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ABSTRACT 

 

 

The present project dealt with the preparation of a multiferroic composite (Na0.5K0.5)NbO3-

(Ni0.6Zn0.4)Fe2O4 in which the constituent materials (Na0.5K0.5)NbO3 [NKN] and 

(Ni0.6Zn0.4)Fe2O4  [NZFO] were prepared by coating method and combustion method 

respectively. These were mixed in required proportion and densified by conventional sintering 

process to form composite. Four compositions were prepared to form composite (1-

x)(Na0.5K0.5)NbO3-x(Ni0.6Zn0.4)Fe2O4 [NKN-NZFO] ceramics, where  x=0.01, 0.10, 0.15 and 

0.20. XRD of the sintered and ground sample showed no reaction between individual phases and 

no secondary phase formation in the final product. SEM image shows that addition of NZFO 

significantly modifies the microstructure of the sintered sample. Grain size found to be 10-15 µm 

for 1% NZFO addition.  The grain size reduced to 2-5 µm for higher NZFO addition. The 

dielectric constant and dissipation factor were studied as a function of frequency for ceramic 

composites 
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INTRODUCTION:  

1.1 Multiferroics: Multiferroics are materials in which (ferro)magnetism, the spontaneous 

ordering of orbital and spin magnetic moments, and ferroelectricity, the spontaneous ordering of 

electric dipole moments can coexist in one material in the absence of external electric and 

magnetic fields. A third type of ordering, spontaneous deformation, which leads to ferroelasticity 

can also coexist. Boracites were probably the first known multiferroics [1]. 

 

    

 

 

 

 

The origin of magnetism is basically the same in all magnets but the situation with 

ferroelectrics is quite different because there can be several different microscopic sources of 

ferroelectricity leading to different types of multiferroics. Type-I multiferroics, in these materials 

ferroelectricity and magnetism have different sources of origin and appear largely independent ly 

of one another. Ferroelectricity typically appears at higher temperatures than magnetism, and the 

spontaneous polarization P is often rather large.  Examples are BiFeO3 

(TFE~1100K,TN=643 K,P~90μC/cm
2
). Another category is type-II multiferroics, is the relatively 

recently discovered materials [2], in which magnetism causes ferroelectricity. However, the 

polarization in these materials is usually much smaller (~10
-2
μC/cm

2
). example, in TbMnO3 
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magnetic ordering appears at TN1=41 K, and at a lower temperature, TN2=28 K, the magnetic 

structure changes. Magnetoelectric coupling is an independent phenomenon that can, but need 

not, arise in any of the materials that are both magnetically and electrically polarizable. But in 

most of the cases ferroelectric or magnetic transition temperature is below room temperature, so 

it cannot be used in practical application. The conditions for the occurrence of ferroelectric and 

magnetic order in the same material require: (i) the presence of adequate structural building 

blocks permitting ferroelectric-type ionic movements, i.e. off-centre displacement associated 

with the spontaneous polarization in ferroelectrics, (ii) magnetic-interaction pathways for the 

magnetic order, usually of the super-exchange type and (iii) symmetry conditions [4]. 

Multiferroic composite structures in bulk form are explored for high-sensitivity ac magnetic field 

sensors and electrically tunable microwave devices such as filters, oscillators and phase shifters. 

In multiferroic thin films, the coupled magnetic and ferroelectric order parameters can be 

exploited for developing magnetoelectronic devices. These include novel spintronic devices such 

as tunnel magneto resistance (TMR) sensors. One can also explore multiple state memory 

elements, where data are stored both in the electric and the magnetic polarizations. 

  A high inherent coupling between multiferroic components has not yet 

been found in single phase compounds. Example of single phase multiferroic materials are 

Cr2O3. These single phase materials exhibit magnetoelectric behavior only at very low 

temperature and sometimes at high external field. They have magnitude of ME response very 

lower as compared to composite materials (around 1/10
th
). So they can’t be used for potential 

applications. 

Magnetoelectric Composites: They have greater design flexibility, a large magnetoelectric 

response and can be operated at room temperature. So they can be used as multifunctional 

http://en.wikipedia.org/wiki/Spintronic
http://en.wikipedia.org/w/index.php?title=Tunnel_magneto_resistance&action=edit&redlink=1
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devices such as magnetic-electric transducers, actuators and sensor applications. ME results from 

the cross interaction between different ordering of the two phases in the composite. Neither the 

piezoelectric nor magnetic phase has ME effect but the composite have remarkable ME effect, 

and it is result of magetostrictive effect(magnetic/mechanical effect) in the magnetic phase and 

the piezoelectric effect ( mechanical/electrical effect) in the piezoelectric material. Applying 

magnetic field will change the magnetostrictive constituent and volume will change so a local 

