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ABSTRACT 

 

Laminated composite plates have found widespread applications in the construction of 

engineering structures due to the several attributes of the composites such as light weight, high 

specific strength, high specific stiffness as well as excellent fatigue and corrosion resistance 

properties. Plates are used in structural applications either as main structures or as structural 

components. All structures are exposed to varying thermal conditions during their service life. 

The degraded material properties as well as the residual stresses generated due to the elevated 

temperature conditions influence the vibration behavior considerably. As a result the effect of 

thermal environment on the static and dynamic behavior of laminated composite plates needs to 

be studied thoroughly.  

When the transverse vibrations of a uniformly heated structure is studied using the linear 

theories, the thermal effect is converted into a body force and the results show negligibly small 

variation as compared to those of a structure without any temperature change. Therefore, 

nonlinear analysis methods need to be applied to analyze the behavior.  

This project reports the nonlinear free vibration characteristics of laminated composite plates 

which are bonded with piezoelectric actuator layers. The plates are subjected to thermal 

environment in addition to the electric load. The finite element method (FEM) is employed for 

the analysis. An eight-noded isoparametric C
o
 continuity element with five degrees of freedom 

per node is used taking into consideration von Karman large deflection assumptions.  The 

governing differential equations are obtained using the modified first-order shear deformation 

plate theory (MFSDT). The formulation includes the effects of transverse shear, in-plane and 

rotary inertia. The nonlinear matrix amplitude equation obtained by employing the Galerkin’s 

weighted residual method is solved using the direct iteration technique. Detailed parametric 

studies are carried out to investigate the effect of different parameters on the free vibration 

characteristics of laminated plates. 

The finite element codes are accordingly developed in MATLAB. The validity of the present 

finite element code is demonstrated by comparing the present results with the solutions available 

in the literature. Then the study is further extended to investigate the effect of different 

parameters such as temperature rise, control voltage, boundary conditions, fibre orientation and 
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stacking sequence on the free vibration behavior of laminated composite plates fitted with 

piezoelectric actuators and subjected to thermal environments. 

 

 

Keywords: Laminated composites plates, Nonlinear free vibration, Finite element method, 

Piezoelectric actuators, Galerkin’s weighted residual method 
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CHAPTER 1 

INTRODUCTION 

 

1.1 General introduction 

Composites are engineered materials made from two or more constituent materials with 

significantly varied physical or chemical properties which remain distinctive on a macroscopic 

level within the finished structure. Laminated composite plates and shells consisting of several 

layers of different fibre reinforced laminates are bonded together to obtain desired structural 

properties. Varying the plate geometry, material properties, and stacking sequence the 

requirements of the particular structure to which they are to be applied can be fulfilled. Due to 

their high strength to weight ratio composite materials are ideally suited for use in weight 

sensitive applications of aerospace and ship building industries. 

These composite materials are susceptible to temperature and moisture when operating in harsh 

environmental conditions. Elevated thermal exposure will result in large thermal deformations 

which may adversely affect the behavior of the composite materials. 

Smart structures have been extensively studied in recent years. These consist of piezoelectric 

materials embedded and/or surface bonded to the laminated structures. By taking advantage of 

the direct and/or converse piezoelectric effect they behave as sensors and/or actuators. 

Composite structures can therefore combine the traditional performance advantages of composite 

laminates along with the inherent capability of piezoelectric materials to adapt to their current 

environments. 

1.2 Thermal effects 

The varying environmental conditions have an adverse effect on the stiffness and strength of the 

structural composites. Stiffness and strength are reduced with increase in temperature. Residual 

stresses might also be introduced due to dissimilar lamina expansion. It is therefore highly 

essential to study the effect of temperature on the static and dynamic response of composite 

structures. 
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1.3 Piezoelectric materials 

 Whenever a force is applied to a crystal, then the atoms are displaced slightly from their position 

in the lattice. In a piezoelectric crystal, this deformation of the crystal lattice results in the crystal 

acquiring a net charge. Thus the piezoelectric crystal gives a direct electrical output to an applied 

force. This property is known as the direct piezoelectric effect and can be utilized in piezoelectric 

sensing equipments. 

The direct piezoelectric effect is reversible. Whenever a voltage is applied to the crystal it causes 

a mechanical displacement within the crystal. This converse piezoelectric effect is used in 

deflection control systems. Piezoelectric actuating systems employ this property of the material. 

A major drawback of piezoelectric materials is that they show dielectric ageing and hence lack 

reproducibility of strains, i.e, a drift from zero state of strain is observed under cyclic electric 

field applications. 

1.4 Importance of the present study 

The present study reports the non linear free vibration analysis of composite plates and shells 

fitted with piezoelectric actuators. Composite laminates are subjected to a variety of forces. If the 

circular frequency of the forcing function is very near the natural circular frequency of the 

system, it results in very large amplitude of motion. This undesirable condition is known as 

resonance, and for this reason, the natural circular frequency of the system is often called as 

resonant frequency. Hence it becomes extremely essential to study the free vibration 

characteristics of all structural elements. 

1.5 Outline of the present study 

The present thesis comprises of eight chapters. In the first chapter a brief introduction of 

laminated composites and piezoelectric materials is presented. The importance of the present 

study is also discussed. 

Chapter 2 contains a detailed review of the published important literature related to the present 

area of study. 

Chapter 3 and Chapter 4 contain all the details of the theoretical and finite element formulations 

that have been used in the present study. 
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In Chapter 5 the present formulation and MATLAB code is validated by comparing the present 

results with those available in the literature. 

The results obtained by conducting several parametric studies are tabulated in Chapter 6. The 

results are also analyzed in detail. 

The major conclusions drawn from the present study are enumerated in Chapter 7. 

Chapter 8 contains a brief idea of all the related areas to which the present investigation can be 

extended. 
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CHAPTER 2 

LITERATURE REVIEW 

 

Use of composite materials in the structural components of aerospace, automobile and other high 

performance applications resulted in reducing the weight to increase the performance. These 

light weighed and thin walled structural components may be subjected to varying thermal 

environments during service life. Temperature variations have a significant effect on the free 

vibration of fibre reinforced laminated plates. The study of the free vibration of composite 

laminates using linear theories has been considered earlier by several researchers. Some have 

also investigated the effects of additional thermal loading. Whitney and Ashton (1971) used the 

Ritz method to analyze the symmetric laminates and equilibrium equations of motion in the case 

of anti-symmetric angle-ply laminates, based upon the classical laminated plate theory. A few 

results were presented for only symmetric angle-ply laminates. Reddy (1979) presented the 

results for the free vibration of antisymmetric, angle-ply laminated plates including transverse 

shear deformation by the finite element method. Dhanaraj and Palaninathan (1989) used the 

semi-loof shell element to study the free vibration characteristics of composite laminates under 

initial stress, which may also arise due to temperature. Sai Ram and Sinha (1992) presented the 

effects of moisture and temperature on the linear free vibration of laminated composite plates. 

Maiti and Sinha (1995) studied the bending, free vibration and impact response of thick 

laminated composite plates. Lee and Lee (1994) conducted the finite element analysis of free 

vibration of delaminated composite plates. Parhi and Sinha (2001) investigated the hygrothermal 

effects on the dynamic response of multiple delaminated composite plates and shells using the 

first order shear deformation theory. Matsunga (2007) presented a two dimensional global higher 

order theory for the free vibration and stability problems of angle ply laminated composite and 

sandwich plates subjected to thermal loading. Alnefaie (2009) developed a three dimensional 

finite element model of delaminated fibre reinforced composite plates and analyzed their 

dynamics. 

