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Abstract 

   Wavelet function generates significant interest from both theoretical and 

applied research given in the last ten years. In the present project work, the 

Daubechies family of wavelets will be considered due to their useful properties. 

Since the contribution of compactly supported wavelet by Daubechies and multi 

resolution analysis based on Fast Fourier Transform (FWT) algorithm by 

Beylkin, wavelet based solution of ordinary and partial differential equations 

gained momentum in attractive way. Advantages of Wavelet-Galerkin Method 

over finite difference or element method have led to tremendous application in 

science and engineering.  

In the present project work the Daubechies families of wavelets have been 

applied to solve differential equations. Solution obtained may the Daubechies-6 

coefficients has been compared with exact solution. The good agreement of 

mathematical results , with the exact solution proves the accuracy and efficiency 

of Wavelet-Galerkin Method. 
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CHAPTER-1 

 

Introduction 

      Wavelet Galerkin method is useful to solve partial differential equation. 

Wavelet analysis is a numerical concept which allows representing a function in 

terms of a set of basis functions, called wavelets, which are localized both in 

location and scale. Wavelets used in this method are mostly compact support 

introduce by Daubechies [1]. 

The wavelet based approximations of ordinary and partial differential equations 

[1-4] have been attracting the attention, since the contribution of orthonormal 

bases of compactly supported wavelet by Daubechies [5] and Multiresolution 

analysis based Fast Wavelet Transform Algorithm (F.W.T) by Beylkin [6] 

gained momentum to make wavelet approximations attractive. Among the 

wavelet approximations, the Wavelet-Galerkin technique [7-10] is the most 

frequently used scheme nowadays .Wavelet based numerical solutions of partial 

differential equations have been developed by several researchers [2, 3, 7, 10-

14]. 

Daubechies constructed a family of orthonormal bases of compactly supported 

wavelets for the space of square-integrable function )(2 RL . The Wavelet-

Galerkin scheme involves the evaluation of connection coefficients are integrals 

with integrands being products of wavelet bases and their derivatives. 
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Due to the derivatives of compactly supported wavelets, it is difficult and 

unstable to compute the connection coefficients by the numerical evaluation of 

integral. The connection coefficients and the associated computations 

algorithms have been developed in [8,12] for bounded and unbounded domains. 

Wavelet )(x : An oscillatory function )()( 2 RLx   with zero mean is a wavelet 

if it has the desirable  properties: 

1.Smoothness: )(x  is n times differentiable and that their derivatives are 

continuous. 

2.Localization: )(x  is well localized both in time and frequency domains, i.e., 

)(x  and its derivatives must decay very rapidly. For frequency localization  

)(ˆ   must decay sufficiently fast as   and that )(ˆ   becomes flat in the 

neighborhood of 0 . The flatness is associated with number of vanishing 

moments of )(x , i.e., 

         




 0)( dkxx k  or equivalently 0)(ˆ  
 k

k

d

d
 for nk   ,......,1 ,0   

in the sense that larger the number of vanishing moments more is the flatness 

when  is small. 

3.The admissibility condition 

                 











d

2

)(ˆ

 

  suggests that 
2

)(ˆ   decay at least as 
1

  or 
1

x  for 0 . 
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Chapter-2 

 

Wavelet Based Complete coordinate Function 

 

            The Daubechies [5, 15] defined the class of compactly supported 

wavelets. This means that they have non zero values within a finite interval and 

have a zero value everywhere else. Let )(x  be a solution of scaling relation  

                             





1

0

)2()(
L

k

k kxax                                                            (1)

  

The expression )(x  is called Scaling function. And wavelet function )(x  is 

               )2()1()( 1

1

kxax k

Lk

k  



                                                                   (2) 

 

where L  is positive even integral. 

  

From the normalization   1)(x  of the scaling function, the first condition can 

be written as follows, 

                                                  2
1

0






L

k

ka                                                           (3) 

     

The translation of )(x  are required to be orthonormal 
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             mkkx ,m)-(x  )(                                                                            (4) 

This formula (4) implies the second condition 

                           




 
1

0

02

L

k

mmkk aa                                                                          (5) 

Where   is the  Kronecker delta function.  

