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Abstract 

 
Accurate prediction of discharge in compound open channel is extremely essential for river 

engineering point of view. As this provide essential information regarding flood mitigation, 

construction of hydraulic structures and for prediction of sediment load. Most natural Rivers 

and streams consist of two stage channel i.e. main channel and flood plains. Earlier 

discharge determination model are studied to develop the models. Methods like 

COHM,SCM, DCM, and other models which is widely used. Here an effort has been made 

to predict the total discharge in compound channel with the comparison of above models 

with ANN based FFBP model. The model provides slightly better results then COHM, 

DCM but provides more accepted results then SCM.    
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1. Introduction 

              Floods occurs when main channel inundates and severe discharge follow the flood 

plains which invades main channel, such channels are  Compound channels which  consist of 

different compartments: typically a main channel surrounded by floodplains  two-stage 

channel, see Fig. 1. 

 Many practical problems in river engineering require accurate flow predictions in compound 

channels. For example, the hydraulic response to flood prevention measures, such as 

dredging the main channel and lowering or smoothing floodplains, depends on the flow 

velocities in these compartments. Likewise, local flow conditions determine the erosion and 

deposition rates of sediment in the main channel and floodplains.  

         

 
 

Fig.1: Cross section of a two-stage channel: (a) asymmetric with two identical 

floodplains Nfp=1 ;( b) symmetric with one floodplain Nfp=2.  

 

H=Total Flow Depth 

h=height of main channel 

b=width of main channel 

B=With of floodplains 
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1.1Objective and Scope of the Present Study: 

    A comparative study of flow in compound straight channel is done by comparing  

different approaches carried out by various researchers across the globe with experimental 

setup done in Fluid Mechanics lab of NIT Rourkela by (Khatua.K.K ,2008) and data 

obtained from FCF-Berhimngham data series, Experimental work done by (Soong W.T. and 

DePue II M.P.,1996) at UIUC, Tang’s rigid and mobile channel data(Tang, 2001 ), Atabay’s 

data( Atabay,2001 ) and with ANN based prediction .  
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2. LITERATURE REVIEW  
  

Sellin (1964) and Van Prooijen (2004) investigated mixing patterns and secondary 

currents in compound open channel due to the difference in flow velocity between the main 

channel and the floodplain.These processes, observed in experimental studies are responsible 

for the lateral momentum transfer that generally slows down the flow in the main channel, 

while accelerating the flow in the floodplain. The lateral momentum transfer has been 

ignored when estimating the flow velocities in compound channels. Chow (1959) 

investigated Divided channel method DCM, by A force balance between gravity and bed 

friction leads to a cross sectional averaged flow velocity for each of main channel & 

floodplains ( Umc in the main channel and Ufp in the floodplains as stated by Chow (1959)). 

Such a compartment-averaged approach has the advantages of requiring little input like  

geometry, surface slope, bed roughness and their  being straightforward to calculate, while 

recognizing the different properties of the compartments .Weber and Menéndez(2004) 

developed a model which overestimates Umc and underestimates Ufp, due to neglect of lateral 

momentum transfer, that led to  three different alternative approaches .Stephenson and 

Kolovopoulos (1990), Lambert and Myers (1998), Patra and Kar (2000) didn’t consider the 

lateral momentum transfer, in particular to the interfaces. velocity difference between main 

channel and floodplain (Umc−Ufp) and the channel dimensions introduced an interface stress 

interface between adjacent compartments as studied by Wormleaton et al. (1982), Prinos and 

Townsend (1984); Christodoulou (1992). The resulting averaged flow velocities are 

determined from a rather complicated set of analytical equations Bousmar and Zech 

(1999).Atabay & knight (2002) proposed some stage discharge relationship for symmetric 

compound channel section using their experimental work in FCF .According to their 

experimentation and analysis derived a simple empirical relation between stage and total 

discharge and stage in zonal discharge for uniform roughness and varying floodplains and 

width ratios .They also examined  broad effect on stage discharge relationship due to 

floodplains width ratio.Ozbek et. al.(2003) used experimental result from FCF for computing 

apparent shear stress and discharge in symmetrical compound channels varying floodplain 

widths.They used VDM,DCM,HDM methods to compute apparent shear stress across the 
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interfaces.They evaluated discharge value for each subsection and whole cross section 

.According to their results DCM and HDM provides better result than VDM. 

 

 

 

 

 

 

 

 

 

 

Fig.2 Schematic view of momentum transfer between main channel and floodplain for a 

two stage compound channel section 

 

2.1METHODS FOR DETERMINATION OF DISCHARGE 
 

2.1 SINGLE CHANNEL METHOD:- 
 

Unfortunately the discharge calculation for compound channel is based mainly on 

refined one dimensional methods of analysis. If a compound channel is considered as single 

entity (Chow, 1958), the carrying capacity is underestimated because the single channel 

method suffers from a sudden reduction in hydraulic radius at just above bank full, that 

produces spurious discharge assessment  when using the conventional Mannings, Chezy’s or 

Darcy-Weischbach equation. While the more usual method of dividing the channel into deep 

section and floodplain is used, the resulting discharge is the overestimation of the actual 

capacity. The conventional Mannings, Chezy’s or Darcy-Weischbach are well known 

examples of this approach, usually expressed as: 

Q=
1

N
AR

2

3
S

1

2
                                                                                                                         (1) 

RSCA=Q                                                                                                                                 (2) 

Momentum 

Direction of flow  
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2.2 DIVIDED CHANNEL METHOD:- 

 
The usual practice of calculating discharge in a compound channel is the use of 

‘divided sections’ method. Assumed vertical, horizontal or diagonal interface planes running 

from the main channel-floodplain junctions are used to divide the compound section into 

subsections, the discharge for each subsection is calculated using Manning’s or Chezy’s 

equation and added up to give the total discharge carried by the compound section. Generally 

Manning’s formula are used for discharge calculation in compound channels and written as. 
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The methods fall into 5 categories and are briefly described as follows:- 

 

2.3 Vertical division methods(VD):- 

 

There are several vertical division methods which are based on altering the wetted perimeter 

of the sub area to account for the effect of interaction. Typically the vertical division lines 

between the main channel and the flood plain is included in the wetted perimeter for the 

discharge calculation in the main channel flow, but is excluded in the wetted perimeter for 

the discharge calculation of flood plain flow .This is intended to have the effect of retarding 

the flow in main channel and enhancing it in the flood plain. How ever simply altering the 

wetted perimeter by the vertical line does not completely reflects the interaction effect is not 

a simple function (Knight & Demetriou,1983;Knight & Schino,1990).It is found that this 

approach generally over predicts  
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flow rate(Wormleaton &Merrett,1990) and conceptually it is flawed since it applies an 

imbalance of shear forces at the interface. In general vertical interface methods overestimate 

discharge in main channel. 

