreading code is very desirable in a communication 

system. This feature greatly enhances the LPI (low probability of intercept) performance of 

the system. 

In this thesis, a generation of both logistic and Tent Map is given to extend expressly 

the range of parameters for chaotic behavior of the map, which is used to develop a chaotic 

scheme for DS/SS communication systems. These chaotic maps are utilized to generate 

infinite sequences with different initial parameters to carry different user paths, as meaning 

that the different user paths will spread spectrum based on different initial condition. 

All infinite sequences should be generating by finding the largest parameters sets to 

similar to noise-like, and correlation is slight relative under different parameters. In typical 

DS-SS system, the content of spreading code is same code to spreading binary bit stream. 
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The thesis is out of accord with the traditional use. Per uniform user path, the infinite 

sequences are dividing into sequential subsets based on spreading factory, as every successive 

bit stream of input data are spread by corresponding subsets, that a composite subsets by 

chaotic sequences. Similarly, the out-spreading detector also knew the sequential rule of the 

subsets code. The spreading schemes passed in all agreeable rules. 

3.4.1 Generalization of Logical Map: 

One of the simplest and most widely studied nonlinear dynamical systems capable of 

exhibiting chaos is the logistic map. 

                                                       F(x,r) = rx(1-x) ,                                  (3.1) 

 or written in its recursive form, 

                                    xn+1=rxn(1-xn)   ,   0 ≤ xn≤ 1 ,    0 ≤ r ≤ 4 ,         ( 3 . 2 )  

here , F is the transformation mapping function, and r is called the bifurcation parameter, that 

is shown in Figure 3.1 with  2 . 8 < r < 4 .  Depending on the value of r, the dynamics of this 

system can change attractively, exhibiting periodicity or chaos. The first bifurcation occurs at 

r = 3, leading to a stable period-2 cycle which eventually lose stability, as r« 3.45, giving rise 

to a stable period-4 cycle. As r increases further, the scenario repeats itself over and over 

again : each time a period-2 k cycle of the map F  loses stability through a bifurcation of the 

map F-, which  gives  rise  to  initially  stable  period- 2-cycle,  where   F is often-mentioned 

logistic map with a periodic point of prime period k. 

For 0 < r < r c  = 3.57., the sequence {xn} of values of r at which cycles  of  period   2k   appear 

has  a finite  accumulation point  r « 3 . 5 7 .   For r c < r < 4 ,  the sequence is, for all practical 

purposes, non-periodic and non-converging. The resultant sequence will be chaotic sequence.  

The orbit   diagram is   an attempt to capture the dynamics of F   for different values of r. The 

orbit of x, under F   against   the   scaling parameter r   for   an initial   condition x 0 = 0 . 1 ,  as 

shown in Figure 3.1. 

Further, a very interesting and useful feature of chaotic maps is their sensitivity to the initial 

value x0, any small disturbance in the value of x0 results in completely different output 

sequence.   
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The Logistic Map
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                    Figure 3.1  Bifurcation diagram of logistic map with initial value x0=0.1   

 Simultaneously, it is mathematically proven that , except for negligibly short intervals where 

the sequence has odd periodicities, this particular range of values of r causes the logistic map 

to be chaotic over {0 ,1}. Figure 3.2 can be used to show that the Logistic map is also chaotic 

by geometry of the iterated map and restricted to {0, 1} value at r = 1. However, further 

investigation provides that map has indeed, a period-2 cycle for r slightly greater than three, 

equivalently, or fixed point is depicted in this figure. 
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                   Figure 3.2 Graph of the Logistic function xn+1 = 4xn (1 - xn ) for one dimension 
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 Further, this map has a very sensitive dependence upon its initial value x0, for those values of 

t-order generalized Tent map is as follows: 

.4, that a chaotic 

ppose   F:R→R   is continuous and F  has  periodic  point of  prime  

                    

(n+

                                ) 

   xn+1 =1-1.99 |xn |   

he apparently chaotic regime comprises infinitely many parameters of that obtained chaotic 

1.0 0.8 0.6 0.4 0.2 0 -0.2 -0.4 -0.6 -0.8 .0 

r. This sensitive dependence can be illustrated by giving a large initial points range to  the 

iterative map. After a few iterations, the two resulting sequences will look completely  

uncorrelated.  Figure 3.3 illustrates   this   point. There   are three maps that behave in a 

similar the different dynamical system, whose time domain seems like very chaotic. 

3.4.2 Generalization of Tent Map: 

The state space description of the firs

                        x n + 1 = a - b | x n - c |    ≡F(xn )                                    (3.3) 

The graph of the function when a=1, b =1.99 and c=0 is shown in Figure 3

map is generated with range {-1, 1}.To find out what range of a, b and c can make this 

system chaotic for the existence of the period doublings and bifurcation points according to 

theorem, as follows. 

                              Su

period  3. Then F also has periodic points of all other periods and F is chaotic. Based on 

theorem, can drive the map chaotic by examining the solution of the equations Fk (x) = x, 

where k is period-k cycles, known the parameter range for chaotic map. Based on the theorem, 

we can easily find the parameters range that can drive the map chaotic by examining the 

solution of the equation F3(x) = x. 
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                                               x(n

                                     Figure 3.3 Graph of the Tent function

  

 T

map in a≥1 ,  1.5 ≤ b ≤ 2 , and c ≤1. For our purpose, we have instructed a few bifurcation 

diagrams with parameter b range. Figure 3.5 is the bifurcation diagram with a =1, c=0 and 1.5 

≤ b ≤ 2. This map has very wide range of parameter b that can make the system have chaotic 
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behavior, which the chaotic sequences value is location on the interval range {-1 1}. 

Obviously, the number of both ones and negative ones would be judge balanced, the 

parameter b should have to assign 1.8 ≤ b ≤ 2 ranged useful. 

 
Figure 3.4 The bifurcation diagram of Tent map with a=1 and c=0. 

 
.5 THE CORRELATION PROPERTIES OF CHAOTIC SEQUENCES 

 

. Chaotic 

sequen

an initial condition to each user. 

From t

l 

3
 

he most important characteristics of the periodic sequence are: the autocorrelation and theT

cross-correlation. The autocorrelation is important in the synchronization between the 

periodic pseudo-sequence generated at the transmitter and at the receiver. The cross-

correlation of the periodic pseudo-sequences must be zero to obtain communication between 

different users at the same band of frequency and at the same time.  

Chaotic sequences are Noise like waveform and possess Wideband spectrum

ces have very low values of the cross correlation function among them. This is an 

important issue with regard to security, because the receiver cannot be figured out from a few 

points of the chaotic sequence. Consequentially, the chaotic sequences also permit more users 

in the communication system and the system obtains a greater security, since the difficulty 

they present to be reconstructed for Multiple-user systems. 

For practice, one simple way would be to assign 

he receptor starts a chaotic map with known initial condition and generating same 

lengths of chips, despreading process for every information bit. This method is very easy to 

implement and very secure. Only the desired receptor is able to decode the data information. 