The large deflections caused due to the thermal loads make it essential to apply nonlinear 

theories for a more accurate study of the behavior of laminated composites. Bhimaraddi and 
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Chandrashekhara (1993) used the parabolic shear deformation theory to analyze the large 

amplitude vibrations, buckling and post buckling of heated angle-ply laminated plates. 

Chandrashekhara and Tenneti (1993) studied the nonlinear static and dynamic responses of 

laminated plates subjected to thermal or thermo-mechanical loads. Naidu and Sinha (2007) dealt 

with the nonlinear free vibration of laminated composite shells subjected to hygrothermal 

environments using the finite element method. The Green-Lagrange type nonlinear strains were 

incorporated into the first order shear deformation theory. Nanda and Bandyopadhyay (2007) 

analyzed the non linear free vibration of laminated composite shells with cut outs. Chia and Chia 

(1992) studied nonlinear vibration of moderately thick antisymmetrically laminated angle ply 

shallow spherical shell with rectangular plan form employing Galerkin’s procedure. 

Sathyamoorthy (1995) investigated the effects of large amplitude on the free flexural vibrations 

of moderately thick orthotropic spherical shells. Ganapathi and Varadan (1995) carried out 

investigations to study the nonlinear free vibration of laminated anisotropic circular cylindrical 

shells using finite element method. Shin (1997) investigated large amplitude vibration behavior 

of symmetrically laminated moderately thick doubly curved shallow open shells with simply 

supported sides by applying Galerkin’s approximation. Singha and Daripa (2007) presented the 

results for the large amplitude free flexural vibration behavior of symmetrically laminated 

composite skew plates using the finite element method. The nonlinear matrix amplitude 

equations obtained by the Galerkin’s weighted residual method were solved using the direct 

iteration technique. Lee and Reddy (2005) used the third order shear deformation theory to study 

the nonlinear response of laminated compoite plates under thermomechanical loading. 

 In recent years, piezoelectric materials are extensively used as sensors and actuators to control 

vibration of elastic structures. The top piezoelectric layer in a composite plate/shell acts as an 

actuator and the bottom layer does as either a sensor or an actuator. The applications of 

piezoelectric materials include shape control, active dampening and vibration suppression. The 

piezoelectric actuators induce in-plane stresses that may significantly affect the dynamic 

behavior of the composite plates/shells. Hui-Shen Shen (2004) conducted an analytical study of 

the non-linear bending of unsymmetric cross-ply laminated plates with piezoelectric actuators in 

thermal environments. Huang and Shen (2005) did a similar study to obtain the results for non-

linear free and forced vibrations of simply supported shear deformable laminated plates with 

piezoelectric actuators. Heidary and Eslami (2006) dealt with the piezo-control of forced 
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vibrations of laminated thermoelastic plates. Dash and Singh (2009) addressed the nonlinear free 

vibration characteristics of laminated composite plates with embedded and/or surface bonded 

piezoelectric layers. The nonlinear governing equations were derived in the Green-Lagrange 

sense in the framework of a higher order shear deformation theory. To the best of the authors’ 

knowledge the nonlinear free vibration analysis of laminated composite plates with piezoelectric 

actuators and subjected to thermal environments has not received much attention of the 

researchers. 

In the present report the, the nonlinear free vibration behavior of laminated composite shells 

fitted with piezoelectric actuator and subjected to thermal environments is studied by employing 

the finite element method. A modified first order shear deformation theory (MFSDT), earlier 

developed by Tanov and Tabei (2000) is used to carry out the analysis. This MFSDT formulation 

considers parabolic distribution of both transverse shear strains and stresses and therefore the use 

of shear correction factor is eliminated. The nonlinear matrix amplitude equations obtained by 

employing the Galerkin’s method are solved by direct iteration to obtain the free vibration 

results. 
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CHAPTER 3 

THEORETICAL FORMULATION 

This chapter presents the theoretical formulation for the free vibration problem of laminated 

composite plates. The strain-displacement as well as the stress-strain relations are furnished 

in this section. 

3.1 Strain-Displacement Relations 

 

 

 

 

 

 

 

 

 

The modified first order shear deformation theory, as earlier developed by Tanov and Tabei 

(2000) for plates is detailed here. Let us consider a laminated composite plate with the co-

ordinate system (x, y, z) shown in Fig. (3.1), and chosen such that the plane x-y at z = 0 coincides 

with the mid-plane. In order to approximate the three-dimensional elasticity problem to a two-

dimensional one, the displacement components u(x,y,z), v(x,y,z) and w(x,y,z) at any point in the 

plate space are expanded in Taylor’s series in terms of the thickness co-ordinates. The elasticity 

solution indicates that the transverse shear stresses vary parabolically through the thickness. This 

requires the use of a displacement field in which the in-plane displacements are expanded as 

cubic functions of the thickness co-ordinate. The displacement fields, which satisfy the above 

criteria, are assumed in the form as, 

2 3

0

2 3

0

0

θ ϕ ψ

θ ϕ ψ

= + + +

= − − −

=

y y y

x x x

u u z z z

v v z z z

w w

        (3.1) 

b 

a 

x 

y 

Figure 3.1 Plate geometry 
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where u, v and w are the displacements of a general point (x, y, z) in an element of the laminate 

along x, y and z directions, respectively. The parameters u0, v0, w0, xθ and 
y

θ  are the 

displacements and rotations of the middle plane, while xϕ , yϕ , xψ  and yψ  are the higher-order 

displacement parameters defined at the mid-plane.  

Using the strain-displacement relations 

1

2

ji
ij

j i

uu

x x
ε

 ∂∂
= +  ∂ ∂ 

         (3.2) 

the components of the strain vector corresponding to the displacement field (3.1) are 

2 30 y y y

x

u
z z z

x x x x

θ ϕ ψ
ε

∂ ∂ ∂∂
= + + +

∂ ∂ ∂ ∂
  

2 30 x x x
y

v
z z z

y y y y

θ ϕ ψ
ε

∂ ∂ ∂ ∂
= − − −

∂ ∂ ∂ ∂
 

2 30 02
y y yx x x

xy

u v
z z z

y x y x y x y x

θ ϕ ψθ ϕ ψ
ε

∂ ∂ ∂       ∂ ∂ ∂ ∂ ∂
= + + − + − + −       

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂       
   (3.3) 

202 2 3yz x x x

w
z z

y
ε θ ϕ ψ

 ∂
= − − − 

∂ 
 

202 2 3xz y y y

w
z z

x
ε θ ϕ ψ

∂ 
= + + + 

∂ 
 

Vanishing of the transverse shear stresses at the top and bottom plate surfaces, 

( /2) ( /2) 0yz xzh hσ σ± = ± = , makes the corresponding strains zero, which yields, 

0x yϕ ϕ= = , 0
2

4

3
x x

w

h x
ψ θ

∂ 
= − 

∂ 
 and 0

2

4

3
y y

w

h y
ψ θ

 ∂
= + 

∂ 
 

in which h is the plate thickness. Using these expressions, Eqs. (3.1) and (3.3) are simplified as 
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3