stress will be generated, which will pass into the piezoelectric phase, thus producing electric 

polarization (charge). Our ME composite 0-3 type particulate composite of piezoelectric and 

magnetic oxide materials. Originally particulate composites were prepared by unidirectional 

solidification of a eutectic composition of the quinary system Fe-Co-Ti-Ba-O [5]. It helps in the 

decomposition of the eutectic liquid in to alternate layers of a piezoelectric perovskite phase and 

a piezomagnetic spinel phase. High ME coefficient of 130mV/cm Oe was obtained in a eutectic 

composition if BaTiO3-CoFe2O4 by unidirectional solidification. Sintering processing is much 

easier and cheaper than directional solidification. Sintered composites have several advantages 

like freedom in the selection of constituent phase, there starting particle sizes, processing 

parameters. Sintering temperature has a significant effect on ME coefficient. In spite of the high 

ME coefficient in these 0-3 particulate composite ceramics, it is difficult to achieve 

experimentally. 

1.2 Sodium Potassium Niobate (Na0.5K0.5NbO3): Piezoelectric materials play an important role 

in actuators and sensors applications. Lead oxide based ferroelectrics,  for example  lead 

zirconate titanate (Pb(Zr,Ti)O3) or (PZT) , are widely used for piezoelectric actuators, sensors 

and transducers due to their excellent piezoelectric properties [6 and 7]. But due to the toxicity of 

lead oxide and its high vapor pressure during processing, we will use environmental friendly 
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materials. Potassium sodium niobate Na1−xKxNbO3 (abbreviated as NKN) ceramics are one of the 

candidates as the alternative systems. Na1−xKxNbO3 is a combination of ferroelectric KNbO3 or 

KN and antiferroelectric NaNbO3  or NN, and forms a morphotropic phase boundary (MPB) near 

50/50 composition (x=0.50) separating two orthorhombic phases [8]. NKN is an attractive 

material that has been thoroughly investigated as a result of its high electromechanical coupling 

coefficient (k
2
) and high phase transition temperature (Tc  420 °C), especially near the 

morphotropic phase boundary (MPB). However, the difficulty of sintering NKN ceramics under 

atmosphere is a serious drawback. The main problem is the volatilization of potassium oxide 

(K2O) at 800 °C which makes it difficult to control stoichiometry [9] and [10]. Another problem 

is oxygen deficiency during preparation resulting from high-temperature processing and giving 

rise to electronic conductivity [10]. At present, the best densities reported for Na0.5K0.5NbO3 are 

90–95% of the theoretical density. Nevertheless, dense NKN ceramics are difficultly obtained 

since their phase stability is limited to 1140 °C close to the melting point [11]. The crystal phase 

of the Na0.5K0.5NbO3 has an orthorhombic structure. It has a general formula ABO3 and may be 

described as a simple cubic unit cell with the corners occupied by a large cation (“A”, such as 

Pb, Ba, Ca, K, Na, etc.), a smaller cation (“B”, such as Ti, Nb, Mg, Zr, etc.) and oxygens in the 

face centers. sodium potassium niobate (NKN), has both Na and K at the A site.Piezoelectric 

performance evidently is the ultimate criteria to judge how good a piezoelectric is, a high Curie 

temperature is also strongly desired in order to provide a wide temperature range of operation 

and ensure the stability of the material performance. Na0.5K0.5NbO3-based materials present a 

clear-cut advantage in possessing high piezoelectric performance while maintaining high Curie 

temperature. 
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Figure.1.2.1 Schematic Representation of Perovskite structure of Sodium Potassium 

Niobate 

 

1.3 Nickel–Zinc Ferrites (Ni0.6Zn0.4Fe2O4)  : Oxides having spinel structure (AB2O4), are found 

to be technological and commercial applications in electric and magnetic fields. These properties 

are depending upon the nature, oxidation state and distribution of metal ions over tetrahedral and 

octahedral sites of spinel lattice. Spinel ferrites have been widely studied due to their interesting 

properties like high resistivity, mechanical hardness, remarkable stability and promising memory 

storage capacity. They have a wide range of applications in microwave absorbance, number of 

electronic devices as, radio, TV sets, integrated non-reciprocal circuits, high frequency 

transformers, memory cores devices, rod antennas, read-write heads for high-speed digital tape 
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or disk recording [12],[13],[14],[15]. The change of the Ni molar ratio content (x) from 0.2 to 0.9 

had strongly affected the properties of the formed ferrites powders. The lattice parameters found 

to decline gradually with increasing nickel content and the crystallite size was in the range 

between 27 and 155 nm. The crystal structure of Ni–Zn ferrites spinel configuration is based on a 

face centered cubic lattice of oxygen ions. The unit cell consists of eight formula units of the 

type [ZnFe1−x]A[Ni1−xFe1+x]BO4, where A represents tetrahedral site and B octahedral site [16].  

