“Mixed Convection Heat Transfer in the Entrance Region of an Inclined Channel”

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF
BACHELOR OF TECHNOLOGY
IN
MECHANICAL ENGINEERING

By
Mr. Gurpreet Singh
Under the Guidance of
Prof. RAMJEE REPAKA

Department of Mechanical Engineering
National Institute of Technology Rourkela
Rourkela - 769008
This is to certify that the project entitled, “Mixed Convection Heat Transfer in the Entrance Region of an Inclined Channel” submitted by ‘Mr. Gurpreet Singh’ in partial fulfillments for the requirements for the award of Bachelor of Technology Degree in Mechanical Engineering at National Institute of Technology, Rourkela (Deemed University) is an authentic work carried out by him under my supervision and guidance.

To the best of my knowledge, the matter embodied in the report has not been submitted to any other University / Institute for the award of any Degree or Diploma.

Date:

(Prof. Ramjee Repaka)
Dept. of Mechanical Engineering,
National Institute of Technology
Rourkela - 769008, Orissa
ACKNOWLEDGEMENT

I wish to express my deep sense of gratitude and indebtedness to Prof. Ramjee Repaka, Department of Mechanical Engineering, N.I.T Rourkela for introducing the present topic and for their inspiring guidance, constructive criticism and valuable suggestion throughout this project work.

I would like to express my gratitude to Prof. R.K. Sahoo (Head of the Department) and Prof. K.P. Maity for their valuable suggestions and encouragements at various stages of the work. I am also thankful to all staff members of Department of Mechanical Engineering NIT Rourkela.

I feel a deep sense of gratitude for my father Mr. Gurmail Singh and mother Mrs. Kamlesh Kaur who formed a part of my vision and taught me the good things that really matter in life.

Last but not least, my sincere thanks to all my friends who have patiently extended all sorts of help for accomplishing this undertaking.

13th may 2010

(Gurpreet Singh)
Abstract

In the present project we have tried to find the convection parameters related to the case of mixed convection in the entrance region of an inclined channel. We have tried to find the trend in the change in the values of various convection parameters related to mixed convection at different set values. We have done mathematical modeling using FORTRAN 77 and tried to follow a new scheme called SAR scheme whose detail we have shown at proper place. by this scheme we have calculated the convection parameters at different coordinates of the channel. This scheme is mainly an iteration process by which we have tried to find the error in each subsequent guesses and we have made an approach to reach the solution.
Nomenclature

Br Brinkman number, defined by, \(\frac{\mu U^2_{\text{ref}}}{k \Delta T} \)

\(D_h \) Hydraulic diameter, \(2L \)

\(Ec \) Eckert number, \(\frac{U^2_{\text{ref}}}{C_p \Delta T} \)

\(g \) Acceleration due to gravity, \(m^2/s \)

\(Gr \) Grashof number, defined by, \(\frac{g \beta \Delta T D_h^3}{v^2} \)

\(k \) Thermal conductivity, \(W/m - K \)

\(K_1 \) Ratio of left wall temperature to inlet temperature (\(= T_{w1}/T_i \))

\(K_2 \) Ratio of right wall temperature to inlet temperature (\(= T_{w2}/T_i \))

\(L \) Spacing between the two plates, m

\(Nu_- \) Local Nusselt number at left wall, defined by, \(\left. \frac{d\theta}{dY} \right|_{Y=-1/4} \)

\(Nu_+ \) Local Nusselt number at right wall, defined by, \(\left. \frac{d\theta}{dY} \right|_{Y=1/4} \)

\(Nu_{b-} \) Nusselt number based on bulk mean temperature at left wall, defined by, \(\frac{2Nu_-}{R_T + 2\theta} \)

\(Nu_{b+} \) Nusselt number based on bulk mean temperature at right wall, defined by, \(\frac{2Nu_+}{R_T - 2\theta} \)

\(Pe \) Peclet number, defined by, \(\frac{U_{\text{ref}} D_h}{\alpha} \)

\(p_d \) Pressure that arises when the fluid is in motion, \(N/m^2 \)

\(p_s \) Static pressure, when fluid velocity = 0 \(N/m^2 \)

\(Re \) Reynolds number, defined by, \(\frac{U_{\text{ref}} D_h}{v} \)

\(R_T \) \(\frac{T - T_{\text{ref}}}{\Delta T} \)

\(T \) Dimensional temperature

\(T_b \) Dimensional bulk temperature

\(T_{\text{ref}} \) Reference temperature, defined by, \(\frac{T_{w1} + T_{w2}}{2} \)