The binary chaotic sequences[14] can also be obtained by applying a threshold function to rea

valued chaotic sequences. Fig. 3.5 shows a generated real value chaotic sequence, the 

corresponding binary sequence and the auto-correlation, cross-correlation functions of the 

two sequences. It is directly seen that binary chaotic sequences enjoy good correlation 
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properties. The generation of families of binary chaotic sequences of good cross-correlation 

properties is an interesting topic of research. 

The two codes are almost random. Though the initial conditions of codes 1 and 2 are 

very close to each other, the generated codes are completely different. The displayed good 

auto-correlation properties simplify the synchronization of such codes. The low cross-

correlation properties are useful in increasing the user’s capacity in DS-SS system. 

 
Figure 3.5 Auto-correlation (ACF) and cross-correlation function (CCF) of chaoti sequences 

.6 CHAOTIC DS/SS SYSTEM 

equences. Since the spreading sequence in a Chaotic 

os, a number of investigators have proposed 

techniq

c 

of length 2000. (Logistic map with r=4) 

 
3
 

haotic sequences are real valued sC

Spread Spectrum (SS) is no longer binary, the application of the chaotic sequences in digital 

communication is thus limited. A further attempt to transform continuous values to binary 

ones by using digital encoding technique is therefore used to adopt it in digital 

communication. Some criteria are performed. 
In most of various applications of cha

ues to use a chaotic real-valued trajectory itself rather than its binary version, that is, 

analog techniques. Binary sequences play an important role in modern digital communication 

systems. Such a situation led us to define two types of binary sequence based on a chaotic 

real-valued orbit generated by ergodic maps [15]; one is referred to as a chaotic threshold 

sequence and the other as a chaotic bit sequence. 
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3.6.1 Generation of chaotic spreading sequence:- 

 sequences is that chaotic sequences One major difference between chaotic sequences and PN

are not binary.Therefore chaotic sequences must be transformed into binary sequences[16]. 

There are various methods of generating binary sequences from chaotic real sequences 

.Various types of binary function are defined to get binary sequences based on a chaotic real-

valued orbit generated by ergodic maps. 

Method1:- 

 

 

chaos generator Binarychaos generator Binary

 

 
Parameters

(logistic map) Quantization encoding

Digitalization

(logistic map) Quantization encoding

Digitalization

 

Chaotic  
sequence 

 

Figure 3.6 Generation of  binary chaotic sequences 

The block diagram o ethod is given in 

ethod 2: Let   be the real valued Chaotic sequence .For transforming this real valued 

f generation of binary Chaotic sequences by this m

diagram 3.6.The chaotic sequences are transmitted into quantization and encoding block. The 

quantization performs an equal-interval quantization of the floating point input signal varying 

from -1 to +1. The output signal is quantized into whole units, the unit size determined by the 

number of bits used in the binary representation. The coding block converts the quantized 

signal into a stream of bits. The sequence obtained in this way is called chaotic bit sequence. 

 

M w

sequence to binary sequence we define a threshold function   ( )t wθ  as  

                         ( ) 0,t w w tθ = <                                           (3.4) 

                                    1, w t= ≥  

Where t is the threshold value. 

 obtain a binary sequence which is referred to as a chaotic Using these functions, we can

threshold sequence. 
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Method 3: 

nces{ Ck}[17] can be obtained from a continuous chaotic signal x(t) by Defining 

                    Ck=g{x(t) - Et (x(t))} t=kTd                                                     (3.5) 

 0 and g(x) = -1 for x < 0. E(x(t)) denotes the mean function over the 

ach user is assigned a different initial value xn,0 , 

where 

ding sequences in 

DS/SS 

he generation of the chaotic sequences is simple for the transmitter 

and the

Binary seque

                        

                         

 

 where  g(x) = 1 for x ≥

continuous time and Td is the basic period of x(t) . By applying equation (3.5) to the logistic 

map in equation (3.1) in a chaotic regime, it is possible to obtain different by varying initial 

conditions or parameter values of the system. The sequences generated in this way are 

expected to have a low cross correlation. 

In chaotic DS/SS system [18], e

n is the nth user. Each user  starting with his unique initial value , keep on iterating the 

chaotic map and gets the real valued chaotic sequence. This real chaotic sequence is 

transformed to binary ( ± 1) for its use in DS/SS by using various methods as explained 

above. In case of tent map, each user is assigned a different bifurcation parameter whereas 

each user is assigned different initial value in case of logistic map. In this Thesis, logistic map 

is used to generate the real valued Chaotic sequences. For transformation of these real valued 

sequences into binary sequences Method3 given by equation (3.5) is used. 

In this Thesis, Chaotic sequences are proposed to be used as sprea

systems. Chaotic sequences have been proven easy to generate and store. Merely a 

chaotic map and an initial condition are needed for their generation, which means that there is 

no need for storage of long sequences. Moreover, a large number of different sequences can 

be generated by simply changing the initial condition. More importantly, chaotic sequences 

can be the basis for very secure communication. The secrecy of the transmission is important 

in many applications. The chaotic sequences help achieve security from unwanted reception 

in several ways. First of all, the chaotic sequences make the transmitted signal look like 

noise; therefore, it does not attract the attention of an unfriendly receiver. That is, an ear-

dropper would have a much larger set of possibilities to search through in order to obtain the 

code sequences.               

At last, although t

 intended receiver with the knowledge of parameter and functions involved, the exact 

regeneration is very difficult for a receiver that has to estimate them. A slight error in the 

estimation leads to exponentially increasing errors. This is due to the sensitive dependence of 

chaotic systems on the initial conditions and their parameters. In many cases, the received 
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sequences will be contaminated by noise, which would further complicate any attempt at the 

estimation. Additionally, since the code sequences do not repeat for each bit of information, 

even if the code sequence for one bit is successfully discovered, the other bits would still 

remain undecoded. 

Advantages:  

1. Sensitive dependence on the initial conditions, which is desirable for multiuser 

tiuser 

h the transmitter and receiver by digital 

communications (different orthogonal sequences) and also for secure communications; 

 2. Infinitely long period without increasing the generator, which is desirable for mul

communications and also secure communications; 

3. The generators can be built identically for bot

implementation; 

Disadvantage: to synchronize the received chaos sequence with local generated at the 

receiver end is a complex study. The performance of SS system using NRZ chaos sequence is 

the same obtained with the SS system using PN sequence 

 

3.7 CONCLUSION 

 system is explained and also the generation of Chaotic sequences. 