 

 

Figure1.3.1 [17] spinel structure 

The properties of Ni–Zn ferrites are strongly depending on their chemical composition and 

microstructure. Selection of the appropriate process is, therefore, a key factor to obtain the 
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desired ferrite quality especially for low loss and high frequency [18]. The saturation 

magnetization (Ms) of the Ni–Zn ferrites is 52.97 emu/g. 

   Multiferroic composites are made because they yield high magnetoelectric 

coupling response above room temperature, so they can be easily used in technological 

applications. An electric polarization is induced by a weak  ac magnetic field and magnetization 

polarization appears upon applying an electric field. [19]. In such composites electromechanical 

coupling  occurs and magnetostriction in the ferrite phase give rise to mechanical stress that 

transfer to the ferroelectric phase , resulting in the electric polarization of ferroelectric phase and 

account an excellent magnetoelectric effect[20],[21,[22],[23]. There are very less number of 

reports available on dielectric properties of these composites.  
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CHAPTER 2 
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2.1 Literature Review: 

Kapse at al. formed Nickel–zinc ferrites (Ni0.6Zn0.4Fe2O4). Transition metal ferites are a 

family of oxides that plays a vital role in wide range of fields and is related to the variety of 

transition metal metal cations that can be incorporated in to the lattice of parent magnetic 

structure. Most ferrites are produced by conventional process having downsides like chemical 

inhomogeneity, poor compositional control, coarser particle size. The stoichiometric molar 

amount of ferric nitrate, nickel nitrate,, zinc nitrate were dissolved in distilled water and then 

adding them to the warm solution of citric acid monohydrate/ethylene glycol. Continuous 

magnetic stirring of the resultant solution for 2 hours will give homogeneous mixture. this 

solution is transferred to Teflon lined stainless steel autoclave and the autoclave temperature was 

slowly raised to  120°c and maintained for 12 hours to get gel precursor. Autoclave was allowed 

to cool to RT and the resulting product further heated for 4h to 350°c and calcined for 6h at 

700°c to improve the crystallinity of the prepared material. XRD analysis confirmed the 

formation of cubic spinel strucuture. Usually ferrites preparedby chemical routes show presence 

of α-Fe2O3. Here extra peaks are found due corresponding to α-Fe2O3 are found for x=0, 

indicating considerable loss of Ni
+2

 ions, and for other x values cubic spinel structure is formed. 

  Rupesh et al. formed (Ni–Co–Cu)ferrite/BTO composites. These electroceramic 

composites of ferrite and ferroelectric phases have the ability to show product and sum properties 

[24]. The development of such multiferroics facilitate the conversion of energies between 

electric and magnetic fields and are potential candidates as memory elements. The distortion of 

the ferrite lattice due to the Jahn-Teller ions (i.e. Ni
2+

 and Cu
2+

) induces a stress in the nearby 

ferroelectric lattice, which may results in improvement of electric properties. The individual 
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phases and their composites having the general formula 

(x)BaTiO3 + (1 − x)Ni0.93Co0.02Cu0.05Fe2O4 were prepared by double sintering ceramic technique. 

The BTO was presintered at 900 °C and Ni0.93Co0.02Cu0.05Fe2O4 was presintered at 800 °C for 

10 h. Milling for 3–4 h after mixing 85 mol%, 70 mol% and 55 mol% ferroelectric phase with 

15 mol%, 30 mol% and 45 mol% ferrite phase, respectively was done and  pressed into pellets. 

Finally sintering at 1150 °C for 12 h was done. The ferrite phase shows the cubic spinel structure 

and ferroelectric phase crystallizes into tetragonal perovskite structure which is evidenced from 

the splitting of peaks. Absence of unidentified peak confirms no chemical reaction has taken 

place during the final sintering. The dielectric constant increases with temperature up to Curie 

temperature (Tc) and then decreases, which is normally expected behavior in most of the ferrites 

and ME composites [25]. The dielectric constant reduced with increase in ferrite content. 

  Singh et al. made LaFeO3-PbTiO3 multiferroic. The composition [(Pb0.8La0.2 

)(Ti0.8Fe0.2)O3] originates by combining A-site ferroelectricity with B-site magnetic order. Solid 

solutions are prepared by conventional solid state reaction route. Raw materials La2O3, PbO, 

Fe2O3, TiO2  are weighed in stoichiometric proportion. XRD confirms single phase tetragonal 

structure at room temperature at room temperature. The unit cell has lattice parameters a=3.924 

Ǻ and c=3.980 Ǻ with c/a ratio approx. 1.014. two peaks in permittivity versus temperature 

graph are observed at all frequencies. The first sharp peak at 434 K is independent of frequencies 

shows ferroelectric to paraelectric transition. Dielectric losses also increase with temperature    

 Kambale et al. formed 25% Co-Mn ferrite (CMFO) and 75% Ba-Zr Titnate(BZT) 

ferroelectric multiferroic composite. The product property is of technical importance as the 

composite can be used as an magnetic field sensor, electric generator, switches, waveguides etc. 

