
1

NON LINEAR BLIND SOURCE

SEPARATION USING

COMPUTATIONALLY INTELLIGENT

TECHNIQUES

A THESIS SUBMITTED IN PARTIAL FULFILLMENT
OF THE REQUIREMENTS FOR THE DEGREE OF

BACHELOR OF TECHNOLOGY
IN

ELECTRONICS & COMMUNICATION ENGINEERING
By

DEBASHISH SADANGI ILA MISHRA
Roll No: 10509010 Roll No: 10507011

Under the Guidance of

D.P.Acharya

Department of Electronics & Communication Engineering
National Institute of Technology, Rourkela

Rourkela, Orissa

2

 National Institute of Technology

 Rourkela

 CERTIFICATE

This is to certify that the thesis entitled “NON LINEAR BLIND SOURCE SEPARATION USING

COMPUTATIONALLY INTELLIGENT TECHNIQUES” submitted DEBASHISH SADANGI,

Final year student of Electronics and communication Engineering, Roll No.:10509010 and ILA

MISHRA, Final year student of Electronics and Instrumentation Engineering, Roll No.:10507011

in partial fulfillment of the requirements for the award of Bachelor of Technology Degree in

Electronics and communication Engineering at National Institute of Technology, Rourkela

(Deemed University) is an authentic work carried out by them under my supervision and

guidance.

To the best of my knowledge, the matter embodied in the thesis has not been submitted to

any other University/ Institute for the award of any Degree or Diploma.

D.P.Acharya

Project Guide

Department of E.C.E

National Institute of Technology

 Rourkela – 769008

3

ACKNOWLEDGEMENT

We take this opportunity as a privilege to thank all individuals without whose support and

guidance we could not have completed our project in this stipulated period of time. First and

foremost we would like to express our deepest gratitude to our Project Supervisor

Mr.D.P.Acharya, Department of Electronics and Communication Engineering, for his invaluable

support, guidance, motivation and encouragement through out the period this work was carried

out. His readiness for consultation at all times, his educative comments and inputs, his concern

and assistance even with practical things have been extremely helpful.

We would also like to thank all professors and lecturers for their generous help in various ways

for the completion of this thesis .We also extend our thanks to our fellow students for their

friendly co-operation.

DEBASHISH SADANGI ILA MISHRA

Roll. No. 10509010 Roll. No. 10507011

Department of ECE Department of ECE

NIT Rourkela NIT Rourkela

4

 ABSTRACT

The Independent Component Analysis technique has been used in Blind Source separation of

non linear mixtures. The project involves the blind source separation of a non linear mixture of

signals based on their mutual independence as the evaluation criteria. The linear mixer is

modeled by the Fast ICA algorithm while the Non linear mixer is modeled by an odd polynomial

function whose parameters are updated by four separate optimization techniques which are

Particle Swarm Optimization, Real coded Genetic Algorithm, Binary Genetic Algorithm and

Bacterial Foraging Optimization. The separated mixture outputs of each case was studied and

the mean square error in each case was compared giving an idea of the effectiveness of each

optimization technique.

Key words: Nonlinear Blind Source Separation, Particle Swarm Optimization, Genetic
Algorithm, Real coded GA, Binary GA, Bacterial Foraging

5

CONTENTS

TITLE PAGE NO.

CHAPTER 1

INTRODUCTION TO ICA

1.1 Blind source separation 9

1. 2 Independent component analysis 12

1.3 FAST ICA 18

1.4 Flow chart of FASTICA 20

1.5 Results 22

CHAPTER 2

PARTILCLE SWARM OPTIMIZATION BASED ICA

2.1 Introduction to PSO 24

2.2 A basic canonical PSO algorithm 26

2.3 Flow chart of PSO algorithm 28

2.4 blind source separation using PSO and ICA 31

2.5 Nonlinear blind separation based on PSO 33

2.6 Block diagram of nonlinear ICA and PSO 37

2.7Result of blind source separation using ICA and PSO 40

6

CHAPTER 3

GENETIC ALGORITHM BASED ICA

3.1Introduction to genetic algorithm 42

3.2Simple generational genetic algorithm pseudo code 46

3.3GA element 46

3.4Observations 49

3.5 Nonlinear blind separation based on GA 50

3.6Block diagram of nonlinear ICA using real coded GA 53

3.7 Block diagram of nonlinear ICA using binary GA 56

3.8 Result of BSS using ICA and real coded GA(sine wave & random noise) 59

3.9 result of BSS using ICA and real coded GA(square wave & random noise) 60

3.10 Result of BSS using ICA and BINARY GA(sine wave & random noise) 61

3.11 Result of BSS using ICA and binary GA(square wave & random noise) 62

CHAPTER 4

BACTERIA FORAGING OPTIMIZATION BASED ICA

4.1 Introduction to bacterial foraging algorithm 64

4.2 The optimization function for the bacterial foraging (BF) algorithm 66

4.3 A simple Bacterial Foraging Algorithm 67

4.4 Block diagram of nonlinear ICA using BFO 69

4.5 result of BSS using ICA and BFO(sin wave & random noise) 72

4.6 result of BSS using ICA and BFO(square wave & random noise) 73

4.7 Comparison between various optimization techniques 74

4.8 Discussion 75

7

CHAPTER 5

CONCLUSION

5.1 Conclusion 77

Reference 78

8

 Chapter 1

 INTRODUCTION TO ICA

 1.1 Blind source separation

 1.2 Independent component analysis

 1.3 FAST ICA

 1.4 Flow chart of FASTICA

 1.5 Results

9

1.1 BLIND SOURCE SEPARATION

Blind source separation (BSS) refers to the problem of recovering signals from several observed

linear mixtures. The strength of the BSS model is that only mutual statistical independence

between the source signals is assumed and not a priori information about ,e.g., the

characteristics of the source signals, the mixing matrix or the arrangement of the sensors is

needed. Therefore BSS can be applied to a variety of situations such as, e.g., the separation of

simultaneous speakers, analysis of biomedical signals obtained by EEG or in wireless

telecommunications to separate several received signals.

With respect to audio signals, a linear mixture of sources is commonly referred to as "cocktail

party problem". How can humans select the voice of a particular speaker from an ensemble of

different voices corrupted by music and noise in the background? One approach to solve this

problem is to record the mixed audio signals with microphone arrays and subsequently apply

blind source separation methods. Several simultaneously active signal sources at different

spatial locations can then be separated by exploiting mutual independence of the sources. In

the field of audio processing BSS is applicable, e.g., to the realization of noise robust speech

recognition, high-quality hands-free telecommunication systems or speech enhancement in

hearing aids.

10

Because temporal redundancies (statistical regularities in the time domain) are "clumped" in this

way into the resulting signals, the resulting signals can be more effectively deconvolved than the

original signals.

1.1.1 An illustration of blind source separation. This figure shows four source

signals, or independent components.

11

Due to some external circumstances, only linear mixtures of the source signals in Fig. above

as depicted here, can be observed.

Using only the linear mixtures in Fig. 6, the source signals in Fig. 5 can be estimated, up to some

multiplying factors. This figure shows the estimates of the source signals.

12

1.2 INDEPENDENT COMPONENT ANALYSIS

Independent component analysis (ICA) belongs to a class of blind source separation method

for separating data into underlying components ,where such data can take the form of images,

sounds, telecommunication channels or stock market prices. It is a computational method for

separating a multivariate signal into additive subcomponents supposing the mutual statistical

independence of the non-Gaussian source signals. It is a special case of blind source

separation.

ICA defines a generative model for the observed multivariate data, which is typically given as a

large database of samples. In the model, the data variables are assumed to be linear mixtures

of some unknown latent variables, and the mixing system is also unknown. The latent variables

are assumed nongaussian and mutually independent, and they are called the independent

components of the observed data. These independent components, also called sources or

factors, can be found by ICA.

ICA is superficially related to principal component analysis and factor analysis. ICA is a much

more powerful technique, however, capable of finding the underlying factors or sources when

these classic methods fail completely.

