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ABSTRACT

Direct sequence-code division multiple access (DS-CDMA) technique is used in cellular 

systems where users in the cell are separated from each other with their unique spreading 

codes. In recent times DS-CDMA has been used extensively. These systems suffers from 

multiple access interference (MAI) due to other users transmitting in the cell, channel inter 

symbol interference (ISI) due to multipath nature of channels in presence of additive white 

Gaussian noise(AWGN). Spreading codes play an important role in multiple access capacity 

of  DS-CDMA system. M-sequences, gold sequences etc., has been traditionally used as 

spreading codes in  DS-CDMA. These sequences are generated by shift registers and periodic 

in nature. So these sequences are less in number and also limits the security.

This thesis presents an investigation on use of new type of DS CDMA receiver called Genetic 

Algorithm based DS-CDMA receiver. Genetic Algorithm is robust optimization technique 

and does not fall into local minima hence this gives better weight optimization of any system. 

This Thesis investigates the performance of GA based DS-CDMA communication using gold 

code sequences.

Extensive simulation studies demonstrate the performance of the different linear and 

nonlinear DS-CDMA receivers like   RAKE receiver, matched filter (MF) receiver, minimum 

mean square error (MMSE) receiver using gold sequences and the performance have been 

compared with GA based receiver.
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1.1 INTRODUCTION
Spread spectrum techniques have been wildly used in wired and wireless communications.

The spreading of the signal spectrum gives us many advantages such as robustness against

interference and noise, low probability of intercept, realization of Code Division Multiple

Access(CDMA) and so on. In order to spread the bandwidth of the transmitting signals,

pseudo-noise (PN) sequences have been used extensively in spread-spectrum communication

systems [1]. Obviously, the maximal length shift register sequences (M-sequences) and Gold

sequences are the most popular spreading sequences in spread spectrum systems. Many other

codes like Walsh code and Chaotic code were reported for the better performance of the

CDMA system.

            At the receiver end we extract the spreading code in order to retrieve the data from the

received noisy signal. This code extraction is done by means of the adaptive channel

equalization. Many type of channel equalization techniques like Least Mean

Square(LMS),Recursive Least Square(RLS),Decision Feedback Equalizer(DFE) and so on

were reported for the code extraction of the CDMA system. All the equalization methods

mentioned above are gradient based algorithms. So they suffer from the so called problem in

channel equalization local minima. Hence they stick around the local minima and never fall

into the global minima. Again the above mentioned equalization techniques are not able to

handle the nonlinearity associated with a channel.

            To overcome the local minima problem many evolutionary computing methods such

as Genetic Algorithm (GA), Particle Swarm Optimization (PSO), Bacteria Foraging

Optimization (BFO) were proposed .As being these techniques are nongradient based

algorithm they completely search the search space and fall into the global minima never to

the local minima. In this thesis we will use GA based channel equalization to improve the

performance of the CDMA system.

  The chapter begins with an exposition of the principal motivation behind the work

undertaken in this thesis. Following this, section 1.3 provides a brief literature survey on GA.

Section 1.4 outlines the contributions made in this thesis. At the end, section 1.5 presents the

thesis layout.

1.2 MOTIVATION OF WORK

In order to spread the bandwidth of the transmitting signals, the binary pseudo-noise

(PN) sequences[3] have been used extensively in spread spectrum communication (SS)

systems. It is a deterministic, periodic signal that is known to both transmitter and receiver,
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whose appearance has the statistical properties of sampled white noise. It appears, to an

unauthorized listener, to be a similar to those of white noise. Therefore, it is not easily

intercepted by adversary.

Much research has been done over the past decades in order to analyze the properties

of these sequences and to try to find easier ways to generate the most effective codes.

Obviously, the maximal length shift register sequences (M-sequences) and Gold sequences

are the most popular spreading sequences in spread spectrum systems. The M-sequences are

the longest codes that can be generated with given a shift register of fixed length, that have

relatively smaller cross-correlation values than the peak magnitude that restrict regretfully to

their number. The m-sequences have very desirable autocorrelation properties. However,

large spikes can be found in their cross-correlation functions, especially when partially

correlated. Another limiting property of m-sequences is that they are relatively small in

number. Therefore, the number of sequences is usually too small and not suitable for spread

spectrum systems. Furthermore, another method for generating PN sequences with better

periodic cross-correlation properties than M-sequence has been developed by Gold [4]. The

Gold sequences are constructed by taking a pair of specially selected M-sequences.

In this thesis we used Gold sequences to evaluate the performance of DS CDMA

system. As channel equalization is an important aspect in any communication technique so

much work also has been carried out for equalization in the receiver. The simplest receiver

structure for DS CDMA is matched filter which is the simplest correlation receiver with M

tap weights. In a single user system, the matched filter is the optimum receiver for signals

corrupted by only AWGN. In a multi user environment, however, the performance degrades

rapidly with increasing number of users. The matched filter is multiple-access limited-and

strong interferers with high power compared to the desired user cause severe problem. This

latter effect is called the near-far problem. Due to these problems, other solution has been

searched for. The optimal linear receiver for multi-user detection is MMSE receiver.

The motivation for the use of adaptive algorithms lies in the desire to change the

individual taps of the receiver filter to respond to changes in the communication channel. The

traditional implementation of adaptive receivers is that a sequence of a priori known training

data is incorporated into the data stream at prearranged times. As the name suggests, the

Minimum Mean Square Error (MMSE) detector minimizes the mean square error between

the transmitted bit and the decision variable which is an output of the linear transformation.

The detector circumvents the noise enhancement problem faced by the decorrelating detector.
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However, the Minimum Mean Square Error (MMSE) detector minimizes the mean

square error between the transmitted bit and the decision variable which is an output of the

linear transformation. The detector circumvents the noise enhancement problem faced by the

decorrelating detector. The linear transformation thus comprises of terms involving the

received power levels and the thermal noise power. This detector offers improvement in BER

performance, but a disadvantage is that received power levels have to be estimated.

Erroneous estimations can lead to degradation of performance. As MMSE employs LMS or

RLS algorithm so there is a chance of falling in local minima because LMS and RLS are

gradient based algorithms. Some times communication channels are associated with some

nonlinearity. But LMS and RLS are not robust to nonlinearity.

Many other methods using Artificial Neural Network (ANN), Radial Basis Function

(RBF), Fuzzy Logic (etc.) were also investigated. The development of Evolutionary

computation methods such as Genetic Algorithm (GA), Bacteria Foraging Optimization

(BFO) and many other algorithms are challenging fields in machine learning and optimizing

a system. In this thesis we have implemented GA for the performance evaluation of DS

CDMA system.

1.3 BACKGROUND LITERATURE SURVEY

In the past few decades, there has been a great deal of interest in the study of evolutionary

computing methods. Many evolutionary computing methods like Genetic Algorithm

(GA),Bacteria Foraging optimization (BFO),Ant colony Optimization (ACO) and Particle

Swarm Optimization (PSO) have been investigated.The genetic algorithm (GA) is an

optimization and search technique based on the principles of genetics and natural selection. A

GA allows a population composed of many individuals to evolve under speci ed selection

rules to a state that maximizes the “ tness” (i.e., minimizes the cost function). The method

was developed by John Holland (1975) over the course of the 1960s and 1970s and nally

popularized by one of his students, David Goldberg, who was able to solve a difficult

problem involving the control of gas-pipeline transmission for his dissertation

(Goldberg,1989).Genetic algorithms are now widely applied in science and engineering as

adaptive algorithms for solving practical problems. Certain classes of problem are

particularly suited to being tackled using a GA based approach.

 The general acceptance is that GAs are particularly suited to multidimensional global

search problems where the search space potentially contains multiple local minima. Unlike

other search methods, correlation between the search variables is not generally a problem.