                                       

In this chapter Chaotic

From Chaotic maps like Logistic and Tent map are disucussed .Properties and advantages  of 

Chaotic sequences are also given .The generation of binary chaotic sequences and application 

of them to DS-CDMA is described . 
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Chapter-4 

PERFORMANCE OF LINEAR RECEIVERS F

4.1 INTRO

division multiple access (DS-CDMA) communications system 

 of 

Linear 

.2 SINGLE USER RECEIVER 

tended data x(n) by collapsing the spectrum of the 

OR DS/SS 

SYSTEM WITH CHAOTIC SPREADING SEQUENCES 
DUCTION 

A direct sequence code 

receiver has three main obstacles to overcome. The first one is multiple access interference 

(MAI) from other users, which is a direct result of using DS-CDMA. In a cellular system, 

MAI will be non-stationary due to slow power variations caused by fading and it may 

undergo step changes when a new user starts or stops transmission (the birth or death of a 

signal).The transmission channel is responsible for the other two obstacles intersymbol 

interference caused by multipath and additive noise. To overcome these, many receiver 

structures have been proposed for the reception of DS-CDMA in a cellular environment. 

This chapter reviews linear receiver structures for DS-CDMA.A brief overview

receivers is given in section 4.1. Matched filter receiver is dicussed in section 4.2. 

MMSE  receiver is discussed in section 4.3. In section 4.4 performance of different linear 

receivers like Matched filter, MMSE receiver and RAKE receiver using chaotic spreading 

sequences is investigated. The performance of nonlinear receivers using chaotic spreading 

codes is compared with that of gold sequences. 

 
4
 

he task of the receiver is to recover the inT

received signal vector )(ny . This is performed by integrating the product of the received 

signal with a locally hel plica of the required user’s spreading sequence. Practically, this is 

achieved by the correlator receiver, shown in Figure 4.1. The received signal, consisting of N

d re

r 

chips is passed to the block of delay elements, where Z-1 represents a delay of one chip, until 

the complete Nr -chip signal has been read in.  
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                Figure 4.1: DS-CDMA correlator receiver with 8 tap delay. 
 

These values are then passed in parallel to the multiplier block, which forms the scalar 

product of )(ny and the tap weight vector rNCw∈ where Nr  is the number of tap weights, 

which is set to 8 in the figure 4.1. This filter block produces a soft output, )(~ nx which is then 

passed to the sign-decision block to give a hard estimate, of the original data bit, x(n) for 

the user of interest. Techniques to achieve synchronization involve the use of a pilot signal, 

which may be modeled by one additional user, whose data is constant. Perfect timing will be 

assumed in the following, except where stated. 

)(ˆ nx

         
4.3 MULTIUSER RECEIVER 
 
Multiuser receivers[19] are a class of receivers that use knowledge of all the PN sequences to 

exploit the structure of the MAI. Instead of being separately estimated, as in a single user 

detection, the users are jointly detected for their mutual benefit. A CDMA receiver can either 

process the received signal at the chip rate or symbol rate (user bit rate).Figure 4.2 shows 

chip rate receivers, which consists of a bank of matched filters (MFs) or RAKEs. A bank of 

MFs is for the non-dispersive AWGN channel, whereas RAKEs[20] are considered for 

multipath channels.  Current mobiles have a simple RAKE because of its simplicity, whereas 

base stations can have a bank of MFs (or RAKEs) as depicted in figures 4.2 and 4.3. 

However, structure Figure 4.2 suffers from MAI and therefore has limited performance. 

Performance improvement can be gained, when carrier to interference ratio (CIR) 

information from the interferers is taken into account to combat MAI, as structure in Figure 

4.3 suggests. This structure is known as the multiuser detector (MUD) and is usually 

suggested for the asynchronous uplink receiver. It could also be used in a modified version as 
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a single user detector in mobiles and might be implemented in the next generation of mobile 

systems. 
 

                            
 
Figure 4.2: Conventional bank of single user receivers with MFs or RAKEs. 
 
 

                                 
 

Figure 4.3: Verdu’s proposed multiuser detector scheme with MFs for the AWGN channel. 
 

A receiver structure which processes the received signal at the chip rate is known as a chip 

level based (CLB) receiver. Receivers, shown in Figure 4.3, which process at the symbol rate 

and consist of a front end bank of filters, will be called preprocessing based (PPB) receivers. 

Because all optimum receivers are too complex for practical applications, the search 

for simpler and near optimum receivers became vital and goes on. Most proposals are based 

on the multiuser concept, which is preprocessing based (PPB) for several reasons. First, they 

relate to Verdu’s MUD receiver, since they consider it optimum. 

 

 4.4 LINEAR RECEIVER 

The general form of a linear receiver is given by  where the sgn(.) function 

returns the sign of the operand and where the filter weight vector w is chosen to minimize a 

cost function, while  is the estimated transmitted bit of the desired user d and y  is the 

received signal, see Figure 4.4 and 4.5. 

TD̂ sgn(w .y)=

D̂
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Figure 4.4: Chip rate based receiver. 
 

 
    

Figure 4.5: Symbol rate based receiver. 
4.4.1 Matched Filter 

The conceptually simplest receiver, the matched filter (MF) receiver, is simply the correlator 

receiver with M tap weights,  , matched to the complex conjugate time-reverse 

of the original spreading sequence of the required user which, without loss of generality, we 

may take to be user 1. The simplest CDMA receiver is the MF receiver, where w is replaced 

by Cd , the Spreading sequence vector of the desired user. In a multipath fading channel, w 

corresponds to the convolution between C

jw :1 j M≤ ≤

d and Hch, implemented as a RAKE. 

In practice, the acquisition and synchronization of the chip-level signal is a highly non-trivial 

task. A very simple and well known detector for SS signals is the matched filter detector, as 

shown in figure 4.6. The matched filter detector basically consists of a tapped-delay-line 

(TDL) filter of which the number of taps equals the spreading sequence length N. The output 

vector (K) of the tapped delay line ( ) ( ) ( ) ( )[ ]TNkykykyky 1,...,1, +−−=  is multiplied with a 

vector of constant weight w.  [ T
Nwwww 110 ,...,, −= ]  . The resulting scalar product is applied to 

a decision function e.g. a sign function. For the matched filter case, the weights wk are 

matched to the user specific sequence code. ( )lNpnw ul −−= 1  , for 0≤ l< N. So that the 

matched filter output can be summarized as follows: ( ) ( ) ( )∑
−

=

−==
1

0

..~ N

l
l

T lkywkywkD  

Provided that the receiver is perfectly synchronized to the transmitter, the TDL extracts a set 

of chips that represents a particular sequence and the multiplication with the weights is 

equivalent to despreading operation. A following decision device such as sign function leads 
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                                           Figure 4.6: Matched filter 
 

to the final estimate of the transmitted data bit D(k), hence)(ˆ kD ( ) ( )( )kDkD ~sgnˆ = . The 

theoretical performance Pe of a MF receiver for a single cell system with U users, long 

random codes, where N is the number of chips (processing gain) in AWGN is: 

                ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

−+
=

)1(2 U
NQPMF

e σ
 ,                 (4.1) 

                                          where ⎟
⎠
⎞

⎜
⎝
⎛=

2
5.0)( xerfcxQ                            (4.2) 

  and σ2 denotes the noise power, derived from: 

                                                            Eb/No = N/2σ2                                   (4.3) 

Where σ2 = No/2 is the two sided noise power spectral density and Eb is the bit energy. 
 

