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Abstract

The present paper is devoted to stress analysis of a homogenous, orthotropic, internally
pressurized rotating cylinder. Assuming the cylinder in plain strain condition and that the
volume remains constant, finite element method is used to find out the stresses and
displacement at each node of isoparametric elements (Bilinear and Quadratic). FEM
results are then compared with the exact values, comparison is also done between
different element numbers ( for same element type ) and between different element types
( for same element number).

The reason for doing the comparison is to find out by how much the FEM results
vary from the exact solution and to see how the FEM results converge to exact values by
increasing the element number. Comparison also gives the brief idea about the two

elements i.e which of the two elements gives better results for the same element number.
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Introduction

The research on the determination of stresses and strains in a rotating thick hollow
cylinder has never stopped because of their vast importance in the different fields of
engineering ( mechanical, electrical, civil, computer engineering, etc). Many standard and
advanced textbooks like Ress, Timoshenko, Goodier and Uugural and Festes have pane
strain and plane stress solutions in them for many years. Finite element is another
important method of finding out the stresses and strains of any complex bodies for whom
the exact solution has not been derived. Finite element method has made it possible to
design any complex bodies.

In this paper an orthotropic rotating cylinder subjected to internal pressure is
consider. Exact solution for stress and displacement is obtained by keeping the
homogeneity constant in the derivation derived by Najed and Rahimi for an FGM
rotating cylinder subjected to an internal pressure , finite element method is used to find
the displacement and stresses at each nodes by using matlab. Here, two iso-parametric
(Bilinear and Quadrilateral Quadratic elements) elements are used for solving the
problem. Results obtained by FEM are then compared with the exact values and the

comparison are discussed.



Literature Review

Stress analysis of cylinder vessels is important in the field of engineering. Cylindrical
vessels have extensive use in power generating machines, chemical industries and oil
refineries. Stress analysis of thick walled cylinder subjected to various types of
axisymmetric loading has been carried out by many investigators for constant or varying
material properties along the radius. The investigation done by [4]Nejad and Rahimi
[2010] shows the stress variation along the radial direction of rotating FGM cylinder
subjected to internal pressure.[5] H.R.Eipakchi [2008] solved the problem of thick walled
conical shells with varying thickness subjected to varying pressure by second order shear
deformation theory where in the calculated displacement and stresses are compared with
the finite element method solution and the first order shear deformation theory.
[3]George F. Hausenbauer [1966] derived the formula for finding out the stresses in thick
walled conical shells. [9]S.A Tavares [1995] also derived the solution for finding out the
displacement and stresses in a thick walled conical vessel subjected to various types of
axisymmetric loading. Research in creep analysis of axisymmetric bodies has done by
many of the investigators. [10]Taira and Wahl revealed that the creep occurs along the
preferred orientations making initially isotropic material anisotropic. = Notable
contribution to anisotropy on creep behaviour of thick walled cylinder has been made by

[8]Bhatnagar, Arya, pai, etc.



Chapter 1: Axisymmetric Solids (Structure of Revolution)

1.1 Axisymmetric Problems

The axisymmetric problem deals with the analysis of structures of revolution under
axisymmetric loading. A structure of revolution (SOR) is obtained by a generating cross
section which rotates 360 degrees about an axis of revolution, as shown in figure below.

Such structures are said to be rotationally symmetric.
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Figure 1: A SOR is generated by rotating a generating cross-section about an axis of

revolution



The technical importance of Structure of revolution’s is considerable because of the
following practical considerations:

1. Fabrication : axisymmetric bodies are usually easier to manufacture compared to
the bodies with more complex geometries. Eg pipes, piles, axles, wheels, bottles,
cans, cups, nails, etc.

2. Strength : axisymmetric configuration are often more desireable in terms of
strength to weight ratio because of the favorable distribution of the material.

3. Multipurpose : hollow axisymmetric can assume a dual purpose of both structure
as well as shelter, as in a containers, vessels, tanks, rockets, etc.

Perhaps the most important application of Stucture of Revolution is storage and

transport of liquid and gases. Examples of such structures are pressure vessels, pipes,

containment vessels and rotating machinery (turbines, generators, shafts, etc.)