0

3

0

0

θ ψ

θ ψ

= + +

= − −

=

y y

x x

u u z z

v v z z

w w

          (3.4) 

and 

30 y y

x

u
z z

x x x

θ ψ
ε

∂ ∂∂
= + +

∂ ∂ ∂
  

30 x x
y

v
z z

y y y

θ ψ
ε

∂ ∂ ∂
= − −

∂ ∂ ∂
 

θ ψθ ψ
ε γ

∂ ∂     ∂ ∂ ∂ ∂
= = + + − + −     

∂ ∂ ∂ ∂ ∂ ∂     

30 02
y yx x

xy xy

u v
z z

y x y x y x
   (3.5) 

ε γ θ
 ∂  

= = − −  
∂   

20
2

4
2 1

yzyz x

w
z

y h
 

ε γ θ
∂  

= = + −  
∂   

20
2

4
2 1xz xz y

w
z

x h
 

By assuming that the first two terms in the xε , yε  and xyε  expressions in Eq. (3.5) represent the 

distribution of the in-plane strains through the thickness with enough accuracy. This means that 

we can neglect the contribution of the derivatives of xψ  and yψ  with respect to x and y and 

simplify the strain expressions as, 

0 y

x

u
z

x x

θ
ε

∂∂
= +

∂ ∂
 

θ
ε

∂ ∂
= −

∂ ∂
0 x

y

v
z

y y
 

θ θ
γ

∂   ∂ ∂ ∂
= + + −   

∂ ∂ ∂ ∂   

0 0 y x
xy

u v
z

y x y x
                     (3.6) 
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γ θ
 ∂  

= − −  
∂   

20
2

4
1

yz x

w
z

y h
 

γ θ
∂  

= + −  
∂   

20
2

4
1

xz y

w
z

x h
 

These expressions are identical to the strain expressions from the first-order shear deformation 

displacement field except for the transverse shear strain expressions. 

Eq. (3.6) represents the linear components of the strains. The nonlinear components of the in-

plane strains are 

{ }

2

2

1

2

1

2
NL

w

x

w

y

w w

x y

ε

 ∂ 
  

∂  
 

 ∂ 
=   

∂  
  ∂ ∂    

∂ ∂    

                                                                                                           (3.7) 

This corresponds to the well known von Karman relationships for large displacements.  

3.2 Stress-Strain Relations 

The stress-strain relationship of any k
th 

orthotropic layer/lamina with reference to the fiber-matrix 

co-ordinate axis 1-2 (Figs. 3.2 and 3.3) may be expressed as   

1 11 12 1

2 12 22 2

12 66 12

13 44 13

23 55 23

0 0 0

0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

k k k
Q Q

Q Q

Q

Q

Q

σ ε

σ ε

τ γ

τ γ

τ γ

     
     
        

 =   
    
    
         

        (3.8) 

Where, 1
11

12 211

E
Q

ν ν
=

−
, 12 2

12

12 211

E
Q

ν

ν ν
=

−
, 2

22

12 211

E
Q

ν ν
=

−
, 66 12Q G= , 44 13Q G= , 55 23Q G=  and  

12 21

1 2E E

ν ν
=  
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Appropriate transformation is required in order to obtain the elastic constant matrix 

corresponding to any arbitrary principal axis (x-y) with which the material principal axis makes 

an angleθ .  Thus, the off-axis elastic constant matrix is obtained from the on-axis elastic 

constant matrix as, 

[ ] [ ]
T

ijij
Q T Q T   =                                         (3.9) 

 Where [T] is the transformation matrix given by 

[ ]

2 2

2 2

2 2

cos sin sin cos 0 0

sin cos sin cos 0 0

2sin cos 2sin cos cos sin 0 0

0 0 0 sin cos

0 0 0 cos sin

θ θ θ θ

θ θ θ θ

θ θ θ θ θ θ

θ θ

θ θ

 
 

− 
 = − −
 
 
 − 

T  (3.10) 

After substituting Eq. (3.10) into Eq. (3.9), constitutive relation of the lamina with reference to 

any arbitrary axis is, 

11 12 16

12 22 26

16 26 66

44 45

45 55

0 0

0 0

0 0

0 0 0

0 0 0

 
 
 
   =   
 
 
  

ij

Q Q Q

Q Q Q

Q Q Q Q

Q Q

Q Q

  (3.11) 
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y 

      Typical Lamina 

Figure 3.3 Lamina reference axis and fiber 

orientation  
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           Figure 3.2 Details of lamination 
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In which 

4 2 2 4

11 12 66 2211 2( 2 )Q Q l Q Q l m Q m= + + +  

2 2 2 2

11 22 66 1212 ( 4 ) ( )Q Q Q Q l m Q l m= + − + +  

4 2 2 4

11 12 66 2222 2( 2 )Q Q m Q Q l m Q l= + + +  

3 3

11 12 66 12 22 6616 ( 2 ) ( 2 )Q Q Q Q lm Q Q Q l m= − − + − +  (3.12) 

 

3 3

11 12 66 12 22 6626 ( 2 ) ( 2 )Q Q Q Q l m Q Q Q lm= − − + − +  

2 2 2 2

11 22 12 66 6666 ( 2 2 ) ( )Q Q Q Q Q l m Q l m= + − − + +  

2 2

13 2344Q G l G m= +  

13 2345 ( )Q G G lm= −  

2 2

13 2355Q G m G l= +  

Where cosl θ=  and sinm θ= . The stress-strain relationship of any k
th

 lamina with reference to 

the global axis (x-y) is given as 

11 12 16

12 22 26

16 26 66

44 45

45 55

0 0

0 0

0 0

0 0 0

0 0 0

k
k k

x x

y y

xy xy

xz xz

yz yz

Q Q Q

Q Q Q

Q Q Q

Q Q

Q Q

σ ε

σ ε

τ γ

τ γ

τ γ

    
    
        

=    
    
    
        

 (3.13) 

 

Or,  { } { }
k kk

Qσ ε =     (3.14) 

 

In which,  

{ } [ ]T

x y xy xz yzσ σ σ τ τ τ=  and { } [ ]T

x y xy xz yzε ε ε γ γ γ=  are the stress and linear 

strain vectors with respect to the laminate axis, respectively. 
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Integrating Eq. (3.14) through the laminate thickness, the stress-strain relation can be written as 

. .dz Q dzσ ε=∫ ∫                 (3.15) 

Or σσσσ =C εεεε                  (3.16) 

Where σσσσ  and εεεε  are the stress resultant vector and middle surface strain vector, respectively and 

C is the rigidity matrix consisting membrane (Cp), bending (Cb), coupling (Cc) and shear (Cs) 

rigidity matrices. 

3.3 Constitutive Relations  

 

 

 

 

 

 

 

 

 

 
Figure 3.4 Details of lamination of a plate bonded with piezoelectric actuators on the top and bottom surface  

 

The transformed stress-strain relations of an orthotropic lamina in a plane state of stress are  

3111 12 16

3212 22 26

3616 26 66

0 0 0

0 0 0

,0 0

k k
k k

x x

y y

xy xy z

Q Q Q d

Q Q Q d

Q Q Q d

σ ε

σ ε

τ γ φ

        
        

= +        
        −          

    (3.17a)  

14 2444 45

15 2545 55

0
0

0
0

,

k kk k

yz yz

yz xz

z

Q Q d d

Q Q d d

τ γ

τ γ
φ

 
        

= +        
          − 

    (3.17b) 

Where ijd  are the transformed piezoelectric moduli.  

