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      ABSTRACT 

The Independent Component Analysis technique has been used in Blind Source separation of 

non linear mixtures. The project involves the blind source separation of a non linear mixture of 

signals based on their mutual independence as the evaluation criteria. The linear mixer is 

modeled by the Fast ICA algorithm while the Non linear mixer is modeled by an odd polynomial 

function whose parameters are updated by four separate optimization techniques which are 

Particle Swarm Optimization, Real coded Genetic Algorithm, Binary Genetic Algorithm and 

Bacterial Foraging Optimization. The separated mixture outputs of each case was studied and 

the mean square error in each case was compared giving an idea of the effectiveness of each 

optimization technique.   

Key words: Nonlinear Blind Source Separation, Particle Swarm Optimization, Genetic 
Algorithm, Real coded GA, Binary GA, Bacterial Foraging  
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1.1 BLIND SOURCE SEPARATION 

Blind source separation (BSS) refers to the problem of recovering signals from several observed 

linear mixtures. The strength of the BSS model is that only mutual statistical independence 

between the source signals is assumed and not a priori information about ,e.g., the 

characteristics of the source signals, the mixing matrix or the arrangement of the sensors is 

needed. Therefore BSS can be applied to a variety of situations such as, e.g., the separation of 

simultaneous speakers, analysis of biomedical signals obtained by EEG or in wireless 

telecommunications to separate several received signals. 

 

 

With respect to audio signals, a linear mixture of sources is commonly referred to as "cocktail 

party problem". How can humans select the voice of a particular speaker from an ensemble of 

different voices corrupted by music and noise in the background? One approach to solve this 

problem is to record the mixed audio signals with microphone arrays and subsequently apply 

blind source separation methods. Several simultaneously active signal sources at different 

spatial locations can then be separated by exploiting mutual independence of the sources. In 

the field of audio processing BSS is applicable, e.g., to the realization of noise robust speech 

recognition, high-quality hands-free telecommunication systems or speech enhancement in 

hearing aids. 
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Because temporal redundancies (statistical regularities in the time domain) are "clumped" in this 

way into the resulting signals, the resulting signals can be more effectively deconvolved than the 

original signals. 

 

 

 

 

 

 

1.1.1 An illustration of blind source separation. This figure shows four source 

signals, or independent components. 
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Due to some external circumstances, only linear mixtures of the source signals     in Fig. above 

as depicted here, can be observed. 

 

Using only the linear mixtures in Fig. 6, the source signals in Fig. 5 can be estimated, up to some 

multiplying factors. This figure shows the estimates of the source signals. 
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1.2 INDEPENDENT  COMPONENT  ANALYSIS 

Independent component analysis (ICA) belongs to a class of blind source separation method 

for separating data into underlying components ,where such data can take the form of images, 

sounds, telecommunication channels or stock market prices. It  is a computational method for 

separating a multivariate signal into additive subcomponents supposing the mutual statistical 

independence of the non-Gaussian source signals. It is a special case of blind source 

separation. 

ICA defines a generative model for the observed multivariate data, which is typically given as a 

large database of samples. In the model, the data variables are assumed to be linear mixtures 

of some unknown latent variables, and the mixing system is also unknown. The latent variables 

are assumed nongaussian and mutually independent, and they are called the independent 

components of the observed data. These independent components, also called sources or 

factors, can be found by ICA. 

ICA is superficially related to principal component analysis and factor analysis. ICA is a much 

more powerful technique, however, capable of finding the underlying factors or sources when 

these classic methods fail completely. 

The data analyzed by ICA could originate from many different kinds of application fields, 

including digital images, document databases, economic indicators and psychometric 

measurements. In many cases, the measurements are given as a set of parallel signals or time 

series; the term blind source separation is used to characterize this problem. Typical examples 

are mixtures of simultaneous speech signals that have been picked up by several microphones, 

brain waves recorded by multiple sensors, interfering radio signals arriving at a mobile phone, or 

parallel time series obtained from some industrial process. 

 

1.2.1 DEFINITION 

   When the independence assumption is correct, blind ICA separation of a mixed signal gives 

very good results. It is also used for signals that are not supposed to be generated by a mixing 

for analysis purposes. A simple application of ICA is the “cocktail party problem”, where the 

underlying speech signals are separated from a sample data consisting of people talking 

simultaneously in a room. Usually the problem is simplified by assuming no time delays and 

echoes. An important note to consider is that if N sources are present, at least N observations 
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(e.g. microphones) are needed to get the original signals. This constitutes the square (J = D, 

where D is the input dimension of the data and J is the dimension of the model). Other cases of 

underdetermined (J < D) and overdetermined (J > D) have been investigated. 

 

. Non-Gaussianity, motivated by the central limit theorem, is one method for measuring the 

independence of the components. Non-Gaussianity can be measured, for instance, 

by kurtosis or approximations of entropy. Mutual information is another popular criterion for 

measuring statistical independence of signals. 

x(t)= As(t) …………….(1) 

y(t)= Wx(t) …………...(2) 

  ICA goal is finding a linear transform given by matrix W so that 

the Output y(t) is the copy or estimate of source signal s(t): 

  In which s(t)=[s1, s2, ...sn] is a 1xn vector 

composed by n source signals, x(t)=[ x1, x2,.xn]T 

is a (nx1) vector composed of n measuring signals and the (nxn) matrix A is called as mixture 

matrix. That is to be more divulsive,  
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The components xi of the observed random vector are generated as a 

sum of the independent components sk,    : 

 

weighted by the mixing weights ai,k.The same generative model can be written in vectorial form 

as    , where the observed random vector x is represented by the basis vectors 

. The basis vectors ak form the columns of the mixing matrix 

 and the generative formula can be written as x = As, where 

. 

Given the model and realizations (samples) of the random vector x, the task is to 

estimate both the mixing matrix A and the sources   s .  This is done by adaptively calculating 

the w vectors and setting up a cost function which either maximizes the nongaussianity of the 

calculated sk = (wT * x) or minimizes the mutual information. In some cases, a priori knowledge 

of the probability distributions of the sources can be used in the cost function. 

The original sources s can be recovered by multiplying the observed signals x with the inverse 

of the mixing matrix W = A − 1, also known as the “immixing matrix”.  

  1.2.2        LINEAR MIXTURE AND SEPARATION MODEL 
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 1.2.3 CENTRAL LIMIT THEOREM (CLT) 

The central limit theorem (CLT) states that the re-averaged sum of a sufficiently large number 

of identically distributed independent  random each with finite mean and variance will be 

approximately normally distributed (Rice 1995). Formally, a central limit theorem is any of a 

set of weak-convergence results improbability theory. They all express the fact that any sum of 

many independent identically distributed random variables will tend to be distributed according 

to a particular "attractor distribution". 

 

                      

 

In probability theory and statistics, kurtosis (from the Greek word κσρτός, kyrtos or kurtos, 

meaning bulging) is a measure of the "peakedness" of the probability distribution of a real-

valued random variable. Higher kurtosis means more of the variance is due to infrequent 

extreme deviations, as opposed to frequent modestly-sized deviations. 

the fourth standardized moment is defined as 
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where μ4 is the fourth moment about the mean and σ is the standard deviation. This is 

sometimes used as the definition of kurtosis in older works, but is not the definition used here.   

