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ABSTRACT:

A very thin circular curved beam is analyzed far matural frequency in this project.

Only out of plane vibrations are considered in ngject. The stiffness matrix and mass
matrix are derived from the strain energy and kmenbergy. This is done with the help
of natural shape functions. The derivations areedariocal coordinate system or Global
Cartesian coordinate system. The out of plane defbons considered are the rigid body
displacement of the centre of curvature in the ladigection, the rigid body rotation

about the centre of curvature in the radial digectiand the rigid body rotation about the
centre of curvature in the circumferential direstet the mid cross section. For analysis
FEM is used. Study of change of slenderness ratidifferent modes of frequencies is

done in this project. For tedious calculation Matfa0 is used.
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1.INTRODUCTION:

Curved beams have found many applications in cimkchanical and aerospace
engineering. Exact and efficient nonlinear analysfisstructures, built up from beam
components, using robust Numerical methods, enjtefielement methods, should be
based on proper nonlinear beam theories.

For computationally analyzing curved beams or acheny prefer using straight beam
elements based on straight beam theories. Thissimple and good approximation for

slender curved beams or flexible curved beams adfihonore elements will be used to

get a satisfactory accuracy. Others prefer usingeclbeam/arch elements to analyze
curved beams or arches based on slender beamethéoreduce the number of elements
used

However, for thick and moderately thick curved beaan increase in the accuracy of the
finite element solution by increasing the numberstrhight beam elements or curved
beam elements based on the slender beam theosdssHamit, especially when long-
term dynamic responses as well as strains andsefraa three-dimensional level are
needed for design purposes. In this case, moreeckfturved beam theories should be
used.

1.1 Mechanical vibration

This is the continuing and repetitive motion (ofgeeriodic) of a solid or liquid body.
Vibration occurs in a variety of natural phenomenah as the oceanic tidal motion, in
stationary and rotating machinery, in varied nastractures like ships and buildings, in
vehicles, etc. It is observed that there existr@ng coupling between the mechanical
vibration notions and the propagation of vibratemmd acoustic signals through both the
air and the ground to create a possible sourcennbyance, discomfort and physical
damage to structures and people.[10]
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1.2 Complex systems

For study of vibration, many simplistic assumpsi@are taken into consideration. These
may include the input and response being peridtiie;input being of discrete nature,
which it is temporal in nature having no referemncespatial distribution; and a single
resonant frequency and a single set of parametenequired to define the stiffness, the
mass, and the damping. The real world is much roongplex. Many sources of vibration
are not always periodic. These may include impelsigrces and shock or impact
loading, where a force is suddenly applied on theylor on the system for a very short
time; random excitations, where the signal vamesme in such a way that its amplitude
at any given point is expressed only in terms pfabability.

1.3 Sour ces of vibration

There are many sources of vibration, both mechaaiva structure. The most common
form of mechanical vibration problem is inducedrbgchinery of variety, often (but not

always) of the rotating type. Other sources of afiion are: ground-borne propagation
due to construction; vibration due to movement ehvy vehicles on any type of

pavement as well as vibrations generated due fremailway systems common in many
big and developed areas; and vibrations inducedabyral phenomena and events, like
earthquakes and wind forces.

1.4 Effect of vibrations

The most serious effect of vibration, especially tire case of machinery, is that
sufficiently high alternating stresses can prodiatigue failure in machine and structural
parts. Less serious effects include increased weéararts, general malfunctioning of
apparatus, and the propagation of vibration throdigindations and buildings to
locations where the vibration of its acoustic reation is intolerable either for human
comfort or for the successful operation of sensitivveasuring equipment.
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1.5 Vibration in Mass-spring-damper system:

A mass spring damper system is used to understameé basic principles of vibration
without undergoing any difficulty of complex systeuch a system contains a spring
with spring constant k that restore the mass tewral position, a mass M and a damping
element which opposes the motion of the spring waitbrce proportional to the velocity
of the system, the damping constant ¢ being thetaahof proportionality. The damping
force is dissipative in nature, and without thesprece the resistive force of this mass-
spring system will continue to be in a periodic oot

Single DOF System
Fig.-1

k m - mass

A 101
m * >

k - stiffness

¢ - damping
f (1) - force

et

cl+—1

mo ot f(t)

—_— = X, U
C ton’s s of motion (ma =F), w ;
From Newton’s law of motion we have

mii= f{t)~ku—ci,

1.e.
mii+cii+ku=f(1) (1)
where # is the displacement, @ =du/dt and i =d*u/dr.
Free Vibration:  f{(t) = 0 and no damping (¢ = 0)
Eq. (1) becomes
mii+ku=0 2)

(meaning: inertia force + stiffness force = 0)
Assume:

u(t) =Usm (wt)

where ® 1s the frequency of oscillation, U the amplitude.