The basic GA does not require extensive knowledge of the search space, such as likely
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solution bounds or functional derivatives. A task for which simple GAs are not suited is rapid

local optimization; however, coupling the GA with other search techniques to overcome this

problem is trivial. Whenever multidimensional systematic searching would be technique of

choice, except that the large number of comparisons makes that approach intractable, a GA

should be considered for the reasons outlined.

1.4 OBJECT OF THE WORK

The work proposed here intends to test the performance of DS-CDMA system using GA and

compare the performance for other different receiver techjniques. This thesis presents an

investigation on use of GA on DS CDMA system. In this work it is proposed to carry out the

following studies.Implementation of Genetic Algorithm for the DS-CDMA downlink

receiver.Investigate BER performance of different linear and nonlinear receivers for DS-

CDMA system and compare the same using GA with gold sequences.

1.5   THESIS OUTLINE

This thesis is organized into six chapters.  Following this introduction, Chapter 2 provides a

more detail discuss on DS-CDMA system.  Chapter 3 discusses the background of  Genetic

Algorithm. In Chapter 4, various linear receivers like Matched filter, MMSE receiver etc., are

studied and   BER performance of   different linear receivers using gold sequences is

evaluated and it is compared with the receivers using GA with gold sequences. Finally

Chapter 5 provides concluding remarks and future work.



Chapter 2

DS-CDMA SYSTEM AND OVERVIEW
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2.1 INTRODUCTION

In this section the principle of spread spectrum and its application in multiple access is

discussed. Multiple access schemes are used to allow many mobile users to share

simultaneously a finite amount of radio channels in a fixed radio spectrum.  The sharing of

the spectrum is required to achieve high capacity by simultaneously allocating the available

bandwidth to multiple users.

Following this introduction, spread spectrum (SS) communication technique is

discussed in the section 2.2.  The application of this SS technique to produce a multiple

access system is described in the section 2.3. The section 2.4 deals with the construction of

a simplified form of a baseband signal to be transmitted, while section 2.5 considers the

effects of multipath channel on this signal.  Section 2.6 discusses the simplest receiver

structure using matched filter (MF). Principle structure of multiuser detector is described in

section 2.7.  While generation of Gold sequence is discussed in section 2.8 and the chapter

ends with the concluding remark.

2.2 SPREAD SPECTRUM COMMUNICATION TECHNIQUES

As a simple, expansion of the bandwidth is not sufficient to be termed as the spread spectrum,

but the bandwidth expansion must be accomplished with the separate signature, or known as

spreading sequence. Both transmitter and the receiver know this spreading sequence. It is also

independent of the data bits [8]. All the sequences are   randomly distributed, and there is no

correlation between any two sequences.

 Let the sequence of data bits x (n) have the period Tbit and the spreading sequence of

length M (in this work we have taken a spreading sequence of length 31) generally called

chips to distinguish them from the data bits have the frequency fchip where fchip >> (1/Tbit). In

other words it is assumed that fchip>>fbit .

From the above assumption that the transmitted data is random and independent, the

power spectral density of the original unspread signal is given by [9]

( )
2

sin (2.1)bit
D bit

bit

fTS f T
fT
π

π
 

=  
 
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Figure 2.1: Spread spectrum concept in frequency domain

And assuming that spreading sequence is pseudorandom in nature, and is given by

( )
2

sin1 (2.2)chip
SS

chip chip

f f
S f

f f f
π

π

 
=   

 
The relationship between the above spectral densities is sketched in the Figure 2.1.

 The increased in performance due to the bandwidth expansion and contraction process is

termed as processing gain gP .This processing gain can be represented as the ratio of

bandwidth associated with the spread signal WSS and that of the data signal WD .

(2.3)SS bit
P

D chip

W Tg
W T

= =

The processing gain (PG) is normally expressed in decibel form as

                                                            GP=10 log10 (gP)                                (2.4)

The SS signal is largely tolerant to external interfering factors, there will be degradation in

performance as the number of SS signals in the same cell increases.

. To make a good comparison, the background noise is expressed in terms of a modified form

of signal to noise ratio (SNR), it takes account the processing gain.

( )2

10
0

10log 2 (2.5)b
P

E g
N

σ=

Where Eb/N0 is the signal to Gaussian noise ratio, and σ 2 is the Gaussian noise variance.
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2.3 DS-CDMA TRANSMITTER PRINCIPLES

The simplest transmitter for downlink of a DS-CDMA is shown in the Figure 2.3. The

transmitted signal ( )s kL n+ , at time t = nTbit is constructed by coherently summing the

spreading sequence of each user, i,nC by  that users bit i(k)x  over all active users , to give

i ,n i
1

( )  (k )    ( 2 .6 )
U

i
s k L n C x

=

+ = ∑

Figure 2.2: Simplified synchronous DS-CDMA downlink transmitters for U active users

In the uplink case the process is same except that the users are no longer synchronized, and

which is modeled by inserting user-specific time delay on the resulting spread signal.

2.4 MULTIPATH CHANNEL BACKGROUND

The received signal consists of direct line of site (LOS) components and a few non LOS

components. In addition to background noise, the received signal consists of a combination of

individual reflected signals from the obstacles, like buildings etc, between the transmitter and

the receiver and those arrives at various delays, according to the length of each associated RF

paths [10]. This situation is called multipath channel. This is also time varying, due to the

motion of the receiver with respect to the transmitter.
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Figure 2.3: Example of multipath, the received signal consists of many reflections and

                    delayed versions of the transmitted signal.

2.4.1 Channel effects

There are two main parameters of the channel, first is the range of frequency over which the

channel effects remain same, called the coherence bandwidth, denoted as f0, and the time

duration over which the channel response is invariant is called the coherence time and

denoted as T0. These may be calculated from the two dual functions S(τ), the multipath

intensity profile and S(ν), the Doppler power spectral density, which are the measure of the

received signal power as the function of delay time τ and the Doppler shift ν  respectively.

2.5 DS-CDMA RECEIVER PRINCIPLES

The work of the receiver is to recover the data x(n) by converting the spectrum of the

received signal vector ( )ny . This is done by multiplying the received signal with the

required spreading sequence, which is generated locally by the receiver. The received signal,

consisting of Mr chips is passed to the block of delay elements, where Z-1 represents a delay

of one chip, until the complete Mr chip signal has been read. These values are then passed to

multiplier block in parallel, which forms the scalar product of ( )ny  and the tap weight

vector rMC∈ω , where Mr is the number of tap weights, in this Figure 2.4 it is 8. This finite

impulse response block produces a soft output ( )nx~ , which is then passed through the

decision block to give a hard estimate, ( )nx , of the original data bit x(n).
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                         Figure 2.4: DS-CDMA correlator receiver with 8 tap weights

This is the structure of simplest receiver, commonly known as MF receiver with L tap

weights : 1n n Lw ≤ ≤  , matched to the original spreading sequence of the desired user. In

practice, synchronization of the chip level signal is a highly non-trivial process. The

performance of this receiver has been shown to degrade considerably as the number of

simultaneously transmitting users increases . Hence improving the capacity of SS systems is

achieved either by reducing the total interference by enhancing the single user detection

methods or by making use of multiple access interference (MAI) through improved

interference cancellation or multiuser detection technique (MUD).

2.6 PSEUDO NOISE (PN) DS/SS SYSTEM

Spread spectrum signals for digital communications were originally invented for military

communication, but nowadays are used to provide reliable communication in a variety of

commercial applications including mobile and wireless communications, which provide

resistance to hostile jamming, hide the signal by transmitting it at low power, or make it

possible for multiple users to communicate through the same channel. .In conventional

DS/SS, in order to spread the bandwidth of the transmitting signals, the binary pseudo-noise

(PN) sequences have been used extensively in spread spectrum communication (SS) systems.

