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ABSTRACT: 
 
A very thin circular curved beam is analyzed for its natural frequency in this project.  

Only out of plane vibrations are considered in this project. The stiffness matrix and mass 

matrix are derived from the strain energy and kinetic energy. This is done with the help 

of natural shape functions. The derivations are done in local coordinate system or Global 

Cartesian coordinate system. The out of plane deformations considered are the rigid body 

displacement of the centre of curvature in the axial direction, the rigid body rotation 

about the centre of curvature in the radial direction, and the rigid body rotation about the 

centre of curvature in the circumferential direction at the mid cross section. For analysis 

FEM is used. Study of change of slenderness ratio on different modes of frequencies is 

done in this project. For tedious calculation Matlab 7.0 is used. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 



8 | P a g e 
 

 
1.INTRODUCTION:     

 
  
Curved beams have found many applications in civil, mechanical and aerospace 
engineering. Exact and efficient nonlinear analysis of structures, built up from beam 
components, using robust Numerical methods, e.g. finite element methods, should be 
based on proper nonlinear beam theories. 
 
 
For computationally analyzing curved beams or arches, many prefer using straight beam 
elements based on straight beam theories. This is a simple and good approximation for 
slender curved beams or flexible curved beams although more elements will be used to 
get a satisfactory accuracy. Others prefer using curved beam/arch elements to analyze 
curved beams or arches based on slender beam theories to reduce the number of elements 
used 
 
. 
However, for thick and moderately thick curved beams, an increase in the accuracy of the 
finite element solution by increasing the number of straight beam elements or curved 
beam elements based on the slender beam theories has its limit, especially when long-
term dynamic responses as well as strains and stresses in three-dimensional level are 
needed for design purposes. In this case, more refined curved beam theories should be 
used.  

 
 
1.1 Mechanical vibration 
  
This is the continuing and repetitive motion (often periodic) of a solid or liquid body. 
Vibration occurs in a variety of natural phenomena such as the oceanic tidal motion, in 
stationary and rotating machinery, in varied nature structures like ships and buildings, in 
vehicles, etc. It is observed that there exists a strong coupling between the mechanical 
vibration notions and the propagation of vibration and acoustic signals through both the 
air and the ground to create a possible source of annoyance, discomfort and physical 
damage to structures and people.[10]  
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1.2 Complex systems 
 
 For study of vibration, many simplistic assumptions are taken into consideration. These 
may include the input and response being periodic; the input being of discrete nature, 
which it is temporal in nature having no reference to spatial distribution; and a single 
resonant frequency and a single set of parameters are required to define the stiffness, the 
mass, and the damping. The real world is much more complex. Many sources of vibration 
are not always periodic. These may include impulsive forces and shock or impact 
loading, where a force is suddenly applied on the body or on the system for a very short 
time; random excitations, where the signal varies in time in such a way that its amplitude 
at any given point is expressed only in terms of a probability. 
 

 
 
1.3 Sources of vibration 
 
There are many sources of vibration, both mechanical and structure. The most common 
form of mechanical vibration problem is induced by machinery of variety, often (but not 
always) of the rotating type. Other sources of vibration are: ground-borne propagation 
due to construction; vibration due to movement of heavy vehicles on any type of 
pavement as well as vibrations generated due from the railway systems common in many 
big and developed areas; and vibrations induced by natural phenomena and events, like 
earthquakes and wind forces. 
 
 

  
 
 
1.4 Effect of vibrations 
The most serious effect of vibration, especially in the case of machinery, is that 
sufficiently high alternating stresses can produce fatigue failure in machine and structural 
parts. Less serious effects include increased wear of parts, general malfunctioning of 
apparatus, and the propagation of vibration through foundations and buildings to 
locations where the vibration of its acoustic realization is intolerable either for human 
comfort or for the successful operation of sensitive measuring equipment.   
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1.5 Vibration in Mass-spring-damper system: 
 
A mass spring damper system is used to understand some basic principles of vibration 
without undergoing any difficulty of complex system. Such a system contains a spring 
with spring constant k that restore the mass to a neutral position, a mass M and a damping 
element which opposes the motion of the spring with a force proportional to the velocity 
of the system, the damping constant c being the constant of proportionality. The damping 
force is dissipative in nature, and without the presence the resistive force of this mass-
spring system will continue to be in a periodic motion. 
 