Eq. (2) yields
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—Ues m sinf wt)+kU sing ct)=0

1.e.,
[— @’ m+ k]U =0

For nontrivial solutions, we must have
[— ’m —|—k]= 0,

which yields

@ = (3)

m

1.6 Modes of vibration

Mode of an oscillating system is a pattern of motio which whole system move in
sinusoidal with the same frequency. Any physicgecibhas a set of normal modes that
depend on its materials, structure and boundarglitons. The mode of vibration is
characterized by a mode shape and modal frequandyjs numbered according to the
number of half waves formed in the vibration. Isystem with two or more dimensions,
each dimension is given a mode number.
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2L I TERATURE REVIEW:

W. P. Howson and A. K. Jemah [1] deduced a vergctife method of
determining the exact out of plane natural freqiesnhof curved beams. Stiffnesses are
derived from the governing differential equatiofifiese stiffnesses are used to yield a
transcendental eigen value problem. Values obtdimed this method are considered to
be exact analytical solution to vibration of cuniesehm problem.

Bo Yeon Kim, Chang-Boo Kim [2] considered a thinitie circular beam element
for the out-of-plane vibration analysis of curvedalns. Its stiffness matrix and mass
matrix were derived, respectively, from the stramergy and the kinetic energy. The
effects of transverse shear deformation, transvestey inertia, and torsional rotary
inertia, were presented.

C. G. Culver and D. J. QOestel [3] had developed rttethod of determining
natural frequency in multispan curved beam. Thehoubtis illustrated in a two span
beam. In their work they have used Rayleigh-Ritzhoe together with the Lagrange
multiplier concept. Both methods led to very acteiraesults. The beam element
considered in this case was of double symmetry,tdwehich the nature of the response
was an uncoupled response for in-plane bending,aaedupling of the out of plane
normal bending and the rotational responses.

R. Emre Erkmen and Mark A. Bradford [4] developédr t3D elastic total
Lagrangian formulation for the numerical analysfssteel concrete composite beams
which are curved in-plan. On the basis of geometoiclinearities the strain expressions
and the partial interaction at the interface in thegential direction as well as in the
radial direction were derived. The beam with largitial curvatures may behave as
slender beams at the elastic range geometric reanliy. They had also shown that if the
initial curvature of the beam is increased the bemdecomes significantly softer.

Jong-keun Choi and Jang-keun Lim [5] used the cubhwam elements as their
consistent form of strain fields simplifies theoriulation. Hence on the basis of the
assumed strain field and Timoschenko beam theay dleveloped two-noded and three
noded curved beam element. These two elementsdmche axial, in plane and out of
plane shear, bending and torsional deformationser@ds the two-noded beam has the
constant strain fields and the three-noded beam thaslinear strain fields. The
displacement functions were considered in the loaalilinear coordinate system, which
were again used in the derivation of stiffness imdty applying the total potential energy
theorem. Then these local stiffness matrices wenestormed into a global Cartesian
coordinate system in order to obtain the glob#ingtss matrix.
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By using the curved beam elements, John-Shyong MduL&eh-Kwang Chiang

[6] obtained the dynamic responses of a circulawvemnl Timoshenko beam under the
application of a moving load. They considered ttiect of shear deformation and that of
rotary inertia resulted due to bending and tordieitaations. Then the stiffness matrix
and mass matrix were obtained from the force digprent relation and the kinetic
energy equations respectively. As the element oestrof the curved beam element were
based on local co-ordinate system, hence the caefts were independent on d curved
beam elements having a constant radius of curvatndethe transformation from local
stiffness matrix to global stiffness matrix was neteded.