The sum properties like dielectric properties, electrical conductivity and density are also equally 
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important because they affect the product property and hence its application in various practical 

devices. The ferrite i.e. CMFO phase is synthesized by an autocombustion. AR grade BaCO3, 

ZrO2 and TiO2 were milled for 2–3 h and pre-sintered at 1000 °C for 10 h to synthesize 

BaZr0.08Ti0.92O3 phase and then the individual phases were ground to fine powder and the ME 

composites were prepared by mixing 25 wt.% ferrite phase and 75 wt.% ferroelectric phase using 

an agate mortar. 2% polyvinyl alcohol as a binder is added and pressed into pellets. The pellets 

were finally sintered at 1250 °C for 10 h with heating rate 5 °C/min. XRD shows all the peaks 

confirms constituent phasesof the spinel cubic and tetragonal perovskite crystal structure. For 

spinel ferrite a (311) peak and for ferroelectric a (110) peak is more intense. No impurity peaks 

are observed. So no chemical  reaction between the constituent phases during final sintering of 

composite. The lattice constant of the ferrite phase increases with increasing Mn content, in the 

cobalt ferrite, from 8.38 Å to 8.42 Å. The average grain sizes for CMFO0 + BZT, 

CMFO1 + BZT, CMFO2 + BZT, CMFO3 + BZT and CMFO4 + BZT composites are 0.62 µm, 

0.83 µm, 1.10 µm, 0.71 µm and 0.65 µm respectively. Dielectric constant decreases with 

increasing frequency, due to dipoles resulting from changes in valence states of cations and 

space charge polarization. 

  Corral-Flores at al. prepared CoFe2O4–BaTiO3 multiferroic core–shell-type 

nanostructures. CoFe2O4 was synthesized by chemical co-precipitation. A 0.2 M solution was 

prepared by dissolving Co(NO3)2·6H2O and Fe(NO3)3·9H2O in deionized water. The 

precipitating agent was a 5 M NaOH solution with 100% molar excess. Both solutions were 

heated separately to 65 °C and then mixed under constant stirring. The temperature was raised to 

80 °C for 20 min, causing completely crystallization of the spinel phase. The precipitate was 

centrifuged and washed with distilled water. The CoFe2O4 was kept in a water suspension. One 
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small portion of it was dried at 80 °C for characterization. Cobalt ferrite/water suspension was 

heated to 80 °C with gentle stirring. Oleic acid was added to the suspension at 30 wt.% with 

respect to the cobalt ferrite. The temperature was raised to 90 °C for 30 min and then cooled to 

60 °C. Adding Octane and further stirring for another 30 min. The sample was dried at 80 °C 

from room temperature to 700 °C at 5° min
−1

.Core–shell-like nanostructures of CoFe2O4–

BaTiO3 were synthesized by the sol–gel technique. Ba(C2H3O2)2 was mixed with titanium (IV) 

n-butoxide stearic acid and glacial acetic acid at 90 °C to form a sol. The ferrofluid was added to 

the sol at an adequate amount. Anhydrous 2-methoxyethanol will promote the gel formation. The 

obtained gels were dried overnight at 80 °C and sintered at 700 °C for 2 h under some conditions 

to prevent BTO cracking. No secondary phases were detected by this technique during XRD. 

The structure corresponds to a spinel type cubic crystal with an average crystallite size of 

14.6 nm. The degree of tetragonality increased with the ferrite content. Taking  into account that 

the crystallite size of the barium titanate decreased with the content of ferrite. 

From literature review we found that there are no reports on formation of composite of lead free 

piezoelectric NKN with other ferrimagnetic material. It is mentioned that NZFO has very high 

saturation magnetization and also insulating in nature. It will be interesting to synthesize and 

characterize the NKN and NZFO composite.       
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2.2 Objective of present work: 

No work have been there for the dielectric measurement of (Na0.5K0.5)NbO3-(Ni0.6Zn0.4)Fe2O4 

composite , so our main objective here will be  

1) To find the interaction between the magnetic phase and piezoelectric phase during sintering 

and phase analysis in the sintered composite. 