Single DOF System 
Fig.-1 
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1.6 Modes of vibration 

Mode of an oscillating system is a pattern of motion in which whole system move in 
sinusoidal with the same frequency. Any physical object has a set of normal modes that 
depend on its materials, structure and boundary conditions. The mode of vibration is 
characterized by a mode shape and modal frequency, and is numbered according to the 
number of half waves formed in the vibration. In a system with two or more dimensions, 
each dimension is given a mode number. 
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2.LITERATURE REVIEW:    

 
W. P. Howson and A. K. Jemah [1] deduced a very effective method of 

determining the exact out of plane natural frequencies of curved beams. Stiffnesses are 
derived from the governing differential equations. These stiffnesses are used to yield a 
transcendental eigen value problem. Values obtained from this method are considered to 
be exact analytical solution to vibration of curved beam problem. 

 
Bo Yeon Kim, Chang-Boo Kim [2] considered a thin finite circular beam element 

for the out-of-plane vibration analysis of curved beams. Its stiffness matrix and mass 
matrix were derived, respectively, from the strain energy and the kinetic energy.  The 
effects of transverse shear deformation, transverse rotary inertia, and torsional rotary 
inertia, were presented. 

 

C. G. Culver and D. J. Oestel [3] had developed the method of determining 
natural frequency in multispan curved beam. The method is illustrated in a two span 
beam. In their work they have used Rayleigh-Ritz method together with the Lagrange 
multiplier concept. Both methods led to very accurate results. The beam element 
considered in this case was of double symmetry, due to which the nature of the response 
was an uncoupled response for in-plane bending, and a coupling of the out of plane 
normal bending and the rotational responses. 

 
R. Emre Erkmen and Mark A. Bradford [4] developed the 3D elastic total 

Lagrangian formulation for the numerical analysis of steel concrete composite beams 
which are curved in-plan. On the basis of geometric nonlinearities the strain expressions 
and the partial interaction at the interface in the tangential direction as well as in the 
radial direction were derived. The beam with large initial curvatures may behave as 
slender beams at the elastic range geometric nonlinearity. They had also shown that if the 
initial curvature of the beam is increased the behavior becomes significantly softer. 

 
Jong-keun Choi and Jang-keun Lim [5] used the curved beam elements as their 

consistent form of strain fields simplifies their formulation. Hence on the basis of the 
assumed strain field and Timoschenko beam theory they developed two-noded and three 
noded curved beam element. These two elements include the axial, in plane and out of 
plane shear, bending and torsional deformations. Whereas the two-noded beam has the 
constant strain fields and the three-noded beam has the linear strain fields. The 
displacement functions were considered in the local curvilinear coordinate system, which 
were again used in the derivation of stiffness matrix by applying the total potential energy 
theorem. Then these local stiffness matrices were transformed into a global Cartesian 
coordinate system in order to obtain the global stiffness matrix. 
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By using the curved beam elements, John-Shyong Wu and Lieh-Kwang Chiang 
[6] obtained the dynamic responses of a circular curved Timoshenko beam under the 
application of a moving load. They considered the effect of shear deformation and that of 
rotary inertia resulted due to bending and torsional vibrations. Then the stiffness matrix 
and mass matrix were obtained from the force displacement relation and the kinetic 
energy equations respectively. As the element matrices of the curved beam element were 
based on local co-ordinate system, hence the coefficients were independent on d curved 
beam elements having a constant radius of curvature and the transformation from local 
stiffness matrix to global stiffness matrix was not needed. 

 
Dipak Sengupta and Suman Dasgupta[7] used Lagrange Polynomials in natural 

co-ordinates for beam geometry interpolation and its vertical displacements. But the 
angles of transverse rotation and twist were interpolated by another set of three degree 
polynomial. After assuming the elastic deformations to be proportional to the reactive 
forces, the effect of shear deformations were considered in the stiffness matrix, whereas 
the translational and rotary inertias were considered in the formulation of mass matrix. 
But the flexural rotary inertia and torsion rotary inertia were neglected in dynamic 
loading cases. Four-point Gaussian scheme was used in numerical integration. 
Considering static loading with and without elastic foundation, displacements, bending 
moments and torque was calculated.  