But a Structure of revolution (SOR) by itself does not necessarily define an

axisymmetric problem. It is also necessary that the loading, as well as the support

boundary conditions, be rotationally symmetric. This is shown in figure below for

loads

Figure 2 : Axisymmetric loading on a SOR: F = concentrated load, Fr = radial component

of “ring” line load.
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If these two structures are met

axisymmetric geometry and axisymmetric loading

The response of the structure is axisymmetric (also called radially symmetric). By this is
meant that all quantities of interest in structural analysis: displacement, strains, and stress,

are independent of the circumferential coordinate.

1.2 The Governing Equations

(a)
z A Point (, z, )

Axis of revolution

e

Figure 3.

1.2.1 Global Coordinate System

A global coordinate system is used to simplify the governing equations of the
axisymmetric problem
" the radial coordinate: distance from the axis of revolution; always r > 0.

<  the axial coordinate: directed along the axis of revolution.

0 the circumferential coordinate, also called the longitude.

The global coordinate system is sketched in figure 3.
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1.2.2 Displacement, Strains, Stresses

The displacement field is a function of r and z only, defined by two components

U, (r.z)

ur,2) = u-(r, z

(1.1)
u . is the radial displacement and uz is called the axial displacement. u 0’

circumferential displacement is zero on account of rotational symmetry.

The strain tensor in cylindrical coordinate is represented by the symmetric matrix:

€rr Erz  Epd
[E] = | €z €z €z

E:ﬁ' E:Iﬁ' EHE-' (1.2)

Due to assumed axisymmetric state , e and e vanish, leaving behind only four distinct

components:
€. €= U
[e]=|¢e- e- O
0 0 eg (1.3)

Each of the vanishing components is a function of r and z only, the vanishing components

are arranged as 4*1 strain vector:

g V.
= Yrz - (1.4)

12



where yrz= €rz + ezr =2€

rz

The stress tensor in cylindrical coordinates is a symmetric matrix

Tpr  Opz  Opg
[J ] = | Opz Ozz Oz
Due to axisymmetry, components O'r eand GZ P vanishes. Thus,
":}-f‘ f‘ G-f‘: (.}
lol=| o,- o-- 0
0 0 Tag (1.6)

Each nonvanishing components is a function of 7" and g . Stress vector becomes

Tpp

O--
o =

Tgd
Ty =

(1.7)

where Jrz =0

r’



Chapter 2: Formulation of Exact Solution

The stress distribution in a FGM rotating thick-walled cylinder pressure vessel in plane
stress and plane strain condition is given by Gholam Hosein Rahimi and Mohammad
Zamani Nejad (2010) . Here in the problem the thick cylinder is homogenous in
composition, so all its properties like modulus of elasticity, poisson’s ratio, density and
yield limit is constant throughout the material. Following is the derivation for radial
displacement, radial stress and hoop stress for a rotating thick — walled cylinder pressure
vessel by keeping the homogeneity constant in the derivation obtained by them.

A thick walled cylinder of inner radius a, and an outer radius b, subjected to
internal pressure P which is axisymmetric, and rotating at a constant angular velocity w
about it axis. Neglecting the body force component, the equilibrium equation is reduced

to a single equation

. O —0 2.1
o+ 66 :_prwz ( )

rr

Where O and 0'90 are the radial and circumferential stress component, p is the
rr

density of the material and (‘) is differential with respect to I" .

The radial strain 8 and circumferential strain

T 60

are related to radial displacement

b
u.