1 

2 

z2 

z1 

z0 

k hk 

zk-1 

zk 

znl-1 

znl 

 

2 

h 

 

2 

h 

hp 

hp 
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For the plate type piezoelectric material, only thickness direction electric field EZ =  ,zφ−  is 

dominant, where φ  is the potential field. If the voltage applied to the actuator in the thickness 

only, then /
Z k p

E V h= , where kV  is the applied voltage across the kth ply and 
p

h  is the thickness 

of the ply (Fig. 3.4). 
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CHAPTER 4

FINITE ELEMENT FORMULATION

 

The element used in this work is an eight noded isoparametric element.    

4.1 Shape function for second order rectangular element  

The variation of displacement u can be expressed by the following polynomial in 

natural co-ordinates. 

u= α1 + α2r + α3s + α4r
2 

+ α5rs + α6s
2
 + α7r

2
s + α7r s

2                              
(4.1) 

In the above expressions the cubic terms r
3
 and s

3
 are omitted and ‘geometric 

invariance’ is maintained. 

{φ}
T
=  [1    r    s    r

2
    rs   s

2
   r

2
s   rs

2
]                (4.2) 

      y     

           s   

 

   4 (-1,1)  7   (0,1)              3 (1,1) 

 

 

       6   (1,0)     

            8       (-1,0)                              r     2b 
 

 

   1        5        2  

    

  (-1,-1)            (0,-1)         (1,-1)  

        2a      

           x  

  

Figure 4.1 Eight noded rectangular element 

 

[N]
T
= [¼ (1- r) (1- s)(-r –s –1), ¼ (1+ r) (1- s)(r –s –1), ¼ (1+ r) (1+ s)(r +s –1), 

 ¼ (1+ r) (1+ s)(r + s –1), ¼ (1- r) (1+ s)(-r + s –1), ½ (1+ r) (1- r)(1- s), 

 ½  (1+ r) (1+ s)(1 – s), ½  (1+ r) (1- s)(1 + s), ½  (1- r) (1+ s)(1 – s) ]         (4.3) 

or can be expressed in concise form as 

{N}
T
= [N1   N2    N3   N4   N5   N6   N7   N8 ]                             (4.4) 

 

The displace ment components are given by 
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8

1

8

1

8

1

8

1

8

1

,

,

i i

i

i i

i

i i

i

x i xi

i

y i yi

i

u N u

v N v

w N w

N

N

θ θ

θ θ

=

=

=

=

=

=

=

=

=

=

∑

∑

∑

∑

∑

                       (4.5) 

Where ui and vi are displacements of the nodes 1, 2, 3,…..8.  

The linear strain vector {ε}L can be evaluated as 

{ε}L= [B]p {d}                          (4.6) 

where [B]p is the linear strain displacement relation given by 

 

[ ]

0

0

i

i

p

i i

N

x

N
B

y

N N

y x

 ∂
 

∂ 
 ∂

=  
∂ 

 ∂ ∂
 

∂ ∂  

                (4.7)  

i =1,2…8. N1 , N2 , N3 …. N8 are given by Eq. (4.3) 

The nonlinear strain vector {ε}NL can be written as 

{ } [ ]{ }
1

2
NL NLB dε =                                                          (4.8) 

[ ]NL
B  is the nonlinear strain displacement matrix.  
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[BNL]= [A][Q]                                                                                                       (4.9) 

Matrices  [ ]A  and [Q] are  

[ ]

0

0

w

x

w
A

y

w w

y x

 ∂
 

∂ 
 ∂

=  
∂ 

 ∂ ∂
 

∂ ∂ 

   ;   [Q]= ��      �     ���     �     ��      �     ���      �    � �                                                                    (4.10) 

Total strain is written in the form of linear and nonlinear parts as 

{ } { } { }L NL
ε ε ε= +                                                                                                   (4.11)             

 

4.2 Energy Expressions  

The strain energy over the entire plate volume due to initial stresses and strains can be written as 

{ } { } { } { }0

1 1
[ ]

2 2

T T

V V
U dv C dvε σ ε ε= =∫ ∫ ∫ ∫ ∫ ∫                 (4.12) 

{ }

{ }

[ ][ ] { }

0

0

1 1

0

1 1

[ ] [ ][ ]{ }1

2

1
{ } ( [ ] [ ][ ] )

2

1 1
{ } ( [ ] . . ) { } [ ]{ }

2 2

e

e

T T

A

T T

A

T T T

d B C B d dA
U

U d B C B dA d

or

U d B C B J dr ds d d k d
− −

=

=

= =

∫

∫

∫ ∫

                 (4.13) 

Assuming constant thickness h, the element plane stiffness matrix is given by 

1 1

1 1

[ ] [ ] [ ][ ]T

p
k abh B C B

− −

= ∫ ∫ dr ds                                         (4.14) 
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Bending Strain Energy  

The expression for bending strain energy for the plate is given by the relation: 

 

2 22

1

22

{ 2 (1 )
2

} .
2(1 )

y y yx x x

A

y x

D
U

x y x y x y

Eh w w
dy dx

x y

θ θ θθ θ θ
ν ν

κ
θ θ

ν

 ∂ ∂ ∂        ∂ ∂ ∂
= + − + − −         

∂ ∂ ∂ ∂ ∂ ∂          

  ∂ ∂ 
+ − + −   

+ ∂ ∂    

∫
              (4.15) 

Kinetic Energy 

When the plate undergoes a time dependent motion, it possesses some kinetic energy. The 

displacement, w, θx and θy in this case are the functions of time. Considering the effects of rotary 

inertia and neglecting in-plane inertia, the kinetic energy of the plate is given by 

222 3

. .
2 24

yx

A

h w h
T dy dx

t t t

θθ  ∂ ∂∂     = + +     
∂ ∂ ∂         

∫                       (4.16) 

4.3 Derivation of Element Matrices 

Element matrices are derived as: 

 

 Element plane elastic stiffness matrix 

[ ] [ ] [ ] [ ].T

p p p
k B C B dA= ∫ ∫                                               (4.17)  

Where [B]p is given by Eq. (4.7). 

 

Element linear elastic stiffness matrix 

[ ] [ ] [ ] [ ] . .
T

B B B
B

k B C B dx dy= ∫                                               (4.18) 

 

Where linear strain displacement matrix [B]B can be written as  
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0 0 0 0

0 0 0 0

0 0 0

0 0 0 0

[ ] 1,2..8

0 0 0 0

0 0 0

0 0 0

0 0 0

i

i

i i

i

B

i

i i

i
i

i
i

N

x

N

y

N N

y x

N

x
B i

N

y

N N

x y

N
N

x

N
N

y

−∂ 
 ∂
 

∂ 
 ∂
 

∂ ∂ 
 ∂ ∂
 

∂ 
 ∂

= = 
−∂ 

 ∂
 

−∂ −∂ 
 ∂ ∂
 

∂ 
 ∂
 

∂ −
∂     

 

Generalized element mass matrix or consistent matrix 

[ ] [ ] [ ][ ] .T

e
m N P N dx dy= ∫ ∫                                     (4.19) 

 

Where the shape function matrix 

 

0 0 0 0

0 0 0 0

[ ] 0 0 0 0 1, 2..8

0 0 0 0

0 0 0 0

i

i

i

i

i

N

N

N N i

N

N

 
 
 
 = =
 
 
  

                        (4.20) 
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1 2

1 2

1

2 3

2 3

0 0 0

0 0 0

[ ] 0 0 0 0

0 0 0

0 0 0

P P

P P

P P

P P

P P

 
 
 
 =
 
 
  

                                  (4.21) 

and  

2

1 2 3

1 1

( , , ) ( ) (1, , ).
k

k

zn

k

k z

P P P z z dzρ
= −

=∑ ∫                                 (4.22) 

For the isotropic element mass matrix 

3

1 2 3( , , ) ( ,0, )
12

h
P P P h

ρ
ρ=                                   (4.23)  

 

The element mass matrix can be expressed in local natural coordinates of the element as 

1 1

1 1

[ ] [ ] [ ][ ] . .T

e
m N P N J dr ds

− −

= ∫ ∫                                  (4.24) 

 

Geometric stiffness matrix 

The Strain energy due to initial stresses is  

2 { }
T

nl

v

U dvσ ε =  ∫                                  (4.25) 

Using the non-linear strains, the strain energy can be written as  
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[
2 2 2

2

2 2 2

2
3

2

2 ] .