 
J. R. Hutchison [8] has done some of the work on shear coefficients for 

Timoshenko beam. His work shows that in a Timoshenko beam shear deformations and 
rotary inertia have effects on the vibration in slender beams. The formulation for shear 
coefficient is done in his work. The values of shear coefficient from his work have been 
used in the problems done in this paper. 

 
Jong Shyong Wu and Lieh Kwang Chiang [9] tried to determine the dynamic 

responses of a circular curved Timoshenko beam due to a moving load using the curved 
beam elements. In addition to the typical circular curved beams, a curved beam 
composed of one curved beam segment and two straight beam segments subjected to a 
moving load was also studied. Influence on the dynamic responses of the curved beams 
of the slenderness ratio, moving-load speed, shears deformation and rotary inertias were 
investigated. 
                  In this report, a thin beam element is considered for which cross section 
remains same throughout the length. Matrix calculation is done by stabilization of strain 
and kinetic energy. Analysis and determination of shape functions is similar to that given 
in [2]. The matrix calculation is done with a simplistic approach. The effect of change of 
local coordinate system is not considered for matrix assembly as the elements are 
compatible at connecting nodes. 
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3.Analysis of Thin circular beam element: 

 
Fig.2 Thin circular beam showing out of plane Deformations in both Cartesian and  local 
coordinate system 
 
 

3.1 Out-of-plane deformations 
 
Along with the Cartesian system, the local coordinate system of the beam is also shown 
in polar form. ‘O’ is the center of curvature of the circular thin beam element and C is the 
center of cross section. The radius of the centroidal line passing through the center of 

cross section is ‘r’. Half of the subtended angle of the element at center is θ = (α2−α1)/2. 

The nodes of the element, 1 and 2 are on the centroidal line.  

ξ is the local centroidal axis, ψ is the local circumferential axis and ζ is the local vertical 
axis of cross section. When only out of plane deformations are considered, ‘u’ is the rigid 
body displacement of the center of curvature along ζ axis, ‘ϕ’ is the radial component of 

rotation and ‘φ ’  is the circumferential component of the rotation at C. 
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The bending curvature κξ, twist τψ, and shear strain γγγγζζζζ at C, are expressed as 
 

κξ = (ϕ’−φ)/ r                                                                        (1a) 

τψ = (φ’+ϕ)/ r                                                             (1b) 

γγγγζζζζ  = −ϕ + u’/ r                                                              (1c) 
 

Where ( )’ is a partial differential with respect to circumferential coordinate α.  
 

The internal bending moment Mξ, torsion moment Mφ, and shear force Nζ at the point C 

can be expressed as 
 

Mξ = EIξκξ                                                                         (2a) 

Mφ = GJψτψ                               (2b) 

Nζ = KζGAγζζζζ                      (2c) 

 

Where A is area, Iξ is he area moment of inertia about ξ –axis, Jψ is the torsional moment 

of inertia, Kζ is the shear coefficient of the cross section. E is Young's modulus of the 

material. G is the shear modulus, which is expressed as G=E/2(1+ν) with the Poisson 

ratio ν.  

 
 

3.2 Shape functions: 
 
Out-of-plane forces and moments are applied at nodes 1 and 2 of the circular beam 
element in equilibrium. The internal bending moment, torsion moment, and shear force 

on the cross section at C can be expressed in terms of the internal bending moment Mξ0, 

torsion moment Mφ0 and shear force Nζ0 on the mid cross section at θ=0 as 

 

Mξ = Mξ0cθ +( Mφ0 −r Nζ0 )sθ                                                  (3a) 

Mφ = −Mξ0sθ+ (Mφ0 −r Nζ0 )cθ+r Nζ0                                       (3b) 

Nζ = Nζ0                                                                                  (3c) 
 