Dipak Sengupta and Suman Dasgupta[7] used LagrBog@omials in natural
co-ordinates for beam geometry interpolation arsdviertical displacements. But the
angles of transverse rotation and twist were iiatpd by another set of three degree
polynomial. After assuming the elastic deformatidasbe proportional to the reactive
forces, the effect of shear deformations were damed in the stiffness matrix, whereas
the translational and rotary inertias were congiden the formulation of mass matrix.
But the flexural rotary inertia and torsion rotanertia were neglected in dynamic
loading cases. Four-point Gaussian scheme was wusedumerical integration.
Considering static loading with and without elastandation, displacements, bending
moments and torque was calculated.

J. R. Hutchison [8] has done some of the work oeashcoefficients for
Timoshenko beam. His work shows that in a Timosbhdoméam shear deformations and
rotary inertia have effects on the vibration inngler beams. The formulation for shear
coefficient is done in his work. The values of sheaefficient from his work have been
used in the problems done in this paper.

Jong Shyong Wu and Lieh Kwang Chiang [9] tried &dedmine the dynamic
responses of a circular curved Timoshenko beanta@aemoving load using the curved
beam elements. In addition to the typical circutarved beams, a curved beam
composed of one curved beam segment and two dtiaégim segments subjected to a
moving load was also studied. Influence on the dynaesponses of the curved beams
of the slenderness ratio, moving-load speed, sl mation and rotary inertias were
investigated.

In this report, a thin beam elaeme considered for which cross section
remains same throughout the length. Matrix calcutais done by stabilization of strain
and kinetic energy. Analysis and determinationhapse functions is similar to that given
in [2]. The matrix calculation is done with a singgic approach. The effect of change of
local coordinate system is not considered for ma#tssembly as the elements are
compatible at connecting nodes.
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3.Analysis of Thin circular beam element:

O X

Fig.2 Thin circular beam showing out of plane Deformasiam both Cartesian and local
coordinate system

3.1 Out-of-plane defor mations

Along with the Cartesian system, the local coortdirgystem of the beam is also shown
in polar form. ‘O’ is the center of curvature otthircular thin beam element and C is the
center of cross section. The radius of the cemdidide passing through the center of
cross section ig*. Half of the subtended angle of the element ateeisd = (02-a1)/2.
The nodes of the elemeritand2 are on the centroidal line.

¢ is the local centroidal axig) is the local circumferential axis adds the local vertical
axis of cross section. When only out of plane defiirons are consideredy’‘is the rigid
body displacement of the center of curvature albagis, ‘¢’ is the radial component of
rotation and &’ is the circumferential component of the rotatibiCa
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The bending curvatures, twist Ty, and shear straify at C, are expressed as

Ke= ('@ r (1a)
Ty = (@+)/ T (1b)
Yo =0 +ulr (1c)

Where () is a partial differential with respeotdircumferential coordinate.

The internal bending momeMg¢, torsion momenM, and shear forchl; at the point C
can be expressed as

ME = EIEKZ (2&)
M, = Gty (2b)
NZ = KzGA’Y( (20)

WhereA is areal is he area moment of inertia ab&utaxis,Jy is the torsional moment

of inertia, K is the shear coefficient of the cross sectiaris Young's modulus of the
material.G is the shear modulus, which is expresse@ak/2(1+v) with the Poisson
ratiov.

3.2 Shapefunctions:

Out-of-plane forces and moments are applied at sxddand 2 of the circular beam
element in equilibrium. The internal bending momeatsion moment, and shear force

on the cross section at C can be expressed in rthe internal bending momeM ¢,
torsion momenM  and shear forchlzo on the mid cross section@t0 as

ME = Mgoce +( Mqo -T Nzo )£ 336
M(p =M Eose+ (Mqo_r Nzo )CO+r Nzo (3b)
NZ = N(o (3C)

WheresB=sin9, d@=co9, 6=a—(a2+al)/2 .
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By substituting Eqg. (3) into Eg. (2), we get

Ks=( BsCO+ BesB)/ I (4a)
Ty =B*( B4 BssB+ BecB)/ 17 (4b)

Y; =a* Bir (4c)
where

Bs=r’ Ny / El (5a)
Bs= ¥ Mg /El; (5b)
Be=r* (Mot Ngo)/ Elg (5¢)
a=EWK;GAF (6a)
B=El/ G J, (6b)

If a=0, then the effect of transverse shear deformasimeglected, i.§; =0 .