The data analyzed by ICA could originate from many different kinds of application fields,

including digital images, document databases, economic indicators and psychometric

measurements. In many cases, the measurements are given as a set of parallel signals or time

series; the term blind source separation is used to characterize this problem. Typical examples

are mixtures of simultaneous speech signals that have been picked up by several microphones,

brain waves recorded by multiple sensors, interfering radio signals arriving at a mobile phone, or

parallel time series obtained from some industrial process.

1.2.1 DEFINITION

 When the independence assumption is correct, blind ICA separation of a mixed signal gives

very good results. It is also used for signals that are not supposed to be generated by a mixing

for analysis purposes. A simple application of ICA is the “cocktail party problem”, where the

underlying speech signals are separated from a sample data consisting of people talking

simultaneously in a room. Usually the problem is simplified by assuming no time delays and

echoes. An important note to consider is that if N sources are present, at least N observations

13

(e.g. microphones) are needed to get the original signals. This constitutes the square (J = D,

where D is the input dimension of the data and J is the dimension of the model). Other cases of

underdetermined (J < D) and overdetermined (J > D) have been investigated.

. Non-Gaussianity, motivated by the central limit theorem, is one method for measuring the

independence of the components. Non-Gaussianity can be measured, for instance,

by kurtosis or approximations of entropy. Mutual information is another popular criterion for

measuring statistical independence of signals.

x(t)= As(t) …………….(1)

y(t)= Wx(t) …………...(2)

 ICA goal is finding a linear transform given by matrix W so that

the Output y(t) is the copy or estimate of source signal s(t):

 In which s(t)=[s1, s2, ...sn] is a 1xn vector

composed by n source signals, x(t)=[x1, x2,.xn]T

is a (nx1) vector composed of n measuring signals and the (nxn) matrix A is called as mixture

matrix. That is to be more divulsive,

14

The components xi of the observed random vector are generated as a

sum of the independent components sk, :

weighted by the mixing weights ai,k.The same generative model can be written in vectorial form

as , where the observed random vector x is represented by the basis vectors

. The basis vectors ak form the columns of the mixing matrix

 and the generative formula can be written as x = As, where

.

Given the model and realizations (samples) of the random vector x, the task is to

estimate both the mixing matrix A and the sources s . This is done by adaptively calculating

the w vectors and setting up a cost function which either maximizes the nongaussianity of the

calculated sk = (wT * x) or minimizes the mutual information. In some cases, a priori knowledge

of the probability distributions of the sources can be used in the cost function.

The original sources s can be recovered by multiplying the observed signals x with the inverse

of the mixing matrix W = A − 1, also known as the “immixing matrix”.

 1.2.2 LINEAR MIXTURE AND SEPARATION MODEL

 A

 W

s

s

S

X

X

X

Y

Y

Y

15

 1.2.3 CENTRAL LIMIT THEOREM (CLT)

The central limit theorem (CLT) states that the re-averaged sum of a sufficiently large number

of identically distributed independent random each with finite mean and variance will be

approximately normally distributed (Rice 1995). Formally, a central limit theorem is any of a

set of weak-convergence results improbability theory. They all express the fact that any sum of

many independent identically distributed random variables will tend to be distributed according

to a particular "attractor distribution".

In probability theory and statistics, kurtosis (from the Greek word κσρτός, kyrtos or kurtos,

meaning bulging) is a measure of the "peakedness" of the probability distribution of a real-

valued random variable. Higher kurtosis means more of the variance is due to infrequent

extreme deviations, as opposed to frequent modestly-sized deviations.

the fourth standardized moment is defined as

16

where μ4 is the fourth moment about the mean and σ is the standard deviation. This is

sometimes used as the definition of kurtosis in older works, but is not the definition used here.

 Graph of kurtosis

Typical algorithms for ICA use centering, whitening (usually with the Eigen value

decomposition), and dimensionality reduction as preprocessing steps in order to simplify and

reduce the complexity of the problem for the actual iterative algorithm. Whitening and dimension

reduction can be achieved with principal component analysis or singular value decomposition.

Whitening ensures that all dimensions are treated equally a priori before the algorithm is run.

Algorithms for ICA include infomax , FastICA , and JADE, but there are many others also.

In general, ICA cannot identify the actual number of source signals, a uniquely correct ordering

of the source signals, nor the proper scaling (including sign) of the source signals.

ICA is important to blind signal separation and has many practical applications. It is closely

related to (or even a special case of) the search for a factorial code of the data, i.e., a new

17

vector-valued representation of each data vector such that it gets uniquely encoded by the

resulting code vector (loss-free coding), but the code components are statistically independent

1.3 FASTICA

FastICA is an efficient and popular algorithm for independent component analysis invented by

Aapo Hyvärinen at Helsinki University of Technology. The algorithm is based on a fixed-

point iteration scheme maximizing non-Gaussianity as a measure of statistical independence. It

can be also derived as an approximate Newton iteration. The fast fixed point algorithm for ICA

converges rapidly to the most accurate solution allowed by data structure.

The basic linear relationship for ICA problem is taken to be

 x=As

s::statistically independent signal A transformation V can be found using standard PCA

methods, such that the observed data are linearly transformed to a vector

 v=V x…………..(3)

V Q

x x

 v y

 Whitening||Separation||Estimation of ICA basis vectors

18

Prewhitening serves two purposes::sphering the data and determining the number of

independent component.

 v=VAs=Bs

where B=VA is an orthogonal matrix.

1.3.1 FIXED POINT ICA ALGORITHM FOR ICA

Step 1..Prewhiten the observed data x to obtain vector v.

Step 2..Randomly set the values of initial weight vector w(0) and normalize to the unit length,

that is,

 w(0) w(0)/||w(0)||2

and set j=1.

Step 3.. Let

 W(j)=E[v(wT(j-1)v]-3w(j-1)

The expectation operator can be estimated using a relatively large number of v vector

Step 4..Normalise w(j) to the unit length

 w(j) w(j)/||w(j)||2

Step 5..If |wT(j)*w(j-1)| is not close to 1,let j j+1 and go to the step 3.Otherwise, output

vector w(j).

19

1.4 FLOW CHART OF FAST INDEPENDENT COMPONENT ANALYSIS

ALGORITHM

 START

Accept the max_itn value, initialize various parameters and matrices

required for the ICA such epsilon, the matrices A and num_ic,

num_sample, B ,num_etc

 I=1 I=I+1

 Is I<=Num_ic ?

Perform the required

operations on the w

matrix and the w old

matrix

 YES

 J=1 J=j+1

 Is J<=Max_itn ?

 NO

D

 NO

Prewhiten the input matrix for zero

mean and unity variance

 YES

F

E

F

G

20

D

Perform the required

operations on the w

matrix and the w old

matrix

Is

norm(w)

> or <

eps?

Use whitening matrix

to update matrices A

and B

F

Keep operating on w,

w_old and dividing it

by its norm

E

 NO

 YES

G

Display the W

matrix and

plot the

separated

signals

 STOP

21

1.5 RESULT OF BLIND SOURCE SEPARATION USING FASTICA

INPUT SIGNAL 1 INPUT SIGNAL 2 (RANDOM NOISE)

 MIXED SIGNAL

 SIGNAL 1 SIGNAL 2

 LINEAR MIXING

 FAST ICA

22

Chapter 2

 PARTILCLE SWARM
OPTIMIZATION BASED LEARNING

2.1 Introduction to PSO

2.2 A basic canonical PSO algorithm

2.3 Flow chart of PSO algorithm

2.4 blind source separation using PSO and ICA

2.5 Nonlinear blind separation based on PSO

2.6 Block diagram of nonlinear ICA and PSO

2.7Result of blind source separation using ICA and

PSO

23

2.1 INRODUCTION TO PARTILCLE SWARM OPTIMIZATION

Particle swarm optimization (PSO) is a population based stochastic optimization technique

developed by Dr. Eberhart and Dr. Kennedy in 1995, inspired by social behavior of bird flocking

or fish schooling.