14



The stress strain relationship for isotropic material is

(2.2)
O-rr = (Cllgrr = C12899)E’
Ogp = (C, &4 = C 1€, )E,
E is modulus of elasticity, and c are related to Poisson’s ratio V
11 12
Plane strain condition:
S B c o= 1% (2.3)
Ta-va-=2v)’ " a-va-2a)
Plane stress condition:
c 1 C 14 2.4)
oy’ B 1-v*
Using eq 1,3 the navier stroke in terms of radial displacement is
w1l dE .1y s, n dE_ | po’ 2.5)
U, ==+ +—=—-—)Uiu, == =—=F )
G T g T E
Where
C
n=—15
C12

Plane strain condition :

n:%—v

15



Plane stress condition :
n=v

By substituting eq , the navier stroke becomes

2
] \ @ (2.6)
rzur+rur—ur:—'0 r
Eq (12) is a non-homogenous Euler-Caushy equation whose solution is
U, = A"+ A+ Ayr™, 27)
where
m,=—1,m,=1m; =5
paw’
* 24C,E
The radial stress is obtained by substituting the eq
(2.8)

o, =E[A(=C,+C,)r>+A,(C,+C,)+A,5C, +C,)r']

Constants A1 and A2 are obtained by applying boundary conditions to the stresses given

by
O-rrI,:a - _P’ O-rrI,:,7 = O’

where P is the internal pressure, substituting the boundary conditions the obtained values

of A1 and Azare

A= P+ AEa*(5C, +C,)(1-k")
Ea”(=C,, +C,) (k™ 1)

_ P+ AEa*(5C, +C,,)A-k%)

~ E(C,+C)(k*—1)

A,

16



where . _ %

Thus, the radial stress, circumferential stress and radial displacement are

—k* —k° 2.9

o, =PHALTK) oy  EHALTED Gy 9
K2 -1 k-1
_ 4 _ 6

o,y =B 2FAKD (L ay2 g, PEAUTKD | g Ar 1 a) (2.10)

k-1 k-1

_ 4 _ 6 4
o IPHAG=KONG o IPEAG=KO A ) .

ED, (k> -1) ED,(k* 1) ED, :

For plain strain condition

2 4
A:_pwa 5+ 1% |

24 1-v
BI=_2V+1

2v—-1

B, =1
B, = v +1
T —4r+5

2v -1

D, =
vd+v)1-2v)

D, __
1+v)1-2v)

. —4v+5
S 1+v)(1-2v)

17



For plane stress condition

2 4
=LY 51y
-v+1
B ="~
v-—1
B, =1
33:5v+1
V+5
—1+v
Dl:l—v2
1+v
D. =
> 1=y?
5+v
D. =
12

18



Chapter 3: ISO parametric elements

3.1 Bilinear Quadrilateral Element

Each bilinear element has four nodes with two in plane degrees of freedom at each node

shown in the figure 4.

Figure 4. Bilinear Quadrilateral Element

The element is mapped to a rectangle through the use of the natural coordinates 5 and

1] as shown below
4(-1,1) 3(1,1)
L .
*n
L ]
1(-1,-1) 2(1.-1)

Figure 5. Bilinear Quadrilater ElIment with natural
coordinates
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The shape functions are :
1
N, =Z(l—§)(l—77)

Nz=i<1+§)<1—n)

1
N, =Z(1+§)(l+77)

1
N4=Z(l—§)(l+77)

For this element the matrix [B] is given by:

1
[B]=m[Bl B, B, B,]

Where Bl_] is given by:
[ ON, 0N,
a—-—-b— 0

CIINY

[Bi]: 0 %_ ﬂ

o7 9¢

N, AN, 0N, W,

| 9 95 d5 97

Parameters a, b, ¢ and d are given by:

3.1

(3.2)

(3.3)

1
a=—[y,(E=D+y,(-1-8)+y,(1+&E) +y,(1-&)]

4

1
b=z[yl<n—1>+y2<1—m+y3<1+n>+y4<—1—77>]

(3.4)

1
=[x @=D+x(=m+x0+m+x,1-7)]

1

d :Z[x1(§_1)+x2(_1_§)+x3(1+§)+x4(1_§)]

20



J

The determinant

[J]=%[x1 XX x]

is given by:

For plane stress case matrix [D] is

— <

1
1%

00

- O O

N ‘

-V

0
n-1
=/

1-¢

n-¢ ¢-1
1+¢  -n-¢
0 1+n
-1-n O

For the case of plane strain the matrix [D] is given by

E

D] =
1+v)A-2v)

1-v v 0
1% 1-v O
0 0 1-2v
L 2

(3.5)

(3.6)

(3.7)

The element stiffness matrix for the bilinear quadrilateral element is written in terms of

double integration as follows

[k]=¢[ [ (BT (D1[B1|J|0%n

-1-1

(3.8)

21



3.2 Quadratic Quadrilateral Element

Each quadratic element has eight nodes with two in plane degrees of freedom at each

node shown in the figure.