 

2.4  Horizontal Division methods(HD):- 

 

Toebes and Sooky (1967) carried out laboratory experiments on two composite channel    

sections and showed that a nearly horizontal fluid boundary located at the junction between 

the main channel and floodplain would be more realistic than a vertical fluid boundary 

along the banks of the meandering channel in dividing the compound channel for discharge 

calculation 

 

 

2.5  Diagonal Division methods(DD):- 

 

In this method it is assumed that there is zero –shear stress line, which commences from the 

junction of main channel and flood plain and is inclined towards center of the main channel 

water surface, separating the main channel from its flood plains ( Fig. ). The total discharge 

is than obtained through summing up the discharges in each of the three individual zones 

.The idea of drawing division line having   zero shear stress is logically acceptable , but the 

1 2 

Vertical interface plain 

3 

1 

2 

Horizontal interface plain 
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main difficulty is in finding the position of the division lines for all shapes of channels and 

flow depths, due to the three dimensional nature of the velocity fields . 

                         

 

Experimental results demonstrates that the shear stress s on the diagonal division  lines are 

negligible, except for small relative flood plain depths (Wormleaton et al.1982;Knight 

&Hamed,1984) which are commonly experienced when a river just goes overbank. 

 

2.6  The Coherence method (COHM): 

The coherence method (COHM) of Ackers (1991, 1992b & 1993a&b) is now well 

established as one of the best 1-D approaches for dealing with overbank flow and the related 

problems of heterogeneous roughness and shape effects. The 'coherence', COH, is defined 

as the ratio of the basic conveyance, calculated by treating the channel as a single unit with 

perimeter weighting of the friction factor, to that calculated by summing the basic 

conveyances of the separate zones. Thus 

( )

( )[ ]∑
∑∑∑
fiPiAiAi

fiPiAiAi
=COH

/

/
                                                                                      (5)                                           

 

where i identifies each of the n flow zones, and A is the sub-area, P the wetted perimeter 

and f the Darcy-Weisbach friction factor. The closer to unity the COH approaches, the more 

appropriate it is to treat the channel as a single unit, using the overall geometry. The  

extreme cases COH may be as low as 0.5. Where the coherence is much less than unity then 

discharge adjustment factors are required in order to correct the individual discharges in 

each sub-area. Experimental studies of overbank flow in the FCF (Ackers, 1993a) suggest 

that different discharge adjustment factors (DISADF) are required in at least four distinct 

regions of depth, The experimental evidence shows (Ackers, 1993b) that 

1 2 

Diagonal interface plain 

3 
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COH<DISADE<1.0  i.e. 
Q sin gle

Q zones
≤

Q actual

Q zones
≤ 1                                                                 (6) 

This implies that when overbank flow occurs, for a given stage or depth the actual discharge 

is always less than the basic value calculated on the basis of summing the discharge in 

different zones, but greater than the value based on treating the channel as a single unit, i.e. 

Qsingle ≤ Qactual ≤ Qzones                                                                                                         (7)                                                                 

It also means that for a given discharge the actual stage is higher than that predicted by 

zonal summation but lower than that predicted on the basis of treating the channel as single 

unit.The conveyance or discharge capacity of a channel, Q, is related to the energy slope by 

the geometric and roughness parameters defined the conveyance, K, as 

2/1KSf=Q                                                                                                                        (8) 

Ackers (1993a) introduced a modified conveyance parameter, KD, in order to make it more 

suitable for use in overbank flow analysis, defined KD as 

}/({8KD PfAAgSQ f ==                                                                                         (9)            

Thus for a typical compound channel that is divided into three sub-areas, the main river 

channel and two symmetric floodplains, then the basic conveyance, KDB, (before allowing 

for any interaction effects) is given by the sum of the individual conveyances for each sub-

area as 

}/({2}/({KDB FFFfcccc PfAAPfAA +=                                                                       (10)             

where the subscripts 'C' and 'F' refer to main channel and floodplain respectively. The actual 

discharge is then obtained from Eq. (11), by multiplying the basic conveyance by a 

'discharge adjustment factor', DISADF, to give the correct discharge, allowing for any 

interaction effects. Thus 

KD = DISADFKDB                                                                                                          (11) 

As numerical values of COH are generally less than one, and typically the discharge 

calculated by assuming a single channel is less than the discharge calculated by summing 

the zonal values. The actual discharge is usually somewhere between these two values, as 

shown elsewhere by Knight (1997). Vertical division lines should be used between zones, or 

sub-areas, and not used in the wetted perimeters for any of the zones. The 'basic' zonal 
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discharges are calculated from standard resistance equations, i.e. Eqs (6) & (7) and added 

together to obtain the 'basic' discharge, which is then adjusted to account for the effects of 

the interaction between the main channel and the floodplain flows. The adjustment required 

depends on the characteristics of the channel and also varies with stage. Ackers (1992b) 

provided a different adjustment function for each of the four regions of depth, and a logical 

procedure for selecting the correct value from those calculated assuming each adjustment 

factor in turn. He also provided additional corrections to account for the effect of deviations 

of up to 10
0
 between alignment of the main channel and the floodplains, and a procedure for 

dividing the computed total discharge at any stage into main channel and floodplain 

components, based on experiments by Elliot & Sellin (1990). Ackers (1992a) also suggested 

that the square of the discharge adjustment factor could be used to give the mean boundary 

shear stress in each sub-area. 

Although the coherence method was based originally on laboratory data from the FCF, it 

has been applied successfully to a number of natural rivers. Ackers (1993a) shows the stage 

discharge relationship for the River Severn at Montford Bridge, predicted with nc = 0.0307 

and nf = 0.0338. The four regions of flow found to be present in the FCF laboratory data 

appear to be present also in natural rivers, although field measurements are scarce, 

particularly for floodplains with large depths of submergence. More field data and analysis 

are required. The COHM is more difficult to apply when the roughness of the main channel 

river bed varies with discharge, as is the case in sand bed rivers. 