PSO shares many similarities with evolutionary computation techniques such as Genetic

Algorithms (GA). The system is initialized with a population of random solutions and searches

for optima by updating generations. However, unlike GA, PSO has no evolution operators such

as crossover and mutation. In PSO, the potential solutions, called particles, fly through the

problem space by following the current optimum particles.

Each particle keeps track of its coordinates in the problem space which are associated with the

best solution (fitness) it has achieved so far. (The fitness value is also stored.) This value is

called pbest. Another "best" value that is tracked by the particle swarm optimizer is the best

value, obtained so far by any particle in the neighbors of the particle. This location is calledlbest.

when a particle takes all the population as its topological neighbors, the best value is a global

best and is called gbest.

The particle swarm optimization concept consists of, at each time step, changing the velocity of

(accelerating) each particle toward its pbest and lbest locations (local version of PSO).

Acceleration is weighted by a random term, with separate random numbers being generated for

acceleration toward pbest and lbest locations.

In past several years, PSO has been successfully applied in many research and application

areas. It is demonstrated that PSO gets better results in a faster, cheaper way compared with

other methods.

Another reason that PSO is attractive is that there are few parameters to adjust. One version,

with slight variations, works well in a wide variety of applications. Particle swarm optimization

has been used for approaches that can be used across a wide range of applications, as well as

for specific applications focused on a specific requirement.

24

Particle‟s current position

Particle‟s previous best position

 Future direction of motion of the particle

 Previous direction of motion of the particle

 2.1.1 REPRESENTATION OF A PARTICLE SWARM

 Particle‟s next direction and velocity of motion decided from its position‟s

difference from that of its previous best position and the global best position

Paticle with

global best

fitness value

25

2.2 A BASIC CANONICAL PSO ALGORITHM

The algorithm presented below uses the global best and local bests but no neighborhood bests.

Neighborhood bests allow parallel exploration of the search space and reduce the susceptibility

of PSO to falling into local minima, but slow down convergence speed. Note that neighborhoods

merely slow down the proliferation of new bests, rather than creating isolated subswarms

because of the overlapping of neighborhoods: to make neighborhoods of size 3, say, particle 1

would only communicate with particles 2 through 5, particle 2 with 3 through 6, and so on. But

then a new best position discovered by particle 2's neighborhood would be communicated to

particle 1's neighborhood at the next iteration of the PSO algorithm presented below. Smaller

neighborhoods lead to slower convergence, while larger neighborhoods to faster convergence,

with a global best representing a neighborhood consisting of the entire swarm. The tendency is

now to use partly random neighborhoods (see Standard PSO on the Particle Swarm Central).

A single particle by itself is unable to accomplish anything. The power is in interactive

collaboration.

Let be the fitness function that takes a particle's solution with several

components in higher dimensional space and maps it to a single dimension metric. Let there be

n particles, each with associated positions and velocities , .

Let be the current best position of each particle and let be the global best.

 Initialize and for all i. One common choice is to take and

for all i and , where aj,bj are the limits of the search domain in

each dimension, and U represents the Uniform distribution (continuous).

 and .

 While not converged:

o For each particle :

 Create random vectors , : and for all j,by taking

for

 Update the particle positions: .

26

 Update the particle velocities:

.

 Update the local bests: If , .

 Update the global best If , .

 is the optimal solution with fitness .

Note the following about the above algorithm:

 ω is an inertial constant. Good values are usually slightly less than 1.

 c1 and c2 are constants that say how much the particle is directed towards good

positions. They represent a "cognitive" and a "social" component, respectively, in that

they affect how much the particle's personal best and the global best (respectively)

influence its movement. Usually we take .

 are two random vectors with each component generally a uniform random number

between 0 and 1.

 operator indicates element-by-element multiplication i.e. the Hadamard matrix

multiplication operator.

27

2.3 FLOW CHART OF PSO ALGORITHM

 START

Accept the value of number of particles

and number of iterations in N and L

respectively

Assign the x vector with N values from [0,2*pi], velocity vector v ,
fitlval, locfitval with (nx1) zero arrays and globlfitval ,c1,c2 and w as
0, .95, .91, and .99 respectively

 I=1 I=I+1

 Is I<=N?

Assign the value of the

fitness function “sinx ”

to the fit_l_value array

 YES

 I=1 I=I+1

 Is I<=L?

C

 NO

D

 YES

 NO

E

28

 J=1 J=J+1

 Is J<=N?

C

Evaluate fitness function at the particular

position and assign the value to K

Is

K>globfitval

 ?

Change values of the global best value and the

global best location

 YES

 NO

Is K>fitlval

 ?

Change values of the local best value and the

local best location

 NO

 YES

D

YES

 NO

29

E

 J=1 J=J+1

 Is J<=N?

Optimize the particle positions by changing

their velocities and adding the velocity

components to their positions for

convergence to the global maxima

 YES

 NO

Print the values of the positions of

particles and their respective fitness

values

 STOP

30

2.4 BLIND SOURCE SEPARATION USING PSO AND ICA

2.4.1 INTRODUCTION

In practical circumstances, mixture signal may be mixed by nonlinear system, which leads to a

more complicated result than the linear mixture signal. Linear blind separation algorithm isn't

suitable no longer.

 Nowadays, two kinds of research methods are developed for

nonlinear blind separation: the first one extracts the nonlinearity by adopting SOFM, and the

second one uses the nonlinear mixture model to

match the practical mixture nonlinear system on the base of linear blind separation. The former

makes the network complexity increase exponentially when the number of source signal is

large, and comes into being interpolation error when continuous source signal is separated, the

latter adopts Newton iteration method, gradient method and natural gradient method to solve

problems. And yet the NP problem applied in nonlinear source blind separation is still hard to

achieve global optimal solution. Recently many researchers use GA for nonlinear blind

separation, which has a good effect but slow convergence rate. The combination of PSO and

natural gradient method is proposed for the nonlinear mixture signal blind separation in this

paper. The nonlinear signal blind separation algorithm based on particle swarm is established in

which high-order odd polynomial is used to fit the nonlinear mixed function and create nonlinear

signal blind separation model, PSO is adopted to work out the parameters of polynomial as

natural gradient method to iterative linear non-mixed matrix.

2.4.2 NONLINEAR SIGNAL BLIND SEPARATION MODEL

The blind separation of sources problem can be approached by wider point of view by using

Independent Component Analysis(ICA). ICA goal is finding a linear transform given by matrix W

so that the Output y(t) is the copy or estimate of source signal s(t):

x(t)=As(t) ………….(1)

y(t)=wx(t)………….(2)

In which s(t)=[si, s2,…. ..sn] is a nx l vector composed by n source signals, x(t)=[xi, x2,.xn]T is a

n x 1 vector composed of n measuring signals and nxn matrix A is called as mixture matrix.

31

 Nevertheless, the linear mixing model may not be appropriated for some real

environment. Even though the nonlinear mixing model is more realistic and practical, most

existing algorithms for the BSS problem were developed for the linear model. However,for

nonlinear mixing models, many difficulties occur and both the linear ICA and the existing linear

demixing methodologies are no longer

applicable because the complexity of nonlinear parameters. Bure[l] resolves the two problems

by using the nonlinear model with two-layer sensor construction. The relationship between

measuring signal and source signal in nonlinear model is defined as follows:

x(t)=F[As(t)] ……………(3)

where F=[fi, f2, .fn]T is a reversible nonlinear transform matrix. If F is linear, then formula (3)

degenerates to formula (1).

 2.4.3 NON LINEAR MIXTURE AND SEPARATION MODEL

 A

 f

 f

 f

 g

 g

 g

W

s

s

S

X

X

X

Y

Y

Y

32

Figure above describes the nonlinear model. There are two parts in mixture system: the linear

mixture based on mixture matrix A and each channel's independent nonlinear transform function

fi , while separation system is opposite: each channel's independent nonlinear inverse

transform g1 and linear separation of matrix W. The output yi(t) can be defined as:

…………………(4)

The linear inverse function is usually hard to determine for there is no prior knowledge in

mixture and separation system, but we can also fit them by odd polynomial as most of them are

origin symmetry.

is the parameter of nonlinear transform function in j channel. A big

difficulty in nonlinear model is the parameter computation, as it presents a problem with

numerous local minima. Thus we require an algorithm that is capable of avoiding entrapment in

such a minimum. As a solution to this first unmixing stage, we propose the Particle Swarm

Optimization(PSO) which has been applied successfully in all kinds of multidimensional

continuous space optimization problems.