 

 

         

                                        Graph of kurtosis  

                       

 

Typical algorithms for ICA use centering, whitening (usually with the Eigen value 

decomposition), and dimensionality reduction as preprocessing steps in order to simplify and 

reduce the complexity of the problem for the actual iterative algorithm. Whitening and dimension 

reduction can be achieved with principal component analysis or singular value decomposition. 

Whitening ensures that all dimensions are treated equally a priori before the algorithm is run. 

Algorithms for ICA include infomax ,  FastICA , and JADE, but there are many others also. 

 

In general, ICA cannot identify the actual number of source signals, a uniquely correct ordering 

of the source signals, nor the proper scaling (including sign) of the source signals. 

ICA is important to blind signal separation and has many practical applications. It is closely 

related to (or even a special case of) the search for a factorial code of the data, i.e., a new 
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vector-valued representation of each data vector such that it gets uniquely encoded by the 

resulting code vector (loss-free coding), but the code components are statistically independent 

                                                                           

1.3  FASTICA 

FastICA is an efficient and popular algorithm for independent component analysis invented by 

Aapo  Hyvärinen at Helsinki University of Technology. The algorithm is based on a fixed-

point iteration scheme maximizing non-Gaussianity as a measure of statistical independence. It 

can be also derived as an approximate Newton iteration. The fast fixed point algorithm for ICA 

converges rapidly to the most accurate solution allowed by data structure. 

The basic linear relationship for ICA problem is taken to be 

                                 x=As 

s::statistically independent signal A transformation  V  can be found using standard PCA 

methods, such that the observed data are linearly transformed to a vector   

                                          v=V x…………..(3) 

 

V                                                               Q 

 

x                                                                                                                x 

     

 

 

                                           v                           y 

 

                                Whitening||Separation||Estimation of ICA basis vectors 
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Prewhitening serves two purposes::sphering the data and determining the number of 

independent component. 

                                         v=VAs=Bs 

where B=VA is an orthogonal matrix. 

 

1.3.1  FIXED POINT ICA ALGORITHM FOR ICA 

Step 1..Prewhiten the observed data x to obtain vector v. 

Step 2..Randomly set the values of initial weight vector w(0) and normalize to the unit  length, 

that is, 

                  w(0)        w(0)/||w(0)||2       

                                       

and set j=1. 

Step 3.. Let  

               W(j)=E[v(wT(j-1)v]-3w(j-1) 

The expectation operator can be estimated using a relatively large number of v vector  

Step 4..Normalise w(j) to the unit length 

                 w(j)        w(j)/||w(j)||2       

Step 5..If |wT(j)*w(j-1)| is not close to 1,let j       j+1 and go to the step 3.Otherwise, output 

vector w(j). 
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1.4 FLOW CHART OF FAST INDEPENDENT COMPONENT ANALYSIS 

ALGORITHM 
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1.5 RESULT OF BLIND SOURCE SEPARATION USING FASTICA  

INPUT SIGNAL 1                                                           INPUT  SIGNAL  2 (  RANDOM NOISE) 

                              

 

 

                                                                                                                        MIXED SIGNAL 

                                                                                                                   

                                                                          

                                                                                                          

 

                                               

               SIGNAL 1                                                                                                  SIGNAL 2             

                            

  

     LINEAR MIXING   

  

         FAST  ICA  
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2.1 INRODUCTION TO PARTILCLE  SWARM OPTIMIZATION 

Particle swarm optimization (PSO) is a population based stochastic optimization technique 

developed by Dr. Eberhart and Dr. Kennedy in 1995, inspired by social behavior of bird flocking 

or fish schooling. 

PSO shares many similarities with evolutionary computation techniques such as Genetic 

Algorithms (GA). The system is initialized with a population of random solutions and searches 

for optima by updating generations. However, unlike GA, PSO has no evolution operators such 

as crossover and mutation. In PSO, the potential solutions, called particles, fly through the 

problem space by following the current optimum particles.  

Each particle keeps track of its coordinates in the problem space which are associated with the 

best solution (fitness) it has achieved so far. (The fitness value is also stored.) This value is 

called pbest. Another "best" value that is tracked by the particle swarm optimizer is the best 

value, obtained so far by any particle in the neighbors of the particle. This location is calledlbest. 

when a particle takes all the population as its topological neighbors, the best value is a global 

best and is called gbest. 

The particle swarm optimization concept consists of, at each time step, changing the velocity of 

(accelerating) each particle toward its pbest and lbest locations (local version of PSO). 

Acceleration is weighted by a random term, with separate random numbers being generated for 

acceleration toward pbest and lbest locations. 

In past several years, PSO has been successfully applied in many research and application 

areas. It is demonstrated that PSO gets better results in a faster, cheaper way compared with 

other methods.  

Another reason that PSO is attractive is that there are few parameters to adjust. One version, 

with slight variations, works well in a wide variety of applications. Particle swarm optimization 

has been used for approaches that can be used across a wide range of applications, as well as 

for specific applications focused on a specific requirement. 
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Particle‟s current position 

      

Particle‟s previous best position 

 

 Future direction of motion of the particle         

 

 Previous direction of motion of the particle         

   2.1.1 REPRESENTATION OF A PARTICLE SWARM 

 Particle‟s next direction and velocity of motion decided from its position‟s 

difference from that of its previous  best position and the global best position   
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fitness value 
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2.2 A BASIC CANONICAL PSO ALGORITHM 

The algorithm presented below uses the global best and local bests but no neighborhood bests. 

Neighborhood bests allow parallel exploration of the search space and reduce the susceptibility 

of PSO to falling into local minima, but slow down convergence speed. Note that neighborhoods 

merely slow down the proliferation of new bests, rather than creating isolated subswarms 

because of the overlapping of neighborhoods: to make neighborhoods of size 3, say, particle 1 

would only communicate with particles 2 through 5, particle 2 with 3 through 6, and so on. But 

then a new best position discovered by particle 2's neighborhood would be communicated to 

particle 1's neighborhood at the next iteration of the PSO algorithm presented below. Smaller 

neighborhoods lead to slower convergence, while larger neighborhoods to faster convergence, 

with a global best representing a neighborhood consisting of the entire swarm. The tendency is 

now to use partly random neighborhoods (see Standard PSO on the Particle Swarm Central). 

A single particle by itself is unable to accomplish anything. The power is in interactive 

collaboration. 

Let be the fitness function that takes a particle's solution with several 

components in higher dimensional space and maps it to a single dimension metric. Let there be 

n particles, each with associated positions and velocities , . 

Let be the current best position of each particle and let be the global best. 

 Initialize and for all i. One common choice is to take and 

for all i and , where aj,bj are the limits of the search domain in 

each dimension, and U represents the Uniform distribution (continuous).  

 and .  

 While not converged:  

o For each particle :  

 Create random vectors , : and for all j,by taking 

for  

 Update the particle positions: .  
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 Update the particle velocities: 

.  

 Update the local bests: If , .  

 Update the global best If , .  

 is the optimal solution with fitness .  