2.7 Z method (Zero shear methods):- 

 

It has a theoretical basis. Holden(1986) developed a method of accounting for shear stress 

that assumed an arbitrary position in the interface as in figure .In this method  a zero shear 

stress is assumed to act on an interface between main channel and flood plain with arbitrary 

position .The flow area for each part of channel are then adjusted (Stephenson 

&Kolovopoulos,1990) 

Acc=Ac-2(∆A)                                                                                                                            (12) 

Aff =Ac +2(∆A)                                                                                                                          (13) 
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Where  A=modified area of main channel and flood plain respectively and the correction 

area ∆A can be obtained from the equilibrium of the forces acting on the flood plain , where 

a vertical interface divides the main channel from flood plain ,given by      

 ∑Ff-τvd = ρgAfS                                                                                                                 (14) 

 

∑Ff  is shear force on wetted perimeter of main channel per unit stream wise length and τv is 

the apparent shear stress on vertical interface. d=depth of flow over flood plain If the 

arbitrary interface with zero shear stress is used 

 ∑Ff= ρg(Af +∆A )S                                                                                                            (15) 

From ( 1).and ( 2). ∆A= (τv/ ρgS)d                                                                                     (16) 

τvis given by Prinos-Townsend empirical Formula(1984) 

τv=0.874(∆A)
0.982

(d/H)
-1.129

(Wf/Wc)
-0.514

                                                                        (17)                                         

Wf and Wc are the widths of flood plain and main channel respectively and ∆V is the 

difference of velocity between main channel from flood plain 

It should be noted that this method is only valid with the range of empirical results 

employed and is not generally applicable. 

 

 

 

 

 

 

 

1 2 

Area Method 

3 

Vertical interface 
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2.8 Exchange discharge method (EDM):  

Each subsection of a compound channel can be considered as a single channel submitted to 

a lateral flow per unit length ql. The conservation of mass may be written 

outin qqq
X

Q

t

A
−==

∂

∂
+

∂

∂
1                                                                                                   (18)

     

Where  qin, inflow discharge and qout, outflow discharge. 

The momentum equation for a unit length also accounts for the lateral flow. 
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where q, density of water; g, gravity constant; U ¼ Q=AU, depth averaged velocity; H, 

water depth; and ul, velocity of the lateral inflow in the direction of the main flow. It is 

noticeable that inflow and outflow convey different momentum since their initial velocities 

are not the same . 
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Fig4 :Momentum equilibrium for a compound channel subsection 
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Fig5 : Flow exchange at interfaces between main channel and floodplains. 

 

where the lateral flow has been divided into right-side r and leftside l inflow; Se, total head 

loss per unit length; and Sa, additional loss due to lateral inflow, i.e. momentum transfer 

effect. The lateral flows represent turbulent exchange and geometrical transfer. The 

turbulent exchange discharge, qt, is the mass of fluid which oscillates between main channel 

and floodplain, due to the large vortical structures that develop in the shear layer at the 

interface, and may be modelled using a mixing length. 

It is proportional to the velocity difference between subsections (Uc - Uf ) and to the 

interface area per unit length (H -hf ), where c and f stands for main channel and floodplain, 

respectively; and hf is the bank level: 

 

)( ffc

tt

fc

t

cf hHUUqq −−== ψ                                                                                        (20) 

 

where Wt (=0.16) proportionality factor. Because turbulent exchange is an oscillating 

discharge, the lateral inflows, qt ,cf , from main channel to floodplain and the dual inflow, qt 

fc , are equal. Accordingly, the turbulent exchange does not affect the conservation of mass 

of the above equation  but has a significant effect on the momentum balance. 

The geometrical transfer, qg, corresponds to the floodplain conveyance variation due to a 

non-prismatic geometry or to a gradually varied flow in a prismatic geometry. 
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Using the momentum equation of the above equation to correct the friction in the 1
st
 

equation  and assuming that the head loss Se is the same in all subsections, the subsection 

discharge is given by 
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where subscript 2 stands for the main channel; subscripts 1 and 3 stands for the floodplains; 

and h1 and h3, main-channel bank level on floodplain 1 and 3 side, respectively. 
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The system of equations defines the values of the ratios  in an implicit form, and as a 

function only of water depth, geometry and roughness. An analytical solution of for straight 

symmetrical uniform flow is given by Bousmar (1999) and Zech(1999) proposed a 

numerical solution procedure for the general case. When developing these solutions, it was 

assumed that the main channel velocity was larger than the floodplain velocity. This 

hypothesis enabled the absolute values to be replaced by the difference in brackets without 

any sign change. Solving Equations implied the extraction of the roots of quadratic 

equations. The hypothesis on the velocity gradient enabled one again to select the 

appropriate root. The tests for selecting the appropriate roots when developing the solutions 

also change. 

2.9Two-Dimensional Method: 

2.9.1Shiono–Knight method (SKM): 

Shiono and Knight presented an analytical solution to the Navier–Stokes equation to predict 

the lateral variation of depthaveraged velocity in compound channels. The Navier–Stokes 

equation may be written in the following form for a fluid element in steady uniform flow in 

which there are both bed generated shear and lateral shear: 
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(i.e., Secondary flows = weight force + Reynolds stresses (lateral + vertical), where u, v and 

w are the local velocities in the x (streamwise), y (lateral) and z (vertical) directions 

respectively; S0 =sin h, is the bed slope; τyx and τzx are the Reynolds stresses on planes 

perpendicular to the y and z directions respectively; q is the water density; and g is the 

gravitational acceleration.) Shiono and Knight  obtained the depth-averaged velocity 

equation by integrating Equations over the water depth H based on the eddy viscosity 

approach and, by ignoring the secondary flow contribution, arrived at 
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where Ud is the depth-averaged mean velocity; k is the dimensionless eddy viscosity; f is 

the Darcy–Weisbach friction factor and s is the main channel lateral side slope. Shiono and 
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Knight solved the above equation analytically and obtained the following equation for the 

case of H = constant in the form: 
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and for linearly varying depth as 
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where A1, A2, A3 and A4 are unknown constants; and γ, α1, α2 and ε are the ancillary terms 

of the equations and are given elsewhere by Shiono and Knight. These equation is only 

valid when secondary flows are not considered. However, secondary flows are important in 

many cases. In such a case, the right-hand side of above equation  is not zero and then above 

equation  will be; 
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Shiono and Knight used the approximation in the right hand side of the above equation to 

solve it analytically. The Shiono–Knight method (SKM) was originally developed for 

straight and nearly straight channels. Attempts have been undertaken to use the SKM in 

modeling non-prismatic and meandering channels. 
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3.1 Working Of Artificial Neural Network: 