2.5 NONLINEAR BLIND SEPARATION BASED ON PSO

PSO algorithm resembles a school of flying bird developed by Kennedy and Eberharr6] in 1995.

It can reach population optimization through collectivity cooperation. Each individual is named

as a "particle" which, in fact, represents a potential solution to a problem. Each particle adjusts

its flying according to its own flying experience and its companions' flying experience. Each

particle is treated as a point in a D-dimensional space. The ith particle is represented as

 The best previous position (the position giving the best fitness value) of

any particle is recorded and represented as

33

The index of the best particle among all the particle in the population is

represented by the symbol pgd. The rate of the position change (velocity) for particle ith is

represented as

 The particles are manipulated according to the following equation:

Where ci and c2 are two positive constants called acceleration constants, rand() is the random

function in the range[0,l], w is the inertia factor when big for global exploration and small for

local exploitation. The position range is [-XMAXd , XMAXd] and velocity range is [-VMAXd ,

VMAXd] in dth dimension. The boundary value will be chosen if position or speed

goes beyond the range when iterating. The particle's position and velocity are initialized at

random, then iterated according to equations (7) and (8) until a satisfactory solution is searched

out.Analyzing equation (7), we can find out that if the best previous position Pi doesn't change in

a long time, the velocity update will be mainly determined by w*vid(t) and the velocity will be

slower and slower when the particle is near Pi. So the particle swarm reflects a strong

coherence, which means the particle swarm converges quickly.

2.5.1 Evaluation function::

To perform the PSO, first is very important to define the fitness function. this fitness function is

constructed having in mind that the output sources must be independent from their nonlinear

mixtures. For this purpose, we mutual information is adopted as the evaluation function as the

measure of independence:

I(y)==log|W|-∑ E [∑(2k-1)*xi^(2k-2)*gik] + ∑H(y(i))

34

When l(y)=0 means that yi is independent of each other, and the calculation of H(yi) needs to

estimate the distribution density function of yi firstly. In fact, the distribution density function of yi

is unknown, which can be approached by Edgeworth expansion. But in this paper, Gram-

charlier expansion is chosen for the divergence problem in training existing in Edge-worth

expansion algorithm. The entropy of each component is only related to the three-order and four-

order commutations:

In which , , centralizing and prewhitening on the signal should be done

before calculation assuring the expectation value equals „0‟ and variance equals 1. In order to

enhance the independence of all random variables, the reciprocal value of equation (9) is

chosen as the evaluation function. When the reciprocal value reaches maximum, each signal is

independent of each other:

……….(15)

2.5.2 IMPLEMENTATION OF ALGORITHM::

The parameter space of nonlinear mixed andseparate system can be divided into two parts:

linear parameter space and nonlinear parameter space. Through the analysis above it's easy to

know that the two spaces are independent, and so is the nonlinear parameter space of each

channel. Let

for nonlinear parameter space .Independent component analysis is used for the

estimation of linear parameter W.

35

Step 1: Fetch source signal; centralize and prewhiten the signal.

Step 2: Initialization

 2.1 initialize the parameters of nonlinearnon-mixed function. Generate initial particles

 randomly.

 2.2 initialize the parameters of linear non-mixed matrix. Generate W=rand() randomly and

standardize

Step 3: Centralize and prewhiten yi(t) and calculate the evaluation function according to

equation (14).

 3.1 if a certain particle's current evaluation value is better than the best previous

evaluation value, then set the best previous evaluation value equal to the

current evaluation value and the best previous position to the particle's current position.

 3.2 seek the optimum solution for all local and global populations and if better than the best

previous solution then update Pl and Pg .

 3.3 run orient-migration and local deeply search when the best previous position Pi doesn't

change for a long time or changes little continuously.

Step 4: Parameter update

 4.1 for nonlinear parameter, every particle calculate and according to equation (7),

Xv and Xr equation (8).

 4.2 for linear parameter, update according to equation (15) by natural gradient algorithm

and re-standardize W.

Step 5: Loop to step (3) until a criterion is met or a maximum number of iterations.

36

2.6 Block diagram of nonlinear ICA and PSO is given below::

 START

Generate the 2 input signals one of which is sinusoidal and

the other is a random noise signal

 I=1 I=I+1

 Is I<=max_itr?

 YES

 NO

Mix the 2 signals through a linear matrix A and then pass it

through the non linear channel modeled by functions , then

prewhiten the mixed signal

Take inputs for the number of odd

polynomial parameters , the

maximum number of iterations and

the number of particles in the

swarm

Initialize the various parameters required for the fast ICA ,

the PSO and the various matrices

E

F

G

37

 Find the gx

values for all the

particles

E

The Fast ICA calculates the W matrix for all the particles in

the swarm

Pre whiten the Y outputs for all the particles using the pre

whitening function

Calculate the evaluation function for all the particles of the

swarm using a mutual independence function

Use the Particle Swarm Optimization functional block with

the evaluation criteria being the evaluation function and

find the global best values, local best values , their

respective location values and modify the velocity

components in order to change the position of the particles

F

38

G

After the optimization of the G matrix of all particles , the

global best value is chosen and is used to calculate the

intermediate signal values using the approximate G-

coefficient odd polynomial function

Find the separated signals by multiplying the intermediate

signals with optimized W matrix obtained for the global

best G matrix

Plot the 2 separated output signals which

are similar in pattern to the 2 inputs and

are attenuated with slight distortion

 STOP

39

2.7 RESULT OF BLIND SOURCE SEPARATION USING ICA AND PSO

 INPUT 1 INPUT 2

 MIXED SIGNAL1 MIXED SIGNAL 2

OUTPUT SIGNAL 1 OUTPUT SIGNAL 2

Linear Mixer

and Non

Linear

Channel

Non Linear ICA using Fast

ICA for optimization of

mixer and PSO for

approximation of the non

linear functions

40

Chapter 3

GENETIC ALGORITHM BASED LEARNING

3.1Introduction to genetic algorithm

3.2Simple generational genetic algorithm pseudo code

3.3GA element

3.4Observations

3.5 Nonlinear blind separation based on GA

3.6Block diagram of nonlinear ICA using real coded GA

3.7 Block diagram of nonlinear ICA using binary GA

3.8 Result of BSS using ICA and real coded GA(sine wave & random noise)

3.9 result of BSS using ICA and real coded GA(square wave & random noise)

3.10 Result of BSS using ICA and BINARY GA(sine wave & random noise)

3.11 Result of BSS using ICA and binary GA(square wave & random noise)

41

3.1 INTRODUCTION TO GENETIC ALGORITHM

3.1.1 INTRODUCTION

A genetic algorithm (GA) is a search technique used in computing to find exact or approximate

solutions to optimization and search problems. Genetic algorithms are categorized as global

search heuristics. Genetic algorithms are a particular class of evolutionary algorithms (also

known as evolutionary computation) that use techniques inspired by evolutionary biology such

as inheritance, mutation, selection, and crossover (also called recombination)

3.1.2 METHODOLOGY

Genetic algorithms are implemented in a computer simulation in which a population of abstract

representations (called chromosomes or the genotype of the genome) of candidate solutions

(called individuals, creatures, or phenotypes) to an optimization problem evolves toward better

solutions. Traditionally, solutions are represented in binary as strings of 0s and 1s, but other

encodings are also possible. The evolution usually starts from a population of randomly

generated individuals and happens in generations. In each generation, the fitness of every

individual in the population is evaluated, multiple individuals are stochastically selected from the

current population (based on their fitness), and modified (recombined and possibly randomly

mutated) to form a new population. The new population is then used in the next iteration of the

algorithm. Commonly, the algorithm terminates when either a maximum number of generations

has been produced, or a satisfactory fitness level has been reached for the population. If the

algorithm has terminated due to a maximum number of generations, a satisfactory solution may

or may not have been reached.