In a single user system, the matched filter is the optimum receiver for signals corrupted by 

only AWGN. In a multi user environment, however, the performance degrades rapidly with 

increasing number of users. The matched filter is multiple-access limited-and strong 

interferers with high power compared to the desired user cause severe problem. This latter 

effect is called the near-far problem. Due to these problems, other solution has been searched 

for. The optimal linear receiver for multi-user detection is MMSE receiver and is described 

in the next section. 

 
4.4.2 MMSE receiver 
The motivation for the use of adaptive algorithms lies in the desire to change the individual 

taps of the receiver filter to respond to changes in the communication channel. The 
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traditional implementation of adaptive receivers is that a sequence of a priori known training 

data is incorporated into the data stream at prearranged times. It is important to acknowledge 

that this effectively reduces the overall data rate of the system, which is the main drawback 

of this approach. 

The goal of any adaptive algorithm is to use this training data to force the receiver tap 

weights to minimize some cost or penalty function, fPen(.), of the difference metric between 

the original data bit and its estimated value. The only requirement for this penalty function is 

that it be a monotonic increasing function of the absolute value of its argument, with a global 

minimum at zero. Here, the number of training bits is given by Ntrain and the sequence of 

training data by {x(n): 1≤n≤ Ntrain }. 

MMSE receiver is an adaptive filter[21] as shown in Figure 4.7, in which the number of 

receiver tap weights Nr is set to length of the spreading code M.              

 

                   
                                               Figure 4.7   MMSE receiver 

The MMSE criteria provide equalizer tap coefficients w(k) to minimize the mean square 

error at the equalizer output before the decision device. This condition can be represented as 

                                                       J= ε| e(k) |2                                            (4.4) 
 

                                                     e(k)=s(k-d)-y(k)                                          (4.5) 
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Where e(k) is the error associated with filter output y(k). However, the MMSE criteria 

optimize the equalizer weights for minimizing the MMSE under noise and ISI. Minimization 

of MMSE criteria provides equalizers that satisfy the Wiener criterion. The evaluation the 

equalizer weights with these criteria requires computation of matrix inversion and the 

knowledge of the channel, which in most cases is not available. With this penalty function, 

the resulting target tap weights have been shown to be given by the Wiener filter, so that 

these algorithms may be viewed as an iterative approximation to the Wiener filter However, 

adaptive algorithms like LMS and RLS can be used to recursively update the equalizer 

weights during the training period.  

Two adaptive methods which employ this least square error penalty function are the 

least mean square (LMS) and the more complex recursive least squares (RLS) algorithms. 

LMS algorithm is depicted schematically in Figure 4.8. 
    LMS   
algorithm  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

µ 

w(n+1)=w(n)+µ.e(n).y(n) 

e(n)=x(n)-w(n).y(n) 

w(n).y(n) 

y(n) 

 Calculate error 

     FIR filter 

     Update w 

x(n) 

Figure 4.8   LMS algorithm 

In LMS algorithm, correlation with an FIR filter is performed to obtain a (soft) estimate, �x , of 

the training data bit x(n) , as in the correlator receiver. The error e(n) in this estimate is then 
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used to update the tap weights of the FIR receiver filter. In the LMS algorithm, this is 

performed by simple weighting of the error by step size µ. 

 
4.5    SIMULATION RESULTS 
 
In order to validate the proposed chaotic spreading sequences for DS-CDMA applications, 

extensive simulation studies were conducted. All the simulation studies were conducted on a   

2.80 GHz PC with 256 MB of RAM with Microsoft windows XP operating system. All the 

simulations are done in Matlab.  During the training period the receiver parameters were 

optimized/ trained with 1000 random samples and the parameters so obtained were averaged 

over 50 experiments. The parameters of the receiver were fixed after the training phase. The 

receiver weights were trained using gradient search algorithm like LMS. 

            Bit error rate (BER) was considered as the performance index.  In this section, the 

BER performance of the different linear receivers like matched filter and MMSE receiver 

using chaotic spreading sequences is done and the performance is compared with gold 

sequences. In all the experiments randomly generated   +1/-1 samples were transmitted for 

each user. In all the simulations, chaotic spreading sequences and gold sequences of 31 chips 

are considered. These samples were spread using chaotic spreading sequences of length 31 

corresponding to each of the users.  For comparison with gold sequences, the maximum 

permissible user’s in the system is restricted to 31.  After spreading, the sequences were 

added and transmitted through the non-dispersive channel. The channel corrupted the 

transmitted signal with AWGN. The channel output was fed to the various linear receiver 

structures like Matched filter and MMSE receiver. A total of 105  bits were transmitted by 

each user and a minimum of 1000 errors were recorded.  The tests were conducted for 

different levels of  Eb/N0. Additionally tests were also conducted by varying number of active 

users in the system for fixed value of   Eb/N0 . 

4.5.1 Performance comparison for channel without ISI: - In this section, a non-dispersive 

channel is considered.  In figure 4.9 the BER performance against the number of users of 

Matched filter is evaluated using chaotic spreading sequences and compared with gold 

sequences with 31 chips. Figure 4.9 compares the BER performance of Matched filter 

receiver and MMSE receiver using chaotic spreading sequences with that of gold sequences 

.The chip length of both the gold and chaotic spreading codes are taken as 31 chips. Here 

Eb/N0 was fixed as 7dB .The result shows that chaos based MF receiver performs inferior to 

gold based MF receiver. It has nearly 3dB performance penalty at BER of 10-3 .It is also seen 

that chaos based MMSE receiver performs inferior to gold based MMSE receiver. It has 
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nearly 1dB performance penalty at BER of 10-3. The result also shows that chaos based 

MMSE receiver performs superior to chaos based MF receiver. It has nearly 3dB 

performance penalty at BER of 10-3. The result also shows that gold based MMSE receiver 

performs superior to gold based MF receiver. It has nearly 1dB performance penalty at BER 

of 10-3. It is seen that Chaotic sequence sequences performance increases significantly by 

using MMSE receiver when compared to MF receiver. 

 

In Figure 4.10 performance of matched filter receiver was investigated for varying 

Eb/N0 conditions. Performance for Chaotic spreading sequences and gold sequences for 4 and 

7 users are plotted in Figure 4.10. It is seen that when the number of users is 4, there is a 2dB 

performance difference at a BER of 10-3 between chaos based MF and gold based MF 

receiver. This difference is increased to almost 5dB at a BER of 10-3 in case of 7 users. In 

both the cases chaotic sequences performance is inferior to gold sequences. For this it is also 

seen that there is 3dB performance penalty at BER of 10-3 for chaotic sequences based MF   
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Figure 4.9: BER against the number of users of linear receivers in AWGN at Eb/N 0=7dB  

using chaotic spreading sequences and gold sequences with 31chips.  
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Figure   4.10   BER performance of Matched filter   for varying Eb/N 0   for 4 users and 7users 

being active in the system  being active in the system in AWGN  

when users are changed from 4users to 7 users. So as the number of users increases chaos 

based MF receiver performance degrades very much when compared to gold based MF 

receiver. 
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Figure 4.11   BER performance of MMSE receiver for varying Eb/N 0   for 4 users and 7 users  

being active in the system in AWGN channel 
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In Figure 4.11 performance of MMSE receiver was investigated for varying Eb/N0 conditions. 