Smooth wavelet function requires the moment of the wavelet to be zero 

                       0)( dxxx m                                                                                (6) 

This formula (6) implies the third condition 

       





1

0

0)1(
L

k

k

mk ak  for 1
2

 ,....,1 ,0  Lm                                                           (7)  

 

Figure1: Daubechies’ scaling and wavelet function for 6L  . 
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For the coefficients satisfying with the above condition, the function, which 

consist of translation and dilations of the scaling function )2( kxj   or the 

wavelet function )2( kxj   form a complete and orthogonal basis. The relation 

between two functions is expressed as:                        

                jjj WVV 1                                                                                           

          ,0)()(  




dxmxx  for any integer  m       (8) 

  where    denotes the orthogonal direct sum. Also, jV   and jW  be the 

subspaces generated, respectively, as the 2L -closure of the linear spans of 

)2(2)( 2 kxx j

j

jk   and )2(2)( 2 kxx j

j

jk  , k . 

The condition (8) implies that  

                         110 .....  jj VVVV   

      and            jj WWWVV  ......1001                                                        (9) 

Here, j is the dilation parameter as the scale. For a certain value of j and L, the 

support of the scaling function )2( kxj   is given as follows. 

                     






 


jj

j kLk
kxSupp

2

1
,

2
))2((                                                 (10) 

  As the scaling function yield a complete coordinate function basis, it can be 

used to expand a general function as follows  

                                 
k

j

k

j kxcxf )2(2)(                                                    (11) 
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For this expansion, we have the following convergence property, 

          )(2)2( pjpj

kk fCkxcf                                                       (12) 

where  

                  dxkxxfc j

k )2()(  

and C  and p  are constants.   

          Here it is worth emphasizing that of a proper scale is very important. For 

example, to express a function having five periods in one interval, the scale j  

which at least has five translated components of the corresponding scaling 

function in the same interval must be selected. Besides this, there is another 

important point that scale j  also affects the convergence in computational 

estimation. As we can see from the convergence property (12), the expanded 

function approaches the real value of, as j .                
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CHAPTER 3 

 

                       

Multiresolution in )(2 RL                

Multiresolution analysis is the method of most of the practically relevant 

discrete wavelet transform. 

                    A Multiresolution analysis of the space )(2 RL consist of a 

sequence of closed subspace jV  with the following properties: 

       
ZjVV jj   ,)1 1  

       1)2()()2  jj VxfVxf       

      00 )1()()3 VxfVxf   

        Zj jV


)4     is dense in  0),(2  j ZjVRL  

 The existence of a scaling function  )(x  is required to generate a basis in each 

jV  by    

  
 

Zijij spanV


  

     With 

               Zijixj

ij

j

 ,),2(2 2  

In the classical case this basis orthonormal, so that 
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, of which the translates and dilates constitutes orthonormal 

bases of the spaces jW .  ,, ikRjkji     

With      ,)()(, dxxgxfgf 




  

being the usual inner product. 

        Let the jW denote a subspace complementing the subspace jV in 1jV i.e. 

jjj WVV 1 . 

 Each element of  1jV   can be uniquely written as the sum of an element in jV  , 

and an element in jW  which contains the details required to pass from an 

approximation at level j to an approximation at level 1j . 

 Based on the function )(x  one can find )(x , the so-called mother wavelet
 

  ZispanW jij     

Generated by the wavelets 

                    Zijixj

ji

j

 ,),2(2 2        

Each function )(2 RLf    , can now be expressed as 

                          







Zi

jiji

jj

ijij

Zi

xdxcxf )()()(
0

00
  

     Where 
RjijiRjiji fdfc  ,, 
 

The scaling function )(x and its mother wavelet )(x  have the following 

properties: 
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 



 ,1)( dxx  

 
jidxixjx ,)()( 




                  