 

The ANNs have been widely used in modeling hydrological processes. For some hydraulics 

problems Minns, Babovic , and Ervine and Macleod have obtained encouraging results 

using ANN. Cobaner et al.  have applied the ANN method successfully to the assessment of 

backwater through bridge waterways. In the current work, we have developed an ANN 

algorithm to predict discharge capacity of compound channels observed at 190 

comprehensive laboratory data of various experiments done by re-knowned researchers 

across the including ingenious laboratory experiment done in the NIT Raourkela 

FM/Hydraulics LAB. 

 

3.2 Design of the ANN Model: 

 The basic steps involved in designing the network are Collection/generation of input/output 

dataset; Preprocessing of data (normalization and partitioning of dataset); Design of the 

neural network objects; Training and testing of the neural network; simulation and 

prediction with new input data sets; and Analysis &  post-processing of predicted result. 

3.3 Pre-processing of Data:   

Prior to the training of the network, the input/output dataset was normalized usuing simple 

formula of mathematics. The dataset was scaled to range between 0 and 1. The normalized 

input/output dataset was then partitioned into two subsets consisting training dataset, 75% 

(190data), and the test dataset, 25% (40data). 

The data normalization is done with the formula given below: 

minmax

min

XX

XX
n i

data
−

−
=                                                                                                             (32) 

Where Xi = datas in a column, Xmax=maximum data in the column, Xmin = minimum data 

value in the column. 

3.4 Design of the Network Object:  

The networks consisted of three layers: input layer; hidden layer; and output layer. There 

were five input parameters into the network: the two roughness coefficients namely, 

floodplain (ffp) and main channel (fmc), the flow area (A), the hydraulic radius (R), the 

channel slope (S0) ,discharge through the main channel (Qmc) ,discharge through the flood 
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plain(Qfp),Reynold’s no for the main channel ( Remc ),Reynold’s no for the floodplains 

(Refp)  and one output parameter i.e. total discharge. Different networks with single or 

double hidden layer topologies were used. The schematic of typical network architecture is 

depicted in figure. 

 
Fig.6 : A typical design of a general feed forward back propagation neural 

network used for prediction of  total discharge in compound channel. 

 

3.4.1 Training of the Neural Network:  

The network was trained by feeding in some teaching patterns (training dataset) and letting 

it change its weights according to some learning rule. Levenberg-Marquardt 

backpropagation training algorithms is used ‘ in training the different networks:, The 

neurons with tan sigmoid transfer function ‘tansig’ were used in the hidden layer(s), while 

neurons with linear transfer function ‘purelin’ were used in the output layer. The ‘purelin’ 

transfer function was used so that the output would not be limited like the ‘tansig’ function 

which generates output between 0 and +1. If linear output neurons were used, the output can 

take on any value. 

 

3.4.2 Testing of the ANN Model: 

 The training was terminated when the threshold of RMSE = 0.001 or when the number of 

iterations is equal to 1000. The test dataset, 25% (190 data) was used to test the validity of 
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the proposed model. The Root mean square error (RMSE), and mean absolute Root error 

(MARE), and correlation coefficient (R-value) between the network predicted outputs and 

the desired outputs were used as the performance parameters to determine the network 

structure with optimal predictive capability. 

 

3.5 Feed Forward Back Propagation (FFBP): 
 

Models based on the principle of ANN have been considered an alternate to physically-

based models due to their simplicity. ANN models are specified by the net topology, node 

characteristics, training and learning rules. Of the many ANN paradigms, the feed-forward 

network (FFN) is by far the most popular. The network consists of layers of parallel 

processing elements, called neurons, with each layer being fully connected to the 

proceeding layer by interconnection fully connected to the proceeding layer by 

interconnection strengths, or weights. Figure 6 illustrates a three-layer neural network 

consisting of layers i, j, and k, with the interconnection weights Wij and Wjk between layers 

of neurons. At the beginning of training, the weights are initialized, either with set of 

random values or based on some previous experience. Next, weights are systematically 

changed by the learning algorithm. The FFBP was trained using Levenberg–Marquardt 

technique here due to that this technique is more powerful and faster than the conventional 

gradient descent technique. Basically three steps can be used for selecting a suitable 

architecture for a required problem. 

1. Fixing the architecture;  

2. Training the network; and 

 3. Testing the network. 
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4.1 Results: 
 

In this study, an ANN approach versus other physically-based models is devised to estimate 

the discharge value of the compound channels. For this purpose, three hidden-layered feed-

forward back propagation neural network model was used. The data used in developing this 

ANN model were obtained from the comprehensive stage–discharge model studies 

performed as mentioned in Section 2. These data were randomly divided into two 

independent parts. The first data set (167 data) was used for model training, and the second 

data set (72 data) was used for model verification. The problem is adapted to the model by 

means of five input parameters representing the two roughness coefficients namely, 

floodplain (ffp) and main channel (fmc), the flow area (A), the hydraulic radius (R), the 

channel slope (S0) ,discharge through the main channel (Qmc) ,discharge through the flood 

plain(Qfp),Reynold’s no for the main channel ( Remc ),Reynold’s no for the floodplains 

(Refp) and one output parameter, which is the discharge of the compound channels (Q). 

