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                                                      ABSTRACT 

Generally the stress and deformation analysis of any structure is done by constructing and 

analyzing a mathematical model of a structure. One such technique is Finite element 

method (FEM). A frame is subjected to both static and dynamic loading with dead load 

comprising the static load and the all other time varying loads making up the dynamic 

load. This project titled “ Vibrational Analysis of Frames “ aims at analyzing the frame 

both statically and dynamically using the matrix approach of  FEM by developing 

generalized codes in MATLAB. The analysis comprises of the static analysis of frame and 

the variation of various parameters such as displacement, moment etc with increasing 

number of storey’s as well as dynamic analysis wherein a code is developed to find the 

natural frequency of the structure along with the various other parameters. A structure is 

always vibrating under dynamic loading such as wind etc and if the vibrating frequency 

equals the natural frequency of the structure, resonance might take place. It is thus 

necessary to analyze all these aspects of a structure first which we aim with our study. 
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Chapter 1 

INTRODUCTION 
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1.1 General introduction 

The ever increasing population and limited land resources have made our present day 

population heavily dependent on the use of multi-storeyed structures and that too 

effectively. In order for the structure to be made efficient, it is the role of the civil 

engineer to analyze it properly and comprehensively. The structure should be stable 

and serviceable in every situation and thus we need to analyze all the parameters 

relating to the structure and its failure conditions.  

Structural design can be classified into three epochs- classical, modern and post 

modern. The classical era of structural design dealt with static loading, the modern era 

added to it the dynamic spectrum of analysis, while the post modern era combines the 

and necessitates the satisfaction of  both static and dynamic requirements in the 

presence of specified range. But the aim of all three is same- to increase the 

survivability of any building. 

While all the structures are subjected to static load making their static analysis a 

necessity, all the real structures are subjected to dynamic loading and hence dynamic 

response of any frame is very important along with the static one. Various classical 

methods are existing which can be used to solve these kind of problems and with time 

various computer software have also come up which can help us to predict the 

behaviour of a structure in a more accurate fashion. Finite element analysis approach 

and Matlab are based on these evolving technologies and thus are useful in analyzing 

the structure. Thus our project comprises of studying the frames using FEM and 

Matlab as our tools and analyzing the result. 
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Chapter 2 

LITERATURE REVIEW 
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                  Maison  and  Neuss(1984), Members of ASCE have preformed the computer 

analysis of an existing forty four story steel frame high-rise  Building to study the 

influence of various modeling  aspects on the predicted dynamic properties and computed 

seismic response behaviours. The predicted dynamic properties are compared to the 

building's true properties as previously determined from experimental testing. The seismic 

response behaviours are computed using the response spectrum (Newmark and ATC 

spectra) and equivalent static load methods. 

                     Also, Maison and Ventura(1991), Members of ASCE computed dynamic  

properties and response behaviours OF THIRTEEN-STORY BUILDING and this result 

are compared to the true values as determined  from the recorded motions in the building 

during two actual earthquakes and shown that state-of-practice design type analytical 

models can predict the actual dynamic properties.    

                   Awkar and Lui (1997) studied responses of multi-story flexibly connected 

frames subjected to earthquake excitations using a computer model. The model 

incorporates connection flexibility as well as geometrical and   material nonlinearities in 

the analyses and concluded that the study indicates that connection flexibility tends to 

increase upper stories' inter-storey drifts but reduce base shears and base overturning 

moments for multi-story frames.       

                      Vasilopoulos and Beskos (2006) performed rational and efficient seismic 

design methodology for plane steel frames using advanced methods of analysis in the 

framework of Eurocodes 8 and 3 . This design methodology employs an advanced finite-
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element method of analysis that takes into account geometrical and material nonlinearities 

and member and frame imperfections.    It can sufficiently capture the limit states of 

displacements, strength, stability and damage of the structure. 