 2,1,0,0)( 



kdxxxk  

and 

0)()( 



dxkxx  , For any integer k 

This condition implies that  jjj WVV 1  on each fixed and scale j , the 

wavelets  
Zkjk x


)( form an orthonormal basis jW  and the scaling functions 

 
Zkjk x


)(  form an orthonormal basis of jV     

The set of spaces of set jV   is called as Multiresolution analysis of )(2 RL .These 

spaces will be used to approximate the solutions of Partial Differential 

Equations using the Wavelet-Galerkin method. 
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CHAPTER 4 

 

 Connection coefficients 

              In order to solve the differential equation by using wavelet Galerkin 

method there we need connection coefficients,  

    




 dxxx
d

l

d

l

dd

ll )()( 2

2

1

1

21

21
 

Taking the derivatives of the scaling function d times, we get  

                                 





1

0

)2(2)(
N

k

d

kk

dd kxax   

After simplification and considering it for all 
21

21

dd

ll , gives a system of linear 

equations with 
21dd

 as unknown vector: 

                         2121

12

1 dd

d

dd
T 


 

where  21 ddd   and  
i

ilqi aaT 2  

The moments k

iM  of i   are defined as 

              




 dxxxM i

kk

i )(   

with 10

0 M  

Latto et al derives a formula as 

               
































m

t

t

l

L

i

lt

i

tm

m

m

i ia
l

t
i

t

m
M

0

1

0

1

0

             
)12(2

1
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where ia ’s are the Daubechies wavelet coefficients. 

Tables regarding the value of Scaling function and Connection coefficients at 

j=0 and L=6 have been provided by Latto et al [8]. 

 

             Table 1    scaling function  )(x           

x )(x  

0 0 

0.5 0.60517847E+00 

1 0.12863351E+01 

1.5 0.44112248E+00 

2 -0.38583696E+00 

2.5 -0.14970591E-01 

3 0.95267546E-01 

3.5 -0.31541303E-01 

4 0.42343456E-02 

4.5 0.21094451E-02 

5 0 
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Table 2 : Daubechies Wavelet filter coefficients, L=6 

         

0a  0.470467207784 

1a  1.14111691583 

2a  0.650365000526 

3a  -0.190934415568 

4a  -0.120832208310 

5a  0.0498174997316 

 

               

          Table 3: Connection coefficient at 0j ,6 L   dxnxkxkn )(  )(][ 
 

 

]4[  0.00535714285714 

]3[  0.11428571428571 

]2[  -0.87619047619052 

]1[  3.39047619047638 

]0[  -5.26785714285743 

]1[  3.39047619047638 

]2[  -0.87619047619052 

]3[  0.11428571428571 

]4[  0.00535714285714 
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CHAPTER 5 

     Singularly perturbed second-order boundary value problem 

 

   Wavelet-Galerkin scheme for the singularly perturbed boundary value 

problem   

              ,1 0  , )(    xxfuuu                                          (13)  

subject to boundary condition  

                          0,(1)    ,0)0(  uu                     

where (o<  <<1), and  , constant and )(xf
 
is a polynomial of degree any 

order in x, in [0, 1] otherwise, approximate by such a polynomial if necessary.       

 

        Let the solution )(xu j of the problem be approximated by its jth level 

wavelet series on the interval (0, 1), i.e. 

                                   





12

2

),()(

j

Lk

kkj Zkxcxu                 (14)                   

         Where ,0),2(2)( 2  jkxx j

jk

j

  and 22 are 1-2 ,...,-3 ,-2k  , jj  LLLuk                          

unknown coefficients to be determine. The integer j  is used to control the 

smoothness of the solution. The larger integer j  is used, the more accurate 

solution can be obtained.                     
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The parameter L  implies that the wavelet associated with the set of L  

Daubechies filter coefficients is used as the solution bases. Substituting the 

wavelet series approximation )(xu j in (14) for )(xu  in (13),          

         )()()()(
12

2

12

2

12

2
2

2

xfxcx
dx

d
cx

dx

d
c

jjj

Lk

jkk

Lk

jkkjk

Lk

k  












            (15)                                 