 

A difficult task with ANNs involves choosing parameters such as the number of hidden 

nodes, the learning rate, and the initial weights. The optimum network geometry is obtained 

utilizing a trial-and-error approach in which ANNs are trained with one hidden layer. It 

should be noted that one hidden layer could approximate any continuous function, provided 

that sufficient connection weights are used. The hidden layer node numbers of model was 

determined after trying various network structures since there is no theory yet to tell how 

many hidden units are needed to approximate any given function. In the training stage, the 

adaptive learning rates and the same initial weights were used for each ANN networks as 

used by Kisi. The tangent sigmoid, logarithmic sigmoid and pure linear transfer functions 

were tried as activation functions for hidden and output layer neurons to determine the best 

network model. The appropriate number of hidden nodes is set to 10 in terms of trial and 

error using the logarithmic sigmoid and linear activation functions for the hidden and output 

layer neurons, respectively. 

 

The root mean square error (RMSE), mean absolute relative error (MARE) and 

determination coefficient (R
2
) values of these equations for both  testing phases are given in 

Table . The RMSE and MARE shown in Table  are defined as follows: 
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Where n is the number of datas. 

 

 

                   
Fig.6(a) : Figure showing 

comparison between DCM 

&Actual Discharge(Q) 

Fig 6(b): Figure showing comparison 

between COHM &Actual 

Discharge(Q) 

                                    
 

Fig7(a): Figure showing 

comparison between SCM 

&Actual Discharge(Q) 

Fig7(b): Figure showing 

comparison between ANN 

&Actual Discharge(Q) 
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4.2Testing data: 

 

 

Methods 

RMSE MARE R
2
 

SCM 0.146017 11.0258 0.647 

DCM 0.167459113 60.26609959 0.961 

COHM 0.05698 0.15896 0.964 

ANN 8.90106E-22 0.225048886 0.977 

 

 

4.3Conclusions: 

 

A practical ANN based generalized Feed forward Back propagation technique is used for 

prediction of total discharge in straight open channel.  In terms of MSE and RSME ANN 

yield the discharge data with acceptable yield. The models compared here are SCM, DCM, 

and COHM with ANN. The testing results of ANN data shows statistically more 

acceptable than other former developed methods. The R
2
 of ANN technique is 0.977 which 

is 1.3% more acceptable than COHM, 1.6% more acceptable than DCM and far better 

result i.e 30% more acceptable than SCM. Hence from above observations it is concluded 

that ANN based prediction providing not only good result but also better prediction than 

other widely used methods.  

 

 

 

 

 

 

 

 

 

 

 



33 

 

Data details: 

 

 

Fig.8 Geometrical Parameter of Data series 

Table 3 Details of geometrical parameters of the applied experimental channels 
Verified test 

channel 
Series 

No.  
Longitudinal 

slope (S) 
Main 

channel 
Width 
(b) in 
mm 

Width ratio 

(α)  

Main 
channel 
depth 
(h) in 
mm 

Main 
channel 

side 
slope, s  

Floodplain 
type  

Roughness 

Present 
Channel 

Type-I 0.0019 120 B/b =3.667 120 0 Symmetric Smooth  

Knight & 
Demetriou 

(1983) 

01  0.00096 304  B/b =2 76 0 Symmetric Smooth  

 02  0.00096 456  B/b =3 76 0 Symmetric Smooth  

 03  0.00096 608 B/b =4 76 0 Symmetric Smooth  

FCF Series-
A channels 

01  1.027×10 -3 3000 B/b = 6.67  150 1.0  Symmetric  Smooth  

 02  1.027×10 -3 3000 B/b = 4.20  150 1.0  Symmetric  Smooth  

 03  1.027×10 -3 3000 B/b = 2.20  150 1.0  Symmetric  Smooth  

 06  1.027×10 -3        
3000 

B/b = 4.20  150 1.0  Asymmetric  Smooth  

 08  1.027×10 -3 3000 b fp/b = 3.0  150 0  Symmetric  Smooth  

 10  1.027×10 -3 3000 b fp/b = 3.0  150 2.0  Symmetric  Smooth  

Tang’s data  0.002024 

 

1212.6 

 

3.046734 

 

0.05 

 

0 Symmetric smooth 

Atabay’data  0.002024 

 

398 3.046734 

 

0.05 0 Symmetric smooth 
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Table 1(Atabay’s Data): 

Qfc Qmc A(t) R(t) fmc ffp Remc Refp S0 

0.091 0.036 0.193 0.141 0.024 0.029 72289.157 104214.384 0.055 

0.074 0.035 0.174 0.128 0.023 0.026 70281.125 85529.357 0.055 

0.055 0.031 0.151 0.112 0.022 0.026 62248.996 64387.731 0.050 

0.018 0.031 0.067 0.048 0.021 0.025 61445.783 19693.654 0.050 

0.016 0.029 0.065 0.047 0.021 0.025 58634.538 17621.145 0.045 

0.013 0.029 0.063 0.046 0.021 0.025 58232.932 14508.929 0.044 

0.012 0.027 0.059 0.042 0.021 0.024 54618.474 13870.095 0.040 

0.011 0.027 0.057 0.041 0.020 0.024 54216.867 12443.439 0.039 

0.011 0.026 0.056 0.041 0.020 0.024 52208.835 12369.496 0.035 

0.009 0.025 0.054 0.039 0.020 0.023 50602.410 11040.236 0.034 

0.009 0.023 0.052 0.038 0.020 0.023 46184.739 10250.569 0.034 

0.008 0.022 0.051 0.037 0.020 0.023 44979.920 9174.312 0.030 

0.006 0.022 0.045 0.033 0.020 0.022 44176.707 6960.557 0.030 

0.005 0.021 0.043 0.032 0.020 0.021 42168.675 5868.545 0.027 

0.005 0.021 0.043 0.032 0.020 0.020 41767.068 5841.121 0.027 

0.005 0.020 0.041 0.030 0.019 0.020 40160.643 5305.353 0.027 

0.004 0.020 0.040 0.030 0.019 0.019 40160.643 4728.132 0.024 

0.004 0.020 0.040 0.029 0.019 0.018 39156.627 4716.981 0.024 

0.004 0.019 0.039 0.029 0.019 0.018 38152.610 4391.170 0.024 

0.003 0.018 0.037 0.028 0.019 0.017 36947.791 3818.616 0.021 

0.003 0.017 0.037 0.028 0.019 0.016 34136.546 3562.945 0.021 

0.002 0.017 0.034 0.026 0.019 0.016 33734.940 2886.697 0.018 

0.002 0.015 0.034 0.025 0.018 0.015 30120.482 2409.639 0.018 

0.002 0.014 0.031 0.023 0.018 0.015 28112.450 1942.691 0.016 

. 
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Table 2(FCF Data): 