24

x

A

y

xy

yx
x

A

h u v w
U

x x x

u v w

y y y

u u v v w w
dx dy

x y x y x y

h

x x

σ

σ

τ

θθ
σ

 ∂ ∂ ∂      
= + +      

∂ ∂ ∂      

      ∂ ∂ ∂ 
+ + +      

∂ ∂ ∂       

      ∂ ∂ ∂ ∂ ∂ ∂
+ + +      

∂ ∂ ∂ ∂ ∂ ∂      

∂   ∂ 
+ +    

∂ ∂   

∫

∫
2 2 2

2 .

y y

y

y y x x
xy

y y

dx dy
x y x y

θ θ
σ

θ θ θ θ
τ

  ∂ ∂     
+ +     

∂ ∂       

 ∂ ∂    ∂ ∂
+ +     

∂ ∂ ∂ ∂     

               (4.26) 

 

This can also be expressed as  

2

1 1
{ }[ ] [ ][ ]{ } { } [ ] [ ]{ }

2 2

T T

e e e G e

v

U G S G dv K Gδ δ δ δ= =∫                   (4.27) 

Where element geometric stiffness matrix 

1 1

1 1

[ ] [ ] [ ][ ] .
T

G
k G S G J dr ds

− −

= ∫ ∫                      (4.28) 

Where { }eδ =[u v w θx θy]
T
                      (4.29) 

 

0 0 0 0

0 0 0 0

[ ] 0 0 0 0

0 0 0 0

0 0 0 0

s

s

S s

s

s

 
 
 
 =
 
 
  
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[ ]
x xy

xy y

s
σ τ

τ σ

 
=  
 

                      (4.30) 

and  

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

[ ] 1,2,3..8

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

i

i

i

i

i

i

i

i

N

x

N

y

N

x

N

y
G i

N

x

N

y

N

x

N

y

∂ 
 ∂
 
∂ 
 ∂
 

∂ 
 ∂
 

∂ 
 ∂

= = 
∂ 

 ∂
 ∂
 

∂ 
 ∂ 

∂ 
 ∂
 

∂                        (4.31) 

 

4.4 Derivation of governing equations 

For nonlinear free vibration problem governing equilibrium is  

1 1
0

2 3
δ δ

 
+ =  

ET 1 2
M K+K + N + N��          (4.32) 

Where K and M  are elastic stiffness and mass matrices, respectively.  ETK  is the initial stress 

stiffness matrix due to electro-thermal loads.  1N  and 2N  are nonlinear stiffness matrices.  δ  

and δ��  are the displacement and acceleration vectors. 

The solution of Eq. (4.32) is assumed to be max sin tδ δ ω=  
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Therefore, Eq. (4.32) reduces to  

2

max max

1 1
sin , sin 0

2 3
ET 1 2

- M K+K + N ( )+ N ( )t tω δ ω δ δ δ δ ω
 

+ =  
    (4.33) 

2 1 1
, 0

2 3
ET 1 2

- M K+K + N ( )+ N ( )ω δ δ δ δ δ
 

+ =  
       (4.34) 

Since Eq. (4.34) does not satisfy the governing equation at all the points, rewriting Eq. (4.34) as, 

2 1 1
, { }

2 3
ET 1 2

- M K+K + N ( )+ N ( ) Rω δ δ δ δ δ
 

+ =  
       (4.35) 

Taking the weighted residual method along the path  

/ 4

0

sin  d 0

T

R t tω =∫            (4.36) 

Since 

/ 4

2

0

sin  d / 8

T

t t Tω =∫ ; 

/ 4

3

0

sin  d / 3

T

t t Tω π=∫  and 

/ 4

3

0

sin  d 3 / 32

T

t t Tω =∫ , we have, 

2

max max max max max

4 1
, 0

3 4
ω δ δ δ δ δ

π

 
+ =  

ET 1 2
- M K+K + N ( )+ N ( )      (4.37) 

 

4.5 Solution Procedure 

Equation (4.37) is a standard eigenvalue problem and can be solved to obtain eigenvalues and 

eigenvectors. The solution of Eq. (4.37) is obtained using the direct iteration method. The steps 

involved are: 

Step 1: The fundamental linear frequency and corresponding linear mode shape is calculated by 

solving Eq. (4.37) with all the nonlinear terms being set to zero.  

Step 2: The mode shape is normalized by appropriately scaling the eigenvector ensuring that the 

maximum displacement is equal to the desired amplitude, max /c w h= .  
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Step 3: The nonlinear terms in the stiffness matrix is computed using the normalized mode 

shape. 

Step 4: The equations are then solved to obtain new eigenvalues and corresponding eigenvectors. 

Step 5: Steps 2 to 4 are repeated for a few cycles till the value of the frequency converges up to 

the desired accuracy (say 410− ). 
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CHAPTER 5 

COMPARISON STUDIES 

 

The present formulation and MATLAB code is first validated for the linear analysis of static and 

dynamic response of laminated composite plates subjected to either a thermal load or an 

electrical load or a combination of both. The validation is done by comparing the present results 

with those available in the literature. It is found that the present results are in very good 

agreement with those obtained by researchers previously. 

5.1 Comparison of Static Response 

First, linear static analysis of a [0/90] cross-ply simply supported square plate subjected to a 

linearly varying temperature field, earlier solved by Chandrashekhara and Tenneti, is taken up. 

The temperature distribution through the thickness is considered to be T=T2 z/h. The a/h ratio is 

taken as 50. The thermoelestic properties of the unidirectional ply are the same as those assumed 

by Chandrashekhara and Tenneti (1993). Fig 5.1 shows the central deflection as obtained by the 

author along with those of Chandrashekhara and Tenneti. 

 

 

                           Figure 5.1 Deflection of simply supported laminated composite plate. 
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5.2 Comparison of linear free vibration and transient responses 

Table 5.1 shows the comparison of the results obtained by the present formulation with those 

obtained by the Ritz Method and those obtained by Sai Ram and Sinha. The material properties 

used are the same as those taken by Sai Ram and Sinha (1992). 

Table 5.2 compares the authors’ results of the linear non-dimensional frequency of laminated 

plates with piezoelectric actuators with those obtained by Huang and Shen. The material 

properties, plate dimensions, and non dimensioning parameter used are the same as in Huang and 

Shen (2005). Laminated plates bonded with piezoelectric layers on the top and bottom surfaces 

have been considered. 

Fig 5.2 shows the transient response of (P/0/90/90/0/P) laminated composite plate bonded with 

piezoelectric actuators and subjected to a sudden uniform load of 0.5 MPa. The results are 

compared with those of Huang and Shen. The material properties and plate dimensions are the 

same as in Huang and Shen (2005). A voltage of -50 volts is applied to both the piezoelectric 

layers. A temperature rise of 100 K is considered.  