\(T_i \) Inlet fluid temperature

\(T_{w1} \) Temperature of the wall at \(y = -L/2 \)
Tw2 Temperature of the wall at y = L/2

u Dimensional velocity in x direction, m/s

U_i Inlet velocity, m/s

U_ref Reference velocity, m/s

U Dimensionless velocity in X direction = u/U_ref

v Dimensional velocity in y direction, m/s

V Dimensionless velocity in Y direction, = v/U_ref

V Velocity vector

X Dimensionless axial distance

Y Dimensionless coordinate normal to the flow direction

x Dimensional axial distance

y Dimensional coordinate normal to the flow direction

x_f Dimensional entry length, m

X_f Dimensionless entry length

X' X / Pe

Greek Symbols

μ Dynamic viscosity, kg/m-s

ν Kinematic viscosity, m²/s

ρ Fluid density, kg/m³

β Coefficient of thermal expansion

θ Dimensionless temperature

θ_b Non-dimensional bulk mean temperature of the fluid, defined by, $\frac{T_b - T_{ref}}{\Delta T}$

θ_b Non-dimensional temperature based on bulk mean temperature, defined by, $\frac{T - T_{ref}}{T_b - T_{ref}}$
CONTENTS

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abstract</td>
<td>3</td>
</tr>
<tr>
<td>CHAPTER 1</td>
<td></td>
</tr>
<tr>
<td>1.1 Introduction</td>
<td>6</td>
</tr>
<tr>
<td>1.2 Literature Review</td>
<td>7</td>
</tr>
<tr>
<td>CHAPTER 2</td>
<td></td>
</tr>
<tr>
<td>2.1 Lacunae</td>
<td>9</td>
</tr>
<tr>
<td>2.2 Objective</td>
<td>9</td>
</tr>
<tr>
<td>2.3 Motivation</td>
<td>9</td>
</tr>
<tr>
<td>CHAPTER 3</td>
<td></td>
</tr>
<tr>
<td>3.1 Mathematical Formulation</td>
<td>10</td>
</tr>
<tr>
<td>3.2 Governing Equation: General Formulation</td>
<td>10</td>
</tr>
<tr>
<td>3.3 Numerical Scheme</td>
<td>14</td>
</tr>
<tr>
<td>CHAPTER 4</td>
<td></td>
</tr>
<tr>
<td>4.1 Laminar Forced Convection In Channels</td>
<td>16</td>
</tr>
<tr>
<td>4.2 Results and Discussions</td>
<td>18</td>
</tr>
<tr>
<td>CHAPTER 5</td>
<td></td>
</tr>
<tr>
<td>5.1 Laminar Mixed Convection In A Channel</td>
<td>23</td>
</tr>
<tr>
<td>5.2 Results and Discussions</td>
<td>24</td>
</tr>
<tr>
<td>CHAPTER 6</td>
<td></td>
</tr>
<tr>
<td>6.1 Conclusion</td>
<td>26</td>
</tr>
<tr>
<td>6.2 Further Work</td>
<td>26</td>
</tr>
<tr>
<td>References</td>
<td>27</td>
</tr>
</tbody>
</table>
CHAPTER 1

1.1 Introduction

Heat transfer by forced convection in pipes has been the subject of investigation by many researchers for the past several decades, starting from Gratz [1] who pioneered the studies. Other studies include those of Callender [2], Nusselt [3]. Sparrow and Patankar [4] developed the relationships for Nusselt numbers for thermally developed duct flows for different boundary conditions.

The problem of forced convection in a channel between two parallel plate walls is a classical problem that has been revisited in recent years in connection with the cooling of electronic equipment using materials involving hyperporous media or microchannels. Recently published textbooks and handbooks, such as those by Bejan [37] and Kakac, et al. [38], devote substantial space to the case of symmetric heating but little to the more complicated case of asymmetric heating. However, this case is mentioned in Shah and London [39, pp. 155–157] and Kakac, et al. [38, pp. 3.31–3.32], where the key results are given, without details of derivation. (An outline derivation is given in Kays and Crawford [40].)

More recent studies deal with, flow through annuli, channels, with symmetric and asymmetric heating, particularly in the combined convection regime (Aung and Worku [5], Cheng, C.H., Kou, H.S., Huang, W.H. [6], Hamad and Wirtz [7], Barletta and Zanchini[8]). Also the channel / pipe / annuli are inclined at an arbitrary angle (Iqbal and Stachiewicz [9], Sabbagh, J.A., Aziz, A., El-Ariny, A.S., and Hamad, G. [10], Lavine, A. S., Kim, M.Y., and Shores, C.N. [11], Orfi, J., Galanis,N. and Nguyen, C.T. [12]). These studies are expected to provide insight needed to design cooling systems for electronic devices, solar energy devices, and chemical vapor deposition technique. Combined convection in channels of arbitrary inclination subjected to asymmetric heating, including dissipation finds practical applications. Asymmetric thermal boundary conditions may be thought of as due to a deliberate unequal temperature or fluxes imposed, or as due to unequal temperature jump owing to differing accommodation coefficients at the two walls in the rarefied (\(Kn \ll 1\), where \(Kn\) is the Knudsen number) regime as relevant in micro-channel heat transfer.
1.2. Literature Review

The following table gives the major studies pertaining to the flow and heat transfer through channels, annuli and pipes.