 

Qfc Qmc A(t) R(t) fmc ffp Remc Refp S0 

0.635 0.615 14776.080 18.714 0.282 0.037 20302.024 97921.983 1.114 

0.609 0.611 14454.870 18.684 0.282 0.037 20227.212 92197.902 1.103 

0.573 0.580 14451.990 18.098 0.282 0.038 19046.454 85547.076 1.015 

0.506 0.541 14314.290 17.031 0.282 0.038 18554.828 83446.049 0.929 

0.349 0.474 14204.040 17.009 0.282 0.038 18547.576 81480.495 0.836 

0.340 0.468 14105.670 16.873 0.282 0.039 17354.990 77244.784 0.835 

0.335 0.441 14011.710 16.653 0.282 0.039 17312.461 75071.946 0.807 

0.333 0.441 13955.910 16.591 0.282 0.039 16793.517 73051.496 0.763 

0.285 0.428 9668.700 16.057 0.281 0.039 16760.383 72722.187 0.690 

0.275 0.426 9566.550 15.976 0.281 0.039 16203.623 72059.865 0.605 

0.225 0.406 9358.110 15.939 0.281 0.039 15839.391 71827.933 0.600 

0.220 0.362 9227.970 15.929 0.281 0.039 15468.851 68173.663 0.593 

0.179 0.350 9222.570 15.735 0.281 0.039 15433.364 65734.794 0.558 

0.167 0.336 9211.950 15.610 0.281 0.040 15055.523 65675.867 0.558 

0.160 0.330 9108.090 15.475 0.281 0.040 14793.468 63629.790 0.522 

0.155 0.325 9013.860 15.427 0.281 0.040 14635.340 63585.495 0.480 

0.155 0.324 8924.400 15.427 0.281 0.040 14631.071 62217.175 0.451 

0.117 0.319 8895.150 15.392 0.281 0.040 14357.319 61843.681 0.429 

0.117 0.315 8847.270 15.319 0.278 0.040 14340.626 61123.662 0.427 

0.106 0.298 8776.980 15.270 0.278 0.040 14219.510 56706.834 0.395 

0.105 0.294 8756.640 15.267 0.278 0.040 14155.116 53980.807 0.392 

0.101 0.289 8657.550 15.232 0.278 0.040 14139.936 52218.093 0.383 

0.098 0.285 8655.840 15.213 0.278 0.040 14073.030 50364.710 0.354 

0.076 0.279 8575.560 15.187 0.278 0.040 13836.813 49464.364 0.351 
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Table 4(Tang’s Data): 

 

Qfc Qmc A(t) R(t) fmc ffp Remc Refp S0 

0.088 0.033 0.203 0.126 0.217 1.413 65959.300 16680.500 0.050 

0.073 0.029 0.163 0.105 0.196 1.250 59033.000 14368.000 0.044 

0.069 0.027 0.163 0.105 0.179 1.089 55067.550 12724.030 0.041 

0.066 0.027 0.157 0.102 0.173 1.000 54247.680 12620.250 0.039 

0.066 0.024 0.141 0.093 0.160 0.912 48319.560 12243.120 0.034 

0.055 0.023 0.134 0.089 0.149 0.814 46523.550 10939.500 0.034 

0.052 0.022 0.130 0.087 0.147 0.712 44380.680 10254.890 0.034 

0.008 0.021 0.124 0.084 0.135 0.676 42243.470 9894.430 0.030 

0.008 0.019 0.122 0.082 0.133 0.594 39027.160 9890.430 0.030 

0.007 0.019 0.114 0.077 0.123 0.550 38689.320 8597.700 0.027 

0.005 0.019 0.108 0.074 0.121 0.515 37509.120 8568.280 0.027 

0.005 0.018 0.103 0.071 0.113 0.500 35197.650 7734.630 0.024 

0.004 0.018 0.099 0.068 0.112 0.450 35157.690 7150.500 0.024 

0.004 0.017 0.093 0.065 0.102 0.436 34925.760 6597.500 0.024 

0.004 0.016 0.089 0.062 0.099 0.404 31824.120 6030.920 0.022 

0.003 0.016 0.083 0.059 0.088 0.394 31570.020 5594.300 0.021 

0.003 0.015 0.078 0.056 0.083 0.375 30714.090 5527.200 0.021 

0.003 0.014 0.069 0.049 0.078 0.359 28576.800 4576.000 0.018 

0.003 0.014 0.068 0.049 0.070 0.348 27869.260 4426.470 0.018 

0.003 0.013 0.068 0.049 0.058 0.306 26736.840 4412.640 0.018 

0.002 0.013 0.057 0.042 0.050 0.266 25166.400 3334.080 0.015 

0.002 0.012 0.046 0.034 0.039 0.207 24280.860 2980.440 0.015 

0.002 0.011 0.046 0.034 0.034 0.177 22679.800 1896.470 0.015 

0.002 0.009 0.045 0.033 0.032 0.152 18732.640 1887.480 0.011 
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Table 5(Tang’s Mobile Channel Data) 