Having validated the formulation studying the linear static and dynamic response of composite 

plates, the present work is extended to validate the free vibration results when geometric 

nonlinearity is taken into consideration. 

Table 5.1 Verification of non-dimensional frequency by comparison with Ritz method results and results obtained 

by Sai Ram and Sinha; a/b = 1, a/h = 100, (0/90/90/0), T=325 K. 

Mode number (m)        Present FEM    Sai Ram and Sinha         Ritz method 

             1            8.5824             8.088              8.068 

             2            19.5209             19.196              18.378 

             3            39.7136             39.324                   38.778 

             4            45.8484             45.431              44.778 
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Table 5.2 Comparison of  non-dimensional frequency of laminated plates with piezoelectric actuators with the 

results obtained by Huang and Shen 

 

 

Stacking 

Sequence 

  

 

Control  

Voltage 

 

(Volts) 

 

Vlower=Vupper 

         

Temperature rise=0 K 

 
 

 
 

 

Temperature rise=100 

K 

 

           

Temperature 

rise=300 K 

 

Present       

FEM 

Huang and 

Shen 

Present       

FEM 

Huang and 

Shen 

Present       

FEM 

Huang 

and Shen 

 

 

(P/0/90/0/90/P) 

 

-50 V 

 

0 V 

 

50 V 

10.8569 

 

10.8098 

 

10.7625 

10.664 

 

10.617 
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Figure 5.2 Dynamic response of (P/0/90/90/0/P) laminated composite plates 
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5.3 Comparison of nonlinear free vibration results 

 

Table 5.3 compares the authors’ results studying the effects of temperature rise on the nonlinear 

to linear frequency ratio for shear deformable laminated plates with piezoelectric actuators with 

those obtained by Huang and Shen. The material properties, plate dimensions, and non 

dimensioning parameter used are the same as in Huang and Shen (2005). 

Table 5.4 compares the authors’ results studying the effects of control voltage on the nonlinear to 

linear frequency ratio for shear deformable laminated composite plates fitted with piezoelectric 

actuators with those obtained by Huang and Shen. The material properties, plate dimensions, and 

non dimensioning parameter used are the same as in Huang and Shen (2005). 

The results of Table 5.3 and Table 5.4 are obtained by iteratively solving Eq. (4.32). The changes 

introduced by applying the Galerkin’s weighted residual method have not been considered in this 

case. 

Table 5.5 gives the comparison of nonlinear frequency ratio by iteratively solving Eq. (4.37) 

which employs the Galerkin’s weighted residual method. It is seen that by applying Galerkin’s 

method the obtained results compare very well with the analytical solutions of Huang and Shen 

(2005). The use of this formulation throughout the present study is therefore justified. 

 

Table 5.3 Effects of temperature rise on the nonlinear to linear frequency ratio for shear deformable laminated 

plates with piezoelectric actuators. 

Stacking 

sequence 

Temperature 

rise 
Wmax/h 

0.2 0.4 0.6 0.8 1.0 

 

 

 

(P/0/90/0/90/P) 

 

 

0 K 

1.0167 

(1.019) 

1.0655 

(1.073) 

1.1427 

(1.157) 

1.2436 

(1.266) 

1.3636 

(1.393) 

 

100 K 

1.0185 

(1.021) 

1.0721 

(1.080) 

1.1566 

(1.173) 

1.2664 

(1.292) 

1.3963 

(1.430) 

 

300 K 

1.0233 

(1.026) 

1.0905 

(1.102) 

1.1948 

(1.277) 

1.3283 

(1.363) 

1.4840 

(1.529) 

 

 

 

(P/0/90/90/0/P) 

 

0 K 

1.017 

(1.018) 

1.067 

(1.070) 

1.1457 

(1.151) 

1.2483 

(1.256) 

1.3700 

(1.379) 

 

100 K 

1.0189 

(1.020) 

1.0737 

(1.077) 

1.1599 

(1.166) 

1.2715 

(1.280) 

1.4032 

(1.413) 

 

300 K 

1.0238 

(1.025) 

1.0924 

(1.096) 

1.1987 

(1.206) 

1.3343 

(1.344) 

1.4921 

(1.504) 

Bracketed values are the results obtained by Huang and Shen (2005) 
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Table 5.4 Effects of voltage on the nonlinear to linear frequency ratio for shear deformable laminated plates with 

piezoelectric actuators. 

Stacking 

sequence 

Voltage Wmax/h 
0.2 0.4 0.6 0.8 1.0 

 

 

 

(P/0/90/0/90/P) 

 

 

-50 V 

1.0166 

(1.02) 

1.0649 

(1.079) 

1.1415 

(1.170) 

1.2417 

(1.286) 

1.3608 

(1.423) 

 

0 V 

1.0167 

(1.02) 

1.0655 

(1.08) 

1.1427 

(1.171) 

1.2436 

(1.289) 

1.3636 

(1.426) 

 

50 V 

1.0169 

(1.03) 

1.0661 

(1.088) 

1.1438 

(1.173) 

1.2455 

(1.292) 

1.3663 

(1.430) 

 

 

 

(P/0/90/90/0/P) 

 

-50 V 

1.017 

(1.019) 

1.0664 

(1.075) 

1.1445 

(1.163) 

1.2464 

(1.275) 

1.3672 

(1.406) 

 

0 V 

1.017 

(1.019) 

1.067 

(1.076) 

1.1457 

(1.164) 

1.2483 

(1.277) 

1.3700 

(1.410) 

 

50 V 

1.0173 

(1.02) 

1.0675 

(1.077) 

1.1469 

(1.166) 

1.2503 

(1.280) 

1.3728 

(1.413) 

Bracketed values are the results obtained by Huang and Shen (2005) 

 

Table 5.5 Comparison of nonlinear frequency ratio (
/

NL L
ω ω

) of [P/0
0
/90

0
/90

0
/0

0
/P] laminated plate with 

piezoelectric actuators 

Applied 

Voltage 
Wmax/h 0.2 0.4 0.6 0.8 1 

-50 V 

 

Present 1.019 1.075 1.161 1.272 1.402 

Huang and Shen (2005) 1.019 1.075 1.163 1.275 1.406 

0 V 

 

Present 1.019 1.075 1.163 1.274 1.405 

Huang and Shen (2005) 1.019 1.076 1.164 1.277 1.410 

50 V 

 

Present 1.020 1.076 1.164 1.276 1.408 

Huang and Shen (2005) 1.020 1.077 1.166 1.280 1.413 
 

 

Having validated all the present codes the study is extended to investigate the effect of different 

parameters such as temperature rise, control voltage, boundary conditions, fibre orientation and 

stacking sequence on the free vibration behavior of laminated composite plates fitted with 

piezoelectric actuators and subjected to thermal environments. 
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CHAPTER 6 

NEW RESULTS AND DISCUSSIONS 

 

The increasing use of laminated composites in engineering structures has resulted in the need for 

more information on their behavior. Elevated temperature conditions have an adverse effect on 

the performance of the composites. In this chapter, large amplitude free vibrations of laminated 

composite plates with bonded piezoelectric layers subjected to thermal environments will be 

studied using nonlinear finite element methods. The numerical results are presented for different 

temperature conditions, control voltages, boundary conditions, fibre orientations and stacking 

sequences. 