          Ozyiğit (2009) performed free and forced in-plane and out-of-plane vibrations of 

frames are investigated. The beam has a straight and a curved part and is of circular cross-

section. A concentrated mass is also located at different points of the frame with different 

mass ratios. FEM is used to analyze the problem. 
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Chapter 3 

THEORETICAL AND FINITE 

ELEMENT FORMULATION 
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3.1 Finite Element Method and its Basics 

The finite element method (FEM), which is sometimes also referred as finite element 

analysis (FEA), is a computational technique which is used to obtain the solutions of 

various boundary value problems in engineering, approximately. Boundary value problems 

are sometimes also referred to as field value problems. It can be said to be a mathematical 

problem wherein one or more dependent variables must satisfy a differential equation 

everywhere within the domain of independent variables and also satisfy certain specific 

conditions at the boundary of those domains. The field value problems in FEM generally 

has field as a domain of interest which often represent a physical structure. The field 

variables are thus governed by differential equations and the boundary values refer to the 

specified value of the field variables on the boundaries of the field. The field variables 

might include heat flux, temperature, physical displacement, and fluid velocity depending 

upon the type of physical problem which is being analyzed. 

A general procedure for finite element analysis comprises of certain steps which are 

common to all such analyses, whether fluid flow, structural, heat transfer or some other 

problem. These steps are sometimes embodied in the software packages used for 

commercial purposes. The steps can be described as follows: 
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i) Preprocessing 

      This step in general includes: 

• Defining the geometric domain of any problem. 

• Defining the type of element or elements to be used. 

• Defining the elemental material properties. 

• Defining the geometrical properties of elements such as length, area etc. 

• Defining the connectivities of elements. 

• Defining the boundary conditions. 

• Defining the conditions of loading. 

 This step sometimes also referred as model definition step is critical. It can be said that a         

finite element problem which is perfectly computed is of no value if it corresponds to a 

wrong problem. 

ii)  Solution 

While solving the problem, FEM assembles the governing algebraic equations in 

matrix form and computes the unknown values of the primary dependent variables or 

field variables. These primary dependent variables can then be used by back 

substitution to compute additional, derived variables such as heat flow, element 

stresses, reaction forces etc. 
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iii)  Postprocessing 

It comprises of the analysis and evaluation of the solution results. It contains 

sophisticated routines to print, sort and plot the selected results from a finite element 

solution. Operations that can be done include: 

• Checking equilibrium. 

• Animating the dynamic model behaviour. 

• Plotting the deformed structural shape. 

• Calculating the factors of safety. 

• Sorting the element stresses in order of their magnitude. 

3.2 Static Analysis 

PLANE FRAME ELEMENT  

 

 

 

                (Figure 1)  

A plane frame element can be defined as a two dimensional finite element consisting of 

both local and global co-ordinates. The properties which are associated with a plane frame 

element are modulus of elasticity ‘E’, cross sectional area ‘A’, moment of inertia ‘I’ and 
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length ‘L’. Each and every plane frame element consists two nodes and is inclined at an 

angle θ which is measured counter clockwise from the positive global X axis.  

Let C be defined as cos θ 

      S be defined as sin θ 

      K be defined as Element stiffness matrix  

Then the matrix K is given as :  

K=E/L*  
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Any element in the plane frame has six degrees of freedom: three degrees of freedom at 

each node (displacement in x-direction, displacement in y-direction and rotation). The sign 

convention that is being used is synonymous with the one we use generally (rotations 

being positive in counterclockwise direction and displacement having their usual 

meanings). For any framed structure having n nodes, the size of the global stiffness matrix 

K will be 3n × 3n.  After obtaining the global stiffness matrix K, we make use of the 

equation:  

[K]{U}= {F} 

Where U is the displacement vector in global coordinates and F is the force vector in 

global co-ordinates. 
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Now the boundary conditions are applied to these vectors U and F which might be natural 

boundary conditions or essential boundary conditions. The matrix is then solved and the 

reactions, forces at nodes and displacement at nodes found out. The nodal force vector for 

each element can be obtained as follows: 

{f} = [k] [R]{u} 

Where {f} is the 6 x 1 nodal force and {u} is the 6 x 1 element displacement vector.  

The matrices [k] and [R] are given as following: 

        [k]= 

��
��
��
� ��/� 0 0 −��/� 0 0

0 12��/�³ 6��/�² 0 −12��/�³ 6��/�²

0 6��/�² 4��/� 0 6��/�² 2��/�
−��/� 0 0 ��/� 0 0

0 −12��/�³ −6��/�² 0 −12��/�³ −6��/�²

0 6��/�² 2��/� 0 −6��/�² 4��/� �	
		
		


 

                                         [R]= 

��
��
��
� � 0 0 0 0

−� � 0 0 0 0
0 0 1 0 0 0
0 0 0 � � 0
0 0 0 −� � 0
0 0 0 0 0 0�	

		
	

 

Where C is cos 
 and S is sin 
. 