It is a deterministic, periodic signal that is known to both transmitter and receiver, whose

appearance has the statistical properties of sampled white noise. It appears, to an unauthorized

listener, to be a similar to those of white noise. Therefore, it is not easily intercepted by

adversary.

The basic elements of a pseudo-noise DS/SS systems are illustrated in Figure 1 as the

following.
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Figure 2.5   PN  DS/SS system

The channel encoder and decoder, the modulator and demodulator are the basic elements of a

conventional digital communication system. The two pseudorandom generators, interfacing

with the modulator and demodulator, were employed by the spread spectrum system to

produce a pseudorandom or pseudonoise (PN) binary-valued sequence that is used to spread

the transmitted signal in frequency at the modular and to despread the received signal at the

demodulator.

2.7 PSEUDO-RANDOM SEQUENCES

A pseudorandom(PN) sequence is a code sequence of 1’s and 0’s whose autocorrelation has

properties similar to those of white noise. Some of the popular PN sequences are Maximal

length shift register sequences(m-sequences), gold sequences etc.,

2.7.1 Maximal length shift register Sequence (m-sequence)

Maximal length shift register sequences are by definition, the longest codes that can be

generated by a given shift register or a delay element of a given length. In binary shift register

sequence generators, the maximum length sequence is 2n-1 chips, where n is the number of

stages in the shift register. A shift register sequence generator consists of a shift register

working in conjunction with appropriate logic, which feeds back a logical combination of the

state of two or more of its stages to input. The output of a sequence generator, and the

contents of its n stages at any sample (clock) time, is a function of the outputs of the stages

 Channel
 Decoder

Demodulator

  Pseudorandom
       generator

Channel

  Pseudorandom
       generator

  Modulator  Channel
  encoder

  O/p
Information
  sequence
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Number
 Of
Stages

Code
Length

Maximal
Taps

2 3 [2,1]
3 7 [3,1]
4 15 [4,1]
5 31 [5,2][5,4,3,2][5,4,2,1]
6 63 [6,1][6,5,2,1][6,5,3,2]
7 127 [7,1][7,3][7,3,2,1][7,4,3,2]

[7,6,4,2][7,6,3,1][7,6,5,2][7,6,5,4,2,1][7,5,4,3,2,1]
8 255 [8,4,3,2][8,6,5,3][8,6,5,2]

[8,5,3,1][8,6,5,2][8,7,6,1]
[8,7,6,5,2,1][8,6,4,3,2,1]

9 511 [9,4][9,6,4,3][9,8,5,4][9,8,4,1]
[9,5,3,2][9,8,6,5][9,8,7,2]
[9,6,5,4,2,1][9,7,6,4,3,1]
[9,8,7,6,5,3]

10 1023 [10,3][10,8,3,2][10,4,3,1][10,8,5,1]
[10,8,5,4][10,9,4,1][10,8,4,3]
[10,5,3,2][10,5,2,1][10,9,4,2]

11 2047 [11,1][11,8,5,2][11,7,3,2][11,5,3,5]
[11,10,3,2][11,6,5,1][11,5,3,1]
[11,9,4,1][11,8,6,2][11,9,8,3]

12 4095 [12,6,4,1][12,9,3,2][12,11,10,5,2,1]
[12,11,6,4,2,1][12,11,9,7,6,5]
[12,11,9,5,3,1][12,11,9,8,7,4]
[12,11,9,7,6,][12,9,8,3,2,1]
[12,10,9,8,6,2]

13 8191 [13,4,3,1][13,10,9,7,5,4]
[13,11,8,7,4,1][13,12,8,7,6,5]
[13,9,8,7,5,1][13,12,6,5,4,3]
[13,12,11,9,5,3][13,12,11,5,2,1]
[13,12,9,8,4,2][13,8,7,4,3,2]

14 16,383 [14,12,2,1][14,13,4,2][14,13,11,9]
[14,10,6,1][14,11,6,1][14,12,11,1]
[14,6,4,2][14,11,9,6,5,2]
[14,13,6,5,3,1][14,13,12,8,4,1]
[14,8,7,6,4,2][14,10,6,5,4,1]
[14,13,12,7,6,3][14,13,11,10,8,3]

15 32,767 [15,13,10,9][15,13,10,1][ 15,14,9,2]
[15,1][15,9,4,1][15,12,3,1][15,10,5,4]
[15,10,5,4,3,2][15,11,7,6,2,1]
[15,7,6,3,2,1][15,10,9,8,5,3]
[15,12,5,4,3,2][15,10,8,7,5,3]
[15,13,12,10][15,13,10,2][15,12,9,1]
[15,14,12,2][15,13,9,6][15,7,4,1]
[15,4][15,13,7,4]

                      Table 2.1: Feedback connections for linear m-sequences
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fed back at the preceding sample time. Feedback connections have been tabulated for

maximal code generators for 3 to 15 stages and listed in Table 3.1.

Implementation

Linear feedback shift registers (LFSR) can be implemented in two ways. The Fibonacci

implementation consists of a simple shift register in which a binary-weighted modulo-2 sum

of the taps is fed back to the input. (The modulo-2 sum of two 1-bit binary numbers yields 0

if the two numbers are identical and 1 if they differ: 0+0=0, 0+1=1, 1+1=0.)

Figure 2.6: Fibonacci implementation of LFSR

For any given tap, weight gi is either 0, meaning "no connection," or 1, meaning it is fed

back. Two exceptions are g0 and gm, which are always 1 and thus always connected. Note that

gm is not really a feedback connection, but rather is the input of the shift register. It is

assigned a feedback weight for mathematical purposes. The Galois implementation consists

of a shift register, the contents of which are modified at every step by a binary-weighted

value of the output stage.

2.7.2 Gold sequences

For CDMA applications, m-sequences are not optimal. For CDMA, we need to construct a

family of spreading sequences, one for each which, in which the codes have well-defined

cross-correlation properties. In general, m-sequences do not satisfy the criterion. One popular

set of sequences that does are the Gold sequences. Gold sequences are attractive because only

simple circuitry is needed to generate a large number of unique codes.

A Gold sequence is constructed by the XOR of two m-sequences with the same clocking.

Figure 2.7 shows the schematic for Gold code generation.

g0=1g1g2gm-3gm-2gm-1gm=1

Output
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                     Figure 2.7: Gold code sequence generator configuration

To achieve increased capacity, at an expense of altering the correlation properties slightly, a

pair of m-sequences may be used to generate a set of Gold sequence , which have the

property that the cross-correlation is always equal to –1, when the phase offset is zero. Non-

zero phase offset produces a correlation value from one of the three possible values. In this

work a pair of specially selected m-sequences (where m = 5) is taken, and performing the

modulo-2 sum of the two sequences for each of the L=2m-1 cyclically shifted version of one

sequence relative to the other sequence. Thus L Gold sequence is generated as illustrated in

Figure 2.8.

Figure 2.8 Generation of Gold sequences of length 31

In this section we discussed about the basic principles of SS communication and

implementation of the DS-CDMA. The transmitter and receiver structure have been

discussed. In this section we also reviewed the Gold sequence generation. By far, the

maximum-length shift-register sequences (m-sequence) are the most widely known binary PN

code sequences. The most undesirable property of m-sequence is that they are relatively small

in number. For example, for a sequence of N=63, there are only 6, and for N=255, there are

only 16 possible different sequences to use. Therefore, m-sequences are not suitable for PN

DS/SS systems.