<table>
<thead>
<tr>
<th>S.No.</th>
<th>Author</th>
<th>Geometry</th>
<th>Flow Model</th>
<th>Heat Transfer Model</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.</td>
<td>Sparrow [14]</td>
<td>Rectangular duct</td>
<td>Developing flow</td>
<td>Forced convection, Analytical study</td>
</tr>
<tr>
<td>4.</td>
<td>Mercer, Pearce, and Hitchcock, [16]</td>
<td>Parallel flat plates</td>
<td>Developing flow</td>
<td>Forced convection, Both plates are at uniform temperature, experimental study</td>
</tr>
<tr>
<td>6.</td>
<td>Barletta [18]</td>
<td>Vertical channel</td>
<td>Fully developed flow</td>
<td>Mixed convection with viscous dissipation. Walls are at same or at different temperatures, Approximate perturbation solution</td>
</tr>
<tr>
<td>7.</td>
<td>Barletta [19]</td>
<td>Vertical circular duct</td>
<td>Fully developed flow</td>
<td>Mixed convection with viscous dissipation and uniform wall temperature</td>
</tr>
<tr>
<td>10.</td>
<td>Barletta and Zanchini [22]</td>
<td>Inclined channel</td>
<td>Fully developed flow</td>
<td>Mixed convection with viscous dissipation and uniform wall temperature</td>
</tr>
<tr>
<td>S.No.</td>
<td>Author</td>
<td>Geometry</td>
<td>Flow Model</td>
<td>Heat Transfer Model</td>
</tr>
<tr>
<td>------</td>
<td>--------</td>
<td>-------------------</td>
<td>---------------------------</td>
<td>---</td>
</tr>
<tr>
<td>11.</td>
<td>Lavine [23]</td>
<td>Inclined parallel plates</td>
<td>Fully developed flow</td>
<td>Opposing mixed convection</td>
</tr>
<tr>
<td>12.</td>
<td>Lavine [24]</td>
<td>Inclined parallel plates</td>
<td>Fully developed flow</td>
<td>Aiding mixed convection</td>
</tr>
<tr>
<td>13.</td>
<td>Barletta et.al. [25]</td>
<td>Vertical circular duct</td>
<td>Fully Developed flow</td>
<td>Non-axisymmetric mixed convection</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15.</td>
<td>Lawrence and Chato [27]</td>
<td>Vertical tube</td>
<td>Developing laminar flow</td>
<td>Mixed convection, Uniform heat flux and uniform wall temperature</td>
</tr>
<tr>
<td>16.</td>
<td>Zeldin Schmidt [28]</td>
<td>Vertical tube</td>
<td>Developing laminar flow</td>
<td>Combined free and forced, convection isothermal wall Experimental study</td>
</tr>
<tr>
<td>17.</td>
<td>Moutsoglou and Kwon [29]</td>
<td>Vertical tube</td>
<td>Onset of flow reversal in developing flow</td>
<td>Mixed convection, Uniform heat flux and uniform wall temperature</td>
</tr>
<tr>
<td>19.</td>
<td>Cheng and Yuen [31]</td>
<td>Heated inclined pipes</td>
<td>Entrance region</td>
<td>Visualization studies on secondary flow pattern for mixed convection Isothermally heated pipe</td>
</tr>
<tr>
<td>20.</td>
<td>Choudury and Patankar [32]</td>
<td>Inclined isothermal tube</td>
<td>Convection in the entrance region</td>
<td>Combined forced and free laminar convection, Isothermal tube</td>
</tr>
<tr>
<td>21.</td>
<td>Rao and Morris [33]</td>
<td>Vertical parallel plates</td>
<td>Fully developed flow</td>
<td>Superimposed laminar mixed convection, One wall is heated at uniform heat flux and other is thermally insulated</td>
</tr>
<tr>
<td>22.</td>
<td>Yao [34]</td>
<td>Vertical channel</td>
<td>Hydrodynamically and thermally developing flow</td>
<td>Mixed convection Symmetric UWT or UHF</td>
</tr>
<tr>
<td>23.</td>
<td>Barletta and Zanchini [35]</td>
<td>Inclined channel</td>
<td>Steady periodic Flow</td>
<td>Mixed convection, The temperature of one wall is stationary and the temperature of other wall is a sinusoidal function of time</td>
</tr>
</tbody>
</table>
Chapter 2

2.1. Lacunae

1. Most studies assumed fully developed conditions or invoked boundary layer approximations.
2. Within the framework of Boussinesq approximation (for mixed convection studies).
3. Symmetrically heated wall boundary condition, constant temperature or uniform heat flux.
4. Particularly the studies [17-20, 22] including dissipation dealt with fully developed conditions only.