Performance for chaotic spreading sequences and gold sequences for 4 and 7 users are plotted 

in Figure 4.11 It is seen that when the number of users is 4, there is a 0.2dB performance 

difference at a BER of 10-3 between chaos based MMSE and gold based MMSE receiver. 

This difference is increased to almost 1dB at a BER of 10-3 in case of 7 users. In both the 

cases chaotic sequences performance is very close to that of gold sequences. For this it is also 

seen that there is 0.8dB performance penalty at BER of 10-3 for chaotic sequences based 

MMSE when users are changed from 4users to 7 users. So as the     number of users increases 

chaos based MMSE receiver performance degrades slightly when compared to gold based 

MMSE receiver. 

   In Figure 4.12 Performance of different linear receivers was investigated for varying Eb/N0 

conditions. Performance for Chaotic spreading sequences for 4 and 7 users are plotted in 

Figure 4.12. It is seen that when the number of users is 4, there is almost 2.2dB performance 

difference at a BER of 10-3 between chaos based MF and chaos based MMSE receiver. This                           
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Figure 4.12 Comparison of BER performance of MF and MMSE receiver for varying Eb/N0 

for 4 and 7 users in AWGN using chaotic spreading codes with 31 chips 
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difference is increased to almost 4.6dB at a BER of 10-3 in case of 7 users. In both the cases 

MF receiver performance is inferior to MMSE receiver. For this it is also seen that there is 

3dB performance penalty at BER of 10-3 for chaotic sequences based MF when users are 

changed from 4 users to 7 users. For this it is also seen that there is only almost 1dB 

performance penalty at BER of 10-3 for chaotic sequences based MF when users are changed 

from 4 users to 7 users .So as the number of users increases chaos based MF receiver 

performance degrades very much when compared to chaos based MMSE receiver. In all the 

cases it is seen that MMSE receiver performs very well than MF receiver. 

4.5.2 Performance comparison for  channel with ISI:- In this section , we consider a 

stationary multipath channel Hch=1+0.5z-1+0.2z-2 .In AWGN  the number of chips of 

transmitted  is  number of chips of the spreading sequence i.e., 31 in this case. In case of 

multipath channel, inter symbol interference (ISI) is induced from the previous and next 

symbol into account. So the number of chips will increase. Here, the multipath channel 

consists of 3 taps. Hence all receiver structures exploit N+ (L-1) = 31+ (3-1) = 33 chips 

instead of 31. Matched filter is used in AWGN channel whereas Rake receiver is used in 

Multipath channel. 

Figure 4.13 compares the BER performance of RAKE receiver and MMSE receiver using 

chaotic spreading sequences with that of gold sequences .The chip length of both the gold and 

chaotic spreading codes are taken as 31 chips. Here Eb/N0 was fixed as 7dB .The result shows 

that chaos based RAKE receiver  performs inferior to gold based RAKE  receiver. It has 

nearly 3dB performance penalty at BER of 10-3 .It is also seen that chaos based MMSE 

receiver performs inferior to gold based MMSE receiver. It has nearly 1dB performance 

penalty at BER of 10-3. The result also shows that chaos based MMSE receiver performs 

superior to chaos based RAKE receiver. It has nearly 3dB performance difference at BER of 

10-3.
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Figure 4.13: BER against the number of users of linear receivers in AWGN at Eb/N 0=7dB  

using chaotic spreading sequences and gold sequences with 31chips  in multipath channel 

Hch=1+0.5z-1+0.2z-2

 

In Figure 4.14 performance of RAKE receiver was investigated for varying Eb/N0 conditions. 

Performance for Chaotic spreading sequences and gold sequences for 4 and 7 users are 

plotted in Figure 4.14. It is seen that when the number of users is 4, there is a 1dB 

performance difference at a BER of 10-3 between chaos based RAKE and gold based RAKE 

receiver. This difference is increased to almost 3.5dB at a BER of 10-3 in case of 7 users. In 

both the cases chaotic sequences performance is inferior to gold sequences. For this it is also 

seen that there is 2.5dB performance penalty at BER of 10-3 for chaotic sequences based  
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  Figure: 4.14 BER performance of RAKE receiver for varying Eb/N 0   for 4 and 7  users 

being active in the system in multipath channel   Hch=1+0.5z-1+0.2z-2 
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 Figure 4.15: BER performance of MMSE receiver for varying Eb/N 0   for 4 and 7 users being 

active in the system in multipath channel  Hch=1+0.5z-1+0.2z-2
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RAKE  when users are changed from 4users to 7 users. For this it is also seen that there is 

0.5dB performance penalty at BER of 10-3 for gold sequences based RAKE  when users are 

changed from 4users to 7 users .So as the number of users increases chaos based RAKE 

receiver performance degrades very much when compared to gold based RAKE receiver. 

 

In Figure 4.15 performance of MMSE receiver was investigated for varying Eb/N0 conditions. 

Performance for Chaotic spreading sequences and gold sequences for 4 and 7 users are 

plotted in Figure 4.15. It is seen that when the number of users is 4, there is a 0.4dB 

performance difference at a BER of 10-3 between chaos based MMSE and gold based MMSE 

receiver. This difference is increased to almost 1dB at a BER of 10-3 in case of 7 users. In 

both the cases chaotic sequences performance is very close to that of gold sequences. For this 

it is also seen that there is 0.8dB performance penalty at BER of 10-3 for chaotic sequences 

based MMSE when users are changed from 4users to 7 users. . For this it is also seen that 

there is 0.1dB performance penalty at BER of 10-3 for gold sequences based MMSE when 

users are changed from 4users to 7 users. So as the number of users increases chaos based 

MMSE receiver performance degrades slightly when compared to gold based MMSE 

receiver. 
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Figure 4.16: Comparison of BER performance of RAKE and MMSE receiver for varying 

Eb/N 0  for 4 and 7users in multipath channel   Hch=1+0.5z-1+0.2z-2 using chaotic spreading 

codes with 31 chips                   
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In Figure 4.16 performance of different linear receivers was investigated for varying Eb/N0 

conditions. Performance for Chaotic spreading sequences for 4 and 7 users are plotted in 

Figure 4.16. It is seen that when the number of users is 4, there is almost 2 dB performance 

difference at a BER of 10-3 between chaos based RAKE and chaos based MMSE receiver. 