SRG 2

SRG 1

Clock

Code 2

Code 1

Code 3=
Code1⊕code2
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     A generation of Pseudo-noise is core for spread spectrum systems. The classical M-

sequences and Gold sequences are not suitable, since their number and security is not friendly

to DS-SS systems.

2.8 CONCLUSION
This chapter reviewed the basic principles of SS communications and described the

implementational aspects of DS-CDMA. The simplified transmitter structure for downlink

scenario has been outlined, the model for communication channel is introduced.  Simplest

chip level processed MF receiver has been discussed in brief.  Process of generation of 31

chip Gold sequence was described at the end.



Chapter 3

INTRODUCTION TO GENETIC ALGORITHM
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3.1 INTRODUCTION
The genetic algorithm (GA) is an optimization and search technique based on the principles

of genetics and natural selection. A GA allows a population composed of many individuals to

evolve under speci ed selection rules to a state that maximizes the “ tness” (i.e., minimizes

the cost function). The method was developed by John Holland (1975) over the course of the

1960s and 1970s and nally popularized by one of his students, David Goldberg, who was

able to solve a difficult problem involving the control of gas-pipeline transmission for his

dissertation (Goldberg,1989).

  Some of the advantages of a GA include that it

i. Optimizes with continuous or discrete variables,

ii. Doesn’t require derivative information,

iii. Simultaneously searches from a wide sampling of the cost surface,

Iv.Deals with a large number of variables,

 v. Is well suited for parallel computers,

vi. Optimizes variables with extremely complex cost surfaces (they can

     jump out of a local minimum),

vii. Provides a list of optimum variables, not just a single solution,

      May encode the variables so that the optimization is done with the en-

      coded variables, and Works with numerically generated data,

      experimental data, or analytical functions.

These advantages are intriguing and produce stunning results when traditional optimization

approaches fail miserably.

Evolutionary Computation

3.1.1 Evolutionary Computation

 It is an appealing idea that the natural concepts of evolution may be borrowed for use

as a computational optimization tool. A family of algorithms has been developed around this

idea:

• evolution strategies (ES)

• evolutionary programming (EP)

• genetic algorithms (GA)

• genetic programming (GP)

 The fundamentals of genetic algorithms will be introduced in this section. It should be

highlighted that these evolutionary algorithms are not random searches for a very fit



16

individuals (i.e. the solutions to problems). Evolutionary algorithms use stochastic processes

to produce a search behavior which is much better than random[4].

3.1.2 Genetic Algorithms for search and optimization

 Genetic algorithms are now widely applied in science and engineering as adaptive

algorithms for solving practical problems. Certain classes of problem are particularly suited

to being tackled using a GA based approach.

 The general acceptance is that GAs are particularly suited to multidimensional global

search problems where the search space potentially contains multiple local minima. Unlike

other search methods, correlation between the search variables is not generally a problem.

The basic GA does not require extensive knowledge of the search space, such as likely

solution bounds or functional derivatives. A task for which simple GAs are not suited is rapid

local optimization; however, coupling the GA with other search techniques to overcome this

problem is trivial. Whenever multidimensional systematic searching would be technique of

choice, except that the large number of comparisons makes that approach intractable, a GA

should be considered for the reasons outlined in the sections below.

 GAs were first introduced by John Holland for the formal investigation of the

mechanisms of natural adaptation (Holland 1975), but the algorithms have been since

modified to solve computational search problems. Modern GAs deviate greatly from the

original form proposed by Holland, but their linage is clear. There is no single firm definition

for a genetic algorithm, and the computational system is highly simplified compared to the

actual situation in nature. Therefore, we must first define a few terms and show how they

relate between modern GAs and more traditional evolutionary theory.

GAs are broadly classified into two categories. They are

   1. Binary GA

   2. Contineous GA

In our application we are using binary GA.

3.2 COMPONENTS OF BINARY GENETIC ALGORITHM:
 The GA begins, like any other optimization algorithm, by de ning the optimization

variables, the cost function, and the cost. It ends like other optimization algorithms too, by

testing for convergence. In between, however, this algorithm is quite different. A path

through the components of the GA is shown as a owchart in Figure 3.1 .Each block in this

“big picture” overview is discussed in detail in this chapter.
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Fig 3.1 Flowchart of a binary GA

3.2.1 Selecting the Variables and the Cost Function

A cost function generates an output from a set of input variables (a chromo- some). The cost

function may be a mathematical function, an experiment, or a game. The object is to modify

the output in some desirable fashion by nding the appropriate values for the input variables.

We do this without thinking when lling a bathtub with water. The cost is the difference

between the desired and actual temperatures of the water. The input variables are how much

the hot and cold spigots are turned. In this case the cost function is the experimental result

from sticking your hand in the water. So we see that deter- mining an appropriate cost

function and deciding which variables to use are intimately related. The term tness is

extensively used to designate the output of the objective function in the GA literature. Fitness

implies a maximization problem. Although tness has a closer association with biology than

the term cost, we have adopted the term cost, since most of the optimization literature deals

with minimization, hence cost. They are equivalent. The GA begins by de ning a

chromosome or an array of variable values to be optimized. If the chromosome has Nvar
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variables (an Nvar-dimensional optimization problem) given by P1 ,P2 ,P3 ,….PNvar then the

chromosome is written as an Nvar element row vector.

                          Chromosome = [P1 ,P2 ,P 3 .,PNvar]                         (3.1)

For instance, searching for the maximum elevation on a topographical map requires a cost

function with input variables of longitude (x) and latitude (y)

                           Chromosome =[x,y]                                                   (3.2)

Where Nvar =2.Each chromosome has a cost found by evaluating the cost function, f, at P1, P2,

P3,… PNvar;

                            cost =f(chromosome) = f(P1 ,P2, . PNvar)                    (3.3)

Putative solutions to the target problem are evaluated using "Cost functions", otherwise

known as "Objective functions". Based upon the result of such functions, evolutionary

pressures may be applied to a set of solutions. The objective function will obviously be

problem specific, but there are certain features which should be avoided for the effective

application of a GA. Such unfavorable objective functions are discussed below, but often the

problems may be alleviated by choosing a different encoding scheme, by normalizing the

input parameters, or by rebasing the function. An advantage of GAs over many search or

optimization algorithms is that derivatives of this function are not required. This fact ensures

that GAs may be readily applied on fitness landscapes (or potential surfaces) which contain

discontinuities or singularities without any special treatments[5].

Often the cost function is quite complicated, as in maximizing the gas mileage of a car. The

user must decide which variables of the problem are most important. Too many variables bog

down the GA. Important variables for optimizing the gas mileage might include size of the

car, size of the engine, and weight of the materials. Other variables, such as paint color and

type of headlights, have little or no impact on the car gas mileage and should not be included.

Sometimes the correct number and choice of variables comes from experience or trial

optimization runs. Other times we have an analytical cost function[6]

3.2.2 Variable Encoding and Decoding

Since the variable values are represented in binary, there must be a way of converting

continuous values into binary, and visa versa. Quantization samples a continuous range of

values and categorizes the samples into nonoverlapping subranges. Then a unique discrete
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value is assigned to each subrange.The difference between the actual function value and the

quantization level is known as the quantization error. Quantization begins by sampling a

function and placing the samples into equal quantization levels. Any value falling within one

of the levels is set equal to the mid, high, or low value of that level. In general, setting the

value to the mid value of the quantization level is best, because the largest error possible is

half a level. Rounding the value to the low or high value of the level allows a maximum error

equal to the quantization level. The mathematical formulas for the binary encoding and

decoding of the nth variable are given as follows:

For encoding,
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In each case

pnorm =normalized variable

plo =smallest variable value

phi =highest variable value

Gene[m]= binary version of pn

Round{.} = round to nearest integer

pquant =quantized version of pnorm

3.2.3 The Population

 The GA starts with a group of chromosomes known as the population. The population

has Npop chromosomes and is an Npop *  Npop matrix lled with random ones and zeros

generated using

  Pop=round (rand (Npop ,Nbits))
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   Where the function (Npop ,Nbits) generates a (Npop ,Nbits) matrix of uniform random

numbers between zero and one. The function round rounds the numbers to the closest integer

which in this case is either 0 or 1. Each row in the pop matrix is a chromosome. The

chromosomes correspond to discrete values of longitude and latitude. Next the variables are

passed to the cost function for evaluation.