The two displacements are represented by the first and second elements in each vector {u} 

while rotation is represented by the third element respectively, for the first node. Similarly 

the two displacements and rotation at the second node are represented by fourth fifth and 

sixth element of vector {u} respectively. 
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STATIC ANALYSIS OF FRAME  

A plane frame can be defined as connection of bars or framework of bars which are 

connected in a same plane rigidly. A frame experiences reactions at various supports along 

with deflection, when it is subjected to a load or moment at various nodes. As the effect of 

the deflections induced, internal forces are induced in the frame bars. The analysis of frame 

comprises of determination of all these values.  

Equilibrium equations alone are sufficient to calculate the reactions and internal forces 

while both compatible and equilibrium equations are required in case of indeterminate 

structure. Finite element method is one of the computational methods developed for such 

problems. Generally most of the problems of frame analysis are indeterminate in nature. 

BASIC EQULIBRIUM EQUATION  

The condition at which the net force acting on the body is zero is called equilibrium 

condition. If a body continues to be at rest on application of external force then it is said to 

be in static equilibrium while if it is associated with some sort of motion then it is called 

dynamic equilibrium. The basic equilibrium equations are:  

∑ Fx =o 

∑ Fy=0 

 

 



 
13 

 

FORCE-DISPLACEMENT RELATIONSHIP  

While studying the deformed bodies, constitutive law holds good for every element. 

According to constitutive law, the force is directly proportional to the displacement 

produced.  

It also defines the stress-strain relationship. Mathematically it can be expressed as follows:          

F= Ku where F is the force and u is the displacement and K is the material stiffness. 

The force required per unit elongation can be defined as stiffness of that material. 

USE OF MATRICES 

While solving the problems we have observed that many simultaneous equations are 

formed to express the equilibrium and force displacement, which are solved with the help 

of series of substitution. This can be done more conveniently with the help of matrices and 

it has a distinct advantage in MATLAB environment as it can be expressed easily using 

arrays. 

For the analysis of frame, the general notation used is, 

[F]=[K][U] 

Where, [F] is the force matrix 

[K] is the stiffness matrix and 

[U] is the displacement matrix. 
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STEPS FOLLOWED FOR THE ANALYSIS OF FRAME  

1) Discretizing the domain: Dividing the element into number of nodes and numbering 

them globally i.e. breaking down the domain into smaller parts.      

2) Writing of the Element stiffness matrices: The element stiffness matrix or the local 

stiffness matrix is found for all the elements and the global stiffness matrix of size 3n x 3n 

is assembled using these local stiffness matrices. 

3) Assembling the global stiffness matrices: The element stiffness matrices are combined 

globally based on their degrees of freedom values. 

4) Applying the boundary condition: The boundary element condition is applied by 

suitably deleting the rows and columns which aren’t of our interest.        

5) Solving the equation: The equation is solved in Matlab to give us the value of U. 

6) Post-processing: The reaction at supports and internal forces are calculated. 

3.3 Dynamic Analysis 

3.3.1 General Introduction 

Dynamic analysis of structure is a part of structural analysis in which behaviour of flexible 

structure subjected to dynamic loading is studied. Dynamic load always changes with time. 

Dynamic load comprises of wind, live load, earthquake load etc. Thus in general we can 

say almost all the real life problems can be studied dynamically. 
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 If dynamic loads changes gradually the structure’s response may be approximated by a 

static analysis in which inertial forces can be neglected. But if the dynamic load changes 

quickly, the response must be determined with the help of dynamic analysis in which we 

can’t neglect inertial force which is equal to mass times of acceleration (Newton’s 2nd law).  

                                            Mathematically    F=M × a 

 Where F is inertial force, M is inertial mass and ‘a’ is acceleration. 

 Furthermore, dynamic response (displacements and stresses) are generally much higher 

than the corresponding static displacements for same loading amplitudes, especially at 

resonant conditions. 