X

Figure 6: Quadratic Quadrilateral Element

The element is mapped to a rectangle through the use of the natural coordinates 5 and

1] as shown below

4(-1,1) I 3(1,1)

L T -

I(-1,-1) 5 2(1.-1)

Figure 7: Quadratic Quadrilateral Element with natural coordinates
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The shape functions are :

1
N, =Z(1—5)(1—77)(—§—77—1)

1
N, =0+ EX-mE=n-1)
N, =i(l+5)(l+m(§+n—1>

1
N, =Z(1—§)(1+77)(—§+77—1)
) (3.10)
N, =Z(1—77)(1+f)(1—5)

N, =i(l+n>(l+§)(l—n)

1
N, =Z(1+77)(1+§)(1—§)

1
Ny =Z(l—§)(1+77)(1—77)

The Jacobian Matrix for this element is given by

ox dy
% % (3.11)
o oy
an 97

Where x and y are given by

xX=Nx, +N,x, + Nyx; + N,x, + Nox; + Noxg + Nox, + Ngxg
Y=N Y +N,y, + N;y; + Ny, + Nyys + Ny + N,y + Ny

(3.12)

23



The Matrix [B] is given as follows for this element

[B]=[D][N] G

[ dy 90 9y 90

on d&  9¢ a7
|

[D]=—|0 -

/] & an

ox d() dx 9()

(0£an andé onoé oy
N 0O N, 0
O N O N, O N, O

[N]={

For the case of plane stress the matrix [D] is given by

I v O
DI=——|v 1 0 G149
1—
0 0 1__V
L 2 ]
For the case of plane strain the matrix [D] is given by
. I-v v 0 (3.15)
D] = 14 I-v O
1+v)(1-2v) oy
0 0
L 2

The element stiffness matrix for the quadratic quadrilateral element is written in terms of

double integration as follows
[ 3.16
[K]=¢] [1BY (D1B1J|3cn 10

-1-1

24



Chapter 4: Problem Description

A hollow cylinder tube of inner radius ‘a’ and outer radius ‘b’ is subjected to internal

b

pressure ‘P’ and is rotating about the z-axis with angular velocity ‘w’. The tube and its
cross-section is shown in the fig below. The tube extends indefinitely along the z-axis
and is in a plain strain condition along that direction. The material is isotropic with elastic
modulus E and passion ratio ‘v’. A “slice” of thickness‘d’ is extracted and discretized as
shown in the fig below. The young’s modulus, E = 200GPa, density = 7860kg/m3,

poisson ratio = 0.33, inner and outer radius = 1.5m, 1.7m and angular velocity, w =

15rad/sec2.

Figure 8: A rotating internally pressurized cylinder

25



LB ]

1 T —

Figure 9: Element Discritisation

4.1 Element Discription

The length , breadth and thickness of the element is 0.2*%0.034*0.0001, all the dimensions
are in meters. The element is discritize into 2 and 4 as shown in the fig 9. For Quadratic
Quadrilateral element ‘Pr’ is the total pressure force acting on the element which is equal
to 0.0000034P which is distributed to the nodal points such that the pressure force at
nodes 1 and 3 is one third of Pr and at node 2 is two third of Pr. For Bilinear
Quadrilateral element the pressure force at node 1 and 2 is equal to half of Pr. Along

with pressure force centrifugal force will also be acting along r : b, = pa)zr, bz =0

Problem is solved first by using 2 elements both bilinear and quadratic and then with 4
element again with both bilinear and quadratic. The results obtained are then compared

with the exact results.