This difference is increased to almost 4 dB at a BER of 10-3 in case of 7 users. In both the 

cases RAKE receiver performance is inferior to MMSE receiver.  

For this it is also seen that there is 3dB performance penalty at BER of 10-3 for chaotic 

sequences based RAKE when users are changed from 4 users to 7 users. For this it is also 

seen that there is only almost 0.7dB performance penalty at BER of 10-3 for chaotic 

sequences based MMSE when users are changed from 4 users to 7 users .So as the number of 

users increases chaos based RAKE receiver performance degrades  much when compared to 

chaos based MMSE receiver. In all the cases it is seen that MMSE receiver performs very 

well than RAKE  receiver. 

 
4.6   CONCLUSION 
 
In this chapter various linear receivers like Matched filter, MMSE receiver and RAKE 

receiver is explained. BER performance of different linear receivers using chaotic sequences 

is evaluated and it is compared with the receivers using gold sequences. It is seen that chaotic 

sequence based DS-CDMA performs inferior to gold sequences. The results also showed that 

MMSE receiver performs better than Matched filter receiver for chaotic sequence based DS-

CDMA. 
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Chapter-5 

PERFORMANCE OF NONLINEAR RECEIVERS FOR DS/SS 

SYSTEM WITH CHAOTIC SPREADING SEQUENCES 
 

5.1 INTRODUCTION 

 Due to multipath effects the orthogonality among the spreading codes at the receiver is 

destroyed and linear filters are no longer optimum. The optimum receiver is nonlinear. It has 

been shown that nonlinear equalizer structures can be applied successfully to DS-CDMA. 

In this chapter, the performance of chaotic sequence based CDMA system performance is 

analyzed for two classes of  nonlinear receivers[22]. They are 

1. Volterra receiver 

2. Functional link artificial neural network (FLANN) 

In this chapter, Volterra receiver is discussed in section 5.2. Section 5.3 discusses about 

Functional Link  Artificial Neural Network receiver.  In section 5.4 performance of different 

nonlinear receivers like Volterra receiver and FLANN receiver using chaotic spreading 

sequences is investigated. The performance of nonlinear receivers using chaotic spreading 

codes is compared with that of gold sequences. 

5.2 VOLTERRA RECEIVER  

The general Volterra series (VS)[23] is given as an infinite series expansion , which is not 

useful for practical applications. Thus, one must work with a truncated VS, such as the third- 

order VS given in (5.1), which consists of products up to 3rd-order. 

 
1

1
0

1 1

2

0 0
1 1 1

3
0 0 0

( ) ( ) ( )

. ( , ) ( ) ( )

. . ( , , ) ( ) ( ) (

N

a

N N

a b
N N N

a b c

v kN n h a y kN n a

h b a y kN n a y kN n b

h a b c y kN n a y kN n b y kN n c

−

=

− −

= =

− − −

= = =

+ = + − +

+ − + − +

)+ − + − +

∑

∑ ∑

∑ ∑ ∑ −

(5.1) 

Where    denotes the filter input and  ( )y kN n+ ( )v kN n+   the output for the kth symbol of 

length N    with n=1,2……..N   chips. The term h0   in (5.1) denotes the   0th-order Volterra  

kernel (coefficients, or weights w   ) of the system. Without loss of generality, it can be 

assumed that the kernels are symmetric (e.g. = ). The symmetric terms can be 

omitted since they do not contribute any additional information, which results in half the 

2( , )h a b 2( , )h b a
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number of coefficients for    h0.  Thus the Volterra kernels   h0   are fixed for any of the 

possible permutations. Hence, (5.1) can be rewritten for a symbol synchronized receiver: 
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  (5.2) 

Where  stands for the kth estimated transmitted bit of the desired user d.  A possible filter 

structure is depicted in Figure 5.1(b).  It becomes apparent from equation (5.2), that the term 

in sgn(.)  is a sum of products between a received sequence y(k) and Volterra coefficients h

ldD

0 .

 
5.2.1    Volterra expansion 
 
The Volterra expansion [24] and the expansion sequence are analyzed for a one user CLB 

CDMA system in AWGN. Due to the binomial growth in number of coefficients, the analysis 

is presented with a short spreading code of length N=3.  In order to apply the Volterra filter to 

the received signal y(k) , it must first be expanded to a larger sequence, denoted by    v(k).  

 

 
                 Figure 5.1 Conventional FIR filtering and the Volterra approach 
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Figure 5.1 shows the difference between a simple FIR filter and a Volterra based FIR filter. 

The expansion process is a mapping from the input space   N   to the Volterra space M,  

y(k)=>v(k), where    N  is the number of chips and   M    the number of Volterra coefficients. 

The   M   elements of   v (k)   are computed corresponding to the desired order o of the VS 

(5.2).  This process is depicted for a 1st and 3 rd-order system in Figure 5.2. The second-

order sequence can be omitted for equiprobable and antipodal signals, for reasons which will 

be explained later. 

The expansion v of figure 5.2 is given by (5.1)  and (5.2)  and is defined as: 

 

                                         1 , 2 , 3 . . . . . . . . . . ][ Mv v v v v=  

 

                                          1 ,1
1

(1 )
U

u u
u

D c gv
=

= +∑                  

                                                               . 

                                                               .  

                                         ,
1

( )
U

N u u N
u

D c g Nv
=

= +∑                              (5.3) 

 

                                   
3

1 ,1
1

{ (
U

N u u
u

D c gv +
=

= +∑ 1) }

( 2 ) }

) }

                           
2

2 ,1 , 2
1 1

{ (1) } {
U U

N u u u u
u u

D c g D c gv +
= =

= + +∑ ∑
                                                                             . 

                                                                             . 

                                                                             . 

                                          
3

,
1

{ (
U

M u u N
u

D c g Nv
=

= +∑
 

where    Du    is the transmitted bit of user   u  and    Cu,n    the  nth chip of the  uth user’s 

spreading sequence. 

The vector length of   v is M    , where M    is the number of filter weights or Volterra 

coefficients, and is determined by the binomial expression: 
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             Figure 5.2 The Volterra expansion of combined 1st and 3rd order systems  

where    N   is  the  length  of  the  input  sequence  (memory)  and   O   the  highest  Volterra  

order.  M(N,3)  is the number of coefficients for  a combined   1st and   3rd-order  expansion.  

Thus, if   v of equation (5.3) is of length    M(N,3)   then it has first   M(N,1)=N  linear terms 

and then cubic terms.  Tsimbinos and Lever investigated the computational complexity     

C(N,O)    in terms of multiplications needed, given as: 

 

                                        

O

o 1

(N o 1)!C(N,O)
(o 1)!(N 1)!=

+ −
=

− −∑                              (5.5) 

 

where    C(N,O)   does not represent the number of flops, since it does not take the additions 

into account. 

 
5.3 FUNCTIONAL  LINK  ANN 
 
Pao originally proposed FLANN [25] and it is a novel single layer ANN structure capable of 

forming arbitrarily complex decision regions by generating nonlinear decision boundaries. 