All real physical structures have many numbers of displacements. Therefore the most 

critical part of structural analysis is to create a computer model, with finite number of mass 

less member and finite number of displacement of nodes which simulates the real 

behaviour of structures. Another difficult part of dynamic analysis is to calculate energy 

dissipation and to boundary condition. So it is very difficult to analyze structure for wind 

and seismic load. This difficulty can be reduced using various programming techniques .In 

our project we have used FINITE ELEMENT ANALYSIS and programmed in MATLAB. 

DYNAMIC EQULIBRIUM :  

The force equilibrium of multi degree freedom lumped mass system as a function of time 

can be expressed by the following equation 

F�t�I+F(t)C+F�t�S= F(t) 

Where F(t)I is a vector of inertial force acting on the nodal masses 

            F(t)c is a vector of damping force or energy dissipation force 
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            F(t)s is a vector of structural force carried by structure 

            F(t) is vector of externally applied force 

 Above mentioned equation is valid for all type of problems i.e for both linear and 

nonlinear system of equation 

 In order to convert physical equilibrium for many structural systems, the approximation of 

linear structural behaviour is made .The following second degree equation is used : 

����� (�)  + ��� (�) + [�]�(�)  = � 

 Where M is the mass matrix of structure  

            C is damping matrix which is used to approximate the energy dissipated in system 

            K is the static stiffness matrix of system 

            u(t)  is absolute node displacement 

            ú(t)  is node velocity 

            ü(t) is node acceleration 

For seismic loading the external force is taken as zero. The basic seismic motion are the 

three component of free-field ground displacements u(t)ig that is at some point below the 

foundation level. Therefore we can write the above equation in terms of absolute node 

displacement, node velocity and node acceleration that are relative to three component of 

free-field ground displacements. 

u(t)a=  u(t) + u(t)Ix +  u(t)Iy + u(t)Iz   

ú(t)a= ú(t)+   ú(t)Ix + ú(t)Iy+ ú(t)IZ   

ü(t)a=  ü(t)+  ü(t)Ix+  ü(t)Iy+ ü(t)IZ 
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where I is the vector with 1 in ‘i’ directional degree of freedom and Zero in all other degree 

of freedom. 

Using the above equations we will get the final equilibrium equation as  

  Mü(t)+ Cú(t)+ K(t)= -Mx ü(t)xg- My ü(t)yg -Mz ü(t)zg 

Where Mi=MI i 

The above simplified equation is possible since the rigid body displacement and velocity 

associated with base motion causes no additional damping or energy dissipation. 

STEP BY STEP SOLUTION: 

The most common method for dynamic analysis is incremental method in which dynamic 

equilibrium are solved for various instant of time. There exists large number of differential 

incremental solution method which involves solution of complete set of equilibrium 

equation at each time increment. In case of non-linear analysis, it may be necessary to 

reform stiffness matrix for complete structural system at each system. Also in order to 

satisfy the equilibrium condition iteration may be required. Due to which large amount of 

time is required for complete the analysis. 

3.3.2 THEORY OF VIBRATION  

SINGLE DEGREE OF FREEDOM SYSTEM : 

  

           (Figure 2) 
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Damping that produces damping force proportional to body’ velocity is commonly called 

as viscous damping force. 

The equation of motion is  

       �� + �� + �� = ���  

For free damped single degree of freedom system, the equation will be 

     �� + �� + �� = 0��  

With initial conditions ��� = 0� = �0 

                                        ��� = 0� =� v0 

MULTI-DEGREE FREEDOM EQUATION : 

When No of degrees of freedom is more than one ,then the governing equation will remain 

same as Single degree of freedom but the only change which occurs in this equation is It 

will be a Matrix equation. 

�����  + ��� + ���� = [�], 

Where [M] and [K] are the mass and stiffness matrix respectively. 

When there is no damping force (no energy dissipation) ,the equation will be 

�����  + [�]� = � 

FREE VIBRATION: 

For free vibration external force acting is equal to Zero. 