By substituting Eqg. (4) into Eqg. (1), we get

(BsCO + BgsB)/ r°= (¢’ —@)/ r (7a)
B*( B4 BssB + BocB)/ r'= (@+¢)/ (7b)
a*ByJr=0¢ +u'/r (7c)

B4, B,/r and B3/r are the constants of integration of the differ@rgiquations. They are
the rigid body displacement of the center of cwwxatin the axial direction, the rigid
body rotation about the center of curvature in ithéial direction, and the rigid body
rotation about the center of curvature in the cifarential direction at the mid cross
section, respectively.

Adding Eqgn(7a) and (7b) we get

0"+ & )/ r= (- BsSO+ BeCB)/ r’*+ B(B4—BssB+ BocB)/ 1
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Solving this differential eqn with boundary conditi $(0) = B,/r and
¢’(0)= (Bs+ Bs)/awe get

¢ = {B,CO+ ByB+ Byf, (1-cB) + Bs (F,sB+1:000) +Bsf 08y r  (8a)

Subtracting eqgn (7a) from (7bwe get

(@'+ @)/ r= B(~BscO- BesO)/ r"~(BscO+ BesH)/ 1°

solving this differential eqn with boundary conditi@ (0)= Bs/r and
@(0)= B(B4 +BscB)/ 1 - By/r we get

© = {~B,SB+B300+B,f,50-Bsf:059-Be(f,59-F-0c0))/ r (8b)

Putting egn (8b) in (7c) we get
(u)'=a*B4+{B ,co+ B3O + B,f, (1-c6) + Bs (f,S0+f:0c0)+B4f:00}
solving this differential eqn with boundary conditiu(0)=B; we get

u = B;+B,s8—B;c6+B, (f19+f29—f259) +B;s (_f2+f2C9+f3956) +

B (f,sB+f,sB— f;0cH) (8c)
Where
f, =a (9a)
fo =p (9b)
fa=(14B)/ 2 (9¢c)
f, =(1-P)/ 2 (9d)

The static deformations represented by Eq. (8usee as the shape functions for the out-
of-plane motion of thin circular beam element. Tiaeg the rigid body modes associated

with B4, B2/r, andBs/r and the flexible modes associated vidth) Bs, andBs.
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The displacements and rotations at nodes, 1 acah?ye expressed as

{vi=[a]{B1} (10)
where
{vi= ¢1
(]
Ug (113)
02
®
Uz
{B1}={B 1B, B3 B, BsBg}' (11b)

0 @ -BIr §(1-cO)r  —(f,0+F0c0)r  £OOIr

[al= | 0 @ cOIr -5, —£,09/ r (£S9+f,0c0)/ 1
1 -9 -8 —(F,0+,0,80) —fr+f,00+f.080 — (F,sB+f,S8)+ 08¢0
0 ®r S (1O (isB+f.0c0)r  £0AIr
0 -s9r cBlr f,0Ir 050/ 1 — (f4sB—F00)/ r

1 9 -8 641,616,509  —Af,+f,c6+f;0s0 (f,s0+f,30)— f;6cH

The coefficient vector of shape functiof&1} then can be expressed in terms of the
nodal displacement vector with respect to the |poddr coordinate systedv} , as

{B1}={a} "{v} (12)
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3.3 Stiffness matrix:
Eq.4 can be written in the matrix form as

[strain]=[R]{B1}
Or, [strain]=[R] {a}{ v}
=[B{v}

Where [strain]={Ks Ty Yz}
[B] =strain-displacement matrixfR] {a} *

[RI=1/ r? *
O 0 00 & <0
00 OB —BsB Pco
OO0 OrxO 0
From eq.(2)

[Stress] = [D][strain]

Where,[D] = strain stress matrix

EX. O 0
0 G O
0 0 IG*A

Therefore stiffness matrix is given by

K] = o) [B]"[D][B]*r*d ©

18)