Note the following about the above algorithm: 

 ω is an inertial constant. Good values are usually slightly less than 1.  

 c1 and c2 are constants that say how much the particle is directed towards good 

positions. They represent a "cognitive" and a "social" component, respectively, in that 

they affect how much the particle's personal best and the global best (respectively) 

influence its movement. Usually we take .  

 are two random vectors with each component generally a uniform random number 

between 0 and 1.  

 operator indicates element-by-element multiplication i.e. the Hadamard matrix 

multiplication operator.  
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2.3 FLOW CHART OF PSO ALGORITHM 
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2.4 BLIND SOURCE  SEPARATION  USING  PSO AND ICA 

2.4.1 INTRODUCTION 

In practical circumstances, mixture signal may be mixed by nonlinear system, which leads to a 

more complicated result than the linear mixture signal. Linear blind separation algorithm isn't 

suitable no longer. 

                                               Nowadays, two kinds of research methods are developed for 

nonlinear blind separation: the first one extracts the nonlinearity by adopting SOFM, and the 

second one uses the nonlinear mixture model to 

match the practical mixture nonlinear system on the base of linear blind separation. The former 

makes the network complexity increase exponentially when the number of source signal is 

large, and comes into being interpolation error when continuous source signal is separated, the 

latter adopts Newton iteration method, gradient method and natural gradient method to solve 

problems. And yet the NP problem applied in nonlinear source blind separation is still hard to 

achieve global optimal solution. Recently many researchers use GA for nonlinear blind 

separation, which has a good effect but slow convergence rate. The combination of PSO and 

natural gradient method is proposed for the nonlinear mixture signal blind separation in this 

paper. The nonlinear signal blind separation algorithm based on particle swarm is established in 

which high-order odd polynomial is used to fit the nonlinear mixed function and create nonlinear 

signal blind separation model, PSO is adopted to work out the parameters of polynomial as 

natural gradient method to iterative linear non-mixed matrix. 

 

2.4.2 NONLINEAR SIGNAL BLIND SEPARATION MODEL 

The blind separation of sources problem can be approached by wider point of view by using 

Independent Component Analysis(ICA). ICA goal is finding a linear transform given by matrix W 

so that the Output y(t) is the copy or estimate of source signal s(t): 

x(t)=As(t) ………….(1) 

y(t)=wx(t)………….(2) 

In which s(t)=[si, s2,…. ..sn] is a nx l vector composed by n source signals, x(t)=[ xi, x2,.xn]T is a 

n x 1 vector composed of n measuring signals and nxn matrix A is called as mixture matrix. 
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                     Nevertheless, the linear mixing model may not be appropriated for some real 

environment. Even though the nonlinear mixing model is more realistic and practical, most 

existing algorithms for the BSS problem were developed for the linear model. However,for 

nonlinear mixing models, many difficulties occur and both the linear ICA and the existing linear 

demixing methodologies are no longer 

applicable because the complexity of nonlinear parameters. Bure[l] resolves the two problems 

by using the nonlinear model with two-layer sensor construction. The relationship between 

measuring signal and source signal in nonlinear model is defined as follows: 

x(t)=F[As(t)]  ……………(3) 

where F=[ fi, f2, .fn]T is a reversible nonlinear transform matrix. If F  is linear, then formula (3) 

degenerates to formula (1). 

                     2.4.3  NON LINEAR MIXTURE AND SEPARATION MODEL 
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Figure  above  describes the nonlinear model. There are two parts in mixture system: the linear 

mixture based on mixture matrix A and each channel's independent nonlinear transform function 

fi , while separation system is opposite: each channel's independent  nonlinear inverse 

transform g1 and linear separation of matrix W. The output yi(t) can be defined as: 

…………………(4) 

The linear inverse function is usually hard to determine for there is no prior knowledge in 

mixture and separation system, but we can also fit them by odd polynomial as most of them are 

origin symmetry.  

 

is the parameter of nonlinear transform function in j channel. A big 

difficulty in nonlinear model is the parameter computation, as it presents a problem with 

numerous local minima. Thus we require an algorithm that is capable of avoiding entrapment in 

such a minimum. As a solution to this first unmixing stage, we propose the Particle Swarm 

Optimization(PSO) which has been applied successfully in all kinds of multidimensional 

continuous space optimization problems. 

2.5 NONLINEAR BLIND SEPARATION BASED ON PSO 

PSO algorithm resembles a school of flying bird developed by Kennedy and Eberharr6] in 1995. 

It can reach population optimization through collectivity cooperation. Each individual is named 

as a "particle" which, in fact, represents a potential solution to a problem. Each particle adjusts 

its flying according to its own flying experience and its companions' flying experience. Each 

particle is treated as a point in a D-dimensional space. The ith particle is represented as  

 The best previous position (the position giving the best fitness value ) of 

any particle is recorded and represented as  
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The index of the best particle among all the particle in the population is 

represented by the symbol pgd. The rate of the position change ( velocity ) for particle ith is 

represented as  

 

 The particles are manipulated according to the following equation: 

 

 

Where ci and c2 are two positive constants called acceleration constants, rand() is the random 

function in the range[0,l], w is the inertia factor when big for global exploration and small for 

local exploitation. The position range is [-XMAXd , XMAXd] and velocity range is [-VMAXd , 

VMAXd] in dth  dimension. The boundary value will be chosen if position or speed 

goes beyond the range when iterating. The particle's position and velocity are initialized at 

random, then iterated according to equations (7) and (8) until a satisfactory solution is searched 

out.Analyzing equation (7), we can find out that if the best previous position Pi doesn't change in 

a long time, the velocity update will be mainly determined by w*vid(t) and the velocity will be 

slower and slower when the particle is near Pi. So the particle swarm reflects a strong 

coherence, which means the particle swarm converges quickly.  

2.5.1 Evaluation function:: 

To perform the PSO, first is very important to define the fitness function. this fitness function is 

constructed having in mind that the output sources must be independent from their nonlinear 

mixtures. For this purpose, we mutual information is adopted as the evaluation function as the 

measure of independence: 

I(y)==log|W|-∑ E [∑(2k-1)*xi^(2k-2)*gik ] + ∑H(y(i)) 
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When l(y)=0 means that yi is independent of each other, and the calculation of H(yi) needs to 

estimate the distribution density function of yi firstly. In fact, the distribution density function of yi 

is unknown, which can be approached by Edgeworth expansion. But in this paper, Gram-

charlier expansion is chosen for the divergence problem in training existing in Edge-worth 

expansion algorithm. The entropy of each component is only related to the three-order and four-

order commutations: 

 

 

 

In which , , centralizing and prewhitening on the signal should be done 

before calculation assuring the expectation value equals  „0‟ and variance equals 1. In order to 

enhance the independence of all random variables, the reciprocal value of equation (9) is 

chosen as the evaluation function. When the reciprocal value reaches maximum, each signal is 

independent of each other:  

……….(15) 

2.5.2 IMPLEMENTATION OF ALGORITHM:: 

The parameter space of nonlinear mixed andseparate system can be divided into two parts: 

linear parameter space and nonlinear parameter space. Through the analysis above it's easy to 

know that the two spaces are independent, and so is the nonlinear  parameter space of each 

channel. Let 

 

 

for nonlinear parameter space .Independent component analysis  is used for the 

estimation of linear parameter W. 
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Step 1: Fetch source signal; centralize and prewhiten the signal. 