So F=0 

So equation is  �����  + ��� + [�]� = 0  

This equation is having harmonic solution  
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Where ω is angular velocity of system and (A) is vector constants 

� =

��
�
� 

A1�2
.
.�!"�
#
�$

 

Substituting the assumed values in governing equation, we will get the final solution as 

ω2�M��A�eiω + [K][A] ] eiωt   =   [0]  

MASS MATRIX : 

1) Introduction : To perform vibration analysis of structure, mass matrix along with 

stiffness matrix is required. The construction of mass matrix is similar to that of Stiffness 

matrix. The mass matrix of individual elements are formed in local direction then It is 

transformed  to global direction  and finally it is merged into master stiffness matrix 

similar to that of   stiffness matrix. 

2) Mass Matrix Construction: The master mass matrix is built from individual elemental 

matrix. The mass matrix can be constructed by several methods which is categorized in to 

three groups 

1) Mass lumping, 

2) Variation mass lumping, 

 3) Template mass lumping. 

For FEM literature, and implemented in all general purpose codes Variants of the first two 

techniques are by now standardized. 

3) Mass Matrix Properties: 

There are certain properties of mass matrix. 
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These are  

1) Matrix symmetry 

2) Physical symmetry 

3) Conservation 

4) Positivity 

GLOBALISATION : 

The mass matrix can be developed similar to stiffness matrix and globalization should be 

necessary before merging. 

The following transformation equation is applied to convert local matrix into global matrix 

Me = (TT)(M) (T) 

 Where M is the elemental with respect to local frame 

[T] is transformation matrix 

[T] is transpose matrix of transformation matrix 

 

3.3.3 ANALYSIS OF 2-D FRAME 

STEPS INVOLVED IN ANALYSISING 2-D FRAME DYNAMICALY:  

1) Identify Degrees of Freedom: The global degree of freedom is numbered. All 2-D frame 

consist three degrees of freedom. These are in global X direction, global Y direction and 

rotation about global Z axis. 

2) All the elements are numbered. 

3) Joint Coordinates: Write the coordinates of each joint using unit consistent with E 

and I. In other words, if E and I are given in kN/cm² and cm4, write the coordinates, (x; 
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y), in terms of centimeters. 

4) Define each element: Each elements of the frames are drawn with the local coordinates  

in global directions . For example if element number N is a diagonal beam element, and 

the global directions are X in horizontal and Y: vertical. 

 

The beam element should be drawn as shown in figure: 

 

                         (Figure 3) 

 

 

 

Where 1, 2, 3, 4, 5, 6 are the LOCAL coordinates of the beam element in the GLOBAL 

directions. The local coordinates are always numbered 1, 2, 3, 4 with 1 and 4 pointing in 

the global X direction (to the right), with 2 and 5 pointing in the global Y direction (up), 

and with 3 and 6 rotating about the global Z-axis (counter-clockwise). All of these six 
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coordinates will line up with the global degrees of freedom that you identified in step 1, 

above. 

5) Evaluating the stiffness matrix: 

For plane frame element the stiffness matrix should be of order 6×6 (since it is having 6 

degrees of freedom) 

Then it is transformed in to global stiffness matrix. 

K=TT Ke T 

Where T is transformation matrix 

  % =

��
�
� 
� � 0  0 0 0& � 0 0 0 0
0 0 1 0 0 0
0 0 0 � � 0
0 0 0 −� � 0
0 0 0 0 0 1"�

#
�$

 

Where C=cos θ; S=sin θ and, 

Ke=

��
��
�
��
� 

��

�
0 0 −

��

�
0 0

0
����

�³

���

�²
0 −

����
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−
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6) Structural Stiffness Matrix, Ks:The structural stiffness matrix is of order equal to 

number of degrees of freedom of structure. In this step we will fill structural stiffness 

matrix with the each term of elemental stiffness matrix in global direction. This step is 

called as MATRIX ASSEMBLY. 



 
23 

 

7) Reactions:  In order to include the reaction effect, which have been ignored up until 

now.et every element of each row and column corresponding to restrained degree of 

freedom (reaction) equal to Zero and every diagonal zero is replaced by 1. 

8) External Loads, p: Now the load vector is created by finding the each end forces and 

moment of each member and their component in the direction of global degree of freedom. 

Add the fixed end forces and moment to any point loads directly to joints. Create the force 

vector by placing this force component into force vector at proper coordinates. 

9) Displacement (d): The displacement at each node can be calculated by using equation  

p= Ks× d where d is displacement vector. 