2)  To study the microstructure of the composite with NZFO addition 

3) To study the dielectric behaviour of the composite with NZFO addition. 
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CHAPTER 3 
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3.1 Preparation of NKN in coating method: 

 

As prepared powder is calcined at 750
 o

C/2 hr in chamber furnace.  After that powder is kept at 

room temperature to cool it down , mixed in agate mortar and 3%PVA is added and then pellets 

are prepared at pressure of 4 ton and dwelling time 120 sec . pellets were sintered at 1100
 o

C  for 

4 hr and then the XRD of the pellet.  

 

 

 

   NaNO3, KNO3 

Clear solution 

         Stirred 

    Nb2O5 (in NaNO3 + NaNO3) 

 NKN precursor powder 

Calcinations and ball 

milling 

          NKN powder 

           Drying 

Dissolved in ethylene glycol 

         Nb2O3 added 

http://en.wikipedia.org/wiki/Sodium
http://en.wikipedia.org/wiki/Sodium
http://en.wikipedia.org/wiki/Oxygen
http://en.wikipedia.org/wiki/Potassium
http://en.wikipedia.org/wiki/Potassium
http://en.wikipedia.org/wiki/Oxygen
http://en.wikipedia.org/wiki/Sodium
http://en.wikipedia.org/wiki/Oxygen
http://en.wikipedia.org/wiki/Sodium
http://en.wikipedia.org/wiki/Oxygen
http://en.wikipedia.org/wiki/Sodium
http://en.wikipedia.org/wiki/Oxygen
http://en.wikipedia.org/wiki/Sodium
http://en.wikipedia.org/wiki/Oxygen
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3.2 Preparation of Nickel–Zinc Ferrites: 

 

Now this powder is mixed in agate mortar and 3%PVA is added as binder to form pellets under 4 

ton pressure and 120 sec dwelling time. The pellet formed is sintered at 1000°C for 4 hr, then 

XRD of this sample is performed. Particle size measurement was done here and the size is 

approximately 196 nm. Now both the powder materials are mixed together in different weight % 

composition.  There are four weight % composition which are 0.99NKN + 0.01NZFO,  

0.90NKN + 0.10NZFO, 0.85NKN + 0.15NZFO, 0.80NKN + 0.20NZFO. The XRD 

Zinc nitrate solution(0.5M) 

Mixed solution 

         Stirred 

Heating on hot plate 80-

90 oC with stirrer                        

        combustion 

           Residue 

   Calcinations 600°C/ 2 

hr 

        Viscous gel 

Ferric nitrate solution(0.5M) 

 

Nickel nitrate solution(0.5M) 

  Citric acid (1:1) 

Nickel–zinc ferrite powder 
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measurement of these four types of compositions is done. The pellets are polished and then silver 

electroding is done for the measurement of dielectric properties.     

3.3 General Characterization  

All the samples were characterized using the room temperature powder X-ray diffraction 

((Philips PAN analytical, Netherland)  with filtered 0.154056 nm Cu Kα radiation. Samples are 

scanned in a continuous mode from 15° – 70° with a scanning rate of 0.04
o
 / (sec). 

  Microstructural features were studied using Scanning Electron Microscope (JSM 6480 

LV JEOL, Japan) on surface of sintered sample. Density of sintered samples was determined by 

Archimedes principle. 

Particle size distribution measurements have been carried out on powder samples by 

ZETASIZERS Nanoseries (Malvern Instruments) while electrical measurements have been 

carried out on sintered pellets after firing. For dielectric measurements the silver electrodes were 

cured at 500°C/30 min in air. The low frequency (100 Hz–1 MHz) dielectric measurements have 

been carried out on an HIOKI 3532-50 LCR   Hi tester. 
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4.1 XRD Analysis: 

NKN powder prepared by coating method and calcined at 750°C for 2 h and then the pellete is 

sintered at 1100°C for 4 hr. Fig4.1.1 shows the XRD pattern of the both powder and  pellete 

sample of NKN. It was found that the powders Calcined at 750°C shows complete phase 

formation without any impurity phase. The crystal structure is orthorhombic and it was matched 

with JCPDS card no.77-0038. The crystal structure should not change at high temperature, it is 

because the property get changed with the crystal structure.  

 

 

 

 

     

  

 

 

 

 

 

 

                                               

 FIG 4.1.1 XRD  pattern of  both  Calcined powder and Sintered pellet of pure NKN 
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Fig 4.1.2 shows the XRD pattern of (Ni0.6Zn0.4)Fe2O4  prepared by  combustion method, the 

powder was Calcined at 600°C /2hr.There was no impurity phase found in the Calcined powder. 

The crystal structure was found to be cubic and was found to be matched with JCPDS card 

no.08-0234. 