                   

   To determine the coefficient kc , we take inner product of both sides of (15) 

with jl , 

   .12,...,3,2    ,)()(            

)()()()()()(

1

0

12

2

1

0

12

2

1

0

12

2

1

0







   












j

jl

Lk

jljkk

Lk

jljkkjlljk

Lk

k

LLldxxxf

dxxxcxxcdxxxc

jjj





      (16) 

We assume that  


m

l

i

i xaxf
0

)( is a polynomial of degree m in x  . We write the 

equation in (16) as 

               1,...,2-,3-2l   , j
12

2

12

2

12

2

 












LLdcacbcc j

mlK

Lk

j

kl

Lk

K

J

klk

j

kl

Lk

jJjj


    

       (17) 

 

Where 

                       ,)( )(    ,)( )(

1

0

1

0

  dxxxbdxxxc jljk

j

kljljk

j

kl   

                      
 

1

0

1

0

)(  )(    , )(  )(

  

dxxxfddxxxa jl

j

mljljk

j

kl   
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To find 
j

mld  , we put the value of )(xf  yielding 

                      j

mld  = 


1

00

)( dxxxa jl

i
m

i

i   

We know )2(2)( 2 lxx j
j

jl    

Put this in above equation then 

           

         

)2(2
0

1

0

2 



m

i

j
j

i

i

j

ml dxlxxad 

        

                 


1

0

2

0i

2 )2(22 dxlxxa j
j

i
m j

i   

                 



m

i

i

ijj

j

i

J

dylyya
0

2

0

2

)(
22

2
  

 

Let   

x

o

mn

k dykyyxM )()(     

 

So  )2()(

2

0

ji

l

i Mdylyy

j

   
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Hence )2(
22

2
 

2

0i

ji

lijj

j
m

i

j

ml Mad 


  

     )2( 

2

                  

                 

0 )
2

1
(

ji

l

m

i ji

i M
a


 

    

Equation (17) can be further put into the matrix-vector form as  

                                   DUA 1      

where                                                                                                                 

                      ABCA   1    ,               (18)                              

   ][ D    ,  ][  A

 ][      ,  ][  

1,-22  ,12,2

,12,212,2

jj

jj

lL

j

kllkL

j

kl

lkL

j

kllkL

j

kl

da

bBcC














    

and 

               
T

LL jcccU ],,[
1232   

Now, we have a linear system of 22  Lj
equations of 

the 22  Lj
unknown coefficients. We can obtain the coefficient of the 

approximate solution by solving this linear system. 

          The solution U  gives the coefficients in the Wavelet-Galerkin 

approximation )(xu j of )(xu  
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CHAPTER-6 

Wavelet-Galerkin Solution of Shear Wave Equation: 

 

    Consider a plate of finite extent in the z & y direction & of thickness 1 in x 

direction. For horizontal polarized shear wave, the governing partial differential 

equation is    

                          

  
1

2

2

2 t

u

c
uu yyxx




                                         (19) 

                where   ),,( tyxuu                                           

 We consider the solution of the wave equation as 

   .   

                       
)(),,( tyietyxu               (20) 

                                                                                                     

substitute (20) in (19) we get                                                                                                            

0)(
)( 2

2

2

 xu
dx

xud
              (21) 

             

where  2

2

2
2 


 

c
 

So exact solution is  

)(

21 )cossin(),,( tyiexAxAtyxu     (22)              

                                   

Wavelet Galerkin method solution  
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Here, we shall consider 0&6  JL            

  Consider the solution of ordinary differential equation (21) is 

            )2(2)(
2

1

2 kxcxu j

Lk

j

k

j

 


,      ]1,0[x  

           

                     



1

5

)(
k

k kxc  , ]1,0[x        (23)         

   Where  are constants, the unknown co-efficient 

      

Substitute (23) in (21) we get 

                       0)()(
1

5

2
1

5
2

2

 
 k

k

k

k kxckxc
dx

d
  

       

                     0)()(
1

5

2
1

5

 
 k

k

k

k kxckxc   

 

Without any loss of generality, let 12   and taking inner product with )( nx , 

we have  

        

0)()()()(
1

5

2

21

2

1

2
1

5

2

21

2

1

   








 k

L

L

k

k

L

L

k

j

j

j

j

j

j

nxkxcnxkxc   
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              0 ][ ,

1

5

1

5

 


kn

k

k

k

k cknc        (24)      

    

  jLLn 2,,2,1   

  i.e; 1,0,,4,5 n  

where     dxnxkxkn )()(   

 

dxnxkxnk   )()(,   

 

By using Dirichlet boundary conditions 

 

0)1(   ,1)0(  uu  

yielding this equation                           

1)()0(
1

5

 
k

k kcu 
                                                                                 (25)                        

and 

0)1()1(
1

5

 
k

k kcu 
                                                                                (26)

 

 

 

From left boundary conditions, we get equation (25) and from right boundary 

conditions, we get equation (26), which represents the relation of the 

coefficients . 
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Now we eliminate first and last equations of (24) and in that places are 

including equation (25) and (26) respectively, we get the following matrix 

with 6L . 

                                           BTC   

     









































0)1()2()3()4(00

]1[1]0[]1[]2[]3[]4[]5[

]2[]1[1]0[]1[]2[]3[]4[

]3[]2[]1[1]0[]1[]2[]3[

]4[]3[]2[]1[1]0[]1[]2[

]5[]4[]3[]2[]1[1]0[]1[

00)1()2()3()4(0





T  

 

 

 

                









































1

0

1

2

3

4

5

c

c

c

c

c

c

c

C         and      































0

0

0

0

0

0

1

B  

By Gaussian elimination algorithm we get 

997181.05 c  

877618.03 c  

127868.02 c  
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08705.11 c  

24756.00 c  

505899.01 c  

The Exact solution by using  Dirichlet boundary condition is 

             xxxu sin1cotcos)(   

Table-4 shows the comparison between Wavelet-Galerkin solution and Exact 

solution 

            Table 4 Comparison between wavelet Solution and Exact Solution 

x  Wavelet solution Exact solution Absolute Error 

0 1 1 0 

0.125 0.921657 0.912145 0.00951209 

0.25 0.829106 0.810056 .0190502 

0.375 0.726413 0.69535 0.031086 

0.5 0.609339 0.569747 0.0395922 

0.625 0.477075 0.435276 0.041798 

0.75 0.331501 0.294014 0.0374878 

0.875 0.172689 0.148163 0.0245264 

1 0 0 0 

 

The value of above table & using MATLAB we obtain the following graph  
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          Figure 2: Comparison between wavelet Solution and Exact Solution 

.To exhibit a comparison between Wavelet-Galerkin solution and Exact 

solution, figure2 has been diagrammed by MATLAB. A good agreement of 

result has been obtained as doted by figure 2.   
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CHAPTER-7 

 

 

CONCLUSION 

         Wavelet-Galerkin method is the most frequenly used scheme now a days. 

In the present project work, the Daubechies family of the wavelet have been 

consider. Due to the fact that they posses several useful properties, such as 

orthogonality, compact support, exact representation of polynomials to a certain 

degree and ability to represent function at different levels resolution. 

Dabauchies’ wavelets have gained great interest in the numerical solution of 

ordinary and partial differential equation. 

An obtain advantages of this method of this method is that it uses Daubechies’ 

coefficients and calculate the Scaling function, the connection coefficients as 

well as the rest of component only once.                  

This leads to a considerable saving of the computational time and improves 

numerical results through the reduction of round-off errors. 

The Wavelet-Galerkin method has been shown to be a powerful numerical tool 

for fast and more accurate solution of differential equations, it can be observed 

from the result. Wavelet Galerkin method yields better result, which shows the 

effiency of the method. 
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Solution obtained using the Daubechies 6 coefficients wavelet has been 

compared with the exact solution.  The good agreement of its numerical result 

with the exact solution proves its accuracy and efficiency . 
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