6.1 Boundary conditions 

In the present investigation two different simply supported boundary conditions are considered: 

For both cases w= 0 at x= 0, a and y= 0, b. 

In addition to the above constraints on transverse displacement, the following conditions are 

considered here: 

Immovable (SS1) u0= v0= 0 at x= 0, a and y= 0, b. 

Partially movable (SS2) v0= 0 at x= 0, a; u0= 0 at y= 0, b.  

6.2 Material properties 

Unless otherwise mentioned, graphite/epoxy composite material and PZT-5A were selected for 

the substrate and piezoelectric layers, respectively. The material properties for graphite-epoxy 

orthotropic layers of the substrate are 1 150 GPaE = , 2 9 GPaE = , 12 13 7 1 GPaG G .= = , 

23 2 5 GPaG .= , 12 0 3.ν = , 
3

0
1580 kg/mρ =  and for PZT-5A piezoelectric layers E = 63.0 GPa,   

G = 24.2 GPa, 0 3.ν = , 
3

1580 kg/mρ =  and 10

31 32
2 54 10  m/Vd d . −= = × .  
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6.3 Plate dimensions 

Free vibration of simply supported cross-ply laminated plate having piezoelectric layers at its top 

and bottom is considered. The plate is having size of a = b = 24 mm and the total thickness of the 

plate is 1.2 mm. All orthotropic layers of the substrate are of equal thickness, whereas the 

thickness of piezoelectric layers is 0.1 mm. 

The value of linear fundamental frequency is non-dimensionalised as ( )2

0 1a / h / Eλ ω ρ= . 

6.4 Cross-ply laminates 

Table 6.1- 6.8 gives the nonlinear to linear frequency ratio for both symmetric and unsymmetric 

cross-ply laminates under uniform temperature rise and under different control voltages applied 

equally on both the upper and lower piezoelectric actuator layers. From the linear non-

dimensional frequency values it is observed that increase in temperature causes the fundamental 

natural frequency to reduce. This can be explained by a reduction in stiffness of the composite 

plates with increasing temperature. On the other hand a negative voltage applied to the plate 

causes the fundamental natural frequency to increase. This may be explained by the pinching 

action of the piezoelectric actuator layer which causes the composite plate to be stretched, 

thereby increasing its stiffness.  

It can also be seen that the temperature rise and positive control voltage increase the nonlinear to 

linear frequency ratios. This is in perfect accordance with the results obtained by Huang and 

Shen (2005). 

Comparing the results for the two boundary conditions used, it is observed that the vibration 

amplitude` has a smaller effect on the nonlinear to linear frequency ratio of an SS2 plate as 

compared to an SS1 plate. 
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Table 6.1 Comparison of nonlinear frequency ratio (
/

NL L
ω ω

) of [P/0
0
/90

0
/90

0
/0

0
/P] laminated plate, SS1 boundary 

Wmax/h Temperature Rise 

0 K 100 K 300 K 

0.2 
1.0194 1.0214 1.027 

0.4 
1.0754 1.083 1.104 

0.6 
1.1627 1.1784 1.2212 

0.8 
1.2745 1.2999 1.3682 

1.0 
1.4049 1.4407 1.5362 

1.2 
1.549 1.5955 1.7188 

λ 
10.8318 10.306 9.1642 

 

 

 

Table 6.2 Comparison of nonlinear frequency ratio (
/

NL L
ω ω

) of [P/0
0
/90

0
/90

0
/0

0
/P] laminated plate, SS1 boundary 

Wmax/h Control Voltage 

-100 V 0 V 100 V 

0.2 
1.0191 1.0194 1.0197 

0.4 
1.0742 1.0754 1.0767 

0.6 
1.1601 1.1627 1.1654 

0.8 
1.2703 1.2745 1.2788 

1.0 
1.399 1.4049 1.411 

1.2 
1.5412 1.549 1.5569 

λ 
10.9256 10.8318 10.7371 
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Table 6.3 Comparison of nonlinear frequency ratio (
/

NL L
ω ω

) of [P/0
0
/90

0
/90

0
/0

0
/P] laminated plate, SS2 boundary 

Wmax/h Temperature Rise 

0 K 100 K 300 K 

0.2 
1.0092 1.0111 1.0194 

0.4 
1.0361 1.0437 1.0754 

0.6 
1.0793 1.0956 1.1623 

0.8 
1.1367 1.164 1.2735 

1.0 
1.2062 1.2459 1.4027 

1.2 
1.2853 1.3385 1.5447 

λ 
10.8318 9.8266 7.4182 

 

 

 

Table 6.4 Comparison of nonlinear frequency ratio (
/

NL L
ω ω

) of [P/0
0
/90

0
/90

0
/0

0
/P] laminated plate, SS2 boundary 

Wmax/h Control Voltage 

-100 V 0 V 100 V 

0.2 
1.0089 1.0092 1.0095 

0.4 
1.035 1.0361 1.0373 

0.6 
1.0769 1.0793 1.0819 

0.8 
1.1327 1.1367 1.141 

1.0 
1.2002 1.2062 1.2125 

1.2 
1.2774 1.2853 1.2938 

λ 
11.0065 10.8318 10.6542 
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Table 6.5 Comparison of nonlinear frequency ratio (
/

NL L
ω ω

) of [P/0
0
/90

0
/0

0
/90

0
/P] laminated plate, SS1 boundary 

Wmax/h Temperature Rise 

0 K 100 K 300 K 

0.2 
1.0191 1.021 1.0265 

0.4 
1.0742 1.0817 1.1023 

0.6 
1.1603 1.1758 1.2181 

0.8 
1.2709 1.296 1.3637 

1.0 
1.4003 1.4358 1.5306 

1.2 
1.5435 1.5897 1.7123 

λ 
10.8194 10.2928 9.1491 

 

 

 

Table 6.6 Comparison of nonlinear frequency ratio (
/

NL L
ω ω

) of [P/0
0
/90

0
/0

0
/90

0
/P] laminated plate, SS1 boundary 

Wmax/h Control Voltage 

-100 V 0 V 100 V 

0.2 
1.0187 1.0191 1.0194 

0.4 
1.073 1.0742 1.0755 

0.6 
1.1577 1.1603 1.1629 

0.8 
1.2668 1.2709 1.2752 

1.0 
1.3944 1.4003 1.4063 

1.2 
1.5358 1.5435 1.5514 

λ 
10.9133 10.8194 10.7246 
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Table 6.7 Comparison of nonlinear frequency ratio (
/

NL L
ω ω

) of [P/0
0
/90

0
/0

0
/90

0
/P] laminated plate, SS2 boundary 

Wmax/h Temperature Rise 

0 K 100 K 300 K 

0.2 
1.0096 1.0117 1.0214 

0.4 
1.0378 1.0461 1.083 

0.6 
1.0829 1.1008 1.1781 

0.8 
1.1427 1.1727 1.299 

1.0 
1.2149 1.2585 1.4386 

1.2 
1.2971 1.3554 1.5913 

λ 
10.5854 9.5546 7.0547 

 

 

 

Table 6.8 Comparison of nonlinear frequency ratio (
/

NL L
ω ω

) of [P/0
0
/90

0
/0

0
/90

0
/P] laminated plate, SS2 boundary 

Wmax/h Control Voltage 

-100 V 0 V 100 V 

0.2 
1.0093 1.0096 1.0099 

0.4 
1.0365 1.0378 1.0391 

0.6 
1.0803 1.0829 1.0857 

0.8 
1.1383 1.1427 1.1474 

1.0 
1.2085 1.2149 1.2218 

1.2 
1.2885 1.2971 1.3063 

λ 
10.764 10.5854 10.4037 
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6.5 Angle-ply laminates 

Table 6.9-6.16 gives the nonlinear to linear frequency ratio for both symmetric and unsymmetric 

angle-ply laminates under uniform temperature rise and under different control voltages applied 

equally on both the upper and lower piezoelectric actuator layers. The trends observed for angle-

ply laminates is similar to those observed for cross-ply laminates. However, for the material 

properties, plate geometry and boundary conditions employed in the present investigation, the 

angle-ply laminates have higher fundamental frequencies as compared to the cross ply laminates. 