2.2. Objective

To study mixed convection in the entry region of an arbitrarily inclined channel subjected to asymmetric heating including dissipation.

2.3. Motivation

1. Examine the criterion to define fully developed thermal condition when asymmetrically heated.
2. Mixed convection when the channel is arbitrarily inclined is of practical importance in several electronic cooling configurations.
3. When the channel width is small, (micro channels), asymmetric thermal conditions can be expected irrespective of imposed boundary conditions, bring temperature jump or velocity jump boundary conditions, which may not be equal, even if walls are subjected to equal temperature or heat flux.
Chapter 3

3.1. Mathematical Formulation

The physical model considered is that of a channel of width L with both left and right walls being maintained at constant temperatures T_{w1} and T_{w2} are subjected to q_1 and q_2 respectively.

The channel is inclined at an angle ϕ with the direction of gravity. The flow enters at a uniform velocity U_i and uniform temperature T_i. The x-component of velocity is along the longitudinal direction of the channel and y-component of velocity is along the transverse direction of the channel. The flow is buoyancy aided when the flow is in upward direction and is buoyancy opposed when flow is in downward direction. The physical model and the coordinate system are shown in Fig. 1.

3.2. Governing Equations: General Formulation

Governing equations for steady, laminar two dimensional flow of an incompressible, Newtonian fluid with constant fluid properties and invoking Boussinesq approximation to describe buoyancy forces are as follows

![Figure 1. Physical model and Coordinate system](image-url)
Continuity Equation
\[
\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} = 0
\] (1)

x-Momentum Equation
\[
\rho_{\text{ref}} \left(u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial y} \right) = -\frac{\partial p_d}{\partial x} + \mu \nabla^2 u - g (\rho - \rho_{\text{ref}}) \cos \varphi
\] (2)

y-Momentum Equation
\[
\rho_{\text{ref}} \left(u \frac{\partial v}{\partial x} + v \frac{\partial v}{\partial y} \right) = -\frac{\partial p_d}{\partial y} + \mu \nabla^2 v + g (\rho - \rho_{\text{ref}}) \sin \varphi
\] (3)

Conservation of Energy Equation
\[
\rho_{\text{ref}} C_p \left(u \frac{\partial T}{\partial x} + v \frac{\partial T}{\partial y} \right) = k \left(\frac{\partial^2 T}{\partial x^2} + \frac{\partial^2 T}{\partial y^2} \right) + \mu \left[\left(\frac{\partial u}{\partial y} + \frac{\partial v}{\partial x} \right)^2 + 2 \left(\frac{\partial u}{\partial x} \right)^2 + \left(\frac{\partial v}{\partial y} \right)^2 \right]
\] (4)

In Eqs. (2) and (3), it may be noted that
\[
p = p_d + p_s
\] (5)

where \(p \) is the pressure in the fluid at a point, \(p_s \) is the static pressure (i.e., the pressure that exists, when \(\bar{V} = 0 \)) and \(p_d \) is the dynamic pressure that arises when the fluid is in motion.

has been used along with
\[
\frac{\partial p_s}{\partial x} = -\rho_{\text{ref}} g \cos \varphi
\] (6)

\[
\frac{\partial p_s}{\partial y} = \rho_{\text{ref}} g \sin \varphi
\] (7)

In addition, the auxiliary equation describing the variation of density with temperature within the frame work of Boussinesq approximation is given by,
\[
\rho = \rho_{\text{ref}} \left[1 - \beta (T - T_{\text{ref}}) \right]
\] (8)

Where \(\rho_{\text{ref}} \) is the reference density
\(\beta \) is the thermal coefficient of expansion

Boundary Conditions
The following dimensionless variables have been introduced to render the governing equations non-dimensional.

\[
U = \frac{u}{U_{ref}}, \quad V = \frac{v}{U_{ref}}, \quad X = \frac{x}{D_h}, \quad Y = \frac{y}{D_h}, \quad \theta = \frac{T - T_{ref}}{\Delta T}, \quad \frac{\bar{p}_d}{\rho_{ref} U_{ref}^2}, \quad \frac{\bar{\rho}}{\rho_{ref}}
\]

(10)

The governing equations given by Eqs. (1), (2), (3) and (4) non-dimensionalised using the non-dimensional variables defined by Eq. (10) take the following form

\[
\frac{\partial U}{\partial X} + \frac{\partial V}{\partial Y} = 0
\]

(11)

\[
\left(U \frac{\partial U}{\partial X} + V \frac{\partial U}{\partial Y} \right) = - \frac{\partial \bar{p}_d}{\partial X} + \frac{1}{Re} \nabla^2 U + \frac{Gr}{Re^2} \theta \cos \phi
\]