 So, this can be easily calculated in mat lab by using the following equation 

                        d= Ks /p 

10) Internal beam forces, q: The internal bar forces can then be computed from:                                      

                                             q = k T v – {FEF} 

 Where   u = Element deflection vector in the Local coordinate system 

              q = Element force vector in the Local coordinate system= k u 

              k = Element stiffness matrix in the Local coordinate system 

             T = Coordinate Transformation Matrix 

              v = Element deflection vector in the Global coordinate system 

              f = Element force vector in the Global coordinate system 

             q = T f 

             K = Element stiffness matrix in the Global coordinate system 

             K = TT k T 
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             d = Structural deflection vector in the Global coordinate system 

             p = Structural load vector in the Global coordinate system 

             Ks = Structural stiffness matrix in the Global coordinate        

11) Finding Mass matrix: The mass matrix of each element in global direction can be 

found out using following expression 

M=[TT] [M c ] [T]  

Where                                    

            Mc=     
	�


���

��
�
� 

140 0 0 70 0 0
0 156 22' 0 54 −13'
0 22' 4'² 0 13' −3'²

70 0 0 140 0 0
0 54 13' 0 156 −22'
0 −13' −3'² 0 −22' 4'² "�

#
�$

 

                           % =

��
�
� 
� � 0  0 0 0& � 0 0 0 0
0 0 1 0 0 0
0 0 0 � � 0
0 0 0 −� � 0
0 0 0 0 0 1"�

#
�$

 

12) Analysis: 

 Now the Dynamic Equilibrium equation is used to analyze the problem. 

The Dynamic equilibrium equation is  

��� (t)a+��� (t)a+�(t)a= �(�) 

In the above equation [M] and [K] values substituted in place of M and K to carry out 

dynamic analysis. 
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13) Free Vibration: By using frequency which we got from the above step and with the 

help of MATLAB program the Eigen values and Eigen vectors are calculated and then the 

results are plotted and discussed. 
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Chapter 4 

RESULTS AND DISCUSSION 
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4.1 Static analysis 
4.1.1 Problem Statement (Ref 8) 

    Given data:  

    Modulus of Elasticity, E: 210 GPa  

    Moment of Inertia, I : 5 x10 (-5)  m4  

   Area of cross-section, A:  2 x10(-2) m2  

   Length of the column:  3 m 

   Length of the beam: 4 m 

 

                     (Figure 4) 

Case 1: Intermediate Nodes in beam and column= 0 (Ref 8) 

Nodal Connectivity table: 

               (Table 1) 

Element Node 1 Node 2 
1 1 2 
2 3 4 
3 2 3 

 

Displacement at nodes (in m): 

                           (Table 2) 

Node 
no 

1 2 3 4 

X 0(0) -0.0038(-0.0038) -0.0038(-0.0038) 0(0) 

Y 0(0) 0(0) 0(0) 0(0) 

� 0(0) 0.0008(0.0008) 0.0014(0.0014) 0(0) 
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The values in bracket indicate the values of the solution for problem from Kattan book (Ref 1) 

Case 2: Number of intermediate nodes in beam and column=1 

 

                        (Figure 5) 

Nodal Connectivity Table: 

                                        (Table 3) 

Element Number Node 1 Node 2 
1 1 2 
2 2 3 
3 4 5 
4 5 6 
5 3 7 
6 7 4 

 

 

Displacement at nodes (in m): 

                                                   (Table 4) 

Node 
no 

1 2 3 4 5 6 7 

X  0 -0.0016 -0.0038 
 

-0.0038 -0.0014 
 

0 -0.0038 
 Y  0 -0.0000 

 
-0.0000 0.0000 0.0000 0 0.0003 

� 0 0.0017 
 

0.0008 
 

0.0014 0.0015 0 0.0005 
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Case 3: For intermediate node = 2 

 

                    (Figure 6) 

Nodal connectivity table: 

                     (Table 5) 

Element Node 1 Node 2 
1 1 2 
2 2 3 
3 3 4 
4 5 6 
5 6 7 
6 7 8 
7 4 9 
8 9 10 
9 10 5 

 

Displacement at nodes (in m) 

                                                               (Table 6) 