Genetic algorithms find application in bioinformatics, computational science, engineering,

economics, chemistry, manufacturing, mathematics, physics and other fields.

A typical genetic algorithm requires:

 a genetic representation of the solution domain,

 a fitness function to evaluate the solution domain.

A standard representation of the solution is as an array of bits. Arrays of other types and

structures can be used in essentially the same way. The main property that makes these

genetic representations convenient is that their parts are easily aligned due to their fixed size,

which facilitates simple crossover operations. Variable length representations may also be used,

42

but crossover implementation is more complex in this case. Tree-like representations are

explored in genetic programming and graph-form representations are explored in evolutionary

programming.

The fitness function is defined over the genetic representation and measures the quality of the

represented solution. The fitness function is always problem dependent. For instance, in the

knapsack problem one wants to maximize the total value of objects that can be put in a

knapsack of some fixed capacity. A representation of a solution might be an array of bits, where

each bit represents a different object, and the value of the bit (0 or 1) represents whether or not

the object is in the knapsack. Not every such representation is valid, as the size of objects may

exceed the capacity of the knapsack. The fitness of the solution is the sum of values of all

objects in the knapsack if the representation is valid, or 0 otherwise

Once we have the genetic representation and the fitness function defined, GA proceeds to

initialize a population of solutions randomly, then improve it through repetitive application of

mutation, crossover, inversion and selection operators.

 Individual - Any possible solution

 Population - Group of all individuals

 Search Space - All possible solutions to the problem

 Chromosome - Blueprint for an individual

 Trait - Possible aspect of an individual

 Allele - Possible settings for a trait

 Locus - The position of a gene on the chromosome

 Genome - Collection of all chromosomes for an individual

 Initialization

Initially many individual solutions are randomly generated to form an initial population. The

population size depends on the nature of the problem, but typically contains several hundreds or

thousands of possible solutions. Traditionally, the population is generated randomly, covering

the entire range of possible solutions (the search space). Occasionally, the solutions may be

"seeded" in areas where optimal solutions are likely to be found.

 Selection

43

During each successive generation, a proportion of the existing population is selected to breed

a new generation. Individual solutions are selected through a fitness-based process, where fitter

solutions (as measured by a fitness function) are typically more likely to be selected. Certain

selection methods rate the fitness of each solution and preferentially select the best solutions.

Other methods rate only a random sample of the population, as this process may be very time-

consuming.

Most functions are stochastic and designed so that a small proportion of less fit solutions are

selected. This helps keep the diversity of the population large, preventing premature

convergence on poor solutions. Popular and well-studied selection methods include roulette

wheel selection and tournament selection.

Selection is a genetic operator that chooses a chromosome from the current generation‟s

population for inclusion in the next generation‟s population. Before making it into the next

generation‟s population, selected chromosomes may undergo crossover and / or mutation

(depending upon the probability of crossover and mutation) in which case the offspring

chromosome(s) are actually the ones that make it into the next generation‟s population.

Genetic Server and Genetic Library include the following types of selection:

1. Roulette - A selection operator in which the chance of a chromosome getting selected is

proportional to its fitness (or rank). This is where the concept of survival of the fittest

comes into play.

2. Tournament - A selection operator which uses roulette selection N times to produce a

tournament subset of chromosomes. The best chromosome in this subset is then

chosen as the selected chromosome. This method of selection applies addition selective

pressure over plain roulette selection.

3. Top Percent - A selection operator which randomly selects a chromosome from the top

N percent of the population as specified by the user.

4. Ranked- A selection operator which selects the best chromosome (as determined by

fitness). there are two or more chromosomes with the same best fitness, one of them is

chosen randomly.

5. Random - A selection operator which randomly selects a chromosome from the

population.

44

 Reproduction

The next step is to generate a second generation population of solutions from those selected

through genetic operators: crossover (also called recombination), and/or mutation.

For each new solution to be produced, a pair of "parent" solutions is selected for breeding from

the pool selected previously. By producing a "child" solution using the above methods of

crossover and mutation, a new solution is created which typically shares many of the

characteristics of its "parents". New parents are selected for each child, and the process

continues until a new population of solutions of appropriate size is generated. Although

reproduction methods that are based on the use of two parents are more "biology inspired",

recent researches (Islam Abou El Ata 2006) suggested more than two "parents" are better to be

used to reproduce a good quality chromosome.

These processes ultimately result in the next generation population of chromosomes that is

different from the initial generation. Generally the average fitness will have increased by this

procedure for the population, since only the best organisms from the first generation are

selected for breeding, along with a small proportion of less fit solutions, for reasons already

mentioned above.

 Termination

This generational process is repeated until a termination condition has been reached. Common

terminating conditions are:

 A solution is found that satisfies minimum criteria

 Fixed number of generations reached

 Allocated budget (computation time/money) reached

 The highest ranking solution's fitness is reaching or has reached a plateau such that

successive iterations no longer produce better results

 Manual inspection

 Combinations of the above

45

3.2 SIMPLE GENERATIONAL GENETIC ALGORITHM PSEUDOCODE

 Choose initial population

 Evaluate the fitness of each individual in the population

 Repeat until termination: (time limit or sufficient fitness achieved)

 Select best-ranking individuals to reproduce

 Breed new generation through crossover and/or mutation (genetic operations) and give

birth to offspring

 Evaluate the individual fitnesses of the offspring

 Replace worst ranked part of population with offspring

3.3 OBSERVATIONS

There are several general observations about the generation of solutions via a genetic

algorithm:

 Repeated fitness function evaluation for complex problems is often the most

prohibitive and limiting segment of artificial evolutionary algorithms. Finding optimal

solution to complex high dimensional, multimodal problems often requires very

expensive fitness function evaluations. In real world problems such as structural

optimization problems, one single function evaluation may require several hours to

several days of complete simulation. Typical optimization method can not deal with

such a type of problem. In this case, it may be necessary to forgo an exact

evaluation and use an approximated fitness that is computationally efficient. It is

apparent that amalgamation of approximate models may be one of the most

promising approaches to convincingly use EA to solve complex real life problems.

 The "better" is only in comparison to other solution. As a result, the stop criterion is

not clear.

 In many problems, GAs may have a tendency to converge towards local optima or

even arbitrary points rather than the global optimum of the problem. This means that

it does not "know how" to sacrifice short-term fitness to gain longer-term fitness. The

likelihood of this occurring depends on the shape of the fitness landscape: certain

problems may provide an easy ascent towards a global optimum, others may make it

easier for the function to find the local optima. This problem may be alleviated by

using a different fitness function, increasing the rate of mutation, or by using

46

selection techniques that maintain a diverse population of solutions, although the No

Free Lunch theorem proves that there is no general solution to this problem.

 Elitism is to copy the best chromosomes (solutions)to new population before

applying crossover and mutation .When creating a new population by crossover or

mutation the best chromosome might be lost. It forces GA to retain some number of

the best individuals at each generation. Its has been found that elitism significantly

improves performance.

 GAs cannot effectively solve problems in which the only fitness measure is a single

right/wrong measure, as there is no way to converge on the solution (no hill to climb).

In these cases, a random search may find a solution as quickly as a GA. However, if

the situation allows the success/failure trial to be repeated giving (possibly) different

results, then the ratio of successes to failures provides a suitable fitness measure.

 Selection is clearly an important genetic operator, but opinion is divided over the

importance of crossover versus mutation. Some argue that crossover is the most

important, while mutation is only necessary to ensure that potential solutions are not

lost. Others argue that crossover in a largely uniform population only serves to

propagate innovations originally found by mutation, and in a non-uniform population

crossover is nearly always equivalent to a very large mutation (which is likely to be

catastrophic). There are many references in Fogel (2006) that support the

importance of mutation-based search, but across all problems the No Free Lunch

theorem holds, so these opinions are without merit unless the discussion is restricted

to a particular problem.