(12)

\[
\left(U \frac{\partial V}{\partial X} + V \frac{\partial V}{\partial Y} \right) = - \frac{\partial \bar{p}_d}{\partial Y} + \frac{1}{Re} \nabla^2 V - \frac{Gr}{Re^2} \theta \sin \phi
\]

(13)

\[
\left(U \frac{\partial \theta}{\partial X} + V \frac{\partial \theta}{\partial Y} \right) = \frac{1}{Pe} \left(\frac{\partial^2 \theta}{\partial X^2} + \frac{\partial^2 \theta}{\partial Y^2} \right) + \frac{Ec}{Re} \left[\left(\frac{\partial U}{\partial Y} + \frac{\partial V}{\partial Y} \right)^2 + 2 \left(\frac{\partial U}{\partial X} \right)^2 + \left(\frac{\partial V}{\partial X} \right)^2 \right]
\]

(14)

\(U_{ref} \) and \(\Delta T \) in Eq. (10) are chosen depending on the wall boundary condition and the problem studied.

\(U_{ref} = U_i \)

(15)
$\Delta T = (T_{w2} - T_{w1})$ if $T_{w2} \neq T_{w1}$ for constant but unequal wall temperatures. \hfill (16)

$= \frac{v^2}{C_p D_h}$ if $T_{w2} = T_{w1}$ for constant and equal wall temperatures. \hfill (17)

$= (T_i - T_{ref})$ when the flow is thermally developing. \hfill (18)

In Eq. (18) T_{ref} is defined by,

$T_{ref} = (T_{w1} + T_{w2})/2$ \hfill (19)

$T_{ref} = T_i$ \hfill (20)

The boundary conditions given in Eq. (9) become,

$U = 1$ at $X = 0$ for $-1/4 \leq Y \leq +1/4$

$U = 0$, $V = 0$ at $Y = \pm 1/4$ for all $X > 0$

$\theta = \frac{T_i - T_{ref}}{\Delta T}$ at $X = 0$ for $-1/4 \leq Y \leq +1/4$

$\theta = \frac{T_{w1} - T_{ref}}{\Delta T}$ at $Y = -1/4$ for all $X > 0$

$\theta = \frac{T_{w2} - T_{ref}}{\Delta T}$ at $Y = +1/4$ for all $X > 0$

\[
\begin{array}{l}
\frac{\partial U}{\partial X} = 0, V = 0, \frac{\partial \theta}{\partial X} = \theta \frac{\partial \theta^*}{\partial X} \text{ at } X > X_{fd} \text{ for } -1/4 \leq Y \leq +1/4
\end{array}
\] \hfill (21)

Where X_{fd}, ($= x_{fd}/D_h$), is the non-dimensional distance for the flow to become fully developed, or entry length.

In Eq.(21), the condition on temperature gradient $\frac{\partial \theta}{\partial X}$ for $X > X_{fd}$ follows from the fully developed condition for temperature, $\frac{\partial \theta_b}{\partial X} = 0$ where θ_b is the non-dimensional temperature based on the mixed mean temperature T_b of the fluid. θ_b is defined by,

$\theta_b = \frac{T - T_{ref}}{T_b - T_{ref}}$ \hfill (22)

Where T_b, the mixed mean temperature is given by,

$T_b = \frac{\int_{-L/2}^{L/2} \rho C_p u T dy}{\int_{-L/2}^{L/2} \rho C_p u dy}$ \hfill (23)

Introducing θ^*, the non-dimensional bulk mean temperature, defined by,

$\theta^* = \frac{T_b - T_{ref}}{\Delta T}$ \hfill (24)
The fully developed condition $\frac{\partial \theta_h}{\partial X} = 0$ on non-dimensional temperature field leads to,

$$\frac{\partial \theta}{\partial X} - \frac{\theta}{\partial^*} \frac{\partial \theta^*}{\partial X} = 0$$ \hspace{1cm} (25)

Governing equations given by Eqs. (11), (12), (13) and (14) along with the boundary conditions given by Eq. (21), take specific form depending on the assumptions made and approximations invoked. In what follows work done so far employing the governing equations with specific simplifications is described.

In Eqs. (12), (13) and (14) the non-dimensional parameters, Gr, the Grashof number, Re, the Reynolds number, Ec, the Eckert number, Pe, the Peclet number are defined by,

$$Gr = \frac{g \beta \Delta T D_h^3}{v^2}$$ \hspace{1cm} (26)

$$Re = \frac{U_{ref} D_h}{v}$$ \hspace{1cm} (27)

$$Ec = \frac{U_{ref}^2}{C_p \Delta T}$$ \hspace{1cm} (28)

$$Pe = \frac{U_{ref} D_h}{\alpha}$$ \hspace{1cm} (29)

Also, when both the flow and temperature fields are fully developed and $u \frac{\partial T}{\partial X}$ term is neglected, Br, the Brinkman (see, § 8 (a)) number appears, which is defined by,

$$Br = \frac{\mu U_{ref}^2}{k \Delta T} = \frac{Ec Pe}{Re} = Ec Pr$$ \hspace{1cm} (30)