(14)
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3.4 Mass Matrix

The kinetic energy of the thin circular beam eletmsm®xpressed as

T=1/2 %)% ple(@')+ply(@)+pA(U') * r*d B (15)

Takingp*r common and arranging the terms inside brackedrim of matrix we get

0} le O O v
¢ 0 ,, 0 |10 ¢ U
T= 112 %,/ pr |y de
add P fu 0 0 ¥4

=1/2%,[%(v} (INKa} )" [N}fa} (v} p.r* dB
(16)

Where,[N] is derived from egn (8) as[ @ u]' =[N] {B1}

INl 10 @i Bir §(1-cO)r (£sD+f;0c0)/r  £00/r
= 0 -sB/r cOlr fs0/r — 00/t — (f40-f50cO)/
1 9 -0 (f10+,0-F,90) —f,+f,c0+f050 (f,S0+f,50)—f;6cH

(18)
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So,mass matrix is

M = oo pr * (N] {a} )T o | [N]{a}* *do

o o4&
Oo& O
«~ ©

(19)

Since all the element property matrices for thevedrbeam element are derived based on
the local polar coordinate system (rather thanldbal Cartesian one), their coefficients
are invariant for any curved beam element with tamtsradius of curvature and
subtended angle and one does not need to trandffierproperty matrices of each curved
beam element from the local coordinate system e¢ogthbal one to achieve the overall
property matrices for the entire curved beam stmecbefore they are assembled. The

elements are compatible at nodes.
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4. Flow-Chart

The flow-chart of the program used in determinatbstiffness matrix, mass matrix and
natural frequency parameter:

Start

A 4

Declaration of material & geometrical propertiesl @mumber of elements (n)

I<=n <
\i Assembling stiffness
matrix & mass
Determination of element stiffness matrix matrix
A

A\ 4
Determination of element mass matrix

Applying boundary conditions

A 4

A 4
Determination of natural frequency parameteys
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5. RESULTSAND DISCUSSIONS

Table 1, 2 and 3 shows the natural frequenciegailar beam clamped at both ends.
Ref.-1 shows the values obtained by Howson [1]Refi-2 are the values obtained by
Yeon Kim [2]. It is very much evident from the ghapnd tables that there is a good

agreement between all results.

E = 200 GPay = 0.3,p = 7830 kg/ml, r = 1 m, | = 1.5¢10°m", I, = 3.0<10° m", J,

=3.0x10° m", K, = 0.89
Frequency parameter,= \(A*r % l2)

And slenderness ratig; = wV(pOA*r Y/E 1)

Table 1: Comparison of frequency parameter of dytlane of a clamped circular arc

subtending angle 60

Mode Number a=60
S Ref.-1 Ref.-2 PRESENT
1 16.885 16.885 16.8853
20 2 39.700 39.706 39.7048
3 40.934 40.940 40.9399
4 70.581 70.612 70.6110
1 19.454 19.454 19.4538
100 2 54.148 54.148 54.1482
3 105.86 105.87 105.8652
4 173.16 173.18 173.1774
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Fig 3: Plot of three natural frequency resultsder60® and S:=20
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Fig 4:

Plot of three natural frequency resultsder60® and S:=100
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Table 2: Comparison of frequency parameter of dytlane of a clamped circular arc
subtending angle 120

Mode Number a =120°

S Ref.-1 Ref.-2 PRESENT

1 4.3094 4.3094 4.3094
20 2 11.796 11.796 11.7961
3 22.510 22.511 22.5111
4 23.303 23.304 23.3035

1 4.4731 4.4731 4.4731
100 2 12.892 12.892 12.8916
3 26.081 26.081 26.0806
4 43.684 43.684 43.6843

Fig 5: Plot of three natural frequency resultsder120 and S:=20
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Fig 6: Plot of three natural frequency resultsder120’ and S:=100
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Table 3: Comparison of frequency parameter of dytlane of a clamped circular arc
subtending angle 180

M ode Number a=180°

S Ref.-1 Ref.-2 PRESENT

1 1.7908 1.7908 1.7908

20 2 5.0324 5.0324 5.0324
3 10.232 10.232 10.2323
4 16.917 16.918 16.9177

1 1.8182 1.8182 1.8182

100 2 5.2415 5.2415 5.2415
3 10.989 10.989 10.9889
4 18.813 18.813 18.8134
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Fig 7: Plot of three natural frequency resultsder180 and S-=20
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Fig 8: Plot of three natural frequency resultsder180 and S:=100
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New results:

Keeping other parameter same such as material piegpand shear coefficients, and by
changing the slenderness ratio and angle subtehgetthe circular arc at centre of
curvature following results were obtained.