 Often, GAs can rapidly locate good solutions, even for difficult search spaces. The

same is of course also true for evolution strategies and evolutionary programming.

 For specific optimization problems and problem instances, other optimization

algorithms may find better solutions than genetic algorithms (given the same amount

of computation time). Alternative and complementary algorithms include evolution

strategies, evolutionary programming, simulated annealing, Gaussian adaptation, hill

climbing, and swarm intelligence (e.g.: ant colony optimization, particle swarm

optimization) and methods based on integer linear programming. The question of

47

which, if any, problems are suited to genetic algorithms (in the sense that such

algorithms are better than others) is open and controversial

 The implementation and evaluation of the fitness function is an important factor in the

speed and efficiency of the algorithm.

This project presents new encoding methods

 binary genetic algorithm (BGA)

 new converting methods for the real-coded genetic algorithm (RCGA).

These methods are developed for the specific case in which some parameters have to be

searched in wide ranges since their actual values are not known. The oversampling effect which

occurs at large values in the wide range search are reduced by adjustment of resolutions in

mantissa and exponent of real numbers mapped by BGA. Owing to an intrinsic similarity in

chromosomal operations, the proposed encoding methods are also applied to RCGA with

remapping (converting as named above) from real numbers generated in RCGA. A simple

probabilistic analysis and benchmark with two ill-scaled test functions are carried out. System

identification of a simple electrical circuit is also undertaken to testify effectiveness of the

proposed methods to real world problems. All the optimization results show that the proposed

encoding/converting methods are more suitable for problems with ill-scaled parameters or wide

parameter ranges for searching.

BINARY CODED GA:

Here ,a population of random strings of 1's and 0's is initialized and rates each string according

to the quality of its result. Depending on the problem, the measure of fitness could be business

profitability, game payoff, error rate or any number of other criteria. High-quality strings mate;

low-quality ones perish. As generations pass, strings associated with improved solutions will

predominate. Furthermore, the mating process continually combines these strings in new ways,

generating ever more sophisticated solutions. The kinds of problems that have yielded to the

technique range from developing novel strategies in game theory to designing complex

mechanical systems

48

REAL CODED GA:

 GA tailored for the optimization in real-valued search spaces. In contrast to the

canonical GA, the genome consists of (real-valued) object parameters, i.e., evolution operates

on the ``natural'' representation. The real-coded GA employs special recombination operators,

which are hybrid constructs of intermediate recombination (usually) and mutation. Real-coded

GAs can exhibit self-adaptive behavior.

3.4 GA ELEMENT

49

3.5 NONLINEAR BLIND SEPARATION BASED ON GA::

If we are solving some problem, we are usually looking for some solution, which will be the best

among others. The space of all feasible solutions (it means objects among those the desired

solution is) is called search space (also state space). Each point in the search space represent

one feasible solution. Each feasible solution can be "marked" by its value or fitness for the

problem.

3.5.1 Real coded genetic algorithm

Initialization

Initially many individual solutions are randomly generated to form an initial population, covering

the entire range of possible solutions (the search space)Each point in the search space

represents one possible solution marked by its value(fitness)

Selection

A proportion of the existing population is selected to bread a new bread of generation.

Reproduction

Generate a second generation population of solutions from those selected through genetic

operators: crossover and mutation.

In real coded genetic algorithm ,two constant are taken, alpha and beta. These two constants

are use in the reproduction process.

child_1=p2+(rand*alpha*(p2-p1));

child_2=p1+(rand*alpha*(p2-p1));

where child_1,child-2 are two child population.

p1 and p2 are parent population

Constant beta is used during mutation

mc=cpop (mutpos (1,1),1)+beta*((2*rand(num_ic,p))-1);

50

Where, mc is the mutated child

mutpos is the position of mutation

cpop is the total child population

Termination

A solution is found that satisfies minimum criteria

 Fixed number of generations found.

 Allocated budget (computation, time/money) reached

 The highest ranking solution‟s fitness is reaching or has reached.

3.5.2 Binary coded genetic algorithm

Initialization

Initially many individual solutions all as the string of 1‟s and 0‟s are randomly generated to form

an initial population, covering the entire range of possible solutions (the search space)Each

point in the search space represents one possible solution marked by its value(fitness).after

first iteration each time the previous real value has to be changed to binary for further

processing

Selection

A proportion of the existing population is selected to bread a new bread of generation. In our

project we have taken tournament selection

Reproduction

Generate a second generation population of solutions from those selected through genetic

operators: crossover and mutation.

In binary coded genetic algorithm ,

xoverchild(j,1+n:ran_cross(i)+n)=Fit_population(j+1,1+n:ran_cross(i)+n);

51

here, xoverchild is the child produced due to cross over

j is denotes the parameter that is to be optimized

Fit_population is total parent population

Here in crossover we are taking single point crossover. A random point is chosen on the

individual chromosomes (strings) and the genetic material is exchanged from beginning to this

point.

Termination

A solution is found that satisfies minimum criteria

 Fixed number of generations found.

 Allocated budget (computation, time/money) reached

 The highest ranking solution‟s fitness is reaching or has reached.

52

3.6 Block diagram of nonlinear ICA using real coded GA

 START

Generate the 2 input signals one of which is

sinusoidal/square and the other is a random noise signal

 I=1 I=I+1

 Is I<=No of Gentn?

 YES

 NO

Mix the 2 signals through a linear matrix A and then pass it

through the non linear channel modeled by functions, then

prewhiten the mixed signal

Take inputs for the number of odd

polynomial parameters, the

maximum number of iterations and

the number of chromosomes in the

pool

Initialize the various parameters required for the fast ICA ,

the GA and the various matrices

E

F

G

53

Find the gx values for

all the chromosomes

E

The Fast ICA calculates the W matrix for all the

chromosomes in the gene pool

Prewhiten the Y outputs for all the chromosomes using the

prewhitening function

Calculate the evaluation function for all the chromosomes

of the pool using a mutual independence function

Use the Genetic algorithm functional block with the

evaluation criteria being the evaluation function and use

operator such as crossover .recombination and mutation to

find the optimal G matrix

F

54

G

After the optimization of the G matrix of all population , the

G „s first element is chosen and is used to calculate the

intermediate signal values using the approximate G-

coefficient odd polynomial function

Find the separated signals by multiplying the intermediate

signals with optimized W matrix obtained for the best G

matrix(most fit chromosome)

Plot the 2 separated output signals which

are similar in pattern to the 2 inputs and

are attenuated with slight distortion

 STOP

55

3.7 Block diagram of nonlinear ICA using binary GA

 START

Generate the 2 input signals one of which is

sinusoidal/square and the other is a random noise signal

 I=1 I=I+1

 Is I<=No of Gentn?

 YES

 NO

Mix the 2 signals through a linear matrix A and then pass it

through the non linear channel modeled by functions, then

prewhiten the mixed signal

Take inputs for the number of odd

polynomial parameters, the

maximum number of iterations and

the number of chromosomes in the

pool, number of bits in the

chromosomes

Initialize the various parameters required for the fast ICA ,

the binary GA and the various matrices. Initialize the

population in binary form and then decode the individual

values to get population of G matrices

E

F

G

56

Find the gx values for

all the chromosomes

E

The Fast ICA calculates the W matrix for all the

chromosomes in the gene pool

Prewhiten the Y outputs for all the chromosomes using the

prewhitening function

Calculate the evaluation function for all the chromosomes

of the pool using a mutual independence function

Use the Genetic algorithm functional block with the

evaluation criteria being the evaluation function and use

operator such as crossover .recombination and mutation to

find the optimal G matrix. All the operations are at the bit

level where the crossover and mutations take place directly

on bits and then the child population is decoded from these

binary values

F

57

G

After the optimization of the G matrix of all population , the

G „s first element is chosen and is used to calculate the

intermediate signal values using the approximate G-

coefficient odd polynomial function

Find the separated signals by multiplying the intermediate

signals with optimized W matrix obtained for the best G

matrix(most fit chromosome)