Where sθ=sinθ, cθ=cosθ, θ=α−(α2+α1)/2 . 
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By substituting Eq. (3) into Eq. (2), we get 
 

κξ=( B5cθ+ B6sθ)/ r2                                                                 (4a) 

τψ =β*( B4−B5sθ+ B6cθ)/ r2                                                          (4b) 

γγγγζζζζ =a* B4/r                                                                                   (4c) 
 
where 
 

B4= r3 Nζ0 / EIξ                                                                            (5a) 

B5= r2 Mξ0 /EIξ            (5b) 

B6= r2 (Mφ0 −r Nζ0)/ EIξ                   (5c) 

 
a = EIξ/ Kζ GA r2                      (6a) 

β= EIξ/ G Jψ                                                                                (6b) 
 

If a =0, then the effect of transverse shear deformation is neglected, i.e γ γ γ γζζζζ =0 . 

 
By substituting Eq. (4) into Eq. (1), we get 
 

(B5cθ + B6sθ)/ r2= (ϕ’−φ)/ r                                                     (7a) 

β*( B4−B5sθ + B6cθ)/ r2= (φ’+ϕ)/ r                                          (7b) 

a* B4/r=−ϕ + u’/ r                                                                       (7c) 
 

B1, B2/r and B3/r are the constants of integration of the differential equations. They are 

the rigid body displacement of the center of curvature in the axial direction, the rigid 
body rotation about the center of curvature in the radial direction, and the rigid body 
rotation about the center of curvature in the circumferential direction at the mid cross 
section, respectively. 
 
 

Adding Eqn(7a)’  and (7b) we get 

 

(ϕ’’+  ϕ )/ r= (- B5sθ+ B6cθ)/ r2+ β(B4−B5sθ+ B6cθ)/ r2 
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Solving this differential eqn with boundary condition  ϕ(0) = B2/r and  

ϕ’(0)= (B5+ B3)/a we get 

 

ϕ = {B2cθ+ B3sθ+ B4f2 (1−cθ) + B5 (f4sθ+f3θcθ) +B6f3θsθ}/ r         (8a) 
 
 

Subtracting eqn (7a) from (7b) ’  we get 

 

(φ’’+ φ)/ r= β(−B5cθ− B6sθ)/ r2−(B5cθ+ B6sθ)/ r2 

 

solving this differential eqn with boundary condition φ (0)= B3/r and  

φ’(0)= β(B4 +B6cθ)/ r - B2/r we get 

 

φ = {−B2sθ+B3cθ+B4f2sθ−B5f3θsθ−B6(f4sθ−f3θcθ)}/ r                     (8b) 
 
 
Putting eqn (8b) in (7c) we get 
 

 (u)’=a*B4+{B 2cθ+ B3sθ + B4f2 (1−cθ) + B5 (f4sθ+f3θcθ)+B6f3θsθ} 
 
solving this differential eqn with boundary condition u(0)=B1 we get 

 

u = B1+B2sθ−B3cθ+B4 (f1θ+f2θ−f2sθ) +B5 (−f2+f2cθ+f3θsθ) + 

      B6 (f2sθ+f4sθ− f3θcθ)                                                                (8c) 

 
Where 
 

f1 =a                                  (9a) 
f2 =β                         (9b) 
f3=(1+β)/ 2                 (9c) 

f4 =(1−β)/ 2                 (9d) 
 
 
The static deformations represented by Eq. (8) are used as the shape functions for the out-
of-plane motion of thin circular beam element. They are the rigid body modes associated 

with B1, B2/r, and B3/r and the flexible modes associated with B4, B5, and B6.  
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The displacements and rotations at nodes, 1 and 2, can be expressed as 
 

{v}=[a]{B1}                (10) 
 
where 

{v}=  

   
                                                      (11a) 

 
 
 
 
 
{B1} = {B 1 B2 B3 B4 B5 B6}

T                                  (11b) 
 
 
 
[a]= 
 
 
 
 
 
 
 
 
The coefficient vector of shape functions, {B1}  then can be expressed in terms of the 

nodal displacement vector with respect to the local polar coordinate system, {v} , as 

 