 

 

 

 

 

 

 

 

  FIG4.1.2  XRD pattern of (Ni0.6Zn0.4)Fe2O4 powder Calcined at 600°C for 2h 

 

                           

                                        

 

 

 

 

 

 

 FIG 4.1.3 XRD pattern of 0.99(Na0.5K0.5)NbO3-0.01(Ni0.6Zn0.4)Fe2O4 pellet sintered at 

1090°C for 4h 
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The composite was prepared by mixing the powders of NKN and NZFO by solid state technique. 

Then the pellets were prepared and conventionally sintered at 1090
o
C/4hrs in air. The phase of 

the sintered pellet was checked by XRD. There was no Ferrite phase found in this composition 

.But with the increase in the NZFO concentration, the Ferrite phase was found. It has been 

shown in fig 4.1.4-4.1.6.    
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FIG 4.1.4 XRD pattern of 0.90(Na0.5K0.5)NbO3-0.10(Ni0.6Zn0.4)Fe2O4 pellet sintered 

at1070°C for 4h                                             

The pronounced diffraction peaks were indexed. The ferrite phase shows that cubic spinel 

structure and ferroelectric phase crystallizes into tetragonal perovskite structure which was 

evident from the splitting of (200)/(002). The intensity of the  peaks (100)/(010) found to be 
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increasing with the addition of NZFO content but the intensity of peaks (101)/(110) found to be 

decreasing with the addition of NZFO content.  

     

 

 

 

 

 

 

 

 

 

 

 

FIG 4.1.5 XRD pattern of 0.85(Na0.5K0.5)NbO3-0.15(Ni0.6Zn0.4)Fe2O4 pellet sintered 

at1050°C for 4h 
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FIG 4.1.6 XRD pattern of 0.80(Na0.5K0.5)NbO3-0.20(Ni.6Zn0.4)Fe2O4 pellet sintered 

at1030°C for 4h                                               

 

 

20 30 40 50 60 70

(a)-1% NZFO

(b)-10% NZFO

(c)-15% NZFO

(d)-20% NZFO

(d)

(b)

(a)

In
te

n
s

it
y

(a
.u

)

2

(c)

 

                                                         FIG 4.1.7 
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 The composite does not contain any other phases and this composite confirms that no any 

chemical reaction has taken place at the interface of constituent grain during the final stage of 

sintering.  

4.2 Density Measurement by the Archimedes principle: 

 

0.00 0.05 0.10 0.15 0.20

4.20

4.22

4.24

4.26

4.28

4.30

4.32

D
e

n
s

it
y

(g
m

/c
c

)

 concentration NZFO

 

                              FIG 4.2.1 Variation of sintered density with addition of NZFO 

This figure shows the variation of density with the increase in (Ni0.6Zn0.4)Fe2O4 content and it 

was found that with the increase in content the density was found to be decreasing. 

 

 

 

 

COMPOSITION DENSITY(g/cc) 

NKN 4.21 

NKN:NZF(99:01) 4.32 

NKN:NZF(90:10) 4.28 

NKN:NZF(85:15) 4.26 

NKN:NZF(80:20) 4.25 
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4.3 SEM Analysis: 

Fig. shows dense Microstructure with grain size around 10-15 µm for 1% addition of   

(Ni0.6Zn0.4)Fe2O4 (NZFO). Interestingly, solid solution with (Ni0.6Zn0.4)Fe2O4 drastically reduces 

the grain size in the range of 1- 3 µm. It was observed that presence of NZFO phase reduces the 

sintering temperature of the final composite. These are the SEM of image of four different 

compositions sintered at  1090°C, 1070°C, 1050°C,1030°C each for four hour. 

 

FIG 4.3.1 SEM micrographs of surfaces of sintered (1-x)(Na0.5K0.5)NbO3-x(Ni.6Zn0.4)Fe2O4 

ceramics, where a) x=0.01 b) x=0.10 c) x=0.15 and d) x=0.20 
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4.4 Dielectric Measurement:  
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FIG 4.4.1  Variation of (a) Relative permittivity (ε) (b) dissipation factor with frequency for 

(1-x)(Na0.5K0.5)NbO3-x(Ni0.6Zn0.4)Fe2O4 ceramics . 
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In all the samples relative permittivity (εr) is decreasing with increase in frequency. It is also 

observed that εr value initially increases with NZFO addition. But at higher NZFO content (20%) 

εr value again reducing. It is clear from the figure that NZFO addition increases the low 

frequency dispersion in tanδ vs frequency plot. That may be due to the comparatively conductive 

nature of the magnetic phase. But the tanδ value is not changing significantly with NZFO 

addition at high frequency. 
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CONCLUSION:   (1-x)(Na0.5K0.5)NbO3-x(Ni0.6Zn0.4)Fe2O4 ceramics (where x=0.01, 0.10, 0.15, 

0.20) have been prepared by conventional sintering process . Phase pure (Na0.5K0.5)NbO3 powder 

can be prepared at calcination temperature 750
o
C for period of 2 h by coating method and 

(Ni0.6Zn0.4)Fe2O4 prepared at calcination temperature 600
o
C by combustion method. XRD 

analysis of composite have shown that there were no impurity phases and no chemical reaction 

taking place during final stages of sintering. Density of the composite slightly decreases with the 

increasing concentration of (Ni0.6Zn0.4)Fe2O4. Introduction of more amount of (Ni0.6Zn0.4)Fe2O4  

modify the microstructure remarkably  and the grain size decreases significantly with  addition.  