Table 4: Frequency parameter of a clamped cirartasubtending angle 45

Mode S
a Number 20 50 80 100
1 27.8613 33.7647 34.7424 34.9813
45 2 51.4874 88.9404 94.5267 95.9843
3 63.4709 128.9513 180.6708 185.3154
4 100.1443 | 164.1954|  206.3712 257.9775

Fig 9: Plot between natural frquency parameterrande number of frequency far

453 and different S:values.
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Table 5: Frequency parameter of a clamped cirartasubtending angle 60

Mode S
a Number 20 50 80 100
1 16.8853 19.0624 19.3784 19.4538
60° 2 39.7048 51.7326 53.6675 54.1482
3 40.9399 98.1597 104.2694 105.8652
4 70.6110 99.4945 159.2184 173.1774

Fig 10: Plot between natural frquency parameterrande number of frequency far

60’ and different S:values.
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Table 6: Frequency parameter of a clamped cirartasubtending angle 90

M ode
a Numnber 20 50 80 100
1 7.7846 8.2495 8.3097 8.3238
90 2 20.4151 23.1607 23.5623 23.6582
3 28.4540 45,3880 46.7420 47.0740
4 37.3564 71.3495 77.2028 78.0383

Fig 11: Plot between natural frquency parameterrande number of frequency far
9 and different S:values.
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Table 7:

Frequency parameter of a clamped cirartasubtending angle 120

M ode
a Number 20 50 80 100
1 4.3094 4.4515 4.4690 44731
120 2 11,7961 12.7365 12.8621 12.8916
3 225111 255343 25.9752 26.0806
4 23.3035 42.3015 43.4133 43.6843

Fig 12: Plot between natural frquency parameterrande number of frequency far
120’ and different S:values.
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Table 8: Frequency parameter of a clamped cirarasubtending angle 180

Mode S
a Number 20 50 80 100
1 1.7908 1.8147 1.8175 1.8182
180’ 2 5.0324 5.2138 5.2363 5.2415
3 10.2323 10.8842 10.9690 10.9889
4 16.9177 18.5367 18.7604 18.8134

Fig 13: Plot between natural frquency parameterrande number of frequency far
180 and different S:values.
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Table 9: Frequency parameter of a clamped cirarasubtending angle 270
Mode S
a Number 20 50 80 100
1 0.7311 0.7349 0.7353 0.7354
270 2 1.9356 1.9646 1.9680 1.9688
3 4.1990 4.3189 4.3336 4.3370
4 7.3449 7.6729 7.7143 7.7239

Fig 14: Plot between natural frquency parametéerrande number of frequency far
270 and different S:values.
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5. CONCLUSION

The analysis of vibration of a thin walled circutarrved beam is presented in this
report. The results obtained are in good agreemihtpublished results. The results are
accurate and precise. This analysis holds goodiriear static problems. The natural
frequencies converge to the theoretical resultsmFhe graph (Fig 5 to 14), it is very
much evident that for smaller angle subtended mdrequencies vary greatly with
variation in slenderness ratio for higher mode nemBs the angle subtended increases,
the frequency curve converges gradually. And featgr angle subtended (keeping other

parameters constant) the natural frequency obtamieds.
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6. SCOPE FOR FUTURE WORKS:

* Beams of different geometrical shapes (like eltipitietc.) can be formulated and
analyzed so that it will be useful in enhancingalstheticism.

» Beams of various material (like thin wall sandwidheam) can be analyzed that
will impart more strength and stability to struetsr

* Improvements can be done by the application of c¢oation of differential
materials in multi-span curved beams.

* Non-linear analysis of curved beams can be donehwhill help in vibrational
analysis of thick curved beams.
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