 {B1}= {a} -1{v}              (12) 
 
 
 
 
 

φ1   
φ1  
u1 

φ2 

φ2  
u2 

0     cθ/r   −sθ/r       f2 (1−cθ)/r         −(f4sθ+f3θcθ)/r        f3θsθ/r  
0     sθ/r     cθ/r   − f2sθ/ r                −f3θsθ/ r                  (f4sθ+f3θcθ)/ r 
1    -sθ     −cθ     − (f1θ+f2θ−f2sθ)   −f2+f2cθ+f3θsθ    − (f2sθ+f4sθ)+ f3θcθ  
0     cθ/r     sθ/r        f2 (1−cθ)/r           (f4sθ+f3θcθ)/r         f3θsθ/r  
0    −sθ/r    cθ/r       f2sθ/ r                −f3θsθ/ r                − (f4sθ−f3θcθ)/ r 
1     sθ     −cθ       f1θ+f2θ−f2sθ       −f2+f2cθ+f3θsθ     (f2sθ+f4sθ)− f3θcθ                                                      
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3.3 Stiffness matrix:  
 
Eq.4 can be written in the matrix form as 
 

      [strain]=[R]{B1} 
Or, [strain]=[R] {a}-1{ v} 
                   =[B]{v} 
 

Where, [strain]={κξ  τψ  γγγγζζζζ} 
             [B]  =strain-displacement matrix.= [R] {a} -1                                         (13) 

           [R]=1 / r2 * 
 
 
 
 
 
From eq.(2) 
 

[Stress] = [D][strain] 
 
 
 
Where, [D] = strain stress matrix   
                =  
 
 
 
 
 
Therefore, stiffness matrix is given by  
 

[K] = α1∫α2 [B]T[D][B]*r*d θ                                                          (14) 

0    0     0   0      cθ      sθ  
0   0     0   β    −βsθ    βcθ 
0   0     0   r∗α  0         0  

E*I ξ         0            0 
0        G*Jψ         0 
0           0         KζG*A  
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3.4 Mass Matrix 
 
 
The kinetic energy of the thin circular beam element is expressed as                                                            
 

T=1/2 *α1∫α2 ρIξ(ϕ’ )2+ρΙψ(φ’ )2+ρΑ(u’)2 * r*dθ                                  (15) 
 
 
 
Taking ρ*r  common and arranging the terms inside bracket in form of matrix we get 

 
 

   
 

 T= 1/2 *α1∫α2 ρ.r* dθ 
 
 
 
 

       =1/2*α1∫α2{v’} T([N]{a} -1)T  [N]{a} -1{v’} ρ.r* dθ 
                                                                                                              (16) 
 

Where, [N]  is derived from eqn (8) as [φ  φ  u]T =[N] {B1}  

 

[N]
= 
 
 
 

                                                       
(18) 

  
 
                                 

φ’ 
φ’ 
u’ 

Iξ    0    0 
0    Iψ    0 
0    0    A 

φ’   φ’    u’ 

0     cθ/r   sθ/r       f2 (1−cθ)/r        (f4sθ+f3θcθ)/r      f3θsθ/r  
0   −sθ/r   cθ/r      f2sθ/ r              − f3θsθ/ r         − (f4sθ−f3θcθ)/ r 
1    sθ     −cθ     (f1θ+f2θ−f2sθ)  −f2+f2cθ+f3θsθ   (f2sθ+f4sθ)−f3θcθ  
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 So, mass matrix is  
 

[M] = α1∫α2 ρ.r * ([N] {a} -1)T     [N] {a} -1   *dθ 

 
             
                                                               
                      (19) 
 
 
 
 
Since all the element property matrices for the curved beam element are derived based on 

the local polar coordinate system (rather than the local Cartesian one), their coefficients 

are invariant for any curved beam element with constant radius of curvature and 

subtended angle and one does not need to transform the property matrices of each curved 

beam element from the local coordinate system to the global one to achieve the overall 

property matrices for the entire curved beam structure before they are assembled. The 

elements are compatible at nodes. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Iξ    0    0 
0    Iψ    0 
0    0    A 
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4. Flow-Chart 
 