26



The matlab program was used to find out the results (displacement and stresses)

4.2 Matlab programming

4.2.1 For Bilinear Quadrilateral Element (4-element)

o\
o\

E=200000000000;
v=0.33;

d=0.0001;

o\
o\

k=zeros (20);
kl=zeros(8);
k2=zeros(8);
k3=zeros(8);

kd=zeros(8);

o\
o\

a:BilinearElementArea(Xi’ylrxz’yz’x5’y3,xﬁ’y4);

o\
o\

kl:BilinearElementStiffness(E,v,d,x&’ylrxz’yz’xg’ys,xﬁ’y4,p);

o\
o\

kZ:BilinearElementStiffness(E,v,d,x&’ylrxz’yz’xg’ys,xﬁ’y4,p);

o\°
o

k3= BilinearElementStiffness(E,v,d,x&’ylrx2,y2,Xé,)%,Ah,)q,p);

o°
o

k4= BilinearElementStiffness(E,v,d,x&’ylrx2,y2,Xé,)%,Ah,)q,p);

o\
o\

k= BilinearAssemble(k,k1,1,6,8,3,4,7,5,2);

o\
o\



k= BilinearAssemble(k,k2,1,6,8,3,4,7,5,2);

k= BilinearAssemble(k,k3,1,6,8,3,4,7,5,2);

k= BilinearAssemble(k,k4,1,6,8,3,4,7,5,2);

sl= BilinearElementStresses(E,v,Xi,ylrxz,yz,xé,)%,xq,y4,p,u);

s2= BilinearElementStresses(E,v,X&’ylrxz’yz’xé’}%,xﬁ’}%,p,u);

s3= BilinearElementStresses(E,v,X&’ylrxz’yz’xé’}%,xﬁ’}%,p,u);

s4= BilinearElementStresses (E, v, X Vs X5 Vo0 Xy Yas Xy y4,p,u) ;
end;

4.2.1.1 Matlab functions used

(Obtained from the book : Matlab Guide to finite elements — P I Kattan)

BilinearElementArea(Xi,ylrxz,yz,xé,)%’xﬁ,y4)—1}HSgh@stheéweaofthe

bilinear quadrilateral element

BilinearElementStiffness(E,v,d,X&’ylrxz’yz’xé’}%,xﬁ’}%,p)—ThiSgiVGSthe

element stiffness matrix for a bilinear
BilinearAssemble(K,k,i,j,m,n)- This gives the element stiffness matrix k of the bilinear
quadrilateral element

BilinearElementStresses(E,v,Xi,ylrxz,yz,xé,ys’xﬁ,)q,p,u)—qjﬁsfunCﬁon

gives the element stress vector for a bilinear quadrilateral element

28



o\
o\

4.2.2 For Quadratic Quadrilateral Element (4-element)

E=200000000000;

v=0.

d=0.

o\
o\

33;

0001;

k=zeros (46) ;

kl=zeros (16);

k2=zeros (16);

k3=zeros (16);

kd=zeros (16);

QuadraticElementArea(Xi’ylrxz’yz’xé’ys,xﬁ’y4);

QuadraticElementArea(Xi’ylrxz’yz’xé’ys,xﬁ’y4);

QuadraticElementArea(Xi’ylrx2’y2,xé’)%,1h’)q);

QuadraticElementArea(Xi’ylrxz’yz’xé’ys,xﬁ’y4);

QuadraticElementStiffness(E,v,d,Xi’ylrxz’yz’xg’ys,xﬁ’y4,p);

QuadraticElementStiffness(E,v,d,Xi’ylrxz’yz’xg’ys,xﬁ’y4,p);

QuadraticElementStiffness(E,v,d,Xi,ylrx2’y2’xé,y3,xﬁ,y4,p);

29



o\
o\

k4= QuadraticElementStiffness(E,v,d,Xi’ylrxz’yz’xé’ys’xﬁ’y4,p);

o\
o\

K=QuadraticAssemble(K,k1,1,6,8,3,4,7,5,2);

o\
o\

K=QuadraticAssemble (K, k2,6,11,13,8,9,12,10,7);

o\°
o°

K=QuadraticAssemble (K, k3,11,16,18,13,14,17,15,12);

o\
o\

K=QuadraticAssemble (K, k4,16,21,23,18,19,22,20,17);

o\
o\

sl:QuadraticElementSresses(E,v,x&’ylrxz’yz’xé’}%’xﬁ’y4,p,u);

o\
o\

s2=QuadraticElementSresses (E,NU,x1,vy1l,x2,y2,x3,y3,x4,v4,p,u);

o\
o°

s3=QuadraticElementSresses (E,NU,x1,vy1l,x2,y2,x3,y3,x4,v4,p,u);

o\°
o

sd4=QuadraticElementSresses(E,NU,x1,vy1l,x2,y2,x3,y3,x4,v4,p,u);

end;
4.2.2.1 Matlab functions used

(Obtained from the book : Matlab Guide to finite elements — P I Kattan)