3.2.4 Natural Selection

 Survival of the ttest translates into discarding the chromosomes with the highest

cost. First, the Npop costs and associated chromosomes are ranked from lowest cost to highest

cost. Then, only the best are selected to continue, while the rest are deleted. The selection

rate, Xrate is the fraction of Npop that survives for the next step of mating. The number of

chromosomes that are kept each generation is

Nkeep =Xrate Npop

Natural selection occurs each generation or iteration of the algorithm. Of the Npop

chromosomes in a generation, only the top Nkeep survive for mating, and the bottom

Npop – Nkeep are discarded to make room for the new offspring. Deciding how many

chromosomes to keep is somewhat arbitrary. Letting only a few chromosomes survive to the

next generation limits the available genes in the offspring. Keeping too many chromosomes

allows bad performers a chance to contribute their traits to the next generation. We often keep

50% (Xrate= 0.5) in the natural selection process.

3.2.5 Selection

 Now it’s time to play matchmaker. Two chromosomes are selected from the mating

pool of Nkeep chromosomes to produce two new offspring. Pairing takes place in the mating

population until Npop-Nkeep offspring are born to replace the discarded chromosomes. Pairing

chromosomes in a GA can be as interesting and varied as pairing in an animal species.

GA selection operators perform the equivalent role to natural selection. The overall effect is

to bias the gene set in following generations to those genes which belong to the most fit

individuals in the current generation.

There are numerous selection schemes described in the literature; Roulette wheel selection,

tournament selection, random selection, stochastic sampling. These, in essence, mimic the

processes involved in natural selection.
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1. Pairing from top to bottom: Start at the top of the list and pair the chromosomes

two at a time until the top Nkeep chromosomes are selected for mating. Thus, the

algorithm pairs odd rows with even rows. The mother is row numbers in the

population matrix given by ma = 1, 3, 5, … and the father has the row numbers pa =

2, 4, 6, …This approach doesn’t model nature well but is very simple to program.

2. Random Pairing: This approach uses a uniform random number generator to

select chromosomes. The row numbers of the parents are found using

ma = ceil(Nkeep*rand(1, Nkeep))

                                pa = ceil(Nkeep*rand(1, Nkeep))

     Where ceil rounds the value to the next highest integer

3. Weighted random pairing: The probabilities assigned to the chromosomes in the

mating pool are inversely proportional to their cost. A chromosome with the lowest

cost has the greatest probability of mating, while the chromosome with the highest

cost has the lowest probability of mating. A random number determines which

chromosome is selected. This type of weighting is often referred to as roulette wheel

weighting. There are two techniques: rank weighting and cost weighting.

a. Rank weighting. This approach is problem independent and nds the probability

from the rank, n, of the chromosome:

∑
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 Table 2.5 shows the results for the Nkeep = 4 chromosomes. The cumulative

probabilities listed in column 4 are used in selecting the chromosome. A random

number between zero and one is generated.

 Starting at the top of the list, the rst chromosome with a cumulative probability that

is greater than the random number is selected for mating pool. For instance, if the

random number is r =.577, then 7.04.0 ≤< r ,so chromosome2 is selected. If a

chromosome is paired with itself, there are several alternatives. First, let it go. It just

means there are three of these chromosomes in the next generation. Second, randomly

pick another chromosome. The randomness in this approach is more indicative of

nature. Third, pick another chromosome using the same weighting technique. Rank

weighting is only slightly more difficult to program than the pairing from top to

bottom. Small populations have a high probability of selecting the same chromosome.
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The probabilities only have to be calculated once. We tend to use rank weighting

because the probabilities don’t change each generation.

                         Table.3.1 Rank weighting

b. Cost weighting. The probability of selection is calculated from the cost of the

chromosome rather than its rank in the population. A normalized cost is calculated for

each chromosome by subtracting the lowest cost of the discarded chromosomes

( 1+keepNC  ) from the cost of all the chromosomes in the mating pool:

keepNnn Ccc −=

Subtracting 1+keepNC  ensures all the costs are negative. pn is calculated from

∑
=
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This approach tends to weight the top chromosome more when there is a large spread

in the cost between the top and bottom chromosome. On the other hand, it tends to

weight the chromosomes evenly when all the chromosomes have approximately the

same cost. The same issues apply as discussed above if a chromosome is selected to

mate with itself. The probabilities must be recalculated each generation.

4. Tournament selection: Another approach that closely mimics mating competition

in nature is to randomly pick a small subset of chromosomes (two or three) from the

mating pool, and the chromosome with the lowest cost in this subset becomes a

parent. The tournament repeats for every parent needed. Thresholding and tournament

selection make a nice pair, because the population never needs to be sorted.

Tournament selection works best for larger population sizes because sorting becomes

time-consuming for large populations.

3.2.6 Mating.

Mating is the creation of one or more offspring from the parents selected in the pairing

process. The genetic makeup of the population is limited by the current members of the

population. The most common form of mating involves two parents that produce two
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offspring (see Figure 3.2).A crossover point, or kinetochore, is randomly selected between

the rst and last bits of the parents’ chromosomes. First, parent1 passes its binary code to the

left of that crossover point to offspring1 In a like manner, parent2 passes its binary code to the

left of the same crossover point to offspring2 .Next, the binary code to the right of the

crossover point of parent1 passes its code to offspring1 goes to offspring2 and parent2 passes

its code to offspring1 .Consequently the offspring contain portions of the binary codes of both

parents. The parents have produced a total of Npop-Nkeep offspring, so the chromosome

population is now back to Npop. Table 3.2 shows the pairing and mating process for the

problem at hand. The rst set of parents is chromosomes 3 and 2 and has a crossover point

between bits 5 and 6. The second set of parents is chromosomes 3 and 4 and has a crossover

point between bits 10 and 11. This process is known as simple or single-point crossover.

                           Fig 3.2 Two parents mate to produce two offspring

                     Table 3.2 Pairing and mating process of single point crossover
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3.2.7 Mutations:

The exact purpose of the mutation operations depends upon who you talk to.

Mutations enable the GA to maintain diversity whilst also introducing some random search

behavior. As for crossover, many types of mutation operator may be conceived depending

upon the details of the problem and the chromosomal representation of solutions to that

problem.

Random mutations alter a certain percentage of the bits in the list of chromosomes. Mutation

is the second way a GA explores a cost surface. It can introduce traits not in the original

population and keeps the GA from con- verging too fast before sampling the entire cost

surface. A single point mutation changes a 1 to a 0, and visa versa. Mutation points are

randomly selected from the Npop *  Nbits total number of bits in the population matrix.

Increasing the number of mutations increases the algorithm’s freedom to search outside the

current region of variable space. It also tends to distract the algorithm from converging on a

popular solution. Mutations do not occur on the nal iteration.

3.2.8 The Next Generation

After the mutations take place, the costs associated with the offspring and mutated

chromosomes are calculated.