Here, the initial representation of a pattern is enhanced by using nonlinear function and thus 

the pattern dimension space is increased. The functional link acts on an element of a pattern 

or entire pattern itself by generating a set of linearly independent function and then evaluates 

these functions with the pattern as the argument. Hence separation of the patterns becomes 
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possible in the enhanced space. The use of FLANN not only increases the learning rate but 

also has less computational complexity [26]. Pao et al have investigated the learning and 

generalization characteristics of a random vector FLANN and compared with those attainable 

with MLP structure trained with back propagation algorithm by taking few functional 

approximation problems. A FLANN structure with two inputs is shown in Fig 

5.3.1 Mathametical derivation of FLANN 

Let X is the input vector of size N×1 which represents N number of elements; the nth element 

is given by: 

                                                                                        (5.6) ( ) ,1nn x n N= ≤ ≤X

Each element undergoes nonlinear expansion to form M elements such that the resultant 

matrix has the dimension of N×M. 

  The functional expansion [27] of the element nx by power series expansion is carried out 

using the equation given in (3.18) 
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For trigonometric expansion, the 
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where 1, 2, , 2l " M= . In matrix notation the expanded elements of the input vector E, is 

denoted by S of size N×(M+1).  

The bias input is unity. So an extra unity value is padded with the S matrix and the dimension 

of the S matrix becomes N×Q, where ( )2Q M= + . 

Let the weight vector is represented as W having Q elements. The output is given as y
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In matrix notation the output can be, 

                                                                                           (5.10) = ⋅Y S W

At kth iteration the error signal e k  can be computed as  
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Let  denotes the cost function at iteration k and is given by 
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where P is the number of nodes at the output layer.  

The weight vector can be updated by least mean square (LMS) algorithm, as 
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where  is an instantaneous estimate of the gradient of ˆ ( )k∇ ξ  with respect to the weight 

vector w k . Now ( )
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Substituting the values of in (2.35) we get ( )k∇

( ) ( ) ( )1w k w k e k s kµ+ = +                                   (5.15)                                           

where µ denotes the step-size , which controls the convergence speed of the LMS 

algorithm. 

( )10 µ≤ ≤
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Simple model of FLANN  is given in figure 5.3. Two input sequence is given as input to  

this  network. This sequence is expanded using trigonometric components. The network 

weights are updated using adaptive algorithm like LMS. 

Figure.5.3 Structure of the FLANN model 
 

 
5.4    SIMULATION RESULTS 
 
5.4.1 Performance comparison for channel without ISI 

 In this section, a non-dispersive channel is considered. Figure 5.4 compares the BER 

performance of Volterra receiver and FLANN receiver using chaotic spreading sequences 

with that of gold sequences .The chip length of both the gold and chaotic spreading codes are 

taken as 31 chips. Here Eb/N0 was fixed as 7dB .The result shows that chaos based Volterra 

receiver performs very close to gold based Volterra receiver. It has nearly 0.2dB performance 

penalty at BER of 10-3 .It is also seen that chaos based FLANN  receiver performs slightly 

inferior to gold based FLANN receiver. It has nearly 1dB performance penalty at BER of 10-

3. The result also shows that chaos based Volterra receiver performs superior to chaos based 

FLANN receiver. It has nearly 1dB performance penalty at BER of 10-3. The result also 

shows that gold based Volterra receiver performs close to gold based FLANN receiver. It has 

nearly 0.1dB performance penalty at BER of 10-3. It is seen that chaotic sequence sequences 

performance increases significantly for Volterra receiver when compared to FLANN 

receiver. 
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Figure 5.4: BER against the number of users of nonlinear receivers in AWGN at Eb/N 0=7dB  

using chaotic spreading sequences and gold sequences with 31chips. 
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Figure 5.5 BER against the number of users of different receivers in AWGN at Eb/N 0=7dB 

using chaotic spreading sequences with 31chips   

Figure 5.5 compares the BER performance of Volterra receiver and FLANN receiver using 

chaotic spreading sequences with that of linear receivers for varying number of users active. 

The chip length of both the gold and chaotic spreading codes are taken as 31 chips. Here 

Eb/N0 was fixed as 7dB. It is seen that Volterra receiver performs better than all other 

receivers .MMSE receiver performs better than MF receiver. FLANN receiver outperforms 

both MMSE and MF receiver. It is also seen that nonlinear receivers outperforms better than 

linear receivers. 

In Figure 5.6 performance of Volterra receiver was investigated for varying Eb/N0 

conditions. Performance for Chaotic spreading sequences and gold sequences for 7 users are 

plotted in Figure 5.6. It is seen that when the number of users is 7, there is a 0.2dB 

performance difference at a BER of 10-3 between chaos based Volterra and gold based 

Volterra receiver. In this case chaotic sequences performance is inferior to gold sequences.  
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Figure 5.6 BER performance of Volterra receiver for varying Eb/N 0   for 7users being active 

in the system in AWGN channel                             

In Figure 5.7 performance of FLANN receiver was investigated for varying Eb/N0 

conditions. Performance for Chaotic spreading sequences and gold sequences for 7 users are 

plotted in Figure 5.7 .It is seen that when the number of users is 7, there is a 0.2dB 
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performance difference at a BER of 10-3 between chaos based FLANN and gold based 

FLANN receiver. In this case chaotic sequences performance is inferior to gold sequences.  
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 Figure 5.7 BER performance of FLANN receiver for varying Eb/N 0   for 7 users being active 

in the system in AWGN channel
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Figure 5.8: Comparison of BER performance of different receivers for varying Eb/N 0 for 7 

users in AWGN using chaotic spreading codes with 31 chips 

In Figure 5.8 performance of Volterra and FLANN receiver was investigated for varying 

Eb/N0 conditions and compared with that of linear receivers. Performance for Chaotic 

spreading sequences for 7 users are plotted in Figure 5.8. It is seen that Volterra receiver 

performs better than all other receivers .MMSE receiver performs better than MF receiver. 

FLANN receiver outperforms both MMSE and MF receiver. It is also seen that nonlinear 

receivers outperforms better than linear receivers. 

5.4.2 Performance comparison for channel with ISI  

 In this section , we consider a stationary multipath channel Hch=1+0.5z-1+0.2z-2 .In AWGN  

the number of chips of transmitted  is  number of chips of the spreading sequence i.e., 31 in 

this case. In case of multipath channel, inter symbol interference (ISI) is induced from the 

previous and next symbol into account. So the number of chips will increase. Here, the 

multipath channel consists of 3 taps. Hence all receiver structures exploit N+ (L-1) = 31+ (3-

1) = 33 chips instead of 31. Matched filter is used in AWGN channel whereas Rake receiver 

is used in Multipath channel.    
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Figure 5.9: BER against the number of users of nonlinear receivers in AWGN at Eb/N 0=7dB  

using chaotic spreading sequences and gold sequences with 31chips 

 

Figure 5.9 compares the BER performance of Volterra receiver and FLANN receiver using 

chaotic spreading sequences with that of gold sequences .The chip length of both the gold and 

chaotic spreading codes are taken as 31 chips. Here Eb/N0 was fixed as 7dB .The result shows 

that chaos based Volterra receiver performs slightly inferior to gold based Volterra receiver. 