3.3. Numerical Scheme (Successive Accelerated Replacement Scheme - SAR)

The basic philosophy of the Successive Accelerated Replacement (SAR) scheme as described in [42-45] is to guess an initial profile for each variable such that the boundary conditions are satisfied. Let the partial differential equation governing a variable, $\phi(X, Y)$, expressed in finite difference form be
given by $\overline{\phi}_{M,N} = 0$ where M and N represent the nodal points when the non-dimensional height and length of the channel are divided into a finite number of intervals MD, ND respectively. The guessed profile for the variable ϕ at any mesh point in general will not satisfy the equation. Let the error in the equation at (M,N) and k^{th} iteration be $\overline{\phi}_{M,N}^k$

The $(k+1)^{th}$ approximation to the variable ϕ is obtained from,

$$\phi_{M,N}^{k+1} = \phi_{M,N}^k - \omega \frac{\overline{\phi}_{M,N}^k}{\nabla \phi_{M,N}}$$ (31)

Where ω is an acceleration factor which varies between $0 < \omega < 2$. $\omega < 1$ represents under-relaxation and $\omega > 1$ represents over relaxation.

The procedure of correcting the variable ϕ at each mesh point in the entire region of interest is repeated until a set convergence criterion is satisfied. For example, the change in the variable at any mesh point between k^{th} and $(k+1)^{th}$ approximation satisfies,

$$\left| 1 - \frac{\phi_{M,N}^k}{\phi_{M,N}^{k+1}} \right| < \varepsilon$$ (32)

Where ε is a prescribed small positive number.

To correct the guessed profile, each dependent variable has to be associated with one equation. It is natural to associate the variable with the equation, which contains the highest order derivative in that variable. For example, conservation of energy equation will be associated for correcting the temperature profile. The feature of using the corrected value of the variable immediately upon becoming available is inherent in this method.
4.1 Laminar Forced Convection in a Channel, Thermally Developing Field.

Simplified Equations (Velocity Field Fully Developed and Boundary Layer Approximation in Entry Region)

The governing equations, when the flow is assumed to be hydrodynamically developed and thermally developing, in a parallel plate vertical channel with constant wall temperatures, neglecting axial conduction and buoyancy forces are obtained by setting $\varphi = 0$ and $v = 0$, $\frac{\partial u}{\partial x} = 0$ in the governing equations given by Eq.(1) to Eq.(4). They are,

x-Momentum Equation

$$-\frac{1}{\rho_{\text{ref}}} \frac{d p}{d x} + \nu \frac{d^2 u}{d y^2} = 0$$

(33)

Conservation of Energy

$$u \frac{\partial T}{\partial x} = \alpha \frac{\partial^2 T}{\partial y^2}$$

(34)

Figure 2. Physical model and Coordinate system
Where \(p_d = p + \rho_{ref} g x \), is the difference between the pressure and the hydrostatic pressure.

Boundary Conditions

\[
\begin{align*}
u &= 0 \text{ at } y = \pm L/2 \text{ for all } x > 0 \\
T &= T_i \text{ at } x = 0 \text{ for } -1/4 < Y < 1/4 \\
T &= T_{w1} \text{ at } y = -L/2 \text{ for all } x > 0 \\
T &= T_{w2} \text{ at } y = +L/2 \text{ for all } x > 0
\end{align*}
\]

(35)

Non-Dimensional Equations

The following dimensionless variables have been introduced to render the governing equations non-dimensional.

\[
\begin{align*}
U &= \frac{u}{U_{ref}} , \quad V = \frac{v}{U_{ref}} , \quad X = \frac{x}{D_h} , \quad Y = \frac{y}{D_h} , \quad \theta = \frac{T - T_{ref}}{T_i - T_{ref}}
\end{align*}
\]

(36)

\(U_{avg} \) is average velocity = \(U_{ref} = - \frac{dp}{dx}D_h^2 / (48 \mu) \).

\(T_{w1}, T_{w2} \) are left and right wall temperatures.

\(T_i \) is the inlet temperature.