QuadraticElementArea(Xi’ylrxz’yz’x5’}%’xﬁ’y4)7Thh§gh@sthezweaofthe

quadratic quadrilateral element.

QuadraticElementStiffness(E,v,d,Xi’ylrx2’y2’xé’}%,1h’)u,p)—]?ﬁsgfvesthe

element stiffness matrix for a quadratic quadrilateral element .

30



QuadraticAssemble(K k,i,j,m,p,q,r,s,t)- This gives the element stiffness matrix k of the
quadratic quadrilateral element

sl=QuadraticElementSresses (B, v, X,, V|, X,, Yy, X3, V3, Xy, YyrPr 1) ~This function

gives the element stress vector for a bilinear quadrilateral element.
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Chapter 5: The Global Stiffness Matrix

2=glement Bilinear Quadilateral Element

K =

1.0e+007 *

0.9915
0.3731
=0.6100
0.0028

i
(== == =

-0.
-0.
0.

4-element Bilinear Quadrilateral Element

K =

L2R3E
L0028
1578

1.0e+007 *

Columns 1 through

0
0
-0

0.

-0
-0

=0.
=0.

L8773
L3731
.1142
0028
L3245
L0028

CoOoOoODOoOoDOoDOoDo

0.373
1.270
=0. 002
-1.015
0.002
0.379
=0.373
-0.635

1
&

CooOoDOoRDOoD oo

8

L1142

L 0 3
) =l 2
Lk = b
1 Lk

L4387

[=qrrym
[
[y
o L

(==l e e e e e e

CoOoOoODOoOoDOoDOoDo

L1142
.0028
L4558
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2-glement Quadratrie Quadrilateral Elesment
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4-glement Quadratric Quadrilateral element
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Column 24 to 30
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Column 31 to 38

CoOOoDoOoO0ooDoooDo000oo o

el e

o e e e e e e e e

.0447
.07813

.0974

=0.

=0.

=0.

=0.

=0.

=0.
=0.

=0.
=0.

COOODOOOOROOD oo

CoOOoDoOoO0ooDoooDo000oo o

noa
=)
1=
=1
[== 1

0. 2661
0.0166
=0.1501
-0.0663

0
0. 0663
o

1]
=0. 5800
)
1.2281
1]

=0. 5800
0. 0863

0
-0.0663
0

0. 0166
=0.1501
0

0. 2661
=0.0166
=0.1501

1]
CEooEBo0n00

COOODOOOOROOD oo

04974
.1501
0783

e e e e e e e e e e e e

40



Column 39 to 46
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Chapter 6: Results

Exact solution

Node  ur (mm) Radial stress (Mpa) Circumferential stress (Mpa)
1.5 0.8489 -30 270.09
1.525 0.8475 -25.53 267.36
1.55 0.8466 -21.28 264.08
1.575 0.8455 -17.2 261.06
1.6 0.8448 -13.43 258.28
1.625 0.8443 -9.8 255.75
1.65 0.844 -6.34 253.02
1.675 0.8438 -3.06 251.38
1.7 0.838 0 249.52
Table 1

2-element (Bilinear Quadrilateral Element)

Node ur (mm) Radial stress (Mpa) Circumferential stress (Mpa)
1 0.848 -24.83 267.58
2 0.848 -24.83 267.58
3 0.8444 -12.8 259.85
4 0.8444 -12.8 259.85
5 0.8375 -6.52 249.51
6 0.8375 -6.52 249.51
Table 2

2-element (Quadratic Quadrilateral Element)