Step 2: Initialization  

          2.1 initialize the parameters of nonlinearnon-mixed function. Generate initial particles 

  

 randomly. 

         2.2 initialize the parameters of linear non-mixed matrix. Generate W=rand() randomly and 

standardize 

 

Step 3: Centralize and prewhiten yi(t) and calculate the evaluation function according to 

equation (14). 

         3.1 if a certain particle's current evaluation value is better than the best previous 

evaluation value, then set the best previous evaluation value equal to the 

current evaluation value and the best previous position to the particle's current position. 

        3.2 seek the optimum solution for all local and global populations and if better than the best 

previous solution then update Pl and Pg . 

        3.3 run orient-migration and local deeply search when the best previous position Pi doesn't 

change for a long time or changes little continuously. 

Step 4: Parameter update 

        4.1 for nonlinear parameter, every particle calculate  and  according to equation (7),  

Xv and  Xr equation (8).  

        4.2 for linear parameter, update according to equation (15) by natural gradient algorithm 

and re-standardize W. 

Step 5: Loop to step (3) until a criterion is met or a maximum number of iterations. 
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2.6 Block diagram of nonlinear ICA  and PSO is given below::     
 

                                                                                                 

 

                        

 

 

 

 

 

                                             

 

 

 

 

      

 

 

 

 

 

 

 

                                

                                                                                                                                                                                                    

 

      START 

Generate the 2 input signals one of which is sinusoidal and 

the other is a random noise signal 

    I=1           I=I+1 

 

   Is I<=max_itr? 

  
   YES 

   NO 

Mix the 2 signals through a linear matrix A and then pass it 

through the non linear channel modeled  by functions , then 

prewhiten the mixed signal 

Take inputs for the number of odd 

polynomial parameters , the 

maximum number of iterations and 

the number of particles in the 

swarm 

Initialize the various parameters required for the fast ICA , 

the PSO and the various matrices   

E 

F 

G 
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      Find the gx     

values   for all the 

particles 

E 

The  Fast ICA calculates the W matrix for all the particles in 

the swarm 

    

Pre  whiten the Y outputs for all the particles using the pre 

whitening function   

Calculate the evaluation function for all the particles of the 

swarm using a mutual independence function   

Use the Particle Swarm Optimization functional block with 

the evaluation criteria being the evaluation function and 

find the global best values, local best values , their 

respective location values and modify the velocity  

components in order to change the position of the particles  

F 
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G 

After the optimization of the G matrix of all particles , the 

global best value is chosen and is used to calculate the 

intermediate signal values using the approximate G-

coefficient odd polynomial function  

Find the separated signals by multiplying the intermediate 

signals with optimized  W matrix obtained for the global 

best G matrix 

Plot the 2 separated output signals which 

are similar in pattern to the 2 inputs  and 

are attenuated   with slight distortion 

        STOP 



39 

 

2.7 RESULT OF BLIND SOURCE SEPARATION USING ICA AND PSO 

                                     

                INPUT 1                                                                                          INPUT 2 

                                                                                    

                                                                                 

                                                                                                                           

                                              

              MIXED SIGNAL1                                                                 MIXED SIGNAL 2 

 

                                                                            

                                           
OUTPUT SIGNAL  1                                                                                      OUTPUT SIGNAL 2 

 

 

Linear Mixer 

and Non 

Linear 

Channel 

Non Linear ICA using Fast 

ICA for optimization of 

mixer and PSO for 

approximation of the non 

linear functions 



40 

 

 

Chapter 3 

 

 

 

 

 

GENETIC ALGORITHM BASED  LEARNING 

3.1Introduction to genetic algorithm 

3.2Simple generational genetic algorithm pseudo code  

3.3GA element 

3.4Observations 

3.5 Nonlinear blind separation based on GA 

3.6Block diagram of nonlinear ICA using real coded GA  
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3.11 Result of BSS using ICA and binary  GA( square wave & random noise) 
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3.1 INTRODUCTION TO GENETIC ALGORITHM 

3.1.1 INTRODUCTION 

A genetic algorithm (GA) is a search technique used in computing to find exact or approximate 

solutions to optimization and search problems. Genetic algorithms are categorized as global 

search heuristics. Genetic algorithms are a particular class of evolutionary algorithms (also 

known as evolutionary computation) that use techniques inspired by evolutionary biology such 

as inheritance, mutation, selection, and crossover (also called recombination) 

3.1.2 METHODOLOGY 

Genetic algorithms are implemented in a computer simulation in which a population of abstract 

representations (called chromosomes or the genotype of the genome) of candidate solutions 

(called individuals, creatures, or phenotypes) to an optimization problem evolves toward better 

solutions. Traditionally, solutions are represented in binary as strings of 0s and 1s, but other 

encodings are also possible. The evolution usually starts from a population of randomly 

generated individuals and happens in generations. In each generation, the fitness of every 

individual in the population is evaluated, multiple individuals are stochastically selected from the 

current population (based on their fitness), and modified (recombined and possibly randomly 

mutated) to form a new population. The new population is then used in the next iteration of the 

algorithm. Commonly, the algorithm terminates when either a maximum number of generations 

has been produced, or a satisfactory fitness level has been reached for the population. If the 

algorithm has terminated due to a maximum number of generations, a satisfactory solution may 

or may not have been reached. 

Genetic algorithms find application in bioinformatics, computational science, engineering, 

economics, chemistry, manufacturing, mathematics, physics and other fields. 

A typical genetic algorithm requires: 

 a genetic representation of the solution domain, 

 a fitness function to evaluate the solution domain. 

A standard representation of the solution is as an array of bits. Arrays of other types and 

structures can be used in essentially the same way. The main property that makes these 

genetic representations convenient is that their parts are easily aligned due to their fixed size, 

which facilitates simple crossover operations. Variable length representations may also be used, 
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but crossover implementation is more complex in this case. Tree-like representations are 

explored in genetic programming and graph-form representations are explored in evolutionary 

programming. 

The fitness function is defined over the genetic representation and measures the quality of the 

represented solution. The fitness function is always problem dependent. For instance, in the 

knapsack problem one wants to maximize the total value of objects that can be put in a 

knapsack of some fixed capacity. A representation of a solution might be an array of bits, where 

each bit represents a different object, and the value of the bit (0 or 1) represents whether or not 

the object is in the knapsack. Not every such representation is valid, as the size of objects may 

exceed the capacity of the knapsack. The fitness of the solution is the sum of values of all 

objects in the knapsack if the representation is valid, or 0 otherwise 

Once we have the genetic representation and the fitness function defined, GA proceeds to 

initialize a population of solutions randomly, then improve it through repetitive application of 

mutation, crossover, inversion and selection operators. 

 

 Individual - Any possible solution 

 Population - Group of all individuals 

 Search Space - All possible solutions to the problem 

 Chromosome - Blueprint for an individual 

 Trait - Possible aspect of an individual 

 Allele - Possible settings for a trait 

 Locus - The position of a gene on the chromosome 

 Genome - Collection of all chromosomes for an individual 

 

 Initialization 

Initially many individual solutions are randomly generated to form an initial population. The 

population size depends on the nature of the problem, but typically contains several hundreds or 

thousands of possible solutions. Traditionally, the population is generated randomly, covering 

the entire range of possible solutions (the search space). Occasionally, the solutions may be 

"seeded" in areas where optimal solutions are likely to be found. 