\(T_{w1} = K_1 T_i \)

\(T_{w2} = K_2 T_i \)

The governing equations given by Eqs. (53) and (54) non-dimensionalised using the non-dimensional variables defined by Eq. (56) take the following form.

\[
\begin{align*}
\frac{d^2 U}{dY^2} + 48 &= 0 \\
Pe \left(U \frac{\partial \theta}{\partial X} \right) &= \frac{\partial^2 \theta}{\partial Y^2}
\end{align*}
\]

(37)

(38)

or

\[
\left(U \frac{\partial \theta}{\partial X^*} \right) = \frac{\partial^2 \theta}{\partial Y^2}
\]

(39)

Where \(X^* = X / Pe \)

The boundary conditions given in Eq. (35) becomes,

\[
\theta = 1 \text{ at } X = 0 \text{ for } -1/4 < Y < 1/4
\]
\[U = 0, \theta = \frac{K_1 - K_2}{2 - K_1 - K_2} \quad \text{at} \quad Y = -1/4 \quad \text{for all} \quad X \]

\[U = 0, \theta = \frac{K_2 - K_1}{2 - K_1 - K_2} \quad \text{at} \quad Y = 1/4 \quad \text{for all} \quad X \quad (40) \]

It may be noted that \(K_1 = K_2 (\neq 1) \) represents symmetric heating, i.e., both the walls are at the same temperature but different from \(T_i \) and the boundary conditions, \(\theta \) given by Eq. (40) become independent of \(K_1 \) and \(K_2 \).

Nusselt Number

The defining equation for calculating the heat transfer coefficient, say at the left wall is given by,

\[-k \frac{\partial T}{\partial Y} \bigg|_{y = -L/2} = h_i(T_{w1} - T_b) \quad (41) \]

Local Nusselt number values based on \(D_h \), are expressed in terms of non-dimensional temperature as,

\[Nu_{b-} = \frac{1}{\theta^*} \frac{\partial \theta}{\partial Y} \bigg|_{Y = -1/4} \quad (42) \]

\[Nu_{b+} = -\frac{1}{\theta^*} \frac{\partial \theta}{\partial Y} \bigg|_{Y = 1/4} \quad (43) \]

Also when \(K_1 = K_2 (\neq 1) \), i.e., symmetric heating, \(Nu_{b-} = Nu_{b+} = \frac{1}{\theta^*} \frac{\partial \theta}{\partial Y} \bigg|_{Y = \pm 1/4} \) when \(K_1 = K_2 \) since \(Nu_{b-} = Nu_{b+} \) shall be referred to as \(Nu_b \).

4.2 Results and Discussion

Variation of Nusselt number \(Nu_b \) with \(X^* \) is shown in Figure 3. Nusselt number gradually decreases along the flow direction and reaches to a minimum and remains constant in the fully developed region. High Nusselt numbers in the entry region are due to high temperature gradients prevailing over there.
Average Nusselt number $\bar{\text{Nu}}_{b_{x}}$ up to a certain value of X^* for the case of symmetric heating is shown in Figure 3. $\bar{\text{Nu}}_{b_{x}}$ gradually decreases in the flow direction. The fully developed Nusselt number Nu_{b} obtained is 7.53 at $X^* = 0.04$ and up to this value of X^* the average Nusselt number obtained is 8.21.

Variation of average Nusselt number up to a certain value of X^* for different asymmetries is shown in Figure 4(a), (b) and in (c). From Figure 4(a) it is clear that for small asymmetry ($K_1 = 3, K_2 = 2.9$), the average Nusselt number is same for both symmetric and asymmetric cases up to a distance where bulk mean temperature equals to lower wall temperature. However, when the asymmetry is more,
the average Nusselt number for the symmetric heating with that of asymmetric heating cases of $K_1 = 3$, $K_2 = 2$ and $K_1 = 3$, $K_2 = 1.5$, is different and this difference increases with asymmetry and also the average Nusselt number at the lower temperature wall $\bar{N}_u_{b_2}$ gradually diverges with increase in asymmetry in the flow direction. But the average of $\bar{N}_u_{b_1}$ and $\bar{N}_u_{b_2}$ is equal to \bar{N}_u of symmetric heating up to where bulk mean temperature becoming equal to lower wall temperature. Moreover, the bulk mean

![Fig 4 (b)](image)

![Fig 4 (c)](image)
\(\bar{Nu}_b \) (symmetric heating, i.e. \(K_1 = K_2 = 3 \)), \(\bar{Nu}_{w1} \) and \(\bar{Nu}_{w2} \) (asymmetric heating) up to a certain value of \(X^* \) for different asymmetries: (a) \(K_1 = 3, K_2 = 2.9 \), (b) \(K_1 = 3, K_2 = 2 \), (c) \(K_1 = 3, K_2 = 1.5 \).

Temperature becoming equal to lower wall temperature will shifts towards the inlet with increase in asymmetry. Considering local Nussel number, actually the difference in \(Nu_{bf} \) (Fully developed Nusselt number) for \(T_{w1} = T_{w2} \) and \(T_{w1} \approx T_{w2} \) is due to comparing \(Nu_b \) at \(X^* = X_{f_b}^* \) for \(T_{w1} = T_{w2} \) with \(Nu_b \) at \(X^* = X_{fa}^* \), where \(X_{fa}^* \) is the fully developed length for asymmetric heating and \(X_{fa}^* > X_{f}^* \). For example, as shown in Figure (b), \(X_{f}^* \) for symmetric heating (\(K_1 = 3, K_2 = 3 \)) is 0.04 whereas the fully developed length for asymmetric heating (\(K_1 = 3, K_2 = 2.99 \)), i.e. \(X_{fa}^* \) is 0.5097 which is much higher than \(X_{f}^* \).
Figure 6: $\text{Sinh}^{-1}(\text{Nu}_b)$ at different positions of X^* for different asymmetries: (a) higher temperature wall (b) lower temperature wall
Chapter 5