Node no 1 2 3 4 5 6 7 8 9 10 

X 0 -0.0008 -0.0025 -0.0038 -0.0038 
 

-0.0022 
 

-0.0007 
 

0 -0.0038 
 

-0.0038 
 

Y 0 0.0000 -0.0000 0.0000 0.0000 0.0000 0.0000 0 0.0000 
 

-0.0006 

� 0 0.0014 0.0017 0.0008 0.0014 0.0017 0.0012 0 -0.0005 -0.0003 
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4.1.2 PROBLEM STATEMENT  

 

                          (Figure 7) 

 
Generalize the program for n storeyed frame and then find the variation in displacement at 
node 2, 3, 4, 5, 6 with the variation in increasing number of storey’s say up to 10. 

Results: 

For node 2 

                                             (Table 7) 

No. of storey x-displacement(m) y-displacement(m) 

1 0.0033 0 

2 0.0075 0 

3 0.012 0 

4 0.0166 0.0001 

5 0.0212 0.0001 

6 0.0258 0.0002 

7 0.0304 0.0002 

8 0.035 0.0003 

9 0.0396 0.0004 

10 0.0442 0.0005 
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                                                            (Figure 8)       

 

 

 

                                                     (Figure 9) 
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For node 3: 

                                               (Table 8) 

No. of storey x-displacement(m) y-displacement(m) 

2 0.0147 0 

3 0.0261 0.0001 

4 0.038 0.0001 

5 0.05 0.0002 

6 0.062 0.0003 

7 0.0741 0.0004 

8 0.0862 0.0006 

9 0.0984 0.0008 

10 0.1105 0.0009 

    

 

                                              (Figure 10) 
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                                                   (Figure 11) 

 

 

For node 4: 

                                                       (Table 9) 

No. of storey x-displacement(m) y-displacement(m) 

3 0.0344 0.0001 

4 0.0536 0.0002 

5 0.0735 0.0003 

6 0.0935 0.0004 

7 0.1135 0.0006 

8 0.1337 0.0008 

9 0.1539 0.001 

10 0.1742 0.0013 
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                                                  (Figure 12) 

 

 

                                                   (Figure 13) 
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For node 5 

                                            (Table 10) 

No. of storey x-displacement(m) y-displacement(m) 

4 0.0623 0.0002 

5 0.0896 0.0003 

6 0.1176 0.0005 

7 0.1458 0.0007 

8 0.1741 0.0009 

9 0.2026 0.0012 

10 0.2312 0.0016 

 

 

                                       (Figure 14) 

 

                                         (Figure 15) 
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For node 6: 

                                              (Table 11) 

No. of storey x-displacement(m) y-displacement(m) 

5 0.0985 0.0003 

6 0.1341 0.0005 

7 0.1704 0.0007 

8 0.207 0.001 

9 0.2438 0.0014 

10 0.2807 0.0018 

 

 

                                         (Figure 16) 

 

                                           (Figure 17) 
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Percentage change in sway with respect to a single storey frame by increasing the number 
of storeys: 

                                                 (Table 12) 

Number of storey x-displacement or sway(m) Percentage change in sway 

1 0.0033 0 

2 0.0147 345.4545455 

3 0.0344 942.4242424 

4 0.0623 1787.878788 

5 0.0985 2884.848485 

6 0.1433 4242.424242 

7 0.1969 5866.666667 

8 0.2596 7766.666667 

9 0.3318 9954.545455 

10 0.4141 12448.48485 

 

4.2 Dynamic analysis 

4.2.1 PROBLEM STATEMENT (Ref. 3) 

Consider a plane frame having two prismatic beam elements and three degrees of freedom 

as indicated in the following figure. using the consistent mass formulation find the three 

natural frequencies. 