Qfc Qmc A(t) R(t) fmc ffp Remc Refp S0 

0.012 0.030 0.030 0.217 0.032 36.917 59235.799 12583.337 0.033 

0.011 0.021 0.021 0.090 0.029 0.590 42613.211 11948.187 0.031 

0.011 0.020 0.020 0.073 0.026 0.534 40197.831 11737.189 0.030 

0.011 0.019 0.019 0.071 0.025 0.469 38654.618 11553.224 0.029 

0.010 0.019 0.019 0.070 0.024 0.406 38489.526 10793.314 0.029 

0.009 0.019 0.019 0.069 0.024 0.251 37862.856 10279.339 0.026 

0.007 0.018 0.018 0.066 0.023 0.215 36866.859 8302.137 0.026 

0.007 0.018 0.018 0.062 0.022 0.170 36691.184 7617.687 0.025 

0.006 0.017 0.017 0.061 0.022 0.156 34177.230 6745.436 0.024 

0.006 0.016 0.016 0.058 0.021 0.142 32229.677 6319.344 0.023 

0.006 0.016 0.016 0.058 0.021 0.131 31970.212 6257.655 0.023 

0.006 0.016 0.016 0.054 0.019 0.103 31714.752 6131.796 0.023 

0.006 0.016 0.016 0.054 0.018 0.081 31312.325 6085.684 0.021 

0.006 0.015 0.015 0.052 0.018 0.075 30811.683 6075.827 0.021 

0.005 0.014 0.014 0.051 0.018 0.071 27686.428 5978.247 0.021 

0.005 0.014 0.014 0.051 0.017 0.060 27369.417 5776.599 0.020 

0.005 0.014 0.014 0.045 0.016 0.053 27070.173 5703.239 0.019 

0.005 0.013 0.013 0.043 0.016 0.049 26730.937 5456.062 0.018 

0.005 0.013 0.013 0.041 0.015 0.048 26485.546 4894.719 0.018 

0.005 0.013 0.013 0.040 0.015 0.034 25622.349 4727.479 0.017 

0.004 0.013 0.013 0.038 0.015 0.034 25171.867 4088.452 0.016 

0.004 0.012 0.012 0.035 0.015 0.033 24952.055 3418.604 0.016 

0.003 0.012 0.012 0.034 0.014 0.023 24650.588 3117.324 0.015 

0.003 0.011 0.011 0.032 0.014 0.015 23697.016 2984.793 0.015 
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Data After Normalization: 

 
Table 6(Atabay’s data): 

Qfc Qmc A(t) R(t) fmc ffp Remc Refp S0 

1 1 0.99 1 1 1 1 1  

0.81 0.96 0.88 0.89 0.85 0.83 0.95 0.81 0.002 

0.6 0.78 0.74 0.76 0.68 0.82 0.78 0.61 0.002 

0.19 0.76 0.24 0.23 0.56 0.75 0.76 0.18 0.002 

0.17 0.7 0.23 0.22 0.49 0.75 0.7 0.16 0.002 

0.13 0.69 0.22 0.21 0.49 0.73 0.69 0.13 0.002 

0.125 0.61 0.19 0.19 0.47 0.68 0.61 0.12 0.002 

0.11 0.6 0.17 0.17 0.39 0.68 0.6 0.11 0.002 

0.11 0.56 0.17 0.16 0.33 0.65 0.56 0.11 0.002 

0.125 0.52 0.161 0.153 0.33 0.61 0.52 0.095 0.002 

0.089 0.43 0.15 0.142 0.33 0.61 0.41 0.087 0.002 

0.078 0.4 0.14 0.134 0.33 0.59 0.4 0.077 0.002 

0.056 0.38 0.11 0.1 0.33 0.51 0.38 0.055 0.002 

0.044 0.34 0.09 0.09 0.33 0.47 0.34 0.045 0.002 

0.044 0.33 0.09 0.08 0.31 0.44 0.33 0.044 0.002 

0.038 0.296 0.08 0.078 0.19 0.41 0.29 0.039 0.002 

0.033 0.296 0.07 0.075 0.16 0.34 0.29 0.039 0.002 

0.033 0.27 0.07 0.07 0.16 0.29 0.27 0.035 0.002 

0.03 0.25 0.067 0.066 0.16 0.27 0.25 0.03 0.002 

0.024 0.22 0.057 0.056 0.15 0.19 0.22 0.025 0.002 

0.022 0.16 0.056 0.055 0.11 0.13 0.16 0.021 0.002 

0.015 0.15 0.04 0.04 0.098 0.1 0.15 0.016 0.002 

0.011 0.074 0.03 0.036 0 0.068 0.074 0.015 0.002 

0.067 0.038 0.02 0.021 0 0.041 0.03 0.0065 0.002 
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Table 7(FCF data): 

 

Qfc Qmc A(t) R(t) fmc ffp Remc Refp S0 Qfc 
1 1 1 1 1 1.000 1.00 1.00 0.001 1.00 

0.96 0.99 0.97 0.99 1 0.995 0.99 0.94 0.001 0.99 

0.9 0.92 0.97 0.87 1 0.887 0.87 0.87 0.001 0.89 

0.79 0.83 0.96 0.64 1 0.678 0.82 0.85 0.001 0.80 

0.55 0.675 0.94 0.63 1 0.674 0.82 0.83 0.001 0.70 

0.54 0.66 0.94 0.60 1 0.646 0.70 0.79 0.001 0.70 

0.53 0.599 0.93 0.55 1 0.600 0.69 0.76 0.001 0.67 

0.53 0.599 0.92 0.54 1 0.587 0.64 0.74 0.001 0.62 

0.44 0.569 0.53 0.43 0.996 0.472 0.64 0.74 0.001 0.54 

0.44 0.564 0.521 0.41 0.996 0.454 0.58 0.73 0.001 0.45 

0.35 0.52 0.51 0.40 0.996 0.446 0.54 0.73 0.001 0.45 

0.34 0.42 0.49 0.40 0.996 0.444 0.50 0.69 0.001 0.44 

0.28 0.39 0.48 0.36 0.996 0.400 0.50 0.67 0.001 0.40 

0.26 0.36 0.488 0.33 0.996 0.372 0.46 0.67 0.001 0.40 

0.25 0.34 0.479 0.30 0.996 0.341 0.43 0.65 0.001 0.36 

0.24 0.33 0.47 0.29 0.996 0.330 0.42 0.65 0.001 0.32 

0.24 0.33 0.462 0.29 0.996 0.330 0.42 0.63 0.001 0.29 

0.18 0.32 0.459 0.28 0.996 0.322 0.39 0.63 0.001 0.26 

18 0.31 0.455 0.27 0.982 0.305 0.39 0.62 0.001 0.26 

0.16 0.27 0.448 0.26 0.982 0.293 0.38 0.58 0.001 0.23 

0.16 0.26 0.446 0.25 0.982 0.292 0.37 0.55 0.001 0.22 

0.156 0.25 0.44 0.25 0.982 0.284 0.37 0.53 0.001 0.21 

0.15 0.24 0.44 0.24 0.982 0.280 0.36 0.51 0.001 0.18 

0.12 0.23 0.43 0.24 0.982 0.273 0.34 0.50 0.001 0.18 

0.096 0.21 0.423 0.22 0.982 0.258 0.32 0.50 0.001 0.17 

0.096 0.21 0.422 0.21 0.982 0.244 0.32 0.48 0.001 0.17 

0.094 0.19 0.42 0.21 0.982 0.243 0.31 0.43 0.001 0.16 

0.094 0.18 0.412 0.20 0.982 0.235 0.29 0.42 0.001 0.15 
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Table 8:(Tang’s rigid  channel Data) 