5.1 Laminar Mixed Convection in a Channel, Thermally Developing Field.

The governing equations, when the flow is assumed to be hydrodynamically developed and thermally developing, in a parallel plate vertical channel with constant wall temperatures, neglecting axial conduction are obtained by setting \(\phi = 0 \) and \(v = 0 \), \(\frac{\partial u}{\partial x} = 0 \) in the governing equations given by Eq.(1) to Eq.(4). The non-dimensionalised governing equations obtained by using non-dimensional variables given by Eq. (10) take the following form

\[
\frac{d^2 U}{dY^2} + 48 + \frac{Gr}{Re} \theta = 0
\]

(44)

Conservation of Energy

\[
Pe \left(U \frac{\partial \theta}{\partial X} \right) = \frac{\partial^2 \theta}{\partial Y^2} + Br \left(\frac{dU}{dY} \right)^2
\]

(45)

or

\[
\theta = \frac{K_1 - K_2}{2 - K_1 - K_2}
\]

\[
\theta = \frac{K_2 - K_1}{2 - K_1 - K_2}
\]
\[
\left(\frac{U}{X^*} \frac{\partial \theta}{\partial X^*} \right) = \frac{\partial^2 \theta}{\partial Y^2} + \text{Br} \left(\frac{dU}{dY} \right)^2
\]

(46)

Where \(X^* = X / \text{Pe} \)

The boundary conditions are,

\(\theta = 1 \) at \(X = 0 \) for \(-1/4 < Y < 1/4\)

\(U = 0, \theta = \frac{K_2 - K_1}{2 - K_1 - K_2} \) at \(Y = -1/4 \) for all \(X \)

\(U = 0, \theta = \frac{K_2 - K_1}{2 - K_1 - K_2} \) at \(Y = 1/4 \) for all \(X \)

(47)

Nusselt Number

The defining equation for calculating the heat transfer coefficient, say at the left wall is given by,

\[-k \frac{\partial T}{\partial Y} \bigg|_{y = -L/2} = h_i (T_{w1} - T_b)\]

(48)

Local Nusselt number values based on \(D_h \), are expressed in terms of non-dimensional temperature as,

\[\text{Nu}_{b-} = \frac{1}{\theta^*} \frac{\partial \theta}{\partial Y} \bigg|_{Y = -1/4} \]

\[\text{Nu}_{b+} = -\frac{1}{\theta^*} \frac{\partial \theta}{\partial Y} \bigg|_{Y = 1/4} \]

(49)

(50)

5.2 Results and Discussion

Variation of \(\text{Nu}_b \) (Nusselt number based on bulk mean temperature) with \(X^* \) for \(\text{Br} = 0 \) is shown in fig 8 for different values of \(\text{Gr}/\text{Re} \) in the case of symmetric heating. \(\text{Nu}_b \) is gradually decreasing along the flow direction and reaches to a minimum in the fully developed region. High Nusselt numbers in the entry region are due to high temperature gradients prevailing over there. \(\text{Nu}_b \) increases with \(\text{Gr}/\text{Re} \) in the developing region, whereas fully developed \(\text{Nu}_b \) is independent of \(\text{Gr}/\text{Re} \). This needs further investigation along with asymmetric heating.
Figure 8 Nu_b at different positions of X^* for $Br = 0$; symmetric heating, for different values of Gr/Re
Chapter 6

6.1 Conclusion

1. Nu$_{fd}$ (fully developed Nusselt number) when $T_{w1} \neq T_{w2}$ is not the same as Nu$_{fd}$ when $T_{w1} = T_{w2}$ even if $(T_{w1} - T_{w2})$ is small. Since $X_{fd}^* (T_{w1} \neq T_{w2}) >> X_{fd}^* (T_{w1} = T_{w2})$

2. $\bar{Nu}_b (T_{w1} \neq T_{w2}) \rightarrow \bar{Nu}_b (T_{w1} = T_{w2})$, if $T_{w1} \rightarrow T_{w2}$ for $X^* << X_{fd}^*$ or for all $X^* < X^*$ for which $T_b < T_{w1}$ where $T_{w1} > T_{w2}$. Thus there is no discontinuity in average Nusselt number \bar{Nu}_b or in heat transfer.

6.2. Further Work

1. Study developing flow and thermal fields by employing full Navier-Stokes equations under asymmetric heating.

2. Include viscous dissipation when the channel is arbitrarily inclined under asymmetric heating.
References:

