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Abstract

Direct sequence-code division multiple access (DS-CDMA) technique is used in cellular sys-

tems where users in the cell are separated from each other with their unique spreading codes. In

recent times DS-CDMA has been used extensively. These systems suffers from multiple access

interference (MAI) due to other users transmitting in the cell, channel inter symbol interference

(ISI) due to multipath nature of channels in presence of additive white Gaussian noise (AWGN).

This thesis presents an investigation on design of fuzzy based receivers for DS-CDMA system.

Fuzzy based receiver has been proposed to work as chip level based (CLB) receivers and also

multi user detection (MUD) receivers. It is seen that fuzzy receiver is capable of providing

performance close to optimal radial basis function (RBF) receivers and provide considerable

computational complexity reduction.

Extensive simulation studies demonstrate the performance of the fuzzy receivers and the per-

formance have been compared with RAKE receiver, matched filter (MF) receiver, minimum

mean square error (MMSE) receiver and RBF receiver.
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Chapter 1
Introduction

1.1 Introduction

The aim of the personal communication system (PCS) is to provide communication services

in any form from any place at any time through any medium and without any delay by using

one pocket-sized unit at minimum cost with acceptable quality and security through the use of

a single personal telecommunication reference number [2]. Communication is often called the

market of future. However consumer needs and wishes cannot be satisfied if the required tech-

nology is not available at a reasonable price. As the society tends towards mobility, technology

tends towards portability.

Now days most of the people are familiar with a number of mobile radio communication equip-

ment used in day to day life. Remote controllers for home entertainment equipment, cordless

telephones, pagers and cellular telephones are examples of such mobile radio communication

system. Generally the term mobile is used to specify any radio terminal that can be moved

during operation or in other words radio terminal that can be attached to a high speed mobile

platform [3]. However, the cost, complexity, performance, and the type of service offered by

each of these mobile systems are vastly different. This has lead to variety of research in this

field. The growing demand for capacity in the wireless communication system is the driving

force behind improving established network and the development of a new worldwide mobile

standard.

1.2 Mobile communication

The limitation imposed on communication by the channel bandwidth and the signal to noise

ratio (SNR) is defined by Shannon equation [4]

 "! � G <?>A@ '
�
� ������ (1.1)

1



Introduction

where
 �!

is the capacity of the communication channel measured in bits/sec, G is the band-

width in Hz and � ��� is the SNR. This relationship between capacity and bandwidth has led

to an increased demand, and hence an increased scarcity of the resources. In mobile commu-

nication system, the available frequency spectrum is limited and hence it must be exploited

efficiently. In order to do so mobile communication uses techniques based on multiuser com-

munication, where the aim is to accommodate as many transmitting users as possible using a

certain frequency band. This can be achieved by multiple access techniques. Mobile commu-

BS 1

BS 2

BS 3

BS 5

BS 6

BS 7

BS 4

Cell 1

Cell 1

Cell 2

Cell 3

Cell 4 Cell 5

Cell 6

Cell 7

Cell F Cell A

Cell E

MSC

Public switched telephole network           (PSTN)

PSfrag replacements

 "# � !

Figure 1.1: Cellular communication system

nication is analogous to cellular communication. It can be thought of as terrestrial network of

cells [5], depicted as hexagons because it covers the largest area and a fewest number of cells

can cover the geographic region. Here the investigations are carried out in a single cell with
�

simultaneously transmitting users for the downlink scenario. Each hexagon cell covers a

certain region and has a base station in its centre, to which all the users in the cells are linked

[6]. The base stations are connected to mobile switching centre (MSC). MSC is responsible for

connecting all mobiles to the public switched telephone network (PSTN) in the cellular system

as shown in Figure 1.1.
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1.3 Multiple access techniques

The main task of the communication system designer is to make the best use of the system

resources. The challenge is to make the most efficient use of the RF bandwidth. Frequency

division multiple access (FDMA), Time division multiple access (TDMA) and Code division

multiple access (CDMA) are the three major access techniques, used to share the available

bandwidth in a mobile communication system to provide group of users in one RF channel.

CDMA technique is a wideband1 system and it comes under spread spectrum multiple access

technique. Figure 1.2(a) shows the working of FDMA, in which every user communicate over

an individual channel over the whole period of time. FDMA is often referred to as the first gen-

eration system. In TDMA system, more then one user can share the same channel at the same

time as shown in Figure 1.2(b). This multiple access method is used in the global system for

mobiles (GSM) system, which was the first digital cellular standard for voice communications

and is termed as the second generation system.

1

(a) (b)

Uplink DownlinkTotal Channel
f

T

f

Code Code

UserUUser1

Time Slot

2

1

2

2

1

2

User2
1

T

Figure 1.2: Working of FDMA and TDMA system

1.4 Spread spectrum multiple access (SSMA)

SSMA uses signal, which have a transmission bandwidth that is several order magnitude higher

then the minimum required RF bandwidth [7]. pseudonoise (PN) sequence converts a narrow

band signal to a wideband noise like signal before transmission. SSMA also provides immunity

to multipath interference and robust multipath access capability [3]. There are three types of

SSMA techniques. Frequency hopped multiple access (FHMA), Time Hopped Multiple Ac-

1transmission bandwidth of single channel is much large then the coherence bandwidth of the channel

3
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    User 1
User 2
User 3
User 4
User 5
User 6

    User 1
User 2
User 3
User 4
User 5

User 6

Code

f

T

Uplink Downlink

Figure 1.3: Working of CDMA system

cess (THMA) and Direct sequences multiple access (DSMA) or Code division multiple access

(CDMA).

1.5 Code division multiple access (CDMA)

In CDMA systems, a narrow band message signal is convolved with a very large bandwidth

signal called the spreading sequence. The spread signal is a PN code sequence that has a

chip rate which is much greater the data rate of the message. All users in the CDMA system

use the same carrier frequency and transmit simultaneously. Each user has its own spreading

code called PN code word [8], which are approximately orthogonal to each other. All other

code words appear as noise due to decorrelation. For detection of message signal, the receiver

needs to know the code word used by the transmitter. It is believed that the capacity of the

CDMA system is much greater then that of established TDMA system, which makes CDMA

a candidate for third generation systems [9, 10]. The Figure 1.3 shows the working of CDMA

system. In CDMA system all users share a common channel in time and frequency. All users

transmit continuously over the full channel bandwidth. the users are separated only in space.

1.6 Literature review

The simplest DS-CDMA receivers are based on matched filters (MFs) [11] for a non-dispersive

channel and RAKE receivers for multipath channels. The multiple access interference (MAI)

performance of matched filter/ RAKE receivers can be enhanced by applying cancellation at

the expense of increased receiver complexity. There are many receiver designs based on lin-

ear equalizer structure. For example those based on MMSE equalizer [12]. It has been shown

that the DS-CDMA can be a pattern recognition problem [13] in multi dimentional space. DS-
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CDMA receivers have been designed using Volterra series expansion, processing the received

signal at chip rate. Comparatively less complex multiuser detection (MUD) receivers using

radial basis function network (RBFN) have also been used for this work which processes the

signal at symbol rate [14, 15]. Then another receiver is proposed based on linear programming

(LP) [16]. A hybrid receiver [17] was also proposed which combined LP and RBFN. This struc-

ture has lower complexity then the full RBF and possesses good performance. Recent finding

shows that space division multiple access(SDMA)-recurrent networks provides better perfor-

mance as compared to linear square root kalman (SRK) algorithm based techniques. Hybrid

CDMA-SDMA exhibits a very good potential for increase in the capacity and the performance

of mobile communication system [18]. Modified decision-based network which improves the

MUD detector performance has been discussed in [19]. Improvement in performance can be

achieved by using chip-level decision feedback equalizer (DFE) as compared to other adaptive

chip-level linear equalizer. The number of users can be increased by using adaptive chip-level

DFE with satisfactory performance [20].

1.7 Object of the work

The work proposed here intends to develop non-linear receivers for DS-CDMA using fuzzy and

neuro fuzzy technique. Fuzzy filters [21] are nonlinear filters that can be incorporate linguistic

information in the form of ��� � � � �
	��� � � � fuzzy rules. Fuzzy filters have been used for

equalization. Review of the fuzzy-based nonlinear channel equalization has also been provided

in [22]. This non-linear receiver minimizes the probability of error when deciding on a data

bit. It has already been shown that RBF equalizers have superior performance then the linear

equalizers in multipath channel and that an RBF filter has superior performance to an MMSE

filter in a non-dispersive multipath CDMA system. Fuzzy receiver provides considerable im-

plementational advantages over RBF receiver [22]. Additionally fuzzy receiver provides an

efficient method for co-channel interference (CCI) suppression [23]. Fuzzy receivers has also

been used in mobile communication applications. Considering close relationship between RBF

and fuzzy system it is thought that fuzzy system can provide efficient receiver architecture for

DS-CDMA downlink scenario.

In this work it is proposed to carry out the following studies.

� Implementation of Fuzzy filter for the DS-CDMA downlink receiver.
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� Investigate implementational issues related to fuzzy receivers for DS-CDMA system.

1.8 Layout of the thesis

This thesis is organized into six chapters. Current chapter is a brief introduction into mobile

communication system and ends with the thesis layout Figure 1.4. Following this introduc-

tion, Chapter 2 provides a more detail discuss on DS-CDMA system. Chapter 3 discusses the

fundamentals of fuzzy logic system and design of fuzzy filters. In Chapter 4 fuzzy implemen-

tation of chip level based (CLB) receivers and its is compared with the established linear and

direct radial basis (DRBF) receiver. Following this multiuser detection (MUD) receivers with

reduced computational complexity has been discussed in Chapter 5. Finally Chapter 6 provides

concluding remarks and future work.

DS−CDMA system
overview.
Chapter 2

Chapter 3

Introduction to fuzzy
systems.

receiver for
Fuzzy based CLB 

DS−CDMA.
Chapter 4

Fuzzy based MUD
receiver for

Chapter 5
DS−CDMA.

Introduction
Chapter 1

Conclusion
Chapter 6

Figure 1.4: Layout of the thesis
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Chapter 2
DS-CDMA System and Overview

2.1 Introduction

In this section the principle of spread spectrum and its application in multiple access is dis-

cussed. Multiple access schemes are used to allow many mobile users to share simultaneously

a finite amount of radio channels in a fixed radio spectrum. The sharing of the spectrum is

required to achieve high capacity by simultaneously allocating the available bandwidth to mul-

tiple users.

Following this introduction, spread spectrum (SS) communication technique is discussed in

the section 2.2. The application of this SS technique to produce a multiple access system is

described in the section 2.3. The section 2.4 deals with the construction of a simplified form of

a baseband signal to be transmitted, while section 2.5 considers the effects of multipath channel

on this signal. Section 2.6 discusses the simplest receiver structure using matched filter (MF).

Principle structure of multiuser detector is described in section 2.7. While generation of Gold

sequence is discussed in section 2.8 and the chapter ends with the concluding remark.

2.2 Spread spectrum communication techniques

SS is the technique in which an already modulated signal is modulated for the second time

in such a way as to produce a waveform which interfere in a barely noticeable way with any

other wave operating in the same frequency band [24]. This feature is called low probability

of interception (LPI). To allocate each user a specific signature, or spreading sequence and

to use this sequence to expand the bandwidth, or to spread the spectrum of the signal to be

transmitted, is known as the SS multiple access technique. Both transmitter and the receiver

know this spreading sequence. It is also independent of the data bits [25]. All the sequences are

randomly distributed, and there is no correlation between any two sequences. Let the sequence

of data bits 8 � ����� have the period
� � � ' and the spreading sequence of length

�
, generally called

chips to distinguish them from the data bits have the frequency
5 !
) �76 where

5 !
) � 6�� � � � � � � ' � .
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Original Data

Spread signal
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Figure 2.1: Spread spectrum concept in frequency domain

In other words it is assumed that
5 !
) � 6 �

5 � � ' . From the above assumption it can be seen

that the transmitted data is random and independent, the power spectral density (PSD) of the

original unspread signal is given by [26].

� J � 5 � � � � � '
� � & +��

5 � � � '
�
5 � � � ' � (2.1)

And assuming that spreading sequence is pseudorandom in nature, the PSD of the spreaded

signal is given by

� H�H � 5 � � �5 !
) � 6
� � & +��

5 � 5 ! ) �76
�
5 � 5 ! ) �76 � (2.2)

The relationship between the above spectral densities is sketched in the Figure.2.1. It may be

seen that the effect of narrow-band interference1 or white noise2 which interferes with the sig-

nal between transmission and reception is reduced due this inverse despreading operation. The

enhancement in performance due to the bandwidth expansion at the transmitter and contraction

process at the reception is termed as processing gain (PG) D
;

. The processing gain is repre-

sented as the ratio of bandwidth associated with the spreaded signal G H�H and that of the data

signal GKJ .

D
; � G HH

GKJ �
� � � '� !
) �76

(2.3)

The processing gain
�

, is the length of the spreading sequence, expressed in decibel form as

: ; � � �=<?>A@ $CB � D
; � (2.4)

1the interference is from other existing communication systems
2the noise is due to finite power over a wide range of frequencies e.g. thermal noise
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The SS signal is largely tolerant to external interfering factors, there will be degradation in

performance as the number of SS signals in the same cell increases. The work presented here

will focus only on inter-cell3 , with intra-cell4 interference being modeled by encompassing its

effects into the overall background noise level. To make a good comparison, the background

noise is expressed in terms of a modified form of signal to noise ratio (SNR), it takes account

the processing gain.

� �
� B

� � �A3�� D $CB � D ;� � '�� (2.5)

Where � ����� B is the signal to Gaussian noise ratio, and � ' is the Gaussian noise variance.

2.3 Basic principles of DS-CDMA system

This section focuses on mobile communication system based on SS, particularly DS-CDMA.

The SS signal is obtained from convolving the current data bit and the spreading sequence.

Noise

Channel

Receiver

Output
signal Source decoder FEC decodor De−Interleaver Despreader

/ De−modulator
Synchronization

Combiner
Synchronizer /

Pre−processing

Pre−processing and modulation

Interleaver

Modulation Spreading 

Spreading
sequence 2

Spreading
sequence 3

Spreading 
sequence U

User 3 User UUser 2

Transmitter

User 1 Source coding FEC Coder

sequence 1

PSfrag replacements

Figure 2.2: Block diagram for general DS-CDMA communication system

Transition of a single user system to a multiple access system is achieved by allocating each

3interference from other users in the same cell
4leakage from adjoining cells

9



DS-CDMA System and Overview

user a unique spreading sequence. The basic elements of a DS-CDMA communication sys-

tem is shown in the Figure 2.2. The input signal is first pre-processed by incorporating source

coding and forward error correction (FEC), before the interleaving stage is applied to separate

adjacent bits in an effort to provide some protection from a fading channel producing a block

of errors. Binary phase shift keying (BPSK) modulation is applied before performing the band-

width expansion using user-specific spreading sequence. Other users encoded and spreaded

signal is then combined synchronously to form the transmitted signal. At the receiver the signal

is despreaded and demodulation operations are performed. The requited data may be estimated

by decoding the resultant data.

2.4 DS-CDMA Transmitter principle

The simplest model for a transmitter for downlink of a DS-CDMA system is shown in the

Figure 2.3. The transmitted signal, � ��� � � + � at time M � + � � � ' is constructed by coherently

summing the spreading sequence of each user,
 �%$ � by that user’s data bit 8 � ����� over all active

users, to give

� ��� � � + � �
��
���
$

 �%$ � 8 � ����� (2.6)

where � 	 & 	 �
, � 	 + 	 �

and � is the time index of the user transmitted bit. In the uplink

case the process is same except that the users transmit their signal independent of each other

and are no longer synchronized. This is modeled by inserting user-specific time delay on the

resulting spread signal corresponding to each user.

Interferring Users

PSfrag replacements ���
���
	

���
���
	

��
���
	

�
��� �

�
��� �

�
 � �

� � ���
������	

Figure 2.3: Simplified synchronous DS-CDMA downlink transmitters for
�

active users
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2.5 Multipath channel background

The received signal consist of direct line of site (LOS) components and a few non-LOS com-

ponents. The received signal consists of a combination of individual reflected signals from the

obstacles, like buildings etc, between the transmitter and the receiver and those arrives at var-

ious delay, depending on the length of each RF paths [27]. This situation is called multipath

channel. These can be time varying, due to the motion of the receiver with respect to the trans-

mitter. This process is represented in Figure.2.4, where the mobile receives a LOS component

and three reflected components. In addition the signal is corrupted by additive white Gaussian

noise.

LOS

Reflected Path

Path

Receiver

Bulding C

Bulding B

Bulding A

Base Station

Figure 2.4: Example of multipath, the received signal consist of many reflections and delayed
versions of the transmitted signal

2.5.1 Channel effects

Channel performance is described as the range of frequency over which the channel effects

remain same and is called the coherence bandwidth, denoted as
5
B , and the time duration over

which the channel response is invariant which is called the coherence time, denoted as
�
B .

These parameters can be calculated [27] from the two dual functions, the multipath intensity

profile
� ��� � and, the Doppler power spectral density

� ��� � , which are the measure of the re-

ceived signal power as the function of delay time � and the Doppler shift � respectively.

2.6 DS-CDMA Receiver principles

The work of the receiver is to recover the data 8 � ����� from the spectrum of the received signal

vector �9��� � � + � . This is done by multiplying the received signal with the used spreading

sequence, which is generated locally by the receiver. The received signal, consisting of
�

chips
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is passed to the block of delay elements, where  "%$ represents a delay of one chip, until the

complete
�

chip signal has been read. These values are then passed to multiplier block in

parallel, which forms the scalar product of �9��� � � + � and the tap weight vector � � �  �%$ �
where

�
is the number of tap weights. This is shown in Figure 2.5 for

� � � . This finite

impulse response (FIR) filter block produces a soft output
�8 � ����� , which is then passed through

the decision block to give a hard estimate,
�80� ����� of the original data bit 89� ����� .

Output

PSfrag replacements
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Figure 2.5: DS-CDMA correlator receiver with 7 tap weights

This is the structure of simplest receiver, commonly known as MF receiver with
�

tap weights
� ��� � 	 +�	 �

, matched to the original spreading sequence of the desired user. In practice,

synchronization of the chip level signal is a highly non-trivial process [25]. The performance

of this receiver has been shown to degrade considerably as the number of simultaneously trans-

mitting users increases [28]. Hence improving the capacity of SS systems is achieved either

by reducing the total interference5 by enhancing the single user detection methods or by mak-

ing use of multiple access interference (MAI) through improved interference cancellation or

multiuser detection technique (MUD). The next section discusses the basic principle of MUD

technique.

2.7 Principle of MUD technique

Instead of canceling the interference from the other users, the MUD operates by treating the

MAI as additional information, which is used to obtain a better estimate of the desired data

[29]. The basis principle of the MUD technique is shown in the Figure 2.6. The preprocessing

5combination of multiple access interference and background noise
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block receives the signal �0��� � � + � at chip rate. �9��� � �K+ � is then passed through the bank of

MFs in non-dispersive channel or else RAKE receivers in case of channel ISI, which calculates

a set of soft decisions
�� ����� � � �8

$
����� 


�8
'
����� 
 � � � 


�89�"������� . The signal �9��� � � + � is down

sampled by
�

. The vector
�� ����� contains sufficient statistics for the detection of

�8 ������� , then the

individual soft decision
�8 � ����� .

Receiver

Network

Block
Preprocessing

L

L

L

MF
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Figure 2.6: Principle of MUD

The receiver network, which processes the signal at bit rate may be implemented using RBF,

fuzzy technique etc as discussed in chapter 5. The main disadvantage of MUD technique is the

complexity of the receiver increases in an exponential manner. Hence base station is the most

suitable place to carry out this operation where sufficient resources are available.

2.8 Pseudo-random sequences: Gold sequence

The spreading sequence used in DS-CDMA system are generally pseudorandom in nature.

Gold sequences offer a reasonable choice of spreading sequences for DS-CDMA systems,

hence used in the later chapter. To achieve increased capacity, at an expense of altering the cor-

relation properties, a pair of � -sequences may be used to generate a set of Gold sequence [8],

which have the property that the cross-correlation is always equal to � � , when the phase offset

is zero. Non-zero (NZ) phase offset produces a correlation value from one of the three possible

values. To generate 31 chip Gold sequence, a pair of specially selected � -sequences (where
� � � ), and performing the modulo-2 sum of the two sequences for each of the

� � ��� � �
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cyclically shifted version of one sequence relative to the other sequence. Thus
�

Gold sequence

is generated as illustrated in Figure.2.7. The other types of spreading sequences used in DS-

CDMA system are pseudonoise (PN) sequences [30], orthogonal sequences: Walsh sequences,

convolutional coding [28] etc.

PSfrag replacements
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Figure 2.7: Generation of Gold sequences of length 31

2.9 Conclusion

This chapter reviewed the basic principles of SS communications and described the implemen-

tational aspects of DS-CDMA. The simplified transmitter structure for downlink scenario has

been outlined, the model for communication channel is introduced. Simplest chip level pro-

cessed MF receiver and MUD technique has been discussed in brief. Process of generation of

��� chip Gold sequence was described at the end.
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Chapter 3
Introduction to Fuzzy Systems

3.1 Introduction

Fuzzy logic system have long excelled at delivering promising results from imprecise or am-

biguous information, and fuzzy logic emulates the ability to reason and make use of approx-

imate data to find precise solutions. Its primary use has been in pattern recognition, pattern

classifications, control, image processing, embedded controllers etc. Now fuzzy logic is enter-

ing the mainstream with a wide range of desktop applications. The largest commercial uses for

fuzzy logic are as controllers for tasks such as managing temperatures and energy efficiency in

heating and cooling devices and regulating timing and fuel flow in automobile engines. Con-

trollers also are used to make constant operating adjustments to subway trains, home appliances,

cameras, and elevators. Fuzzy logic provides a simple way to arrive at a definite conclusion

based upon vague, ambiguous, imprecise, noisy, or missing input information. Fuzzy logic’s

approach to control problems mimics how a person would make decisions, only much faster.

This chapter provides an introduction to fuzzy logic system.

Following this introduction section 3.2 discusses about the fuzzy logic system and section 3.3

provides a classification of fuzzy logic system. The next section 3.4 outlines a brief introduction

to fuzzy and neuro fuzzy filters. In section 3.5 the design of a fuzzy adaptive filter is discussed

which is trained with LMS algorithm. This section also shows computational advantages of

fuzzy logic system. The chapter ends with the concluding remarks.

3.2 What is a fuzzy logic system ?

There are two important information sources in engineering stream, one is sensors, which pro-

vides numerical measurements of variables, and second is the human experts who provides

linguistic instructions and descriptions about the system. The information from the sensors are

called numerical information and the information from the human experts are called linguistic

information. Numerical information is represented by numbers, for example– ��� �!� 
 ���
���

, and so
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on, whereas linguistic information is represented by words like small, large, low, very low, very

large, and so forth. Conventional engineering approaches can only make use of numerical in-

formations. Due to much of human knowledge is represented in linguistic terms, incorporating

it into engineering systems in a systematic and efficient manner is most important.

There are at least three reasons why linguistic informations are usually represented in fuzzy

terms. Those are:

� It is more convenient and efficient way to communicate our knowledge in fuzzy terms.

That is understandable, because if we use only crisp terms, then we must first have precise

definitions of these crisp terms. This will result in a chain of definitions, which is a very

inefficient and inconvenient procedure which clearly does not happen in our day to day

life.

� Our knowledge about many problem is fuzzy. For example, when we learn a new theory,

we often find that we understand something about the theory, for example, its motivation,

basic ideas, advantages disadvantages, and so on, but we are not sure about some of the

details. Now if we are asked to introduce the theory to another person, then that person

can only get a fuzzy picture of the theory. But the point is that although the picture is

not clear, it may serve the purpose quite well and may be sufficient for a higher-level

manager.

� The last point is that the real time systems are very complex to describe in crisp terms.

For example, our knowledge about a complex chemical process can be represented in

fuzzy terms, for example, “if the temperature is high, then the reaction is intense” another

example is the working of a washing machine. The point here is that even if the linguistic

information is not precise, it provides sufficient information about the system. We should

make use of this information in a scientific way.

3.3 Classification of fuzzy logic system

Fuzzy systems or fuzzy logic1 system is the name for systems which have a direct relationship

with fuzzy concepts (like fuzzy sets, linguistic variables) and fuzzy logic [31–33]. The most

1In the literature it is also commonly referred to as fuzzy logic controller
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popular fuzzy logic systems may be classified into three types: pure fuzzy logic system, Takagi

and Sugeno’s fuzzy system, and fuzzy logic system with fuzzifier and defuzzifier. Each of these

are described in following subsections.

3.3.1 Pure fuzzy logic systems

The basic configuration of a pure fuzzy logic system is shown in the Figure 3.1 where the fuzzy

rule base consists of a collection of fuzzy � � � � � � 	 �� � � � rules, and the fuzzy inference

engine uses these fuzzy � � � � ��� 	 �� � � � rules to determine a mapping from fuzzy sets in the

input universe of discourse � ��� � � to fuzzy sets in the output universe of discourse � � � �
based on fuzzy logic principles. The fuzzy � � � � ���
	 �� � � � rules are of the following form:

� � ��� � � � �
$ is

2 �
$ and ... and � � is

2 �� � 	 ��
�

is
: �

(3.1)

where
2 �� and

: �
are fuzzy sets, � � �	�

$�
 � � � 
 ���� � � ��� and
� � � � are the input and the

output linguistic variables, respectively, and 3 � � 
 � 
 � � � 

�

. Each fuzzy � � � � �
�
	��� � � �
rule of (3.1) defines fuzzy set

2 �
$
� � � � � 2 ���� : �

in the product space � � � � � . The pure fuzzy

Engine

Fuzzy Inference

Fuzzy Base Rule

PSfrag replacements
2 �  ! � � 1�M�� & + ��� 2 �  ! � � 1�M�� &C+ � �

Figure 3.1: Configuration of a pure fuzzy logic system

logic system constitutes the essential part of the fuzzy logic systems. The main disadvantages

of the pure fuzzy logic system is that its inputs and output are fuzzy sets, whereas in most of the

engineering systems the inputs and outputs of the system are real-valued data and these have to

converted to fuzzy type data for use in pure fuzzy logic system.
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Figure 3.2: Basic configuration of a Takagi and Sugeno’s fuzzy system

3.3.2 Takagi and Sugeno’s fuzzy system

To overcome the disadvantages of the pure fuzzy system, Takagi and Sugeno [34] proposed

another fuzzy logic system whose inputs and outputs are real-valued. Instead of considering

the fuzzy ��� � � � � 	 �� � � � rules in the form of (3.1), Takagi and Sugeno proposed the

following � � � � � �
	 �� � � � rules:

� � ��� � � � �
$ is

2 �
$ and . . . and � � is

2 �� 

�
	���

� � � � �B � �
�
$
�
$ � � � ��� � �� �� (3.2)

where
2 �� are fuzzy sets, �

�� are real-valued parameters,
� �

is the system output due to rule � � � � ,
and 3 � � 
 � 
 � � � 


�
. In this rules the IF part if fuzzy and the THEN part is crisp– the output is

the linear combination of input variables. For a real-valued input vector � � �	�
$�
 � � � 
 ����� T, the

output
� �	� � of Takagi and Sugeno’s fuzzy system is a weighted average of the

� �BA � :
� �	� � �

CED� � $ �
� � �

CED� � $ �
� (3.3)

where the weight � � implies the overall truth value of the premise of rule � � ��� for the input and

is calculated as:

� � �
�F
� �
$
� ���� �	��� � (3.4)

The configuration of Takagi and Sugeno’s fuzzy system is shown in Figure.3.2. The advantages
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Figure 3.3: Basic configuration fuzzy system with fuzzifier and defuzzifier

of this fuzzy logic system is that it provides a compact system equation (3.3). The weak point

of this fuzzy logic system is that the THEN part of the rule is not fuzzy; thus, it does not provide

a natural frame work to incorporate fuzzy rule for human expert.

3.3.3 Fuzzy logic system with fuzzifier and defuzzifier

In order to use the pure fuzzy logic system shown in Figure.3.1 in engineering systems where,

inputs and outputs are real-valued variables, the most straight forward way is to add a fuzzifier

to the input and a defuzzifier to the output of the pure fuzzy logic system. This is shown in

Figure 3.3. The fuzzifier maps crisp points in �A� to fuzzy sets in � � , and the defuzzifier maps

fuzzy sets in � � to crisp points in � � . The advantages of a fuzzy logic system with fuzzifier

and defuzzifier is it’s inputs and outputs are real-valued variables. Second, it provides a natural

framework to incorporate fuzzy � � � � � � 	 �� � � � rules for the human experts. Third, there

is much freedom in the choices of fuzzifier, fuzzy inference engine, and defuzzifier, so that

we can choose the most suitable fuzzy logic system for a particular problem. The next section

discusses the fuzzy and neuro fuzzy filters using fuzzifier and defuzzifier.

3.4 Fuzzy and neuro fuzzy filters

The Figure 3.3 in section 3.3.3 shows a general fuzzy logic system with a fuzzifier and a de-

fuzzifier. Referring to the previous section, Figure 3.4 shows a typical fuzzy logic system with

adaptive algorithm. The fuzzifier converts the real world crisp input sample �E� ����� to a fuzzy

output
2 �� described by the membership function

� �� . This provides the degree to which the

input scalar � � ����� belongs to the fuzzy set
2 �� . The inference engine provides the relationship

between the fuzzy input in terms of membership functions and the fuzzy output of the controller
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using a set of ��� � � � �
	��� � � � rules derived from the rule base. The rule 3 in the fuzzy rule

base can be defined as

� � ��� � � � �
$ is

2 �
$ and ... and � � is

2 �� � 	 ��
�

is
: �

(3.5)

The defuzzifier converts the inferences
: �

to provide the crisp output
� ����� . Generally in a

fuzzy system the rule base is generated in advance with expert knowledge of the system under

consideration. However, recently [35] online learning properties have been introduced which

provide scope for training. This feature in fuzzy systems is achieved with the adaptation and

learning block that uses the available information in the system. The available linguistic rules

can also be applied in the adaptation algorithm. This is shown in Figure 3.4. These types of

systems are also called adaptive neuro fuzzy filters (ANFF) [36] and they possesses the ability

to incorporate training like neural networks and can also use rule bases from human experts as

in fuzzy systems. The adaptive fuzzy systems have been applied to a variety of engineering

applications [37] such as medical diagnostics, image processing, pattern classification [38, 39],

clustering [40] control applications [41] and time series forecasting [42] etc.

Gl
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Figure 3.4: A typical fuzzy logic system

Wang et. al. [21] presented fuzzy basis functions (FBF) and used a combination of these

functions for universal approximation and later on used them as a fuzzy filter [31] for channel

equalization. Gan [43, 44] proposed fuzzy techniques for the adjustment of the step size in

the LMS algorithm and a similar technique was used [45] for step size adjustment of LMS
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algorithm for equalization of high definition television (HDTV) systems. Lin and Juang [36, 46]

developed the ANFFs and used it for noise reduction. This ANFF constructs its rule base in a

dynamic way with the training samples. These ANFF provide scope to design nonlinear filters

that are computationally simple and can accept linguistic variables from expert systems. The

fuzzy filter used in the work reported here is discussed in the next section.

3.5 Fuzzy adaptive filter

The fuzzy adaptive filter (FAF) was originally proposed by Wang and Mendel [31]. Fuzzy

filters are nonlinear filters that can incorporate fuzzy � � � � � �
	��� � � � rules from a human

expert system. Wang and Mendel had proposed two types of fuzzy filters [31], the RLS fuzzy

filter and the LMS fuzzy filter. The fuzzy filter used in this thesis has a structure similar to

the RLS filter proposed in [31] and the equalizer is trained with the LMS algorithm. The filter

considered here maps a real input vector
�
� �

�
with the function

5�������� � ������� � ��� � � � � �
(3.6)

where, � ����� � � �
$
����� 
 � ' ����� 
 � � � 
 �� ����� 
 � � � 
 � � ������� � , �������� �K���
	 �

D "� 
 D
F� � is the input

to the fuzzy filter and D "� 
 D
F� are the minimum and maximum limits for the input scalars � ������� .

Here
5������� � ������� is the FAF output, corresponding to the filter input a � & � . The filter minimizes

the sum squared error performance index such that

1����� �
��
� � B

� � � & � � 5�������� � � & ��� � ' (3.7)

where
� � & � is the desired filter output corresponding to the filter input a � & � and 1������ is the sum

of the error squares that needs to be minimized.

3.5.1 Filter design

A fuzzy filter with an input vector of length � and a scalar output is shown in Figure 3.5. Each

element of the filter input is fuzzified with a Gaussian membership function. The membership
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Figure 3.5: Structure of an adaptive fuzzy filter

function for the inputs can be represented as

� -� ����� ������� ����
� ��

� �� ����� � � - �
� -� � '	���� (3.8)

where
� - � and � -� are the . th centre and spread parameters respectively corresponding to input

scalar � � , �
	 & 	 � such that the input space ���=����� 	 �
D "� 
 D

F� � is completely covered. These

parameters once selected remain fixed and the input � � is associated with the membership func-

tions
� $� 


� '� 
 � � � 

� D �� , so that the filter is characterized by a total of

C
�� � $

� � membership

functions. The filter consists of fuzzy � � � � ��� 	 �� � � � rules of the form���! �"  �# # # "  %$'&
IF (  is )   (�* is )  * +,+-+ ( � is )  � THEN . is /   /  *'+-+-+ /  �+-+0+���! �"  �" # # # " 1324$5&

IF (  is )   ( * is )  * +-+0+ ( � is ) 162� THEN . is /   /  * +0+-+ / 132�+-+0+� �  �" � * " # # # " �7� &
IF (  is ) �   ( * is ) � ** +-+,+ ( � is ) �8�� THEN . is / �   / � ** +-+0+ / �8��+-+0+�91;:-" 16<=" # # # " 1 2 &

IF (  is ) 1>: ( * is ) 16<* +-+-+ ( � is ) 1 2� THEN . is / 1;: / 13<* +,+-+ / 1 2�
where each of the terms & � 
 & � 
 � � � 
 & � are single indices each ranging from � to

� � respec-

tively. The filter considered here finds the following nonlinear function of the membership

functions
� -� so that,

5�������� � ������� �
D  �
�
$
�
$

D *�
�
'
�
$
� � �

D���
�
�
�
$

� � ����� � � $ $ � ' $�?�?�?7$ � � �'@ � � $$ ����� � � '' ����� � � � � � �� �����BA (3.9)

22



Introduction to Fuzzy Systems

where
� ����� � � $ $	� ' $ ?�?�? $%� � � is the weight associated with the fuzzy ��� � � � �
	��� � � � rule

� � $ $ � ' $ ?�?�? $ � � .

The weight parameter
� ����� � � $ $ � ' $�?�?�?7$ � � � is updated during the adaptation procedure so as to min-

imize the desired cost function in (3.7). Using the LMS algorithm to update the filter parameter� � � � $ $ � ' $�?�?�?7$ � � � ,
� ��� ��� 	 �  ���



� � ����� �
�� � � � ���
	 �  ���



��� ����� �
�� � �	��
 � ���
	������������� ���
	������ � ���������
	 � �  ���



� � ����� �
!� �

(3.10)

where,

� � � � � ������� � � $ $ � ' $�?�?�?7$ � � � � � � $$
� � '' � � � �

�
�
�

(3.11)

Here,
� � � � � � � � $ $ � ' $�?�?�?7$ � � � is the input to the filter weight

� � � $ $ � ' $�?�?�? $ � � � , � is the learning rate and
. � 
 . � 
 � � � 
 . � constitute single indices. The filter function in (3.9) finds a weighted sum of all

possible combinations of the products of the membership functions, taking one from each input.

Here it can be seen that the term
� � � �

a ������� � � $ $ � ' $�?�?�? $ � � � is a FBF [21] with singleton fuzzifier,

Gaussian membership function, product inference and centre of gravity (COG) defuzzifier. A

combination of these basis functions can be used for universal approximation [21]. With the

use of different types of membership functions, inference rules and defuzzification processes a

variety of fuzzy filters can be designed to optimize any arbitrary function. Each of the FBF’s

works as a fuzzy rule and the FAF consist of fuzzy rules.

� ! � �F
� �
$

� � (3.12)

It is well established in neural literature [47, 48] that the Gaussian RBF is good at characterizing

local properties and that the neural networks with sigmoid nonlinearities are good at charac-

terizing global properties. The fuzzy filter designed in this section will have the capabilities to

optimize both local and global properties. The relationship of the FBF with other form of basis

functions like RBF and PNN have been discussed in [49, 50]. The filter proposed can also be

trained with RLS algorithm [31]. This fuzzy filter designed above can be termed as the neuro

fuzzy filter since the interference can be designed with the rule base and the defuzzifier weights

are at the output layer can be trained like neural networks
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3.6 Conclusion

This chapter discussed the basics of a fuzzy logic system. The capability of fuzzy logic systems

to incorporate linguistic information in a natural systematic way is the advantage of the fuzzy

logic system over other types of universal approximators like polynomials, neural networks and

so on. By specifying the fuzzy logic principles used in the fuzzy logic systems, and other factors

like fuzzifier and defuzzifier, a particular fuzzy logic system can approximate any nonlinear

function to arbitrary accuracy. This issue is further discussed in the next chapter.
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Chapter 4
Fuzzy based CLB receiver for

DS-CDMA system

4.1 Introduction

In this chapter new type of chip level based (CLB) receivers for DS-CDMA system are pre-

sented. These fuzzy based CLB receivers are the fuzzy implementation of the RBF receiver

with reduced complexity. Performance of these receivers are compared with traditional re-

ceivers such as matched filters (MFs) and direct RBF (DRBF) also commonly known as CLB

RBF receiver.

Following this introduction, section 4.2 provides an overview of CLB receiver and its RBF

implementation. The fuzzy implementation of the DRBF CDMA receiver is presented section

4.3 followed by computational issues related to the fuzzy receivers. Extensive simulation results

have been presented in the section 4.5. The chapter ends with a concluding remark

4.2 Overview of the CLB RBF receiver

In order to process the received signal �9��� � � + � without looking at the particular receiver

design (which is described later in this chapter), Figure 4.1 show a conventional single user

receiver known as CLB receivers. This receiver processes the received signal �0��� � � + � at chip

rate giving output at symbol rate.

Symbol rate

x

Chip rate

Receiver

1
y(kL+n) (k)

Figure 4.1: Chip rate based receiver

System model for the transmission in the DS-CDMA considered here is presented in Figure

4.2. It shows the downlink scenario, where the mobile unit receives signal �0��� � �I+ � from the
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base station. The information bits corresponds to one of
�

users are denoted as 8 � ����� . 8 � �����
takes the values � � � � � with equal probability and � denotes the time index of user transmitted

symbols. The information bits transmitted by each user are then convolved with each of their

mutually orthogonal spreading sequences
 �%$ � , where � 	 & 	 �

(number of users active) and

�
	 +�	 �
(spreading sequence length).

Transmitter

PSfrag replacements 8
$
�����

8
'
�����

8 � �����

 9��� � � + �

� ��� � � + �

 
$
$ �

 
'
$ �

 � $ �

�9��� � � + �

Figure 4.2: Conventional synchronous DS-CDMA downlink transmitter for U transmitting
users

Gold codes [8], convolutional codes [28], Pseudonoise (PN) codes [30] are some of the coding

techniques used. The spreaded signal from each user are then combined to form

� ��� � � + � �
��
���
$
8 � �����  �%$ � (4.1)

which is then transmitted through the non-dispersive channel. Channel adds AWGN to the

signal. With this the received signal �0��� � � + � can be represented as

�0��� � � + � �
��
���
$
8 � �����  �%$ � � 9��� � � + � (4.2)

at the point where bit � , chip + is received. 9��� � � + � is the noise component at chip rate. In

the AWGN case there is no need to consider + outside the range � 	 +�	 �
as outside this time

the signal will contain no information relating to data bit � .

The job of the receiver is to estimate the transmitted signal 8 � ����� of the desired user using the

information content in the �9��� � ��+ � . As the input signal is processed at chip rate + , it is called
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chip rate based receiver (CLB). The structure of CLB receiver using RBF is shown in Figure

4.3. The input to the RBF network is given by �0��� � � + � . �9��� � � + � can be represented as

DRBF Receiver

RBF network

Input y(kL+n)

y(kL+1)

y(kL+L)
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Figure 4.3: The structure of the CLB RBF receiver

vector � ����� � � �9��� � � � � 
 �9���
� ��� � 
 � � � 
 �0���

� � � ��� for � 	 +�	 �
. The output of the RBF

network is given by

M ����� � '
��

- �
$
� - ��� � � � � �"����� � ,�- � '

� � ' � (4.3)

The right side of (4.3) represents the RBF decision function. The RBF has �
�

centres of

dimension
�

, � is the centre spread parameter and � - denotes the weight associated with each

centre. The RBF output M ����� is passed through a hard limiter to provide
�8 � ����� , estimated

value of the transmitted symbol of the desired user 8 � ����� . An increment in number of users

increases the number of RBF centre by two times. The larger number of centres associated

with this DRBF receivers prompted us to use fuzzy based receivers for this application. This

RBF receiver provides the optimal performance for CDMA system [51]. The computational

complexity issues associated with these RBF receivers have been widely investigated and a

number of near optimal solutions using neural networks [19], recurrent networks [18], Viterbi

[52] has been investigated.
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4.3 Fuzzy implementation of the CLB RBF receiver

In order to propose a fuzzy based DS-CDMA receiver we used a fuzzy filter discussed in chapter

3. The close relationship of this filter with RBF was reported by [22]. This fuzzy implemented

RBF DS-CDMA receiver is presented in Figure 4.4. The output of the channel �9��� � � + � as

of dimension L

+2

0

−2

(Channel state information)
Inference rule base

DefuzzificationInference Block

1

2

2U
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Figure 4.4: Fuzzy implementation of RBF receiver

shown in Figure 4.3, feeds the fuzzy filter. The fuzzy filter consists of a fuzzifier with Gaussian

membership function. The centres of the membership function are located at points as shown

in the Table 5.1, which are derived from noise free received signal states for number of users

active in the system. This is presented in Table 5.1 variation in number of users from � to � .
The fuzzifier convert the crisp received data from the channel into fuzzy variables. The order

of the input to the fuzzifier is
�

. With this, there are a total of � � � � � � � fuzzy inputs

corresponding to each set of crisp input of order
�

. The rule base consists of combining one

of each membership function from each of the input scalars. With this there are �
�

rules in the

rule base, which are generated by combining all possible fuzzifier output taking one from each

input scalar of the input vector. The inference rule used here is product inference. The inference

block provides �
�

outputs generated with product rule. The defuzzification is achieved with

COG defuzzifier. It provides a weighted sum of it’s input from inference block with it’s set of

weights. The receiver so designed is presented in Figure 4.4. This receiver can be considered

as an alternative implementation of RBF receiver [53]. The RBF decision function in (4.3)
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discussed in the previous section can also be represented as

M ����� � '
��

- �
$
� -

� �F
� �
$
��� � � � � �9��� � � + � � / - $ � � '

� � ' ��� (4.4)

where / - $ � constitute the + '*) component of the RBF centre and RBF input. The inner product of
1 8 � � � � of vector has been replaced by product of 1 8 � � � � of scalar terms of the vector. The system

shown in the (4.4) is represented by the fuzzy system shown in the Figure 4.4. There are �
�

rules in the rule base. the product inference block of dimension
�

provides �
�

outputs generated

with product rule. The defuzzifier provides a weighted sum of it’s inputs from inference block

with it’s set of weights. The weights associated with the defuzzifier can be optimized with

adaptive algorithm during the training process with the training data. Figure 4.4 shows the

receiver structure of the receiver when
� � � users are active in the system. This proposed

receiver (Fuzzy1) can be considered as an alternative implementation of RBF receiver [22]. The

Fuzzy1 receiver can be trained with LMS algorithm as described in the section 3.5 or algorithms

like RLS [31].
�

Possible centre positions
1 � � � � �
2 � �!����� � �
3 � �!� ��� � � � � � �
4 �-�,�� �!����� � �!� � �
5 � � � � � ��� � � � � � �!� � �
6 � � ��/�,� � �!����� � �!� � �,� � �

7 � � � � � � � �!� ��� � � � � � �!� � � � � �
8 �
�!�� � � �/�,� � �!����� � �!� � �,� � � � � �

Table 4.1: Centre locations of the fuzzifier of Fuzzy1 and Fuzzy2 CLB receiver

The fuzzy decision function shown in (4.4) can be further simplified as

M ����� � '
��

- �
$
� -�� ����	�� �

$
� ����� � � � �0��� � � + � � / - $ � � '

� � ' ��
�
 (4.5)

Here the � �� � $ rule has been replaced by ���	� �� � $ rule which helps further reduction in com-

putational complexity. In this case the input to the fuzzy filter is �9��� � � + � . This fuzzy filter

consists of fuzzifier with Gaussian membership function as shown in Figure 4.4. The centres

of the membership function are located at points as shown in the Table 5.1, depending upon the

number of users simultaneously transmitting in the system.There are �
�

rules in the rule base.
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the minimum inference block of dimension
�

provides �
�

outputs generated with minimum

rule. The defuzzifier provides a weighted sum of it’s inputs from minimum inference block

with it’s set of weights. The weights associated with the defuzzifier can be optimized with

adaptive algorithm like LMS during the training process with the training data. This proposed

receiver can be considered as an alternative implementation of RBF receiver. And here it is

termed as the Fuzzy2 filter, where the filter function defined in (4.5). (4.4) is termed as the

Fuzzy1 filter. The Fuzzy1 uses product inference where as Fuzzy2 provides minimum infer-

ence.

4.4 Computational complexity issues

In this section, we discuss the computational complexity requirements for implementing the

fuzzy DS-CDMA CLB receiver. The fuzzy receiver complexity is compared with RBF receiver.

The computational complexity for the Fuzzy1, Fuzzy2 and CLB RBF receiver is presented

in Table 4.2. The table presents the general computational complexity associated with the

three types of receivers. Again complexity for cases with � and � users are also discussed in

particular.

�
Tech- Centres/ Multiplication. Addition/ 1�8 � � � �
que Rule Subtraction/

Comparison
RBF �

�
�
�
� � ���

�
�
�
� � � � � � � � � �

�
Fuzzy1 �

�
�
�
� � � � � � � � � � ��� � � � � � � ��� � � �

� �
�
� � � � � ��� �

Fuzzy2 �
�

�
�
� � � � � ��� � � � ��� � � � � � ��� � � �

�
�
� � � � � � � � �

RBF � ��� ��� �
� Fuzzy1 � ��� � � ���

Fuzzy2 � � � ��� ���
RBF � ��� � �!��� ��� � � ���

� Fuzzy1 � ��� � � � � ��� ���

Fuzzy2 � ��� � ��� � � � ���

Table 4.2: Computational complexity for CLB receivers using RBF, Fuzzy1 and Fuzzy2

From the table it is seen that, when � users are active, the RBF receiver will have �
�
� �

centres each with a dimensionality of
� � � . The Fuzzy1 and Fuzzy2 receivers will have

� � � � � membership function and �
�
� � product and minimum inference rules respectively.
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When the number of users increased to � , the number of RBF centres increases to � ��� same

as the number of inference rules in the Fuzzy1 and Fuzzy2 CLB receivers. From the table it

can be seen that, the fuzzy based CLB receivers provide RBF implementation of CLB receiver

with considerable computational complexity reduction in terms of multiplication, addition and
1 8 � � � � calculations. Additionally the computational complexity reduction achieved with the

fuzzy receiver increases with respect to RBF receiver with increase in number of active users

in the system. The Fuzzy2 receiver reduces the multiplications considerably.

4.5 Simulation results

In order to validate the proposed fuzzy CLB receivers for DS-CDMA applications, extensive

simulation studies were conducted. The results obtained were compared with the CLB receiver

using RBF network and simple linear receiver like MF. All the simulation studies were con-

ducted on a � � ����� ��� � GHz PC with
� � � MB of RAM with Redhat � � � operating system.

GNU C++ compiler is used to test the simulations. During the training period the receiver

parameters were optimized/ trained with � ����� random samples and the parameters so obtained

were averaged over
� � experiments. The parameters of the receiver were fixed after the training

phase. The receiver weights were trained using gradient search algorithm like LMS.
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Figure 4.5: BER performance for varying �
�����*� with 4 users being active in the system
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Bit error rate (BER) was considered as the performance index. Monte Carlo simulation were

conducted to estimate the BER performance of the fuzzy CLB receivers and the performance

was compared with CLB RBF and linear MF receivers. In all the experiments randomly gener-

ated � � � � � samples were transmitted for each user. These samples were spread using Gold

sequence of length � corresponding to each of the users. This restricted the maximum per-

missible user’s in the system to � . After spreading, the sequences were added and transmitted

through the non-dispersive channel. The channel corrupted the transmitted signal with AWGN.

The channel output was fed to the various receiver structures. A total of � ��� bits were transmit-

ted by each user and a minimum of � ����� errors were recorded. The tests were conducted for

different levels of ��� ���	� . Additionally tests were also conducted by varying number of active

users in the system for fixed value of �������	� .
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Figure 4.6: BER performance for varying �
�����*� with 7 users being active in the system

In the first test we considered a non-dispersive channel. BER performance of the four type

of receivers with 4 and 7 users active in the system is shown in the Figure 4.5 and Figure

4.6 respectively for various values of � ����� � in the channel. From the simulation studies it

is seen that performance degradation of the MF at a BER of � � " � is about � dB as compared

to the RBF/Fuzzy1 CLB receiver and about � � � dB as compared to the Fuzzy2 CLB receiver.

Similarly from the Figure 4.6 it is seen that performance degradation of the MF at a BER

of � � "
�

is about � � dB as compared to the RBF/Fuzzy1 CLB receiver and about � � � dB as
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compared to the Fuzzy2 CLB receiver. Here it is seen that when number of users are � , The MF

receiver performance does not improve considerably with increase in �*�����*� . The performance

degradation of the MF is high � � � � M to increase of active users
�

in the system as compared to

RBF/ Fuzzy1/ Fuzzy2 CLB receiver.
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Figure 4.7: Performance of chip-level receivers in AWGN, 7-chip spreading sequence, with
varying number of users active in the system

Subsequently the BER performance of the receivers were studied for �)�����	� values of
�
dB and

� � dB at the channel output against change in loading in form of number of users being active in

the system. The results were plotted in Figure 4.7. From this it can be seen that Fuzzy1 receiver

performs exactly same as the optimal DRBF receiver. The performance of the proposed Fuzzy2

receiver is in between MF and the optimal RBF receiver for all loading conditions. Here the

number of active users varied from � to � . From the graph it is seen that for a fixed value of

BER when � �����*� at the channel output improves, more number of users can be accommodated

in the system. The simulation studies show that the proposed Fuzzy1 receiver is an implemen-

tation of optimal RBF receiver and provides the same performance for a reduced computational

complexity. Where as the proposed Fuzzy2 receiver provides performance in between MF and

RBF receiver with reduced computational complexity compared to RBF receiver. This provides

a performance tradeoff for complexity.
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4.6 Conclusion

In this chapter RBF based CLB receiver has been implemented with fuzzy system. The fuzzy

receivers proposed uses Gaussian membership function, product/ minimum inference and cen-

tre of gravity (COG) defuzzifier. The Fuzzy1 receiver with product inference provides com-

putational complexity reduction over the optimal RBF receiver and it provides a performance

exactly same as the RBF receiver. The proposed Fuzzy2 receiver with minimum inference

provides further reduction in computational complexity over the optimal DRBF receiver out-

performs the conventional MF but the performance is poor as compared to the optimal DRBF.
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Chapter 5
Fuzzy implementation of the RBF

MUD receiver for DS-CDMA

5.1 Introduction

Multiuser Detection deals with the demodulation of mutually interfering digital streams of in-

formation. Cellular telephony, satellite communication, high-speed data transmission lines,

digital radio/ television broadcasting, fixed wireless local loops, and multi track magnetic

recording are some of the communication systems that are affected by multiple access inter-

ference (MAI). The superposition of transmitted signals may originate from non-ideal charac-

teristics of the transmission medium, or it may be an integral part of the multiplexing method as

in the case of DS-CDMA. Multiuser Detection exploits the considerable structure of the MAI

interference in order to increase the efficiency with which channel resources are employed. The

principle of working of MUD receiver for DS-CDMA was introduced in 2.7.

Considering DS-CDMA a non-linear classification problem, it has been shown that the non-

linear receivers always outperform the conventional linear receivers [13]. Existing non-linear

receivers based on artificial neural network (ANN) [54], radial basis function (RBF) [55], poly-

nomial series networks [56], recurrent networks [57] can approximate the decision boundary

well and possess superior performance, but at an expense of higher computational complexity

and larger training time. Therefore possesses considerable difficulty in implementation.

Since the optimal decision boundary in DS-CDMA is non-linear [55], this problem was solved

adaptively by employing the use of a non-linear radial basis function (RBF) network [14, 15],

with excellent performance achieved at an expense of increased computational complexity. Its

complexity in terms of number of center calculation grows exponentially with increase in num-

ber of users. Thus optimal MUD receiver structure with reduced complexity is investigated

here, which cancels the effect of corruption of the transmitted signal by the communication

channel and background noise. In equalization applications fuzzy receivers provides consider-

able computational complexity reduction with respect to the RBF receivers and provides exactly

the same bit error rate (BER) performance as the RBF receiver.
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Following this introduction, DS-CDMA system model is discussed in the section 5.2. The next

section 5.3 provides discussion on adaptive fuzzy implementation of MUD receiver for DS-

CDMA. The performance of the proposed receivers with other standard receivers is discussed.

In the section 5.4 computational complexity reduction issues are analyzed. Then simulation

studies validates the proposed receivers. The last section provides the concluding remarks.

5.2 DS-CDMA system consideration

The system model considered here presented in Figure 5.1 and earlier discussed in the section

4.2. It shows the downlink scenario where the mobile unit receives signal �9��� � � + � from

the base station. The information bits corresponding to one of
�

users is denoted as 8 � �����
takes the values � � � � � with equal probability. � denotes the time index of user transmitted

symbols. The information bits transmitted by each user are convolved with each of the mutually

orthogonal spreading sequence
 �%$ � where � 	 & 	 �

(number of users active) and � 	 + 	 �

(spreading sequence length).

Transmitter
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'
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Figure 5.1: Conventional synchronous DS-CDMA downlink transmitter

Gold codes, convolutional codes, Pseudo-noise (PN) are the some of the coding techniques

used. With this the bandwidth of 8 � ����� is enhanced. the processing gain of the system is defined

as � : � �

� where, G denotes the spreaded signal bandwidth and � id the unspreaded signal

bandwidth. The spreaded signal from each of the user are combined to form

� ��� � � + � �
��
���
$
8 � �����  �%$ � (5.1)

which is transmitted through the channel
� �  � . The channel corrupts the signal with inter
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Figure 5.2: RBF receiver with preprocessing stage

symbol interference (ISI) and effects of fading. Additive white Gaussian noise (AWGN) also

gets added to the signal. With this the received signal �0��� � � + � can be represented as

�0��� � � + � � � �  � � � ��� � � + � � 9��� � � + � (5.2)

where
�

denotes the convolution and 0��� � � + � is the AWGN component at the chip rate.

The job of the receiver is to estimate 80� ����� of the desired user using the information content

in �0��� � � + � . The receiver receives the input signal at chip rate + and processes the signal

at sample rate � . This type of receiver are called multiuser detection (MUD) receiver. The

structure of MUD receiver using RBF is shown in Figure 5.2. To combat the effect of MAI

and channel ISI, the received signal �0��� � � + � is fed to a preprocessor block. If there are
�

simultaneously transmitting users in the system then the preprocessing stage consists of a bank

of
�

MFs and in presence of channel ISI this filter is replaced by RAKE receivers [11]. The

performance of a MUD receiver has seen to be better then a linear receiver since the linear

receivers does not have any process of removing MAI. The preprocessing block is shown in

Figure 5.2, at the front end of the RBF receiver. The synchronized received signal �9��� � � + �
of length L, is mapped to signal

�� ����� � � �8
$
����� 
 � � � 


�89�"������� � of length
�

. This preprocessor

output is fed to the RBF network. This reduces the dimension of a DS-CDMA receiver’s input

vector from
�

to
�

. The preprocessing based (PPB) RBF receiver process signal vector
�� �����

and outputs the estimated value of the � '*) bit of the desired user
�8E� ����� . The output of the RBF

network is presented as

M ����� � '
��

- �
$
� - ��� � � � ���� ����� � , - � '

� � ' � (5.3)
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where RBF has �
�

centres of dimension
�

, � is the centre spread parameter and � - denotes

the weight associated with each centre. The RBF output M ����� is passed through a hard limiter

to provide
�8 � ����� , estimated value of the transmitted symbol of the desired user 8 � ����� . As the

number of transmitting users increases, the computational complexity of the RBF receiver also

increases in terms of number of centres. Without reducing the RBF technique’s performance,

fuzzy provides considerable implementational advantages over RBF as shown in Figure 5.3.

5.3 Fuzzy Filter for DS-CDMA Multi User Detection Receiver

In the previous section RBF MUD receiver was discussed. This receiver was presented in

Figure 5.2. The RBF receiver decision function in (5.3) can be modified by taking product of

exponential scalar terms instead of taking the exponential of a vector euclidean distance. Hence

(5.2) can be represented as

M ����� � '
��

- �
$
� -

� �F
� �
$
��� � � � � �8 � ����� � / - $ � � '

� � ' ��� (5.4)

where � 	 & 	 �
constitute the &('*) components of the RBF centre and RBF input. The inner

product of 1 8 � � � � of vector has been replaced by product of 1�8 � � � � of scalar terms of the vector.

The function presented in (5.4) can be presented as the fuzzy system as shown in Figure 5.3.

The output of the preprocessing block constituting the bank of MFs shown in Figure 5.2, feeds

the fuzzy filer. The fuzzy filter consists of fuzzifier with Gaussian membership function. The

centres of the membership function are located at � � and � � . These fuzzifiers convert the crisp
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data from the preprocessor into fuzzy variables. The order of the input vector to the fuzzifier

is
�

and the input from each of these
�

inputs is fed to the fuzzifier. With this, there are a

total of � � fuzzy inputs corresponding to each set of crisp input of order
�

. The rule base

consists of combining one of each membership function from each of the input scalars. With

this there are �
�

rules in the rule base, which are generated by combining all possible fuzzifier

output taking one from each input scalar of the input vector. The inference rule used here is

product inference. The inference block provides �
�

outputs generated with product rule. The

defuzzification is achieved with center of gravity defuzzifier. It provides a weighted sum of it’s

input from inference block with it’s set of weights. The receiver so designed is presented in

Figure.5.3. This receiver (Fuzzy1 MUD) can be considered as an alternative implementation of

RBF MUD receiver widely discussed in literature [53].

An example is considered to describe the detail design of the fuzzy receiver discussed here. If

the number of users in the scenario discussed here is
� � � , there will be � � � � fuzzified

inputs to the inference engine from a total of � input scalars constituting the input vector. The

number of rule base is �
�
� � and the output defuzzifier combines these � inference outputs

with suitable weights. If the number of active user increases to
�

the number of fuzzy inputs

will be � � � � � and number of inference rule will be �
�
� � � .

Considering each of the exponential terms to be � � , their product results in an rule output � � .

Hence we can replace the product rule here by minimum inference to reduce computational

complexity at the cost of some errors. The decision function is shown in (4.4).

M ����� � '
��

- �
$
� � � ����	�� �

$
� ��� � � � � �8 � ����� � / - $ � � '

� � ' � 
 
 (5.5)

In this case the input to the fuzzy filter is
�� ����� . This fuzzy filter consists of fuzzifier with

Gaussian membership function as in Figure 5.3. The centres of the membership function are

located at � � � � � . There are �
�

rules in the rule base. The minimum inference block of

dimension
�

provides �
�

outputs generated with minimum rule. The defuzzifier provides

a weighted sum of it’s inputs from minimum inference block with it’s set of weights. The

weights associated with the defuzzifier can be optimized with adaptive algorithm like LMS

during the training process with the training data. This proposed receiver is termed as Fuzzy2

MUD receiver in this thesis and is considered as an alternative implementation of RBF/Fuzzy1

receiver.
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�
Tech- Centres/ Multiplication. Addition/ 1 8 � � � �
que Rule Subtraction/

Comparison
RBF �

�
�
�
� � � �

�
�
�
� � � � � � � � � �

�
Fuzzy1 �

�
�
�
� � � � � � � � � � �

�
� � �

� �
�
� � � �

Fuzzy2 �
�

� � � � �
�

� � � � �
�

� � �
� � � � � � � � �

RBF � � � � �
� Fuzzy1 � � � � �

Fuzzy2 � � � � �
RBF � ��� � �!��� ��� � � ���

� Fuzzy1 � ��� ��� � � ��� � �
Fuzzy2 � ��� � ��� ��� � � �

Table 5.1: Computational complexity for CLB receivers using RBF, Fuzzy1 and Fuzzy2

5.4 Computational complexity issues

In this section, we discuss the computational complexity requirement for implementing the

fuzzy DS-CDMA MUD receivers. We also compare fuzzy receivers complexity with RBF re-

ceiver. The computational complexity for the Fuzzy1 MUD, Fuzzy2 MUD and RBF MUD

receiver have been presented in Table.5.1. The table shows the computational complexity re-

quirement of the receiver in general and for
� � � and

� � � users in particular are active

in the system. When � users are active the RBF MUD receiver has ��' � � centres each with

a dimensionality of � . The fuzzy receiver will use � � � � membership functions and �
�
� �

inference rules. When the number of user increases to � , the number of RBF centres increases

to � ��� so as the number of inference rules in the fuzzy filter. From the table it can be seen that,

the fuzzy based MUD receivers provides the RBF implementation of MUD receiver with con-

siderable computational complexity reduction in terms of multiplication, addition and ��� � � � �
calculations. Additionally the computational complexity reduction achieved with the fuzzy re-

ceiver increases with respect to RBF receiver with increase in number of active users in the

system. It is also seen that the Fuzzy2 receiver minimizes the need of multiplication consider-

ably and replaces them with comparison operations. The Fuzzy receivers provide considerable

complexity reduction in terms of 1 8 � � � � calculation.
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Figure 5.4: Surface plot of RBF and Fuzzy1 MUD receiver at �
�����	� � ����� for the channel
������������������� � ���! "%$ � ������������ "('

5.5 Simulation results

Extensive simulation studies were conducted to validate the proposed fuzzy MUD receivers for

DS-CDMA application. The results obtained were compared with MUD receivers using RBF

network and simple linear MMSE receiver using LMS training. During the training period the

receiver parameters were optimized/ trained with � ����� random samples and the parameters so

obtained were averaged over
� � experiments. The parameters of the receiver were fixed after
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Figure 5.5: Decision boundary of RBF and Fuzzy1 MUD receiver at �)�����	� � ����� for the
channel �����������-������� � ���! "%$ �/������������ "('
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Figure 5.6: Surface plot of RBF and Fuzzy2 MUD receivers at �)�����	� � ���,� for the channel
������������������� � ���! "%$ � ������������ "('

the training phase. All the receiver parameters were trained with the same set of training sam-

ples. The RBF and Fuzzy1 MUD receiver decision function surface along with their decision

boundaries with � active users is plotted in Figure 5.4 and Figure 5.5 respectively. From this it

can be seen that Fuzzy1 MUD receiver provides a decision boundary exactly same as the RBF

MUD receiver.
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Figure 5.7: Decision boundary of RBF and Fuzzy2 MUD receiver at �)�����	� � ����� for the

channel �����������-������� � ���! "%$ �/������������ "('
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Figure 5.8: Performance of bit-level receivers in AWGN, 7-chip spreading sequence,with vary-
ing � �����	� , channel considered is ��� � ����� �� "%$

The surface plot of decision function given in (5.5) is plotted in Figure 5.6 and Figure 5.7 re-

spectively shows the decision boundary with � active users in the system. From the figures

the difference between the decision boundary of RBF MUD and Fuzzy2 MUD receiver can be

visualized. From all the figures it is seen that the fuzzy receiver is able to provide a decision

boundary which closely resembles the RBF receiver decision boundary. The channel consid-

ered is �����������
� ����� � ���! "%$ � ������������ "(' at a noise level of �-�����	� � � dB. The 8 and � axis

represents the user transmitted data varying between �
� to � � . The  � axis represents the

MUD receiver output.

In the next phase of simulation studies, bit error rate (BER) was used as the performance index.

Monte Carlo simulations were conducted to estimate the the BER performance of the fuzzy

receivers and were compared with RBF MUD receiver and the conventional linear receivers.

In all the experiments, randomly generated � � � � � samples were transmitted for each user.

These samples were spread with Gold sequence of length � corresponding to each of the users.

The maximum permissible users in the system was limited to � due to length � Gold sequence.

After spreading, the sequences were added and transmitted through the channel. The channel

corrupted the transmitted signal with inter symbol interference (ISI) and AWGN. The channel

output was fed to the preprocessor consists of a bank of MFs, which provides the input to the

RBF/ fuzzy receivers. A total of � � � bits were transmitted by each user and a minimum � �����
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Figure 5.9: Performance of bit-level receivers in AWGN, 7-chip spreading sequence,with vary-
ing � �����	� , channel considered is ��� �!� ��� ������� �  "%$	� ��� �!� �  "('

errors were recorded. The test were conducted for different levels of �*�����*� and varying number

of users active in the cell. In the first test, the channel was characterized by its transfer function
� �  � � ��� � � ��� �� "%$ . This is a nonminimum phase channel with zero located outside the

unit circle. The BER performance of the five types of the receivers viz RAKE receiver, MMSE

receiver with LMS training, RBF MUD receiver, Fuzzy1 and Fuzzy2 MUD receiver with �
users and � users active in the system is shown in the Figure 5.8. From the BER performance

it can be seen that the Fuzzy1 MUD provides a performance which is exactly same as the

RBF receiver and Fuzzy2 MUD receiver provides a performance which closely resembles RBF

receiver. When the active users in the system is � the performance of the MMSE receiver is

comparable to that of the RBF receiver. But the performance of the RAKE receiver is worse

even the number of active users in the system is less. From the simulation studies it is seen that

performance degradation of the MMSE receiver at a BER of � � "
�

is � � � dB as compared to the

RBF/ Fuzzy1/ Fuzzy2 MUD receiver when
� �+� active users are simultaneously transmitting

in the system. When
� � � users are active this performance loss is about ��� � dB at BER

of � � " � . With � active users RAKE receivers nearly fails to provide acceptable performance

even at very high �-�����*� . Similar results were obtained for the channels ��� �!� ��� ������� �  "%$ �
��� �!� �  "(' . This is a mixed phase channel with one zero inside and one zero outside the unit

circle. In this case the performance degradation of the MMSE receiver at a BER of � � " �

is ��� � dB to � dB as compared to RBF/ Fuzzy1/ Fuzzy2 MUD receiver. This is shown in the
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Figure 5.10: Performance of bit-level receivers in AWGN, 7-chip spreading sequence,with
varying �-�����*� , channel considered is ��� � ����� �  "%$ �������� "('

Figure 5.9. Additionally the RAKE receiver performance is very low. Figure 5.10 shows the

performance of the receivers, when channel considered is ��� �	� ��� �  "%$ � ������ �"(' . This is a

minimum phase channel with zeros inside the unit circle. In this case the performance of the

MMSE receiver as compared to RBF/ Fuzzy1/ Fuzzy2 MUD receiver is indistinguishable when
� � � users active in the system. The performance loss of the RAKE receiver is � dB at BER

of � � " � . The performance of the MMSE receiver is � � � dB below then that of the RBF/ Fuzzy1/

Fuzzy2 MUD receiver when BER is kept at � � " � for all the receivers when � users are active

in the system. When the users increases the performance of the RAKE receiver is indifferent

irrespective of the high value of �������	� at the channel input.

The performance of the receivers corresponding to the channel �������������
����� � ���! "%$ � ������������ "('
is shown in the Figure 5.11. This channel is a mixed phase channel with one zero inside and

one zero outside the unit circle. When the active users in the channel is � , MMSE receiver

performance is about � dB below then the RBF/ Fuzzy1/ Fuzzy2 MUD receivers at a BER

value of � ��" � . The performance of the RAKE receiver is worse irrespective of the users active

and the value of �-�����*� at the channel input. The performance of the MMSE and the RAKE

receiver saturates for higher value of
�

as shown in the Figure 5.11. In this case it is seen that

the performance degradation of the MMSE receiver at BER of � � "(' is � dB as compared to the

RBF/ Fuzzy1/ Fuzzy2 MUD receiver when
� �+� active users are simultaneously transmitting.
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Figure 5.11: Performance of bit-level receivers in AWGN, 7-chip spreading sequence,with
varying �-�����*� , channel considered is ����������� � ����� � ���! "%$ �������������� "('

Subsequently the BER performance of the receivers were studied for fixed �*�����*� values of � dB

and � � dB, at the channel output against varying loading conditions by changing the numbers

of active users from � and � users being active in the system. First the channel considered was

��� � � ��� �� �"%$ . These results were plotted in the Figure 5.12. Here the number of active users

varied from � to � .
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Figure 5.12: Performance of bit-level receivers in AWGN, 7-chip spreading sequence,with

varying number of users
�

, channel considered is ��� � � ��� �� "%$
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Figure 5.13: Performance of bit-level receivers in AWGN, 7-chip spreading sequence,with
varying number of users

�
, channel considered is ��� �!� � � ������� �  "%$ � ��� �!� �  "('

From this graph it can be seen that for a fixed value of BER when �)�����*� at the channel output

increases, more number of users can be accommodated in the system using RBF/ Fuzzy1/

Fuzzy2 MUD receiver, keeping the system performance same.
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Figure 5.14: Performance of bit-level receivers in AWGN, 7-chip spreading sequence,with

varying number of users
�
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For example, when BER � � �#" �

, RBF/ Fuzzy1/ Fuzzy2 MUD receiver can accommodate
�

users where as MMSE receiver can accommodate only � users for a �)�����	� value of � � dB is

shown in the Figure 5.12. Figure 5.13 shows the BER performance of the receivers for varying

values of active users in the system when the channel impulse response is ��� �!� � � ������� �  "%$ �
��� �!� �  "(' . The graphs were plotted for the ������� � values of � dB and � � dB. Active users in the

system is varied from � to � . Form the figure it is seen that RBF/ Fuzzy1/ Fuzzy2 MUD receiver

can accommodate more number of users as compared to MMSE or RAKE receiver when the

performance is kept at � � "
�

for a � � ��� � value of � � dB. Similar results were obtained from the

channels viz
� �  � � ��� ������� �  #"%$&� ������ �"(' and

� �  � � ������������������� � ���! �"%$.�������������� �"(' ,
and results were plotted in Figure 5.14 and Figure 5.15. respectively.

The extensive simulation studies conducted have demonstrated that the Fuzzy1 and Fuzzy2

MUD receivers provide nearly optimal RBF receiver performance and they outperform the

linear MMSE and RAKE receiver performance.
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5.6 Conclusion

In this chapter non-linear receiver structures using RBF multiuser detection has been imple-

mented with fuzzy system. Two fuzzy methods of constructing the receiver has been consid-

ered, and the performance of these receivers has been simulated and shown to outperform con-

ventional linear receivers like MMSE and RAKE receivers. Both types of fuzzy receivers have

been shown which provide computational complexity reduction over the RBF MUD receiver.

First is the Fuzzy1 MUD receiver with Gaussian membership function as the fuzzifier, product

inference engine and center of gravity (COG) defuzzifier provides performance exactly same

as RBF MUD receiver with lower computational complexity. The simulation results show that

the performance of this proposed Fuzzy1 MUD receiver is exactly same as that of the optimal

RBF MUD receiver. Second is the more simplified Fuzzy2 MUD receiver structure. Fuzzy2

MUD receiver consists of Gaussian membership function fuzzifier, minimum inference engine

and COG defuzzifier. The proposed Fuzzy2 MUD receiver with minimum inference provides

further reduction in computational complexity over the Fuzzy1 MUD receiver. Simulation re-

sults demonstrate the performance of the Fuzzy2 MUD receiver. Performance of this proposed

receiver is same as that of the RBF/Fuzzy1 MUD receiver.

49



Chapter 6
Conclusion

6.1 Introduction

The research carried out in this thesis primarily discusses fuzzy system based non-linear re-

ceiver structure for DS-CDMA communication system. Fuzzy implementation of CLB and

MUD RBF receiver has been presented and the computational advantages of fuzzy receiver has

been compared with the conventional receivers like MMSE, MF and RAKE etc. This chapter

summarizes the work reported in this thesis, specifying the limitations of the study and provides

some indications for future work.

Following this introduction section 6.2 lists the achievements from the work. Section 6.3 pro-

vides the limitations and section 6.4 presents indications toward future work.

6.2 Achievement of the thesis

The work presented in this thesis can be seen as made up of two distinct parts. The First part

presents the development of CLB fuzzy receivers for AWGN channel1 , secondly, MUD fuzzy

receivers have been developed to mitigate the effects of MAI in presence of channel ISI and

AWGN2.

Chapter 4 of this thesis presented new fuzzy implementation of CLB RBF receiver. It is seen

that RBF receivers uses estimates of noise free signal vectors to estimate the centres. Fuzzy

can also be implemented using RBF with scalar centres. Subsequently, the design of the fuzzy

receivers using FAF is presented . Fuzzy receivers designed with FAF were based on LMS

fuzzy filters. The computational complexity associated with the RBF receivers makes them

difficult for practical implementation as the number of centres increases exponentially with the

increase on active transmitting users in the system. Fuzzy implemented RBF CLB receiver

1this part is discussed in the chapter 4
2this topic is discussed in the chapter 5
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reported here uses Gaussian membership function, product/ minimum inference in the form of

��� � � � �
	��� � � � rules and a COG defuzzifier. The use of fuzzy system in implementing

RBF CLB receiver provides flexibility in the design. With use of different forms of inference

rules like product or minimum rule and defuzzification processes other forms of near optimal

or optimal receivers can be designed. Some of the major contributions of this chapter are

summarized here. Fuzzy CLB receivers

� are computationally more efficient then optimal RBF receivers, from the implementa-

tional point of view;

� have an ability to use different forms of inference rules, defuzzification processes provid-

ing alternate scheme to facilitate compromise between receiver performance and compu-

tational complexity;

� provide a performance which is close to RBF receiver.

Chapter 5 of the thesis presented the development of fuzzy MUD receiver to mitigate the ef-

fects of MAI from the other users transmitting in the same cell and channel ISI. In presence of

MAI, the performance of the linear receivers like RAKE receiver, MMSE receiver drops dras-

tically irrespective of the higher values of � ����� � . Linear receiver does not have any process

to remove the effects of interference from other users. MUD receiver considers the informa-

tion contained in MAI as additional information for the detection of the intended data. MUD

receiver processes the received signal at bit rate. Hence the dimension of the centre reduces

from
�

to
�

. MUD receiver with RBF implementation provides optimal performance. The

main disadvantage of this receiver is the computational complexity increases in an exponential

manner as the number of transmitting users increases. Hence difficult for practical implemen-

tation. These computational issues prompted the design of new fuzzy receivers. Fuzzy MUD

receives are the fuzzy implementation of the RBF receiver. Two types of fuzzy receivers have

been proposed. First one is Fuzzy1 MUD receiver with Gaussian membership fuzzifier where

scalar centres are located at � � � � � , product inference rule and COG defuzzifier. This Fuzzy

MUD receiver provides exactly the same performance a that of optimal RBF MUD receiver.

Second is the Fuzzy2 MUD receiver with Gaussian membership function, minimum instead of

product inference rule and COG defuzzifier. Performance of Fuzzy2 MUD receiver is nearly

same as that of the RBF MUD receiver. The major contribution from this chapter are listed

below. The fuzzy MUD receivers:
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� provide better performance as compared to linear receivers like RAKE receiver, MMSE

receiver. The fuzzy MUD receiver is computationally more efficient then the RBF MUD

receivers from the implementational view point.

� can implement different forms of inference rules, defuzzification processes to provide

alternate near optimal MUD receivers.

6.3 Limitations of the work

Following are the limitations of the work reported in this thesis:

� The channel model used in the simulation was a stationary channel. In practice the chan-

nel suffers from fading in addition to multipath components.

� The work reported in this thesis investigates the receiver in the downlink scenario only.

The receiver in the uplink scenario suffers from near-far effect in addition to difficulty in

synchronization.

� The studies reported here in used Gold code for spreading. Performance of other coding

techniques have not been investigated.

6.4 Scope for further research

From the limitations of the work it can be seen that the work reported in this thesis can be

extended for the following:

� Non stationary channel:- Where the channel can be additionally affected by Rayleigh

fading and Doppler’s fading

� The receiver design for uplink scenario to take care of near-far effect and synchronization

can also be considered.

� Performance of fuzzy receiver with different type of spreading code.

Excluding this, further work can also be taken up for fuzzy implementation of antenna array

receivers for uplink scenario.
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