 Selection 
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During each successive generation, a proportion of the existing population is selected to breed 

a new generation. Individual solutions are selected through a fitness-based process, where fitter 

solutions (as measured by a fitness function) are typically more likely to be selected. Certain 

selection methods rate the fitness of each solution and preferentially select the best solutions. 

Other methods rate only a random sample of the population, as this process may be very time-

consuming. 

Most functions are stochastic and designed so that a small proportion of less fit solutions are 

selected. This helps keep the diversity of the population large, preventing premature 

convergence on poor solutions. Popular and well-studied selection methods include roulette 

wheel selection and tournament selection. 

Selection is a genetic operator that chooses a chromosome from the current generation‟s 

population for inclusion in the next generation‟s population. Before making it into the next 

generation‟s population, selected chromosomes may undergo crossover and / or mutation 

(depending upon the probability of crossover and mutation) in which case the offspring 

chromosome(s) are actually the ones that make it into the next generation‟s population. 

Genetic Server and Genetic Library include the following types of selection: 

1. Roulette - A selection operator in which the chance of a chromosome getting selected is 

proportional to its fitness (or rank). This is where the concept of survival of the fittest 

comes into play. 

2. Tournament - A selection operator which uses roulette selection N times to produce a 

tournament subset of chromosomes. The best chromosome in this subset is then 

chosen as the selected chromosome. This method of selection applies addition selective 

pressure over plain roulette selection. 

3. Top Percent - A selection operator which randomly selects a chromosome from the top 

N percent of the population as specified by the user. 

4. Ranked- A selection operator which selects the best chromosome (as determined by 

fitness). there are two or more chromosomes with the same best fitness, one of them is 

chosen randomly. 

5. Random - A selection operator which randomly selects a chromosome from the 

population. 
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 Reproduction 

 

The next step is to generate a second generation population of solutions from those selected 

through genetic operators: crossover (also called recombination), and/or mutation. 

For each new solution to be produced, a pair of "parent" solutions is selected for breeding from 

the pool selected previously. By producing a "child" solution using the above methods of 

crossover and mutation, a new solution is created which typically shares many of the 

characteristics of its "parents". New parents are selected for each child, and the process 

continues until a new population of solutions of appropriate size is generated. Although 

reproduction methods that are based on the use of two parents are more "biology inspired", 

recent researches (Islam Abou El Ata 2006) suggested more than two "parents" are better to be 

used to reproduce a good quality chromosome. 

These processes ultimately result in the next generation population of chromosomes that is 

different from the initial generation. Generally the average fitness will have increased by this 

procedure for the population, since only the best organisms from the first generation are 

selected for breeding, along with a small proportion of less fit solutions, for reasons already 

mentioned above. 

 Termination 

This generational process is repeated until a termination condition has been reached. Common 

terminating conditions are: 

 A solution is found that satisfies minimum criteria 

 Fixed number of generations reached 

 Allocated budget (computation time/money) reached 

 The highest ranking solution's fitness is reaching or has reached a plateau such that 

successive iterations no longer produce better results 

 Manual inspection 

 Combinations of the above 
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3.2 SIMPLE GENERATIONAL GENETIC ALGORITHM PSEUDOCODE 

 Choose initial population 

 Evaluate the fitness of each individual in the population 

 Repeat until termination: (time limit or sufficient fitness achieved) 

 Select best-ranking individuals to reproduce 

 Breed new generation through crossover and/or mutation (genetic operations) and give 

birth to offspring 

 Evaluate the individual fitnesses of the offspring 

 Replace worst ranked part of population with offspring 

 

3.3 OBSERVATIONS 

There are several general observations about the generation of solutions via a genetic 

algorithm: 

 Repeated fitness function evaluation for complex problems is often the most 

prohibitive and limiting segment of artificial evolutionary algorithms. Finding optimal 

solution to complex high dimensional, multimodal problems often requires very 

expensive fitness function evaluations. In real world problems such as structural 

optimization problems, one single function evaluation may require several hours to 

several days of complete simulation. Typical optimization method can not deal with 

such a type of problem. In this case, it may be necessary to forgo an exact 

evaluation and use an approximated fitness that is computationally efficient. It is 

apparent that amalgamation of approximate models may be one of the most 

promising approaches to convincingly use EA to solve complex real life problems. 

 The "better" is only in comparison to other solution. As a result, the stop criterion is 

not clear. 

 In many problems, GAs may have a tendency to converge towards local optima or 

even arbitrary points rather than the global optimum of the problem. This means that 

it does not "know how" to sacrifice short-term fitness to gain longer-term fitness. The 

likelihood of this occurring depends on the shape of the fitness landscape: certain 

problems may provide an easy ascent towards a global optimum, others may make it 

easier for the function to find the local optima. This problem may be alleviated by 

using a different fitness function, increasing the rate of mutation, or by using 
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selection techniques that maintain a diverse population of solutions, although the No 

Free Lunch theorem proves that there is no general solution to this problem. 

 

 Elitism is to copy the best chromosomes (solutions)to new population before 

applying crossover and mutation .When creating a new population by crossover or 

mutation the best chromosome might be lost. It forces GA to retain some number of 

the best individuals at each generation. Its has been found that elitism significantly 

improves performance. 

 GAs cannot effectively solve problems in which the only fitness measure is a single 

right/wrong measure, as there is no way to converge on the solution (no hill to climb). 

In these cases, a random search may find a solution as quickly as a GA. However, if 

the situation allows the success/failure trial to be repeated giving (possibly) different 

results, then the ratio of successes to failures provides a suitable fitness measure. 

 

 Selection is clearly an important genetic operator, but opinion is divided over the 

importance of crossover versus mutation. Some argue that crossover is the most 

important, while mutation is only necessary to ensure that potential solutions are not 

lost. Others argue that crossover in a largely uniform population only serves to 

propagate innovations originally found by mutation, and in a non-uniform population 

crossover is nearly always equivalent to a very large mutation (which is likely to be 

catastrophic). There are many references in Fogel (2006) that support the 

importance of mutation-based search, but across all problems the No Free Lunch 

theorem holds, so these opinions are without merit unless the discussion is restricted 

to a particular problem. 

 Often, GAs can rapidly locate good solutions, even for difficult search spaces. The 

same is of course also true for evolution strategies and evolutionary programming. 

 

 For specific optimization problems and problem instances, other optimization 

algorithms may find better solutions than genetic algorithms (given the same amount 

of computation time). Alternative and complementary algorithms include evolution 

strategies, evolutionary programming, simulated annealing, Gaussian adaptation, hill 

climbing, and swarm intelligence (e.g.: ant colony optimization, particle swarm 

optimization) and methods based on integer linear programming. The question of 
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which, if any, problems are suited to genetic algorithms (in the sense that such 

algorithms are better than others) is open and controversial 

 The implementation and evaluation of the fitness function is an important factor in the 

speed and efficiency of the algorithm. 