Plot the 2 separated output signals which

are similar in pattern to the 2 inputs and

are attenuated with slight distortion

 STOP

58

3.8 RESULT OF BSS USING ICA AND REAL CODED GA(SINE WAVE & RANDOM NOISE)

 INPUT 1 INPUT 2

 MIXED SIGNAL1 MIXED SIGNAL 2

 OUTPUT SIGNAL 1 OUTPUT SIGNAL 2

Linear Mixer

and Non

Linear

Channel

Non Linear ICA using Fast

ICA for optimization of

mixer and Real Coded GA

for approximation of the

non linear functions

59

3.9 RESULT OF BSS USING ICA AND REAL CODED GA(SQUARE WAVE & RANDOM

NOISE)

 INPUT 1 INPUT 2

 MIXED SIGNAL1 MIXED SIGNAL 2

 OUTPUT SIGNAL 1 OUTPUT SIGNAL 2

Linear Mixer

and Non

Linear

Channel

Non Linear ICA using Fast

ICA for optimization of

mixer and Real Coded GA

for approximation of the

non linear functions

60

3.10 RESULT OF BSS USING ICA AND BINARY GA(SINE WAVE & RANDOM NOISE)

 INPUT 1 INPUT 2

 MIXED SIGNAL1 MIXED SIGNAL 2

 OUTPUT SIGNAL 1 OUTPUT SIGNAL 2

Linear Mixer

and Non

Linear

Channel

Non Linear ICA using Fast

ICA for optimization of

mixer and Real Coded GA

for approximation of the

non linear functions

61

3.11 RESULT OF BSS USING ICA AND BINARY GA(SQUARE WAVE & RANDOM NOISE)

 INPUT 1 INPUT 2

 MIXED SIGNAL1 MIXED SIGNAL 2

 OUTPUT SIGNAL 1 OUTPUT SIGNAL 2

Linear Mixer

and Non

Linear

Channel

Non Linear ICA using Fast

ICA for optimization of

mixer and Binary GA for

approximation of the non

linear functions

62

 Chapter 4

 BACTERIA FORAGING OPTIMIZATION BASED LEARNING

4.1 Introduction to bacterial foraging algorithm

4.2 The optimization function for the bacterial foraging (BF) algorithm

4.3 A simple Bacterial Foraging Algorithm

4.4 Block diagram of nonlinear ICA using BFO

4.5 result of BSS using ICA and BFO(sin wave & random noise)

4.6 result of BSS using ICA and BFO(square wave & random noise)

4.7 Comparison between various optimization techniques

4.8 Discussion

63

4.1 INTRODUCTION TO BACTERIAL FORAGING ALGORITHM

Natural selection tends to eliminate animals with poor foraging strategies and favor the

propagation of genes of those animals that have successful foraging strategies. After many

generations poor foraging strategies are either eliminated or shaped into good ones. Animals

search for and obtain nutrients in a way that maximizes E/T where E is energy obtained per time

T. Recently, search and optimal foraging of bacteria have been used for solving optimization

problems .To perform social foraging, an animal needs communication capabilities and over a

period of time it gains advantages that can exploit the sensing capabilities of the group. This

helps the group to predate on a larger prey, or alternatively, individuals could obtain better

protection from predators while in a group.

4.1.1 Overview of chemotactic behavior of Escherichia coli

In our research, we considered the foraging behavior of E. coli, which is a common type of

bacteria . Its behavior and movement comes from a set of six rigid spinning (100–200 r.p.s)

flagella, each driven as a biological motor. An E. coli bacterium alternates through running and

tumbling. Running speed is 10–20 lm/s, but they cannot swim straight.

4.1.2 Decision making in foraging

The chemotactic actions of the bacteria are modeled as follows:

• In a neutral medium, if the bacterium alternatively tumbles and runs, its action could be similar

to search.

• If swimming up a nutrient gradient (or out of noxious substances) or if the bacterium swims

longer (climb

up nutrient gradient or down noxious gradient), its behavior seeks increasingly favorable

environments.

• If swimming down a nutrient gradient (or up noxious substance gradient), then search action is

like avoiding unfavorable environments.

Therefore, it follows that the bacterium can climb up nutrient hills and at the same time avoids

noxious substances. The sensors it needs for optimal resolution are receptor proteins which are

very sensitive and possess high gain. That is, a small change in the concentration of nutrients

can cause a significant change in behavior. This is probably the best-understood sensory and

decision-making system in biology

64

4.1.3 Reproduction

Mutations in E. coli affect the reproductive efficiency at different temperatures, and occur at a

rate of about 10 per gene per generation. E. coli occasionally engages in a conjugation that

affects the characteristics of the population.

4.1.4 Types of taxis

There are many types of taxis that are used in bacteria such as, aero taxis (attracted to oxygen),

Photo taxis (light), thermo taxis (temperature), magneto taxis (magnetic lines of flux) and some

bacteria can change their shape and number of flagella (based on the medium) to reconfigure in

order to ensure efficient foraging in a variety of media.

4.1.5 Swarming

 Bacteria could form intricate stable spatio-temporal patterns in certain semisolid nutrient

substances and they can survive through a medium if placed together initially at its center.

Moreover, under certainconditions, they will secrete cell-to-cell attractant signals so that they will

group and protect each other.

4.1.6 Representation of swim/run and tumble

65

4.2 The optimization function for the bacterial foraging (BF) algorithm

Optimization consists of four different stages-

 Chemotaxis

 Swarming

 Reproduction

 Elimination & Dispersion

4.2.1 Chemo taxis

It is defined to be a tumble followed by a tumble or tumble followed by a run. To represent a

tumble, a unit length random direction Ø(j) is generated, this will be used to define the direction

of movement after a tumble.

Mathematically,

θ I (j+1,k,l)= θ I (j,k,l)+C(i)* Ø(j)

Where C(i) =size of the step taken in the random direction. = position of I th bacterium at j th

chemo tactic loop, k th reproduction loop and l th elimination-dispersal loop. If at θ I (j+1,k,l), the

cost function is better than at θ I (j,k,l), another step of size C(i) is taken in the same direction.

This swim is continued as long as it continues to better the cost function, but only upto a max.

number of steps Ns.

4.2.2 Reproduction

After Nc chemo tactic steps, a reproduction step is taken. The population is sorted in order of

ascending order of cost function .Then, Sr = S/2 least healthy bacteria die and the other

healthiest bacteria each split into two bacteria, which are placed at the same location.

4.2.3 Elimination and Dispersal

This is done to prevent the bacteria from being trapped in local minima. A bacterium is chosen

according to a preset probability Ped, to be dispersed and moved to another position within the

environment. They have the effect of possibly destroying the chemo tactic progress. But, they

also have the effect of assisting in chemo taxis, since dispersal may place the bacteria near

good food sources.

66

4.3 A simple Bacterial Foraging Algorithm

The algorithm to search optimal values of parameters is described as follows:

[Step 1] Initialize parameters n; N; Nc; Ns; Nre; Ned; Ped, C(i)(i=1,.. N); Ø(j)

where,

n: Dimension of the search space,

N: The number of bacteria in the population,

NC: Chemotactic steps,

Nre: The number of reproduction steps,

Ned: The number of elimination–dispersal events,

Ped: Elimination–dispersal with probability,

C(i): The size of the step taken in the random direction specified by the tumble.

[Step 2] Elimination–dispersal loop: l = l+1.

[Step 3] Reproduction loop: k = k+1.

[Step 4] Chemo taxis loop: j = j+1.

 [sub step a] For i = 1,2,. . . ,N, take a chemo tactic step for bacterium i as follows.

[sub step b] Compute fitness function, ITSE (I,j,k,l)

[sub step c] Let ITSElast = ITSE(i, j,k, l) to save this value since we may find a better

cost via a

run.

[sub step d] Tumble: generate a random vector Λ(i) , with each element Λ m(i),

 m = 1,2,. . . ,p, a Random number on [-1, 1].

[sub step e] Move: Let

θ I (i+1,j,k)= θ I (i,j,k)+C(i)* Λ(i)/√ ΛT(i) Λ(i)

This results in a step of size C(i) in the direction of the tumble for bacterium i.