3.2.9 Convergence

           The number of generations that evolve depends on whether an acceptable solution is

reached or a set number of iterations is exceeded. After a while all the chromosomes and

associated costs would become the same if it were not for mutations. At this point the

algorithm should be stopped[7]

3.3 CONCLUSION

In this chapter the working of genetic algorithm is explained. As Ga searches the total search

space so there is no chance to fall into local minima. Thus Genetic algorithms were able to

accomplish both, evolving the system from a random arrangement to the near-perfect solution

and finally to the perfect, optimal solution. At no step of the way did an insoluble difficulty

or a gap that could not be bridged turn up. At no point whatsoever was human intervention

required to assemble an irreducibly complex core of components (despite the fact that the

finished product does contain such a thing) or to "guide" the evolving system over a difficult

peak.



Chapter 4

PERFORMANCE OF LINEAR RECEIVERS FOR 

DS/SS SYSTEM 
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4.1 INTRODUCTION

A direct sequence code division multiple access (DS-CDMA) communications system

receiver has three main obstacles to overcome. The first one is multiple access interference

(MAI) from other users, which is a direct result of using DS-CDMA. In a cellular system,

MAI will be non-stationary due to slow power variations caused by fading and it may

undergo step changes when a new user starts or stops transmission (the birth or death of a

signal).The transmission channel is responsible for the other two obstacles intersymbol

interference caused by multipath and additive noise. To overcome these, many receiver

structures have been proposed for the reception of DS-CDMA in a cellular environment.

This chapter reviews linear receiver structures for DS-CDMA.A brief overview of

Linear receivers is given in section 4.1. Matched filter receiver is dicussed in section 4.2.

MMSE  receiver is discussed in section 4.3. In section 4.4 performance of different linear

receivers like Matched filter, MMSE receiver and RAKE receiver using chaotic spreading

sequences is investigated. The performance of nonlinear receivers using chaotic spreading

codes is compared with that of gold sequences.

4.2 SINGLE USER RECEIVER

The task of the receiver is to recover the intended data x(n) by collapsing the spectrum of the

received signal vector )(ny . This is performed by integrating the product of the received

signal with a locally held replica of the required user’s spreading sequence. Practically, this is

achieved by the correlator receiver, shown in Figure 4.1. The received signal, consisting of Nr

chips is passed to the block of delay elements, where Z-1 represents a delay of one chip, until

the complete Nr -chip signal has been read in.

                Figure 4.1: DS-CDMA correlator receiver with 8 tap delay.
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These values are then passed in parallel to the multiplier block, which forms the scalar

product of )(ny and the tap weight vector rNCw∈ where Nr is the number of tap weights,

which is set to 8 in the figure 4.1. This filter block produces a soft output, )(~ nx which is then

passed to the sign-decision block to give a hard estimate, )(nx of the original data bit, x(n) for

the user of interest. Techniques to achieve synchronization involve the use of a pilot signal,

which may be modeled by one additional user, whose data is constant. Perfect timing will be

assumed in the following, except where stated.

4.3 MULTIUSER RECEIVER

Multiuser receivers[19] are a class of receivers that use knowledge of all the PN sequences to

exploit the structure of the MAI. Instead of being separately estimated, as in a single user

detection, the users are jointly detected for their mutual benefit. A CDMA receiver can either

process the received signal at the chip rate or symbol rate (user bit rate).Figure 4.2 shows

chip rate receivers, which consists of a bank of matched filters (MFs) or RAKEs. A bank of

MFs is for the non-dispersive AWGN channel, whereas RAKEs[20] are considered for

multipath channels.  Current mobiles have a simple RAKE because of its simplicity, whereas

base stations can have a bank of MFs (or RAKEs) as depicted in figures 4.2 and 4.3.

However, structure Figure 4.2 suffers from MAI and therefore has limited performance.

Performance improvement can be gained, when carrier to interference ratio (CIR)

information from the interferers is taken into account to combat MAI, as structure in Figure

4.3 suggests. This structure is known as the multiuser detector (MUD) and is usually

suggested for the asynchronous uplink receiver. It could also be used in a modified version as

a single user detector in mobiles and might be implemented in the next generation of mobile

systems.

Figure 4.2: Conventional bank of single user receivers with MFs or RAKEs.
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Figure 4.3: Verdu’s proposed multiuser detector scheme with MFs for the AWGN channel.

A receiver structure which processes the received signal at the chip rate is known as a chip

level based (CLB) receiver. Receivers, shown in Figure 4.3, which process at the symbol rate

and consist of a front end bank of filters, will be called preprocessing based (PPB) receivers.

Because all optimum receivers are too complex for practical applications, the search

for simpler and near optimum receivers became vital and goes on. Most proposals are based

on the multiuser concept, which is preprocessing based (PPB) for several reasons. First, they

relate to Verdu’s MUD receiver, since they consider it optimum.

4.4 LINEAR RECEIVER

The general form of a linear receiver is given by TD sgn(w .y)= where the sgn(.) function

returns the sign of the operand and where the filter weight vector w is chosen to minimize a

cost function, while D  is the estimated transmitted bit of the desired user d and y is the

received signal, see Figure 4.4 and 4.5.

Figure 4.4: Chip rate based receiver.

Figure 4.5: Symbol rate based receiver.
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4.4.1 Matched Filter

The conceptually simplest receiver, the matched filter (MF) receiver, is simply the correlator

receiver with M tap weights, jw :1 j M≤ ≤  , matched to the complex conjugate time-reverse

of the original spreading sequence of the required user which, without loss of generality, we

may take to be user 1. The simplest CDMA receiver is the MF receiver, where w is replaced

by Cd , the Spreading sequence vector of the desired user. In a multipath fading channel, w

corresponds to the convolution between Cd and Hch, implemented as a RAKE.

In practice, the acquisition and synchronization of the chip-level signal is a highly non-trivial

task. A very simple and well known detector for SS signals is the matched filter detector, as

shown in figure 4.6. The matched filter detector basically consists of a tapped-delay-line

(TDL) filter of which the number of taps equals the spreading sequence length N. The output

vector (K) of the tapped delay line ( ) ( ) ( ) ( )[ ]TNkykykyky 1,...,1, +−−=  is multiplied with a

vector of constant weight w. [ ]TNwwww 110 ,...,, −=  . The resulting scalar product is applied to

a decision function e.g. a sign function. For the matched filter case, the weights wk are

matched to the user specific sequence code. ( )lNpnw ul −−= 1  , for 0  l< N. So that the

matched filter output can be summarized as follows: ( ) ( ) ( )∑
−

=

−==
1

0

..~ N

l
l

T lkywkywkD

Provided that the receiver is perfectly synchronized to the transmitter, the TDL extracts a set

of chips that represents a particular sequence and the multiplication with the weights is

equivalent to despreading operation. A following decision device such as sign function leads

                                           Figure 4.6: Matched filter
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to the final estimate )(kD of the transmitted data bit D(k), hence ( ) ( )( )kDkD ~sgn= . The

theoretical performance Pe of a MF receiver for a single cell system with U users, long

random codes, where N is the number of chips (processing gain) in AWGN is:










−+
=

)1(2 U
NQPMF

e σ
 ,                 (4.1)

                                          where 





=

2
5.0)( xerfcxQ                            (4.2)

  and 2 denotes the noise power, derived from:

                                                            Eb/No = N/2 2                             (4.3)

Where 2 = No/2 is the two sided noise power spectral density and Eb is the bit energy.

In a single user system, the matched filter is the optimum receiver for signals corrupted by

only AWGN. In a multi user environment, however, the performance degrades rapidly with

increasing number of users. The matched filter is multiple-access limited-and strong

interferers with high power compared to the desired user cause severe problem. This latter

effect is called the near-far problem. Due to these problems, other solution has been searched

for. The optimal linear receiver for multi-user detection is MMSE receiver and is described

in the next section.