The flow-chart of the program used in determination of stiffness matrix, mass matrix and 
natural frequency parameter: 
 
 
 
 
 
 
 
 
 
 
 
                                        N 
 
 
                                                              Y 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Start 

Declaration of material & geometrical properties and number of elements (n) 

I<= n 

End 

Determination of element mass matrix 

Determination of element stiffness matrix 

Assembling stiffness 
matrix & mass 

matrix 

Applying boundary conditions 

Determination of natural frequency parameters 
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5. RESULTS AND DISCUSSIONS 
 
Table 1, 2 and 3 shows the natural frequencies of circular beam clamped at both ends. 
Ref.-1 shows the values obtained by Howson [1] and Ref.-2 are the values obtained by 
Yeon Kim [2]. It is very much evident from the graph and tables that there is a good 
agreement between all results.  
 

E = 200 GPa, ν = 0.3, ρ = 7830 kg/m3, r = 1 m,  Iξ = 1.5×10-5 m4, Iψ = 3.0×10-5 m4, Jψ 

=3.0×10-5 m4, Kζ = 0.89   

Frequency parameter, λ = √(A*r 2/ Iξ) 

And slenderness ratio, sξ = ω√(ρ∗ A*r 4/E Iξ) 
 
 
 
Table 1: Comparison of frequency parameter of out of plane of a clamped circular arc 
subtending angle 60º 
 
 

 
sξ 

Mode Number αααα= 60º 
Ref.-1 Ref.-2 PRESENT 

 
20 

1 16.885 16.885 16.8853 
2 39.700 39.706 39.7048 
3 40.934 40.940 40.9399 
4 70.581 70.612 70.6110 

 
100 

1 19.454 19.454 19.4538 
2 54.148 54.148 54.1482 
3 105.86 105.87 105.8652 
4 173.16 173.18 173.1774 
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Fig 3: Plot of three natural frequency results for αααα= 60º and sξ=20 

 

 
 
 

Fig 4: Plot of three natural frequency results for αααα= 60º and sξ=100 
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Table 2: Comparison of frequency parameter of out of plane of a clamped circular arc 
subtending angle 120º 
 
 

 
sξ 

Mode Number αααα =120º 
Ref.-1 Ref.-2 PRESENT 

 
20 

1 4.3094 4.3094 4.3094 
2 11.796 11.796 11.7961 
3 22.510 22.511 22.5111 
4 23.303 23.304 23.3035 

 
100 

1 4.4731 4.4731 4.4731 
2 12.892 12.892 12.8916 
3 26.081 26.081 26.0806 
4 43.684 43.684 43.6843 

 
 
 

Fig 5: Plot of three natural frequency results for αααα= 120º and sξ=20 
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Fig 6: Plot of three natural frequency results for αααα= 120º and sξ=100 
 

 
 
 
 
Table 3: Comparison of frequency parameter of out of plane of a clamped circular arc 
subtending angle 180º 
 
 

 
sξ 

Mode Number αααα=180 º 
Ref.-1 Ref.-2 PRESENT 

 
20 

1 1.7908 1.7908 1.7908 
2 5.0324 5.0324 5.0324 
3 10.232 10.232 10.2323 
4 16.917 16.918 16.9177 

 
100 

1 1.8182 1.8182 1.8182 
2 5.2415 5.2415 5.2415 
3 10.989 10.989 10.9889 
4 18.813 18.813 18.8134 
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Fig 7: Plot of three natural frequency results for αααα= 180º and sξ=20 
 

 
  
 

Fig 8: Plot of three natural frequency results for αααα= 180º and sξ=100 
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New results: 
 
Keeping other parameter same such as material properties and shear coefficients, and by 
changing the slenderness ratio and angle subtended by the circular arc at centre of 
curvature following results were obtained.  