[sub step f] Compute ITSE(i, j + 1,k, l).

[sub step g] Swim.

(i) Let m = 0 (counter for swim length).

(ii) While m < Ns (if have not climbed down too long).

• Let m = m + 1.

• If ITSE(i, j , k,l) >ITSElast(if doing better), let ITSElast = ITSE (i,j+1,k,l)and let

θ I (i+1,j,k)= θ I (i,j,k)+C(i)* Λ(i)/√ ΛT(i) Λ(i)

and use this θ I (i+1,j,k) to compute the new ITSE(I,j+1,k,l) as we did in [sub step f].

67

• Else, let m = Ns. This is the end of the while statement.

[sub step h] Go to next bacterium (i,1) if i ≠N (i.e., go to [sub step b] to process the next

bacterium).

[Step 5] If j < NC, go to step 3. In this case, continue chemo taxis,

[Step 6] Reproduction:

[sub step a] For the given k and l, and for each i = 1,2,. . . ,N, let

ITSE I
health = ∑ITSE(i,j,k,l)

be the health of the bacterium i (a measure of how many nutrients it got over its lifetime

and how successful it was at avoiding noxious substances).

Sort bacteria and chemo tactic parameters C(i) in order of ascending cost ITSEhealth

(higher cost means lower health).

[sub step b] The Sr bacteria with the highest ITSEhealth values die and the remaining Sr

bacteria with the best values split (this process is performed by the copies that are made

are placed at

 the same location as their parent).

[Step 7] If k < Nre, go to [step 3]. In this case, we have not reached the number of specified

reproduction steps, so we start the next generation of the chemo tactic loop.

 [Step 8] Elimination–dispersal: For i = 1,2,. . . ,N, with probability Ped, eliminate and disperse

each bacterium, which results in keeping the number of bacteria in the population constant

. To do this, if a bacterium is eliminated, simply disperse one to a random location on the

optimization domain. If l < Ned, then go to [step 2]; otherwise end.

68

4.4 Block diagram of nonlinear ICA using BFO ::

 START

Generate the 2 input signals one of which is

sinusoidal/square and the other is a random noise signal

 I=1 I=I+1

 Is I<=No of Gentn?

 YES

 NO

Mix the 2 signals through a linear matrix A and then pass it

through the non linear channel modeled by functions, then

prewhiten the mixed signal

Take inputs for the number of odd

polynomial parameters, the

maximum number of iterations and

the number of bacteria in the pool

Initialize the various parameters required for the fast ICA ,

the BFO and the various matrices. Initialize the population of

bacteria with random values

E

F

G

69

Find the gx values for

all the bacteria

E

The Fast ICA calculates the W matrix for all the

bacteria in the population

Prewhiten the Y outputs for all the bacteria using the

prewhitening function

Calculate the evaluation function for all the bacteria of the

pool using a mutual independence function

Use the Bacterial Foraging functional block with the

evaluation criteria being the evaluation function and use

operator such as chemotaxis, reproduction, elimination

and dispersion to find the optimal G matrix.

F

70

Find the separated signals by multiplying the intermediate

signals with optimized W matrix obtained for the best G

matrix(most fit chromosome)

Plot the 2 separated output signals which

are similar in pattern to the 2 inputs and

are attenuated with slight distortion

 STOP

G

After the optimization of the G matrix of all bacteria , the G

„s first element is chosen and is used to calculate the

intermediate signal values using the approximate G-

coefficient odd polynomial function

71

4.5 RESULT OF BSS USING ICA AND BFO(SIN WAVE & RANDOM NOISE)

 INPUT 1 INPUT 2

 MIXED SIGNAL1 MIXED SIGNAL 2

 OUTPUT SIGNAL 1 OUTPUT SIGNAL 2

Linear Mixer

and Non

Linear

Channel

Non Linear ICA using

Fast ICA for optimization

of mixer and Bacterial

Foraging for

approximation of the non

linear functions

72

4.6 RESULT OF BSS USING ICA AND BFO(SQUARE WAVE & RANDOM NOISE)

 INPUT 1 INPUT 2

 MIXED SIGNAL1 MIXED SIGNAL 2

 OUTPUT SIGNAL 1 OUTPUT SIGNAL

Linear Mixer

and Non

Linear

Channel

Non Linear ICA using

Fast ICA for optimization

of mixer and Real Coded

GA for approximation of

the non linear functions

73

4.7 Comparison between various optimization techniques

Sl.
No

Type of input
along with the
random noise
input

Particle
Swarm
Optimization

Real coded
Genetic
Algorithm

Binary
Genetic
Algorithm

Bacterial
Foraging

1.

Sinusoidal Input
No. of

iterations=

50

No. of

particles=

40

No. of

parameters=6

MSE for signal=

 1.5769e-004

MSE for random

Noise= 0.0514

No. of

iterations= 200

No. of

chromosomes=

20

No. of

parameters=5

MSE for

signal=.0050

MSE for random

Noise=.0719

No. of

iterations=100

No. of

chromosomes=

10

No. of

parameters=3

MSE for signal=

0.0054

MSE for random

Noise= 0.0815

No. of

iterations=25

No. of bacteria=

12

No. of

parameters=5

MSE for

signal=.0111

MSE for random

Noise=.0655

2.

Square Input
No. of

iterations=

200

No. of

particles=

40

No. of

parameters=6

MSE for signal=

.0041

MSE for random

Noise=.0807

No. of

iterations=50

No. of

chromosomes=

20

No. of

parameters=6

MSE for

signal=9.6164e-

4

MSE for random

Noise=.0756

No. of

iterations=45

No. of

chromosomes

=15

No. of

parameters=4

MSE for

signal=.0034

MSE for random

Noise=.0555

No. of

iterations=25

No. of bacteria

=12

No. of

parameters=5

MSE for

signal=3.6190

MSE for random

Noise=0.5730

74

4.8 DISCUSSION

We observe that the Particle Swarm Optimization technique is easier to implement as it follows

a very simple update methodology .The Genetic Algorithms (both real coded and binary)

ensure a convergence but may take higher number of iterations. The Bacterial Foraging

technique is complex in nature but ensures a rapid convergence. All the above 3 mentioned

techniques have their own merits and demerits but are competent enough to perform non linear

blind source separation.

75

Chapter 5

Conclusion

76

 CONCLUSION

In this project, we have used PSO ,GA ,BFO and ICA to carry out non linear mixed signal blind

source separation. High order odd polynomial is applied to fit non linear mixed function and

establish non linear signal blind separation model. Estimating the parameter of polynomial by

PSO algorithm and then iterating the linear non mixed matrix by ICA has obtained good effect.

Similarly we have applied genetic algorithm(both binary and real coded) and bacteria foraging

technique to estimate the parameter of the odd polynomial and thereafter we have compare the

result of the all three algorithms.

77

REFERENCE

1) WEI YU, LIU ZHENXING AND LI CHANGHAI “IMPROVED Particle Swarm To Non Linear

Blind Source Separation”

2) A TALEB C. JUTTEN “Source Separation In Post Non Linear Mixtures : An Entropy Based

Algorithm “

3)T.-W. LEE, M. GIROLAMI, A. BELL, AND T. SEJNOWSKI, “An unifying information-theoretic

framework for independent component analysis”, International Journal on Mathematical and

Computer Modeling, 1998.

3) AAPO HYVARINEN, JUHA KARHUNEN, ERKKI OJA”A Comprehensive Introuction To

Independent Component Analysis For Students And Practitioners”.

4) L. B. ALMEIDA, “Linear and nonlinear ICA based on mutual information”, in Proc. Symp.

2000 on Adapt. Sys. for Sig. Proc., Commun. and Control, Lake Louise, Alberta, Canada, 2000.

5) DONG HWA KIM, AJITH ABRAHAM, JAE HOON CHO “A Bacterial Foraging Approach For

Global Optimization”

6) ACHARYA D.P, PANDA G., LAKSHMI Y.V.S “A Constrained Genetic Algorithm Based

Independent Component Analysis “

7) WWW.WIKIPEDIA.ORG.