 

Qfc Qmc A(t) R(t) fmc ffp Remc Refp S0 Q 
0.219 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.002 1.000 

0.181 0.860 0.760 0.792 0.888 0.872 0.858 0.847 0.002 0.852 

0.171 0.778 0.757 0.789 0.794 0.746 0.777 0.738 0.002 0.764 

0.163 0.761 0.719 0.754 0.762 0.676 0.760 0.731 0.002 0.729 

0.163 0.642 0.621 0.664 0.696 0.606 0.639 0.706 0.002 0.604 

0.135 0.605 0.582 0.626 0.634 0.529 0.602 0.620 0.002 0.604 

0.128 0.560 0.558 0.602 0.623 0.448 0.559 0.574 0.002 0.604 

0.017 0.514 0.523 0.568 0.560 0.420 0.515 0.551 0.002 0.496 

0.017 0.449 0.508 0.553 0.551 0.355 0.449 0.550 0.002 0.491 

0.014 0.444 0.458 0.504 0.496 0.321 0.442 0.465 0.002 0.416 

0.009 0.420 0.421 0.467 0.483 0.293 0.418 0.463 0.002 0.416 

0.009 0.370 0.393 0.438 0.440 0.281 0.371 0.408 0.002 0.348 

0.007 0.370 0.366 0.409 0.435 0.242 0.370 0.369 0.002 0.346 

0.007 0.366 0.332 0.374 0.379 0.231 0.365 0.332 0.002 0.341 

0.006 0.305 0.306 0.346 0.367 0.206 0.302 0.295 0.002 0.293 

0.005 0.296 0.273 0.311 0.307 0.198 0.297 0.266 0.002 0.271 

0.005 0.280 0.242 0.278 0.278 0.184 0.279 0.261 0.002 0.268 

0.004 0.235 0.185 0.214 0.251 0.170 0.235 0.198 0.002 0.195 

0.003 0.222 0.180 0.208 0.206 0.162 0.221 0.188 0.002 0.195 

0.003 0.198 0.178 0.206 0.143 0.129 0.198 0.187 0.002 0.193 

0.002 0.165 0.113 0.133 0.100 0.097 0.166 0.116 0.002 0.125 

0.002 0.148 0.046 0.054 0.042 0.051 0.147 0.093 0.002 0.120 

0.002 0.115 0.043 0.051 0.016 0.028 0.115 0.021 0.002 0.115 

0.001 0.033 0.041 0.049 0.001 0.008 0.034 0.020 0.002 0.013 

0.219 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.002 1.000 

0.181 0.860 0.760 0.792 0.888 0.872 0.858 0.847 0.002 0.852 

0.171 0.778 0.757 0.789 0.794 0.746 0.777 0.738 0.002 0.764 

0.163 0.761 0.719 0.754 0.762 0.676 0.760 0.731 0.002 0.729 

0.163 0.642 0.621 0.664 0.696 0.606 0.639 0.706 0.002 0.604 

0.135 0.605 0.582 0.626 0.634 0.529 0.602 0.620 0.002 0.604 
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Table 9:(Tang’s mobile channel Data) 

 

Qfc Qmc A(t) R(t) fmc ffp Remc Refp S0 Q 
1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.002 1.000 

0.966 0.575 0.575 0.365 0.864 0.016 0.575 0.948 0.002 0.908 

0.905 0.514 0.514 0.282 0.764 0.014 0.514 0.931 0.002 0.859 

0.888 0.474 0.474 0.268 0.702 0.013 0.474 0.916 0.002 0.852 

0.853 0.470 0.470 0.265 0.678 0.011 0.470 0.855 0.002 0.837 

0.793 0.456 0.456 0.261 0.669 0.007 0.454 0.813 0.002 0.699 

0.603 0.431 0.431 0.245 0.620 0.006 0.429 0.652 0.002 0.695 

0.569 0.424 0.424 0.226 0.579 0.004 0.424 0.597 0.002 0.655 

0.509 0.360 0.360 0.220 0.574 0.004 0.360 0.526 0.002 0.629 

0.500 0.310 0.310 0.204 0.566 0.004 0.310 0.491 0.002 0.579 

0.491 0.303 0.303 0.204 0.545 0.003 0.303 0.486 0.002 0.576 

0.474 0.297 0.297 0.187 0.450 0.003 0.297 0.476 0.002 0.557 

0.474 0.287 0.287 0.185 0.421 0.002 0.287 0.472 0.002 0.486 

0.457 0.272 0.272 0.177 0.409 0.002 0.274 0.472 0.002 0.480 

0.448 0.195 0.195 0.171 0.405 0.002 0.194 0.464 0.002 0.463 

0.431 0.186 0.186 0.168 0.388 0.001 0.186 0.447 0.002 0.423 

0.405 0.179 0.179 0.138 0.322 0.001 0.178 0.441 0.002 0.387 

0.388 0.169 0.169 0.132 0.322 0.001 0.170 0.421 0.002 0.343 

0.379 0.164 0.164 0.122 0.306 0.001 0.163 0.376 0.002 0.338 

0.371 0.142 0.142 0.113 0.306 0.001 0.141 0.362 0.002 0.312 

0.345 0.130 0.130 0.107 0.293 0.001 0.130 0.310 0.002 0.245 

0.302 0.118 0.118 0.091 0.289 0.001 0.124 0.256 0.002 0.237 

0.241 0.092 0.092 0.084 0.248 0.001 0.116 0.232 0.002 0.232 

0.216 0.074 0.074 0.076 0.244 0.000 0.092 0.221 0.002 0.225 

0.198 0.047 0.047 0.054 0.161 0.000 0.074 0.153 0.002 0.183 

0.086 0.046 0.046 0.039 0.062 0.000 0.047 0.091 0.002 0.108 

0.009 0.032 0.032 0.034 0.054 0.000 0.032 0.005 0.002 0.031 

1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.002 1.000 
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