It has nearly 1dB performance penalty at BER of 10-3 .It is also seen that chaos based 

FLANN  receiver performs slightly inferior to gold based FLANN receiver. It has nearly 2dB 

performance penalty at BER of 10-3. The result also shows that chaos based Volterra receiver 

performs superior to chaos based FLANN receiver. It has nearly 1dB performance penalty at 

BER of 10-3. The result also shows that gold based Volterra receiver performs similar to gold 

based FLANN receiver. It has nearly 0.1dB performance penalty at BER of 10-3. It is seen 

that Chaotic sequence sequences performance increases significantly for Volterra receiver 

when compared to FLANN receiver. 
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Figure 5.10 BER against the number of users of different receivers in AWGN at Eb/N 0=7dB 

using chaotic spreading sequences with 31chips in stationary multipath  Hch=1+0.5z-1+0.2z-2   

 

Figure 5.10 compares the BER performance of Volterra receiver and FLANN receiver 

using chaotic spreading sequences with that of linear receivers for varying number of users 

active. The chip length of both the gold and chaotic spreading codes are taken as 31 chips. 

Here Eb/N0 was fixed as 7dB. It is seen that Volterra receiver performs better than all other 

receivers .MMSE receiver performs better than MF receiver. FLANN receiver outperforms 

both MMSE and MF receiver. It is also seen that nonlinear receivers outperforms better than 

linear receivers 
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Figure 5.11: BER performance of Volterra receiver for varying Eb/N 0   for  7 users being 

active in the system in multipath channel   Hch=1+0.5z-1+0.2z-2 

 

In Figure 5.11 performance of Volterra receiver was investigated for varying Eb/N0 

conditions. Performance for Chaotic spreading sequences and gold sequences for 7 users are 

plotted in Figure 5.11. It is seen that when the number of users is 7, there is a 0.2dB 

performance difference at a BER of 10-3 between chaos based Volterra and gold based 

Volterra receiver. In this case chaotic sequences performance is inferior to gold sequences.  

In Figure 5.12 performance of FLANN receiver was investigated for varying Eb/N0 

conditions. Performance for Chaotic spreading sequences and gold sequences for 7 users are 

plotted in Figure 5.12. It is seen that when the number of users is 7, there is a 1dB 

performance difference at a BER of 10-3 between chaos based FLANN and gold based 

FLANN receiver. In this case chaotic sequences performance is inferior to gold sequences. 

In Figure 5.13 performance of Volterra and FLANN receiver was investigated for 

varying Eb/N0 conditions and compared with that of linear receivers. Performance for Chaotic 

spreading sequences for 7 users are plotted in Figure 5.13. For this it is seen that there is 3dB 
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Figure 5.12: BER performance of FLANN receiver for varying Eb/N 0   for 7 users being 

active in the system in multipath channel  Hch=1+0.5z-1+0.2z-2 
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Figure 5.13: Comparison of BER performance of different receivers for varying Eb/N0   for 7 

users in stationary multipath  Hch=1+0.5z-1+0.2z-2  using chaotic spreading codes with 31 

chips. 
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performance penalty at BER of 10-3. It is seen that Volterra receiver performs better than all 

other receivers .MMSE receiver performs better than MF receiver. FLANN receiver 

outperforms both MMSE and MF receiver. It is also seen that nonlinear receivers 

outperforms better than linear receivers 

 
5.5  CONCLUSION 
 
In this chapter various nonlinear receivers like Volterra receiver and Functional link artificial 

neural network receiver are explained and BER performances of various nonlinear receivers 

using chaotic sequences has been analyzed and compared with linear receivers. It is seen that 

chaotic sequence based DS-CDMA performs inferior to gold sequences. The results also 

showed that Volterra receiver performs better than FLANN receiver for chaotic sequence 

based DS-CDMA. It is seen that Volterra receiver performs better than all other receivers. 

MMSE receiver performs better than MF receiver. FLANN receiver outperforms both MMSE 

and MF receiver. It is also seen that nonlinear receivers outperforms better than linear 

receivers. 
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Chapter 6 

CONCLUSIONS 
6.1 INTRODUCTION   

In this thesis a new type of sequences called chaotic sequences are used for DS-CDMA 

system. The performance of chaotic sequence based DS-CDMA system for different receiver 

techniques is evaluated and compared with gold code based DS-CDMA system. This chapter 

summarizes the work reported in this thesis, specifying the limitations of the study and 

provides some indications for future work. 

Following this introduction section 6.2 lists the achievements from the work. Section 6.3 

provides the limitations and section 6.4 presents indications toward future work. 

 

6.2 ACHIEVEMENT OF THE THESIS 

In chapter 3, generation of binary chaotic sequences from different chaotic maps has 

been discussed. In Chapter 4, various linear receivers like Matched filter, MMSE receiver 

etc., are studied and   BER performance of different linear receivers using chaotic sequences 

is evaluated and it is compared with the receivers using gold sequences. It is seen that chaotic 

sequence based DS-CDMA performs inferior to gold sequences. The results also showed that 

MMSE receiver performs better than Matched filter receiver for chaotic sequence based DS-

CDMA. Following these BER performances of various nonlinear receivers using chaotic 

sequences has been analyzed in Chapter 5 and compared with linear receivers. It is seen that 

chaotic sequence based DS-CDMA performs inferior to gold sequences. The results also 

showed that Volterra receiver performs better than FLANN receiver for chaotic sequence 

based DS-CDMA. It is seen that Volterra receiver performs better than all other receivers 

.MMSE receiver performs better than MF receiver. FLANN receiver outperforms both 

MMSE and MF receiver. It is also seen that nonlinear receivers outperforms better than linear 

receivers. Even though chaos based DS-CDMA performance is inferior to gold sequence 

based DS-CDMA ,it can provide the other advantages of chaotic sequences in DS/SS are the 

availability of a great numbers, the ease of their generation, and their inherent improvement 

in the security of transmission. These  features of the chaotic DS/SS system make itself an 

alternative to PN sequences in terms of generating more effective codes. 

   

6.3 LIMITATIONS OF THE THESIS 

 Simulations are constrained to baseband only. 
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 Fading effects is not considered. 

 Spreading codes with only 31 length is considered. 

 The work investigated in this thesis investigates the receiver in the downlink scenario 

only. 

6.4 SCOPE OF FURTHER RESEARCH 

 Simulations can be extended to some more nonlinear receivers like neural network 

receivers.    

 FPGA implementation of Chaotic sequence generator can also be investigated. 

 Simulations can be extended to larger spreading codes like 63,127 chip etc., 
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