Relative permittivity increases with the increase in (Ni0.6Zn0.4)Fe2O4 concentration but at very 

high concentration NZFO, again permittivity value decreasing. Loss factor shows no change for 

higher frequency range. 
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FUTURE WORK: 

 To measure the variation of dielectric properties with change in temperature. 

 To prepare (Na0.5K0.5)NbO3-(Ni0.6Zn0.4)Fe2O4  composite having higher amount of 

NZFO. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

36 
 

REFERENCES: 

[1]  E. Asher, H. Rieder, H. Schmid, and H. Stossel, J. Appl. Phys. 37, 1404 (1966). 

[2] T. Kimura et al.,Nature 426, 55 (2003). 

[3]  N. Hur et al., Nature 429, 392 (2004).  

[4] T. Kimura, T. Goto, H. Shintani, K. Ishizaka, T. Arima and Y. Tokura, Nature, 426, 55 

(2003). 

[5] Ce-Wen Nan, M.I.Bichurin, Shuxiang Dong, D.Viehland, Srinivasan, J. Appl. Phys. 103, 

031101 (2008). 

[6] J.W. Waanders, Piezoelectric Ceramics-properties and Applications. , Philips 

Components, Eindhoven (1991). 

[7] B. Jaffe, W.R. Cook and H. Jaffe, Piezoelectric Ceramics. , Academic, New York (1971). 

[8]   G. Shirane, R. Newnham and R. Pepinsky. Phys. Rev. 96 (1954), p. 581 

 [9]  Y. Guo, K. Kakimoto and H. Ohsato, Solid State Commun. 129 (2004), pp. 279–284.  

[10]  S.Y. Chu, W. Water, Y.D. Juang, J.T. Liaw and S.B. Dai, Ferroelectrics 297 (2003), pp. 

11–17.  

[11] Yiping Guo, Ken-ichi Kakimoto and Hitoshi Ohsato, Solid State Communications, 

Volume 129, Issue 5, (2004), p. 279-284. 

[12]  U. Ghazanfar, PhD Thesis, Punjab University, Pakistan, 2005. 

[13]  A.C.F.M. Costa, A.P. Diniz, V.J. Silva, R.H.G.A. Kiminami, D.R. Cornejo, A.M. Gama, 

M.C. Rezende and L. Gama, J. Alloys Compd. (2008) . 

[14]  U.R. Lima, M.C. Nasar, R.S. Nasar, M.C. Rezende and J.H. Araújo, J. Magn. Magn. 

Mater. 320 (2008), p. 1666.  

[15]  D.-L. Zhao, Q. Lv and Z.-M. Shen, J. Alloys Compd. 480 (2009), p. 634. |  

[16]  M.M. Mallapur, P.A. Shaikh, R.C. Kambale, H.V. Jamadar, P.U. Mahamuni and B.K. 

Chougule, J. Alloys Compd. 479 (2009), p. 797.  

[17]  irm.umn.edu 

[18] X. Li and G. Wang, J. Magn. Magn. Mater. 321 (2009), p. 1276.   

 [19]  Rupesh S. Devan
, 
, Yuan-Ron Ma and B.K. Chougule, Effective dielectric and magnetic 

properties of (Ni–Co–Cu)ferrite/BTO composites 

[20]  R.S. Devan and B.K. Chougule, Physica B 393 (2007) . 

[21]  G. Srinivasan, E. T. Rasmussen, B.J. Levin and R. Hayes, Phys. Rev. B 65 (2002), p.1

 34402. 