4.4.2 MMSE receiver
The motivation for the use of adaptive algorithms lies in the desire to change the individual

taps of the receiver filter to respond to changes in the communication channel. The

traditional implementation of adaptive receivers is that a sequence of a priori known training

data is incorporated into the data stream at prearranged times. It is important to acknowledge

that this effectively reduces the overall data rate of the system, which is the main drawback

of this approach.

The goal of any adaptive algorithm is to use this training data to force the receiver tap

weights to minimize some cost or penalty function, fPen(.), of the difference metric between

the original data bit and its estimated value. The only requirement for this penalty function is

that it be a monotonic increasing function of the absolute value of its argument, with a global

minimum at zero. Here, the number of training bits is given by Ntrain and the sequence of

training data by {x(n): 1  Ntrain }.

MMSE receiver is an adaptive filter[21] as shown in Figure 4.7, in which the number of

receiver tap weights Nr is set to length of the spreading code M.
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Figure 4.7   MMSE receiver

The MMSE criteria provide equalizer tap coefficients w(k) to minimize the mean square

error at the equalizer output before the decision device. This condition can be represented as

                                                       J= ε| e(k) |2                           (4.4)

                                                    e(k)=s(k-d)-y(k)                                          (4.5)

Where e(k) is the error associated with filter output y(k). However, the MMSE criteria

optimize the equalizer weights for minimizing the MMSE under noise and ISI. Minimization

of MMSE criteria provides equalizers that satisfy the Wiener criterion. The evaluation the

equalizer weights with these criteria requires computation of matrix inversion and the

knowledge of the channel, which in most cases is not available. With this penalty function,

the resulting target tap weights have been shown to be given by the Wiener filter, so that

these algorithms may be viewed as an iterative approximation to the Wiener filter However,

adaptive algorithms like LMS and RLS can be used to recursively update the equalizer

weights during the training period.

Two adaptive methods which employ this least square error penalty function are the

least mean square (LMS) and the more complex recursive least squares (RLS) algorithms.

LMS algorithm is depicted schematically in Figure 4.8.
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Figure 4.8   LMS algorithm

In LMS algorithm, correlation with an FIR filter is performed to obtain a (soft) estimate, $x , of

the training data bit x(n) , as in the correlator receiver. The error e(n) in this estimate is then

used to update the tap weights of the FIR receiver filter. In the LMS algorithm, this is

performed by simple weighting of the error by step size µ.

4.5 SIMULATION RESULTS

In order to validate the proposed GA for DS-CDMA applications, extensive simulation

studies were conducted. All the simulation studies were conducted on a   2.80 GHz PC with

512 MB of RAM with Microsoft windows XP operating system. All the simulations are done

in Matlab.  During the training period the receiver parameters were optimized/ trained with

1000 random samples and the parameters so obtained were averaged over 50 experiments.

The parameters of the receiver were fixed after the training phase.

            Bit error rate (BER) was considered as the performance index.  In this section, the

BER performance of the different linear receivers like matched filter and MMSE receiver

using gold spreading sequences is done and the performance is compared with GA assisted

µ

w(n+1)=w(n)+µ.e(n).y(n)

e(n)=x(n)-w(n).y(n)

w(n).y(n)

x(n)
y(n)

    LMS
algorithm

     Update w

 Calculate error

     FIR filter
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DS CDMA downlink receiver using gold sequences. In all the experiments randomly

generated   +1/-1 samples were transmitted for each user. In all the simulations, gold

sequences of 31 chips are considered. These samples were spread using gold sequences of

length 31 corresponding to each of the users.  For comparison with gold sequences, the

maximum permissible user’s in the system is restricted to 31.  After spreading, the sequences

were added and transmitted through the non-dispersive channel. The channel corrupted the

transmitted signal with AWGN. The channel output was fed to the various linear receiver

structures like Matched filter and MMSE receiver. A total of 105  bits were transmitted by

each user and a minimum of 1000 errors were recorded.  The tests were conducted for

different levels of SNR. Additionally tests were also conducted by varying number of active

users in the system for fixed value of   SNR.

4.5.1 Performance of different receivers for channel without ISI: - In this section, a non-

dispersive channel is considered.  In figure 4.9 the BER performance against the number of

users of Matched filter is evaluated using gold sequences with 31 chips. Figure 4.9 is the

BER performance of Matched filter receiver using gold sequences .The chip length of the

gold codes are taken as 31 chips. Here SNR was fixed as 7dB .

In Figure 4.10 performance of matched filter receiver was investigated for varying

SNR conditions. Performance for gold sequences for 4 and 7 users are plotted in Figure 4.10.
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Figure 4.9: BER against the number of users of linear receivers in AWGN at SNR=7dB

using gold sequences with 31chips.
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Figure   4.10   BER performance of Matched filter   for varying SNR for 4 users and 7users

being active in the system being active in the system in AWGN
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Figure 4.11   BER performance of MMSE receiver for varying SNR for 4 users and 7 users

being active in the system in AWGN channel
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In Figure 4.11 performance of MMSE receiver was investigated for varying SNR conditions.

Performance for gold sequences for 4 and 7 users are plotted in Figure 4.11.   In Figure 4.12

Performance of MMSE receiver was investigated for varying no of active users conditions.
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Figure 4.12 BER performance of MMSE receiver for varying no of active users in AWGN

using gold codes with 31 chips

In Figure 4.13 performance of GA assisted DS CDMA receiver was investigated for varying

SNR conditions. Performance for gold sequences for 4 and 7 users are plotted in Figure 4.13.

In Figure 4.14 Performance of MMSE receiver was investigated for varying no of active

users conditions. From the performance of all the receivers it is fact that when there is

increase in no of users the performance of each receiver degrades i.e. when no of users are 4

the BER vs SNR plot shifts up when the no of user are 7.Similarly,from the plots of BER vs

NO OF ACTIVE USERS it is seen that when the no of active users are less then the bit error

rate is very less and in increasing the no of active user the bit error rate exponentially

increases and approaches to 10-1.
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Figure 4.13   BER performance of GA assisted DS CDMA receiver for varying SNR for 4

users and 7 users being active in the system in AWGN channel
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Figure 4.14 BER performance of GA assisted DS CDMA receiver for varying no of active

users in AWGN using gold codes with 31 chips
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4.5.2 Performance of different receivers for channel with ISI:- In this section , we

consider a stationary multipath channel Hch=1+0.5z-1+0.2z-2 .In AWGN  the number of chips

of transmitted  is  number of chips of the spreading sequence i.e., 31 in this case. In case of

multipath channel, inter symbol interference (ISI) is induced from the previous and next

symbol into account. So the number of chips will increase. Here, the multipath channel

consists of 3 taps. Hence all receiver structures exploit N+ (L-1) = 31+ (3-1) = 33 chips

instead of 31. Matched filter is used in AWGN channel whereas Rake receiver is used in

Multipath channel.

In Figure 4.15 performance of matched filter receiver was investigated for varying SNR

conditions. Performance for gold sequences for 4 and 7 users are plotted in Figure 4.15
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Figure: 4.15 BER performance of matched filter receiver for varying SNR for 4 and 7  users

being active in the system in multipath channel   Hch=1+0.5z-1+0.2z-2

In Figure 4.16 performance of matched filter receiver was investigated for varying no of

active users conditions with multipath channel. Hch=1+0.5z-1+0.2z-2
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4.16 performance of matched filter receiver was investigated for varying no of active users

conditions with multipath channel. Hch=1+0.5z-1+0.2z-2

In Figure 4.17 performance of MMSE receiver was investigated for varying SNR conditions.