 

 

 

Table 6.9 Comparison of nonlinear frequency ratio (
/

NL L
ω ω

) of [P/45
0
/-45

0
/-45

0
/45

0
/P] laminated plate, SS1 

boundary 

Wmax/h Temperature Rise 

0 K 100 K 300 K 

0.2 
1.0132 1.0143 1.0172 

0.4 
1.0517 1.056 1.067 

0.6 
1.1128 1.1218 1.1451 

0.8 
1.1928 1.2077 1.2459 

1.0 
1.2879 1.3094 1.3639 

1.2 
1.3949 1.4234 1.495 

λ 
11.9959 11.5194 10.5014 
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Table 6.10 Comparison of nonlinear frequency ratio (
/

NL L
ω ω

) of [P/45
0
/-45

0
/-45

0
/45

0
/P] laminated plate, SS1 

boundary 

Wmax/h Control Voltage 

-100 V 0 V 100 V 

0.2 
1.013 1.0132 1.0134 

0.4 
1.051 1.0517 1.0524 

0.6 
1.1113 1.1128 1.1143 

0.8 
1.1903 1.1928 1.1953 

1.0 
1.2843 1.2879 1.2917 

1.2 
1.3901 1.3949 1.3999 

λ 
12.0813 11.9959 11.9098 

 

 

 

Table 6.11 Comparison of nonlinear frequency ratio (
/

NL L
ω ω

) of [P/45
0
/-45

0
/-45

0
/45

0
/P] laminated plate, SS2 

boundary 

Wmax/h Temperature Rise 

0 K 100 K 300 K 

0.2 
1.0086 1.0098 1.0139 

0.4 
1.0339 1.0388 1.0543 

0.6 
1.0747 1.0851 1.1182 

0.8 
1.1292 1.1467 1.2017 

1.0 
1.1953 1.221 1.3009 

1.2 
1.2704 1.305 1.4111 

λ 
11.9959 11.2128 9.4504 
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Table 6.12 Comparison of nonlinear frequency ratio (
/

NL L
ω ω

) of [P/45
0
/-45

0
/-45

0
/45

0
/P] laminated plate, SS2 

boundary 

Wmax/h Control Voltage 

-100 V 0 V 100 V 

0.2 
1.0084 1.0086 1.0088 

0.4 
1.0332 1.0339 1.0347 

0.6 
1.0731 1.0747 1.0764 

0.8 
1.1264 1.1292 1.1321 

1.0 
1.1912 1.1953 1.1996 

1.2 
1.2649 1.2704 1.2762 

λ 
12.1342 11.9959 11.8559 

 

 

Table 6.13 Comparison of nonlinear frequency ratio (
/

NL L
ω ω

) of [P/45
0
/-45

0
/45

0
/-45

0
/P] laminated plate, SS1 

boundary 

Wmax/h Temperature Rise 

0 K 100 K 300 K 

0.2 
1.0126 1.0136 1.0162 

0.4 
1.0494 1.0533 1.0633 

0.6 
1.1079 1.1163 1.1375 

0.8 
1.185 1.1988 1.2337 

1.0 
1.2771 1.297 1.3472 

1.2 
1.381 1.4075 1.4737 

λ 
12.1423 11.6754 10.6807 
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Table 6.14 Comparison of nonlinear frequency ratio (
/

NL L
ω ω

) of [P/45
0
/-45

0
/45

0
/-45

0
/P] laminated plate, SS1 

boundary 

Wmax/h Control Voltage 

-100 V 0 V 100 V 

0.2 
1.0124 1.0126 1.0127 

0.4 
1.0487 1.0494 1.05 

0.6 
1.1065 1.1079 1.1094 

0.8 
1.1826 1.185 1.1874 

1.0 
1.2737 1.2771 1.2805 

1.2 
1.3765 1.381 1.3856 

λ 
12.2261 12.1423 12.0578 

 

 

 

Table 6.15 Comparison of nonlinear frequency ratio (
/

NL L
ω ω

) of [P/45
0
/-45

0
/45

0
/-45

0
/P] laminated plate, SS2 

boundary 

Wmax/h Temperature Rise 

0 K 100 K 300 K 

0.2 
1.0082 1.0093 1.0129 

0.4 
1.0323 1.0367 1.0506 

0.6 
1.0712 1.0808 1.1106 

0.8 
1.1234 1.1395 1.1895 

1.0 
1.1866 1.2103 1.2829 

1.2 
1.2596 1.2917 1.3888 

λ 
12.1314 11.3608 9.6344 
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Table 6.16 Comparison of nonlinear frequency ratio (
/

NL L
ω ω

) of [P/45
0
/-45

0
/45

0
/-45

0
/P] laminated plate, SS2 

boundary 

Wmax/h Control Voltage 

-100 V 0 V 100 V 

0.2 
1.008 1.0082 1.0084 

0.4 
1.0316 1.0323 1.033 

0.6 
1.0697 1.0712 1.0728 

0.8 
1.1208 1.1234 1.1261 

1.0 
1.1828 1.1866 1.1905 

1.2 
1.2544 1.2596 1.2649 

λ 
12.2677 12.1314 11.9936 
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CHAPTER 7 

CONCLUSIONS 

In the present investigation a finite element procedure is formulated for studying the 

nonlinear free vibration of laminated composite plates fitted with piezoelectric actuators and 

subjected to thermal environments. Modified first order shear deformation theory is 

employed using an 8 noded isoparametric element. The geometric nonlinearity is introduced 

through von Karman strains. The Galerkin’s weighted residual method is used to obtain the 

final governing equation that is solved by direct iteration. 

The important observations from the numerical results for the nonlinear free vibrations are 

presented in this section. 

• An increase in temperature causes a reduction in the fundamental frequency due to 

reduction in stiffness of the composite plate. 

• Increase in the minus voltage increases the fundamental frequency. This can be 

explained by the pinching action of the piezoelectric layer which causes stretching of 

the plate, thereby increasing its stiffness. 

• For the material properties, plate geometry and boundary conditions used in the 

present, angle-ply laminates are found to have higher fundamental frequencies as 

compared to cross-ply laminates. 

• Amplitude of vibration is found to have a greater impact on the nonlinear to linear 

frequency ratios of plates with SS1 boundary conditions as compared to those with 

SS2 boundary conditions.  
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CHAPTER 8 

SCOPE FOR FUTURE RESEARCH 

 

There are several related problems where either the present investigation can be extended. This 

section defines some such problems that can be taken up for future investigation. 

• The current formulation can be extended to study the geometrically nonlinear free 

vibration of shells. 

• Thermal post-buckling analysis can be carried out for composite plates and shells. 

• The analysis of plates and shells bonded with piezoelectric sensors and actuators can 

be taken up. 

• The present analysis can also be extended to material nonlinear problems. 
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