 
Table 4: Frequency parameter of a clamped circular arc subtending angle 45º 
 

 
αααα 

Mode 
Number 

sξ 

20 50 80 100 
 

45º 
1 27.8613 33.7647 34.7424 34.9813 
2 51.4874 88.9404 94.5267 95.9843 
3 63.4709 128.9513 180.6708 185.3154 
4 100.1443 164.1954 206.3712 257.9775 

 
 

Fig 9:  Plot between natural frquency parameter and mode number of frequency  for αααα= 

45º and different sξ values. 
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Table 5: Frequency parameter of a clamped circular arc subtending angle 60º 
 
 

 
αααα 

Mode 
Number 

sξ 

20 50 80 100 
 

60 º 
1 16.8853 19.0624 19.3784 19.4538 

2 39.7048 51.7326 53.6675 54.1482 
3 40.9399 98.1597 104.2694 105.8652 
4 70.6110 99.4945 159.2184 173.1774 

 
 

Fig 10:  Plot between natural frquency parameter and mode number of frequency  for αααα= 

60º and different sξ values. 
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Table 6: Frequency parameter of a clamped circular arc subtending angle 90º 

 
 

 
αααα 

Mode 
Number 

sξ 

20 50 80 100 
 

90º 
1 7.7846 8.2495 8.3097 8.3238 
2 20.4151 23.1607 23.5623 23.6582 
3 28.4540 45.3880 46.7420 47.0740 
4 37.3564 71.3495 77.2028 78.0383 

 
 
 

Fig 11:  Plot between natural frquency parameter and mode number of frequency  for αααα= 

90º and different sξ values. 
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Table 7: Frequency parameter of a clamped circular arc subtending angle 120º 
 

 

 
αααα 

Mode 
Number 

sξ 

20 50 80 100 
 

120º 
1 4.3094 4.4515 4.4690 4.4731 
2 11.7961 12.7365 12.8621 12.8916 
3 22.5111 25.5343 25.9752 26.0806 
4 23.3035 42.3015 43.4133 43.6843 

 
 

Fig 12:  Plot between natural frquency parameter and mode number of frequency  for αααα= 

120º and different sξ values. 
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Table 8: Frequency parameter of a clamped circular arc subtending angle 180º 
 
 

 
αααα 

Mode 
Number 

sξ 

20 50 80 100 
 

180º 
1 1.7908 1.8147 1.8175 1.8182 

2 5.0324 5.2138 5.2363 5.2415 
3 10.2323 10.8842 10.9690 10.9889 
4 16.9177 18.5367 18.7604 18.8134 

 
 

Fig 13:  Plot between natural frquency parameter and mode number of frequency  for αααα= 

180º and different sξ values. 

 

 
 
 
 
 

 
 
 



33 | P a g e 
 

Table 9: Frequency parameter of a clamped circular arc subtending angle 270º 

 
 

αααα 
Mode 

Number 
sξ 

20 50 80 100 
 

270º 
1 0.7311 0.7349 0.7353 0.7354 
2 1.9356 1.9646 1.9680 1.9688 
3 4.1990 4.3189 4.3336 4.3370 
4 7.3449 7.6729 7.7143 7.7239 

 
 
 

Fig 14:  Plot between natural frquency parameter and mode number of frequency  for αααα= 

270º and different sξ values. 
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5. CONCLUSION 
 
 

The analysis of vibration of a thin walled circular curved beam is presented in this 

report. The results obtained are in good agreement with published results. The results are 

accurate and precise. This analysis holds good for linear static problems. The natural 

frequencies converge to the theoretical results. From the graph (Fig 5 to 14), it is very 

much evident that for smaller angle subtended by beam, frequencies vary greatly with 

variation in slenderness ratio for higher mode number. As the angle subtended increases, 

the frequency curve converges gradually. And for greater angle subtended (keeping other 

parameters constant) the natural frequency obtained is less. 
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 6. SCOPE FOR FUTURE WORKS: 

  

• Beams of different geometrical shapes (like elliptical etc.) can be formulated and 
analyzed so that it will be useful in enhancing the aestheticism. 

• Beams of various material (like thin wall sandwiched beam) can be analyzed that 
will impart more strength and stability to structures. 

• Improvements can be done by the application of combination of differential 
materials in multi-span curved beams. 

• Non-linear analysis of curved beams can be done which will help in vibrational 
analysis of thick curved beams.  
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