 

 

This project presents new encoding methods  

 binary genetic algorithm (BGA)  

  new converting methods for the real-coded genetic algorithm (RCGA).  

These methods are developed for the specific case in which some parameters have to be 

searched in wide ranges since their actual values are not known. The oversampling effect which 

occurs at large values in the wide range search are reduced by adjustment of resolutions in 

mantissa and exponent of real numbers mapped by BGA. Owing to an intrinsic similarity in 

chromosomal operations, the proposed encoding methods are also applied to RCGA with 

remapping (converting as named above) from real numbers generated in RCGA. A simple 

probabilistic analysis and benchmark with two ill-scaled test functions are carried out. System 

identification of a simple electrical circuit is also undertaken to testify effectiveness of the 

proposed methods to real world problems. All the optimization results show that the proposed 

encoding/converting methods are more suitable for problems with ill-scaled parameters or wide 

parameter ranges for searching. 

 

BINARY CODED GA:  

Here ,a population of random strings of 1's and 0's  is initialized  and rates each string according 

to the quality of its result. Depending on the problem, the measure of fitness could be business 

profitability, game payoff, error rate or any number of other criteria. High-quality strings mate; 

low-quality ones perish. As generations pass, strings associated with improved solutions will 

predominate. Furthermore, the mating process continually combines these strings in new ways, 

generating ever more sophisticated solutions. The kinds of problems that have yielded to the 

technique range from developing novel strategies in game theory to designing complex 

mechanical systems 
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REAL CODED GA:  

                GA tailored for the optimization in real-valued search spaces. In contrast to the 

canonical GA, the genome consists of (real-valued) object parameters, i.e., evolution operates 

on the ``natural'' representation. The real-coded GA employs special recombination operators, 

which are hybrid constructs of intermediate recombination (usually ) and mutation. Real-coded 

GAs can exhibit self-adaptive behavior. 

 

3.4 GA ELEMENT 
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3.5 NONLINEAR BLIND SEPARATION BASED ON GA:: 

 

If we are solving some problem, we are usually looking for some solution, which will be the best 

among others. The space of all feasible solutions (it means objects among those the desired 

solution is) is called search space (also state space). Each point in the search space represent 

one feasible solution. Each feasible solution can be "marked" by its value or fitness for the 

problem.  

3.5.1 Real coded genetic algorithm 

Initialization  

Initially many individual solutions are randomly generated to form an initial population, covering 

the entire range of possible solutions (the search space)Each point in the search space 

represents one possible solution marked by its value( fitness) 

Selection  

A proportion of the existing population is selected to bread a new bread of generation. 

Reproduction  

Generate a second generation population of solutions from those selected through genetic 

operators: crossover and mutation. 

In real coded genetic algorithm ,two constant are taken, alpha and beta. These two constants 

are use in the reproduction process. 

child_1=p2+(rand*alpha*(p2-p1)); 

child_2=p1+(rand*alpha*(p2-p1)); 

where child_1,child-2 are two child population. 

p1 and p2 are parent population 

Constant beta is used during mutation  

mc=cpop (mutpos (1,1),1)+beta*((2*rand(num_ic,p))-1); 
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Where, mc is the mutated child 

mutpos is the position of mutation 

cpop is the total child population 

 

Termination  

A solution is found that satisfies minimum criteria  

 Fixed number of generations found. 

 Allocated budget (computation, time/money) reached 

 The highest ranking solution‟s fitness is reaching or has reached. 

 

 

3.5.2 Binary  coded genetic algorithm 

Initialization  

Initially many individual solutions all as the string of 1‟s and 0‟s  are randomly generated to form 

an initial population, covering the entire range of possible solutions (the search space)Each 

point in the search space represents one possible solution marked by its value( fitness).after 

first iteration each time the previous real  value has to be changed to binary for further 

processing 

Selection  

A proportion of the existing population is selected to bread a new bread of generation. In our 

project we have taken tournament selection 

Reproduction  

Generate a second generation population of solutions from those selected through genetic 

operators: crossover and mutation. 

In binary coded genetic algorithm , 

xoverchild(j,1+n:ran_cross(i)+n)=Fit_population(j+1,1+n:ran_cross(i)+n);  
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here, xoverchild is the child produced due to cross over 

j is denotes the parameter that is to be optimized 

Fit_population is total parent population 

Here in crossover we are taking single point crossover. A random point is chosen on the 

individual chromosomes (strings) and the genetic material is exchanged from beginning to this 

point. 

 

 

Termination  

A solution is found that satisfies minimum criteria  

 Fixed number of generations found. 

 Allocated budget (computation, time/money) reached 

 The highest ranking solution‟s fitness is reaching or has reached. 
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3.6 Block diagram of nonlinear ICA using real coded GA  
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Mix the 2 signals through a linear matrix A and then pass it 

through the non linear channel modeled by functions, then 
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E 

The  Fast ICA calculates the W matrix for all the                 

chromosomes in the gene pool 

    

Prewhiten the Y outputs for all the chromosomes using the 

prewhitening function   

Calculate the evaluation function for all the chromosomes 

of the pool using a mutual independence function   

Use the Genetic algorithm functional block with the 

evaluation criteria being the evaluation function and use 

operator such as crossover .recombination and mutation to 

find the optimal G matrix 

F 
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After the optimization of the G matrix of all population , the 

G „s first element is chosen and is used to calculate the 

intermediate signal values using the approximate G-

coefficient odd polynomial function  

Find the separated signals by multiplying the intermediate 

signals with optimized  W matrix obtained for the best G 

matrix(most fit chromosome) 

Plot the 2 separated output signals which 

are similar in pattern to the 2 inputs  and 

are attenuated   with slight distortion 

        STOP 
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3.7 Block diagram of nonlinear ICA using binary GA  
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The  Fast ICA calculates the W matrix for all the                 

chromosomes in the gene pool 

    

Prewhiten the Y outputs for all the chromosomes using the 

prewhitening function   

Calculate the evaluation function for all the chromosomes 

of the pool using a mutual independence function   

Use the Genetic algorithm functional block with the 

evaluation criteria being the evaluation function and use 

operator such as crossover .recombination and mutation to 

find the optimal G matrix. All the operations are at the bit 

level where the crossover and mutations take place directly 

on bits and then the child population is decoded from these 

binary values 

F 



57 

 

 

 

 

 

 

 

 

                            

 

 

 

 

  

 

 

 

 

 

 

 

 

          

 

 

 

G 

After the optimization of the G matrix of all population , the 

G „s first element is chosen and is used to calculate the 

intermediate signal values using the approximate G-

coefficient odd polynomial function  

Find the separated signals by multiplying the intermediate 

signals with optimized  W matrix obtained for the best G 

matrix(most fit chromosome) 

Plot the 2 separated output signals which 

are similar in pattern to the 2 inputs and 

are attenuated with slight distortion 

        STOP 
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3.8 RESULT OF BSS  USING ICA AND REAL CODED GA( SINE WAVE & RANDOM NOISE) 
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3.9 RESULT OF BSS  USING ICA AND REAL CODED GA( SQUARE WAVE & RANDOM 

NOISE) 
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3.10 RESULT OF BSS  USING ICA AND BINARY  GA( SINE WAVE & RANDOM NOISE) 
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3.11 RESULT OF BSS  USING ICA AND BINARY  GA( SQUARE WAVE & RANDOM NOISE) 
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4.1 INTRODUCTION TO BACTERIAL FORAGING ALGORITHM 

 

Natural selection tends to eliminate animals with poor foraging strategies and favor the 

propagation of genes of those animals that have successful foraging strategies. After many 

generations poor foraging strategies are either eliminated or shaped into good ones. Animals 

search for and obtain nutrients in a way that maximizes E/T where E is energy obtained per time 

T. Recently, search and optimal foraging of bacteria have been used for solving optimization 

problems .To perform social foraging, an animal needs communication capabilities and over a 

period of time it gains advantages that can exploit the sensing capabilities of the group. This 

helps the group to predate on a larger prey, or alternatively, individuals could obtain better 

protection from predators while in a group. 