Node ur (mm) Radial stress (Mpa) Circumferential stress (Mpa)
1 0.8486 -28.157 269.75
2 0.8486 -28.157 269.75
3 0.8486 -28.157 269.75
4 0.8462 -20.125 263.15
5 0.8462 -20.125 263.15
6 0.8448 -12.579 258.08
7 0.8448 -12.579 258.08
8 0.8448 -12.579 258.08
9 0.844 -6.251 252.01
10 0.844 -6.251 252.01
11 0.838 0 249.52
12 0.838 0 249.52
13 0.838 0 249.52

Table 3



4-element(Bilinear Quadratic Element)

Node ur (mm) Radial stress (Mpa) Circumferential stress (Mpa)
1 0.8485 -26.515 269.57
2 0.8485 -26.515 269.57
3 0.8461 -22.578 262.15
4 0.8461 -22.578 262.15
5 0.8448 -14.178 258.35
6 0.8448 -14.178 258.35
7 0.844 -6.247 254.51
8 0.844 -6.247 254.51
9 0.838 0 249.58
10 0.838 0 249.58

Table 4

4-element (Quadrilateral Quadratic Element)

Node ur(mm) Radial stress (Mpa) Circumferential stress (Mpa)
1 0.8488 -29.573 270.85
2 0.8488 -29.573 270.85
3 0.8488 -29.573 270.85
4 0.8474 -25.187 267.3
5 0.8474 -25.187 267.3
6 0.84625 -21.138 264
7 0.84625 -21.138 264
8 0.84625 -21.138 264
9 0.8548 -17.253 261
10 0.8548 -17.253 261
11 0.84477 -13.334 258.2
12 0.84477 -13.334 258.2
13 0.84477 -13.334 258.2
14 0.84428 -9.832 255.68
15  0.84428 -9.832 255.68
16 0.844 -6.345 252.88
17 0.844 -6.345 252.88
18 0.844 -6.345 252.88
19 0.8438 -3.061 251.3
20 0.8438 -3.061 251.3
21 0.8438 0 249.51
22 0.8438 0 249.51
23 0.8438 0 249.51

Table 5

Note : O 22 and (0} rz is zero for all the elements discussed above.



Chapter 7: Graphs

Radial displacement ( Exact values Vs FEM values )
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1.3 For 4-element Bilinear Quadrilateral element
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(2) Radial Stress (O )

2.1 For 2-element bilinear quadrilateral element
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2.3 For 4-element Bilinear quadrilateral element
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(1) Circumferential Stress (O )

For 2-element bilinear quadrilateral element
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3.3 For 4-element Bilinear quadrilateral element
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Chapter 8: Discussion

Computed and Exact values are given in table 1, 2, 3, 4, 5. Radial displacement, radial

stress and hoop stress are graphically compared over a<r<b with the exact solutions.
Radial displacement, U

The radial displacement for 2-element (Bilinear) shows more variation compared to
others. Out of four types 4-element (Quadratic) show better results. It is seen that for
either element type the values converges to exact values by increasing the element

numbers.
Radial stress, O,

The radial stress also follows the same trend followed by radial displacement. For lesser
number of elements large variation is observed but the variation vanishes on increasing
the element number as seen in the graphs of 2 and 4 elements. Quadratic element has
upper hand when compared with bilinear and its better to use quadratic elements for

better results.
Circumferential stress, O ,, :

Circumferential stresses are very important; these stresses are larger in values than any
other stress induced in the cylinder so their study is important. Bilinear elements do not
show good results compared to quadratic element as seen in the graphs. The results are
more close to the exact values as the number of elements increases also seen in the

graphs.
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Chapter 9: Conclusion

Finite element techniques were applied to the above problems and calculate the
deflections and stresses at each of the nodes. The results obtained in the method differ
slightly from the results obtained from the exact solution. The errors may be due to some
problems in the computational techniques. The FEM results obtained were within the
acceptable ranges. When compared between two isoparametic elements (Bilinear and
Quadratic) for the same element number; bilinear showed more variation from the exact
values than the quadratic as seen in the graph and for the same element type with
different element numbers results were as expected i.e. results converge to exact values

as the number of element increases.
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