http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6TWY-4WY6JW2-1&_user=1657113&_coverDate=11%2F20%2F2009&_alid=1325104890&_rdoc=4&_fmt=high&_orig=search&_cdi=5575&_sort=r&_docanchor=&view=c&_ct=1361&_acct=C000053917&_version=1&_urlVersion=0&_userid=1657113&md5=2b2c44fb45a6a03516835beb530dd8f0#bbib14
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6TWY-4WSHK2R-8&_user=1657113&_coverDate=11%2F03%2F2009&_alid=1325428608&_rdoc=10&_fmt=high&_orig=search&_cdi=5575&_sort=r&_docanchor=&view=c&_ct=20&_acct=C000053917&_version=1&_urlVersion=0&_userid=1657113&md5=11db8948b05db1b2408f9e724787bd29#bbib1
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6TWY-4WSHK2R-8&_user=1657113&_coverDate=11%2F03%2F2009&_alid=1325428608&_rdoc=10&_fmt=high&_orig=search&_cdi=5575&_sort=r&_docanchor=&view=c&_ct=20&_acct=C000053917&_version=1&_urlVersion=0&_userid=1657113&md5=11db8948b05db1b2408f9e724787bd29#bbib2
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6TWY-4WSHK2R-8&_user=1657113&_coverDate=11%2F03%2F2009&_alid=1325428608&_rdoc=10&_fmt=high&_orig=search&_cdi=5575&_sort=r&_docanchor=&view=c&_ct=20&_acct=C000053917&_version=1&_urlVersion=0&_userid=1657113&md5=11db8948b05db1b2408f9e724787bd29#bbib3
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6TWY-4WSHK2R-8&_user=1657113&_coverDate=11%2F03%2F2009&_alid=1325428608&_rdoc=10&_fmt=high&_orig=search&_cdi=5575&_sort=r&_docanchor=&view=c&_ct=20&_acct=C000053917&_version=1&_urlVersion=0&_userid=1657113&md5=11db8948b05db1b2408f9e724787bd29#bbib4
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6TX4-4VDGTCV-1&_user=1657113&_coverDate=05%2F15%2F2009&_rdoc=1&_fmt=high&_orig=search&_sort=d&_docanchor=&view=c&_searchStrId=1325787384&_rerunOrigin=scholar.google&_acct=C000053917&_version=1&_urlVersion=0&_userid=1657113&md5=d3eb6a6699be2f403f8208f738612286#bbib7


 

37 
 

[22]  M.I. Bichurin, D.A. Filippov, V.M. Petrov, V.M. Laletsin, N. Paddubnaya and G. 

Srinivasan, Phys. Rev. B 68 (2003), p. 132408.  

[23]  J. Zhai, J. Li, D. Viehland and M.I. Bichurin, J. Appl. Phys. 101 (2007), p. 014102. 

[24] K. Uchino, Ferroelectric Devices, Marcel Dekker, New York (2000) p. 25. 

[25]  N. Sivakumar, A. Narayanasamy, N. Ponpandian and G. Govindaraj, J. Appl. Phys. 101 

(2007), p. 084116. 

[26]  Yiping Guo, Ken-ichi Kakimoto and Hitoshi Ohsato, Solid State Communications, 

Volume 129, Issue 5, (2004), p. 279-284. 

[27]  Ming-Ru Yang, Cheng-Shong Hong, Cheng-Che Tsai and Sheng-Yuan Chu, Journal of 

Alloys and Compounds, Volume 488, Issue 1, (2009), p.169-173. 

[28]  M.M. Rashad, E.M. Elsayed, M.M. Moharam, R.M. Abou-Shahba and A.E. Saba, 

Journal of Alloys and Compounds, Volume 488, Issues 1-2, (2009), p.759-767. 

[29]  Daniel Khomskii Physics 2, 20 (2009)  Physics.2.20. 

[30]  Rupesh S. Devan, Yuan-Ron Ma and B.K. Chougule, Materials Chemistry and Physics,  

Volume 115, Issue 1 (2009), p.263-268. 

[31]   Anupinder Singh and Ratnamala Chatterjee, Applied Physics Letter 93, 182908 (2008). 

[32] R.C. Kambale
 
,P.A. Shaikh, Y.D. Kolekar, C.H. Bhosale and K.Y. Rajpure, Materials 

Letters, Volume 64, Issue 4 (2010), p.520-523. 

[33]  V. Corral-Flores, D. Bueno-Baqués and R.F. Ziolo, Acta Materialia, Volume 58, Issue 

3(2010), p.764-769. 

[34]  V.D.Kapse, S.A.Ghosh, F.C.Raghuwanshi, S.D.Kapse , Materials  Chemistry and 

Physics, Volume 113, Issues 2-3 (2009), p. 638-644. 

[35]  W.Eerenstein, N.D.Mathur and J.F.Scott, Volume 442, 759-765 (2006). 

 

 

 

 

http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6TX4-4VDGTCV-1&_user=1657113&_coverDate=05%2F15%2F2009&_rdoc=1&_fmt=high&_orig=search&_sort=d&_docanchor=&view=c&_searchStrId=1325787384&_rerunOrigin=scholar.google&_acct=C000053917&_version=1&_urlVersion=0&_userid=1657113&md5=d3eb6a6699be2f403f8208f738612286#bbib8
http://physics.aps.org/authors/daniel_khomskii