 

4.1.1 Overview of chemotactic behavior of Escherichia coli 

In our research, we considered the foraging behavior of E. coli, which is a common type of 

bacteria . Its behavior and movement comes from a set of six rigid spinning (100–200 r.p.s) 

flagella, each driven as a biological motor. An E. coli bacterium alternates through running and 

tumbling. Running speed is 10–20 lm/s, but they cannot swim straight.  

4.1.2 Decision making in foraging 

The chemotactic actions of the bacteria are modeled as follows: 

• In a neutral medium, if the bacterium alternatively tumbles and runs, its action could be similar 

to search. 

• If swimming up a nutrient gradient (or out of noxious substances) or if the bacterium swims 

longer (climb 

up nutrient gradient or down noxious gradient), its behavior seeks increasingly favorable 

environments. 

• If swimming down a nutrient gradient (or up noxious substance gradient), then search action is 

like avoiding unfavorable environments. 

Therefore, it follows that the bacterium can climb up nutrient hills and at the same time avoids 

noxious substances. The sensors it needs for optimal resolution are receptor proteins which are 

very sensitive and possess high gain. That is, a small change in the concentration of nutrients 

can cause a significant change in behavior. This is probably the best-understood sensory and 

decision-making system in biology  
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4.1.3 Reproduction  

Mutations in E. coli affect the reproductive efficiency at different temperatures, and occur at a 

rate of about 10 per gene per generation. E. coli occasionally engages in a conjugation that 

affects the characteristics of the population. 

 

4.1.4 Types of taxis 

There are many types of taxis that are used in bacteria such as, aero taxis (attracted to oxygen), 

Photo taxis (light), thermo taxis (temperature), magneto taxis (magnetic lines of flux) and some 

bacteria can change their shape and number of flagella (based on the medium) to reconfigure in 

order to ensure efficient foraging in a variety of media. 

 

4.1.5 Swarming 

 Bacteria could form intricate stable spatio-temporal patterns in certain semisolid nutrient 

substances and they can survive through a medium if placed together initially at its center. 

Moreover, under certainconditions, they will secrete cell-to-cell attractant signals so that they will 

group and protect each other. 

 

4.1.6 Representation of swim/run and tumble 
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4.2 The optimization function for the bacterial foraging (BF) algorithm 

 
Optimization consists of four different stages- 

 Chemotaxis 

 Swarming 

 Reproduction 

 Elimination & Dispersion 

4.2.1 Chemo taxis 

It is defined to be a tumble followed by a tumble or tumble followed by a run. To represent a 

tumble, a unit length random direction Ø(j) is generated, this will be used to define the direction 

of movement after a tumble. 

Mathematically,  

θ I (j+1,k,l)= θ I (j,k,l)+C(i)* Ø(j) 

 

Where C(i) =size of the step taken in the random direction. = position of I th bacterium at j th 

chemo tactic loop, k th reproduction loop and l th elimination-dispersal loop. If at θ I (j+1,k,l),  the 

cost function is better  than at θ I (j,k,l),   another step of size C(i) is taken in the same direction. 

This swim is continued as long as it continues to better the cost function, but only upto a max. 

number of steps Ns. 

 
4.2.2 Reproduction 

After Nc chemo tactic steps, a reproduction step is taken. The population is sorted in order of 

ascending order of cost function .Then, Sr = S/2 least healthy bacteria die and the other 

healthiest bacteria each split into two bacteria, which are placed at the same location.  

 

4.2.3 Elimination and Dispersal 

This is done to prevent the bacteria from being trapped in local minima. A bacterium is chosen 

according to a preset probability Ped, to be dispersed and moved to another position within the 

environment. They have the effect of possibly destroying the chemo tactic progress. But, they 

also have the effect of assisting in chemo taxis, since dispersal may place the  bacteria near 

good food sources. 
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4.3 A simple Bacterial Foraging Algorithm 

The algorithm to search optimal values of parameters is described as follows: 

 

[Step 1] Initialize parameters n; N; Nc; Ns; Nre; Ned; Ped, C(i)(i=1,.. N); Ø(j) 

where, 

n: Dimension of the search space, 

N: The number of bacteria in the population, 

NC: Chemotactic steps, 

Nre: The number of reproduction steps, 

Ned: The number of elimination–dispersal events, 

Ped: Elimination–dispersal with probability, 

C(i): The size of the step taken in the random direction specified by the tumble. 

 

[Step 2] Elimination–dispersal loop: l = l+1. 

[Step 3] Reproduction loop: k = k+1. 

[Step 4] Chemo taxis loop: j = j+1. 

             [sub step a] For i = 1,2,. . . ,N, take a chemo tactic step for bacterium i as follows. 

[sub step b] Compute fitness function, ITSE (I,j,k,l) 

[sub step c] Let ITSElast = ITSE(i, j,k, l) to save this value since we may find a better 

cost via a 

run. 

[sub step d] Tumble: generate a random vector Λ(i) , with each element Λ m(i), 

 m = 1,2,. . . ,p, a  Random number on [-1, 1]. 

[sub step e] Move: Let 

θ I (i+1,j,k)= θ I (i,j,k)+C(i)* Λ(i)/√ ΛT(i) Λ(i) 

This results in a step of size C(i) in the direction of the tumble for bacterium i. 

[sub step f] Compute ITSE(i, j + 1,k, l). 

[sub step g] Swim. 

(i) Let m = 0 (counter for swim length). 

(ii) While m < Ns (if have not climbed down too long). 

• Let m = m + 1. 

• If ITSE(i, j , k,l) >ITSElast(if doing better), let ITSElast = ITSE (i,j+1,k,l)and let 

θ I (i+1,j,k)= θ I (i,j,k)+C(i)* Λ(i)/√ ΛT(i) Λ(i) 

and use this θ I (i+1,j,k) to compute the new ITSE(I,j+1,k,l) as we did in [sub step f]. 
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• Else, let m = Ns. This is the end of the while statement. 

[sub step h]  Go to next bacterium (i,1) if i ≠N (i.e., go to [sub step b] to process the next 

bacterium). 

[Step 5] If j < NC, go to step 3. In this case, continue chemo taxis,  

[Step 6] Reproduction: 

[sub step a] For the given k and l, and for each i = 1,2,. . . ,N, let 

ITSE I 
health   = ∑ITSE(i,j,k,l) 

be the health of the bacterium i (a measure of how many nutrients it got over its lifetime 

and how successful it was at avoiding noxious substances). 