Performance for gold sequences for 4 and 7 users are plotted in Figure 4.17
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Figure: 4.17 BER performance of MMSE receiver for varying SNR for 4 and 7  users being

active in the system in multipath channel   Hch=1+0.5z-1+0.2z-2
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In Figure 4.18 performance of MMSE receiver was investigated for varying no of active

users conditions with multipath channel. Hch=1+0.5z-1+0.2z-2 using gold codes.
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Figure 4.18 performance of MMSE receiver was investigated for varying no of active users

conditions with multipath channel. Hch=1+0.5z-1+0.2z-2 using gold codes.

In Figure 4.19 BER performance of RAKE receiver using gold sequences was investigated.

The chip lengths of both the gold codes are taken as 31 chips. Here SNR was fixed as 7dB .In

Figure 4.20 BER performance of RAKE receiver using gold sequences for 4 user and 7 user

was investigated .The chip lengths of both the gold codes are taken as 31 chips. Here SNR

was varied from 0 to 15.In Figure 4.21 BER performance of GA assisted CDMA receiver

using gold sequences for 4 user and 7 user was investigated .The chip lengths of both the gold

codes are taken as 31 chips. Here SNR was varied from 0 to 15. In Figure 4.22 BER

performance of GA assisted CDMA receiver using gold sequences was investigated .The chip

lengths of both the gold codes are taken as 31 chips. Here SNR was fixed as 7dB. From the

performance of all the receivers it is fact that when there is increase in no of users the

performance of each receiver degrades i.e. when no of users are 4 the BER vs SNR plot shifts

up when the no of user are 7.Similarly,from the plots of BER vs NO OF ACTIVE USERS it

is seen that when the no of active users are less then the bit error rate is very less and in

increasing the no of active user the bit error rate exponentially increases and approaches to

10-1.
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Figure 4.19: BER against the number of users of RAKE receiver in AWGN at SNR=7dB

using gold sequences with 31chips  in multipath channel Hch=1+0.5z-1+0.2z-2
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Figure: 4.20 BER performance of RAKE receiver for varying Eb/N 0 for 4 and 7  users being

active in the system in multipath channel   Hch=1+0.5z-1+0.2z-2
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Figure 4.21 BER performance of GA assisted CDMA receiver using gold sequences for 4

user and 7 user being active in the system in multipath channel   Hch=1+0.5z-1+0.2z-2
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Figure 4.22: BER against the number of users of GA assisted CDMA receiver in AWGN at

SNR=7dB  using gold sequences with 31chips  in multipath channel Hch=1+0.5z-1+0.2z-
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4.5.3 Performance comparison of different receivers for channel without ISI: - In this

section, a non-dispersive channel is considered.  In figure 4.23 the BER performance against

the number of users is evaluated using gold sequences with 31 chips. Figure 4.23 is the BER

performance of different receivers using gold sequences .The chip length of the gold codes

are taken as 31 chips. Here SNR was fixed as 7dB .
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Figure 4.23: BER against the number of users of linear receivers in AWGN at SNR=7dB

using gold sequences with 31chips .

In figure 4.23 it is seen that matched filter receiver and MMSE receiver have closely almost

same performance but GA assisted CDMA receiver  very good performance over the other

two receivers. When BER=10-5 then in GA assisted CDMA receiver no of users=6.At same

no of users (i.e. no of users=6) the matched filter has BER=10-4.9 and MMSE has BER=10-4.8.

In Figure 4.24 performance of different receivers were investigated for varying SNR

conditions. Performance gold sequences for 4 users are plotted in Figure 4.24. It is seen that

when the number of users is 4, there is a 1dB performance difference at a BER of 10-5

between GA assisted CDMA receiver and the matched filter receiver, and 5 dB performance

difference between GA assisted CDMA receiver and MMSE receiver .
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Figure 4.24: BER performance of different receivers for varying SNR for 4  users being

active in the system.

4.5.4 Performance comparison of different receivers for channel with ISI:- In this

section, we consider a stationary multipath channel Hch=1+0.5z-1+0.2z-2 .In AWGN  the

number of chips of transmitted  is  number of chips of the spreading sequence i.e., 31 in this

case. In case of multipath channel, inter symbol interference (ISI) is induced from the

previous and next symbol into account. So the number of chips will increase. Here, the

multipath channel consists of 3 taps. Hence all receiver structures exploit N+ (L-1) = 31+ (3-

1) = 33 chips instead of 31. Matched filter is used in AWGN channel whereas Rake receiver

is used in Multipath channel.

Figure 4.25 is the BER performance of different receivers using gold sequences .The chip

lengths of the gold codes are taken as 31 chips. Here SNR was fixed as 7dB and the multipath

channel Hch=1+0.5z-1+0.2z-2. In Figure 4.26 performance of different receivers were

investigated for varying SNR conditions and the multipath channel Hch=1+0.5z-1+0.2z-2.

Performance gold sequences for 4 users are plotted in Figure 4.26.
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Figure 4.25: BER performance of different  receivers for varying no of active users being

active in the system in multipath channel  Hch=1+0.5z-1+0.2z-2
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Figure 4.26: BER performance of different receivers for varying SNR for 4 users being

active in the system in multipath channel  Hch=1+0.5z-1+0.2z-2
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In figure 4.25 it is seen that matched filter receiver and RAKE receiver have closely almost

same performance but MMSE gives better performance than previous two. Again GA

assisted CDMA receiver gives best performance among the four receivers. At BER=10-5  the

no of users in RAKE is 5 ,the no of users in matched filter is 6 while no of user in MMSE is 7

and in GA assisted CDMA receiver no of users is 8.

In Figure 4.26 performance of different receivers were investigated for varying SNR

conditions. Performance gold sequences for 4 users are plotted in Figure 4.26. It is seen that

when the number of users is 4, there is a 1dB performance difference at a BER of 10-5

between GA assisted CDMA receiver and the matched filter receiver and also for RAKE

receiver, and 2 dB performance difference between GA assisted CDMA receiver and MMSE

receiver

4.6   CONCLUSION

In this chapter various linear receivers like Matched filter, MMSE receiver and RAKE

receiver is explained. BER performance of different linear receivers using gold sequences is

evaluated. It is seen that GA based DS-CDMA receiver performs much better than other type

of receivers.



Chapter 5

CONCLUSIONS
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5. CONCLUSIONS
5.1 INTRODUCTION
In this thesis a new type of DS-CDMA receiver was investigated called GA assisted DS

CDMA receiver. The performance of different receiver techniques were evaluated and

compared with GA based DS CDMA receiver using gold code . This chapter summarizes the

work reported in this thesis, specifying the limitations of the study and provides some

indications for future work.

Following this introduction section 5.2 lists the achievements from the work. Section 5.3

provides the limitations and section 5.4 presents indications toward future work.

5.2 ACHIEVEMENT OF THE THESIS

In chapter 3, principle of Genetic Algorithm has been discussed. In Chapter 4, various linear

receivers like Matched filter, MMSE receiver etc., are studied and BER performance of

different linear receivers using gold sequences are evaluated and  are compared with the

receivers using GA and gold sequences. It is seen that GA based DS-CDMA performs than

the other type of receivers. The results also showed that MMSE receiver performs better than

RAKE receiver.

5.3 LIMITATIONS OF THE THESIS

Ø Simulations are constrained to baseband only.

Ø Fading effects is not considered.

Ø Spreading codes with only 31 length is considered.

Ø The work investigated in this thesis investigates the receiver in the downlink scenario

only.

5.4 SCOPE OF FURTHER RESEARCH
Ø Simulations can be extended to some more nonlinear receivers like neural network

receivers.

Ø Faster convergence of GA based CDMA receiver can also be investigated.

Ø Simulations can be extended to larger spreading codes like 63,127 chip etc.,
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