Sort bacteria and chemo tactic parameters C(i) in order of ascending cost ITSEhealth 

(higher cost means lower health). 

[sub step b] The Sr bacteria with the highest ITSEhealth values die and the remaining Sr 

bacteria with the best values split (this process is performed by the copies that are made 

are placed at 

             the same location as their parent). 

[Step 7] If k < Nre, go to [step 3]. In this case, we have not reached the number of specified 

reproduction     steps, so we start the next generation of the chemo tactic loop. 

 

 [Step 8] Elimination–dispersal: For i = 1,2,. . . ,N, with probability Ped, eliminate and disperse 

each bacterium, which results in keeping the number of bacteria in the population constant 

. To do this, if a bacterium is eliminated, simply disperse one to a random location on the 

optimization domain. If l < Ned, then go to [step 2]; otherwise end. 
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4.4 Block diagram of nonlinear ICA using BFO  ::     
 

                                                                                                 

 

                        

 

 

 

 

 

                                             

 

 

 

 

      

 

 

 

 

 

 

 

                                

                                                                                                                                                                                                    

 

 

      START 

Generate the 2 input signals one of which is 

sinusoidal/square and the other is a random noise signal 

    I=1           I=I+1 

 

   Is I<=No of Gentn? 

  

   YES 

   NO 

Mix the 2 signals through a linear matrix A and then pass it 

through the non linear channel modeled by functions, then 

prewhiten the mixed signal 

Take inputs for the number of odd 

polynomial parameters, the 

maximum number of iterations and 

the number of bacteria in the pool 

Initialize the various parameters required for the fast ICA , 

the BFO and the various matrices. Initialize the population of 

bacteria with random values 

E 

F 

G 
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Find the gx values   for 

all the bacteria 

E 

The  Fast ICA calculates the W matrix for all the                 

bacteria in the population 

    

Prewhiten the Y outputs for all the bacteria using the 

prewhitening function   

Calculate the evaluation function for all the bacteria of the 

pool using a mutual independence function   

Use the Bacterial Foraging functional block with the 

evaluation criteria being the evaluation function and use 

operator such as chemotaxis, reproduction, elimination  

and dispersion to find the optimal G matrix.  

F 
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Find the separated signals by multiplying the intermediate 

signals with optimized W matrix obtained for the best G 

matrix(most fit chromosome) 

Plot the 2 separated output signals which 

are similar in pattern to the 2 inputs and 

are attenuated with slight distortion 

        STOP 

G 

After the optimization of the G matrix of all bacteria , the G 

„s first element is chosen and is used to calculate the 

intermediate signal values using the approximate G-

coefficient odd polynomial function  
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4.5 RESULT OF BSS  USING ICA AND BFO( SIN WAVE & RANDOM NOISE) 

                                              

                      INPUT 1                                                                                          INPUT 2 

                                                                                    

                                                                                 

                                                                                                                           

                                                   

                MIXED SIGNAL1                                                                      MIXED SIGNAL 2 

 

                                                                            

                                          

 

                                 

                 OUTPUT SIGNAL  1                                                      OUTPUT SIGNAL 2 

 

Linear Mixer 

and Non 

Linear 

Channel 

Non Linear ICA using 

Fast ICA for optimization 

of mixer and Bacterial 

Foraging for 

approximation of the non 

linear functions 
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4.6 RESULT OF BSS  USING ICA AND BFO( SQUARE WAVE & RANDOM NOISE) 

                                                                               

                      INPUT 1                                                                                          INPUT 2 

                                                                                    

                                                                                 

                                                                                                                                                                                               

                MIXED SIGNAL1                                                                      MIXED SIGNAL 2 

 

                                                                                                                               

 

 

                                                                                                                                                         

       OUTPUT SIGNAL  1                                                                             OUTPUT SIGNAL  

Linear Mixer 

and Non 

Linear 

Channel 

Non Linear ICA using 

Fast ICA for optimization 

of mixer and Real Coded 

GA for approximation of 

the non linear functions 
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4.7  Comparison between various optimization techniques 

 

 

Sl. 
No 
 

 

 

 

 

Type of input 
along with the 
random noise 
input 

 

Particle 
Swarm 
Optimization  

 

Real coded 
Genetic 
Algorithm 

 

Binary 
Genetic 
Algorithm 

 

Bacterial 
Foraging  

 

1. 
 

 

 

 

 

 

 

 

Sinusoidal Input 
No. of 

iterations=  

50 

No. of 

particles=  

40 

No. of 

parameters=6 

 

MSE for signal= 

  1.5769e-004 

MSE for random 

Noise=   0.0514 

 

No. of 

iterations= 200 

 

No. of 

chromosomes= 

20 

 

No. of 

parameters=5 

 

MSE for 

signal=.0050 

 

MSE for random 

Noise=.0719 

 

No. of 

iterations=100  

 

No. of 

chromosomes=

10 

 

No. of 

parameters=3 

 

MSE for signal= 

0.0054 

 

MSE for random 

Noise= 0.0815 

 

No. of 

iterations=25  

 

No. of bacteria= 

12 

 

No. of 

parameters=5 

 

MSE for 

signal=.0111 

 

MSE for random 

Noise=.0655 

 

 

2. 
 

 

 

 

 

 

 

 

Square Input 
No. of 

iterations=  

200 

No. of 

particles=  

40 

No. of 

parameters=6 

 

MSE for signal= 

.0041 

MSE for random 

Noise=.0807 

 

No. of 

iterations=50  

 

No. of 

chromosomes=

20  

 

No. of 

parameters=6 

 

MSE for 

signal=9.6164e-

4 

 

MSE for random 

Noise=.0756 

 

No. of 

iterations=45  

 

No. of 

chromosomes 

=15  

 

No. of 

parameters=4 

 

MSE for 

signal=.0034 

 

MSE for random 

Noise=.0555 

 

No. of 

iterations=25 

 

No. of bacteria 

=12  

 

No. of 

parameters=5 

 

MSE for 

signal=3.6190 

 

MSE for random 

Noise=0.5730 
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4.8 DISCUSSION 

We observe that the Particle Swarm Optimization technique is easier to implement as it follows 

a very simple update methodology .The Genetic Algorithms (both real coded and binary ) 

ensure a convergence but may take higher number of iterations. The Bacterial Foraging 

technique is complex in nature but ensures a rapid convergence. All the above 3 mentioned 

techniques have their own merits and demerits but  are competent enough to perform non linear 

blind source separation. 
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Chapter 5 

 

 

                 

 

                       

 

Conclusion 
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                                               CONCLUSION 

 

In this project, we have used PSO ,GA ,BFO and ICA to carry out non linear mixed signal blind 

source  separation. High order odd polynomial is applied to fit non linear mixed function and 

establish non linear signal blind separation model. Estimating the parameter of polynomial by 

PSO algorithm and then iterating the linear non mixed matrix by ICA has obtained good effect. 

Similarly we have applied genetic algorithm(both binary and real coded)  and bacteria foraging 

technique to estimate the parameter of the odd polynomial and thereafter we have compare the 

result of the all three algorithms. 
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