                                                                       

 

               (Figure 18) 

                

Given Data: 
A=6 in2 

I=100  in4 

M=4.20 lb2/in2 

E=107lb/in2 

L=100  in 
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RESULTS: 

MASS MATRIX  

M = 

  1.0e+004 * 

 

    0.0148   -0.0008   -0.1556    0.0062    0.0008    0.0919         0          0            0 

   -0.0008    0.0148    0.1556    0.0008    0.0062   -0.0919         0          0            0 

   -0.1556    0.1556    4.0000   -0.0919    0.0919   -3.0000         0          0            0 

    0.0062    0.0008   -0.0919    0.0288   -0.0008    0.1556    0.0070       0           0 

    0.0008    0.0062    0.0919   -0.0008    0.0304    0.0644         0       0.0054    -0.1300 

    0.0919   -0.0919   -3.0000    0.1556    0.0644    8.0000        0       0.1300    -3.0000 

         0         0                0        0.0070         0              0         0.0140       0          0 

        0         0         0         0    0.0054     0.1300          0                    0.0156      -0.2200 

         0         0                 0         0           -0.1300   -3.0000         0     -0.2200     4.0000 

 

 

M3 = 

  1.0e+004 * 

    0.0288   -0.0008    0.1556 

   -0.0008    0.0304    0.0644 

    0.1556    0.0644    8.0000 
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K = 

 

  1.0e+007 * 

 

    0.0306    0.0294   -0.0424   -0.0306   -0.0294   -0.0424         0            0         0 

    0.0294    0.0306    0.0424   -0.0294   -0.0306    0.0424         0             0         0 

   -0.0424    0.0424    4.0000    0.0424   -0.0424    2.0000         0             0         0 

   -0.0306   -0.0294    0.0424    0.0906    0.0294    0.0424   -0.0600         0         0 

   -0.0294   -0.0306   -0.0424    0.0294    0.0318    0.0176         0      -0.0012    0.0600 

   -0.0424    0.0424    2.0000    0.0424    0.0176    8.0000         0       -0.0600    2.0000 

         0           0              0             0        -0.0600         0         0.0600         0         0 

         0           0              0             0         -0.0012  -0.0600          0       0.0012   -0.0600 

         0           0              0             0         0.0600    2.0000           0      -0.0600   4.0000 

 

K3 = 

  1.0e+007 * 

    0.0906    0.0294    0.0424 

    0.0294    0.0318    0.0176 

    0.0424    0.0176    8.0000 

 

System stiffness matrix (×107 ) 

                                   (Table 13) 

FROM MATLAB FROM MARIO PAZ 
 
    0.906    0.294     0.424 
    0.294    0.318     0.176 
    0.424    0.176      80 

   

. 906 . 294 . 424

. 294 . 318 . 176

. 424 . 176 80.00
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Mass Stffness matrix (×106) 

                                (Table 14) 

FROM MATLAB FROM MARIO PAZ 
 
    288      -8        1556 
     -8      304        644 
   1556    644     80000 

 

   
288 −8 1556
−8 304 644

1556 644 80000
 

 

Natural frequency 

                              (Table 15) 

FROM MATLAB FROM  MARIO PAZ 
 
   10.3286 
    4.0216 
    4.9736 

 
10.33 
4.02 
4.97 
 

So results which we got using MATLAB are same as that from MARIO PAZ. 

4.2.2 PROBLEM STATEMENT 

Formulate a general program for dynamic analysis frame and by varying the number of 

storey’s up to 5 find the variation in natural frequencies. 

 

             (Figure 19) 

Given data 
Modulus of Elasticity=210×106N/m2 
Area of columns=0.02 m2 

Area of beam=0.02m2 
Density of materials used in column and 
beam=7850N/m3 
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                                                              (Table 16) 

 
Mode 

Number 

Natural Frequency(rad/sec) 
Natural 

frequency 
for 1storey 
frame(n=1) 

Natural 
frequency 

for 2 storey 
frame(n=2) 

Natural 
frequency 

for 3 storey 
frame(n=3) 

Natural 
frequency 

for 4 storey 
frame(n=4) 

Natural 
frequency 
for storey 

frame(n=5) 
1 2.5656 1.1905 0.7513 

 
0.5453 0.4270 

2 9.5564 4.0236 2.5327 
 

1.7911 1.3727 

3 22.7890 
 

8.2212 4.6938 3.3724 2.5422 

4 69.8116 
 

12.6355 7.9128 5.0498 3.9187 

5 74.5805 
 

17.3866 10.6588 7.8052 5.2495 

 

From the above table, it is concluded that with increase in number of storey natural 

frequency of a frame decrease. 
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Chapter 5 

CONCLUSION 
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• A general formulation for static analysis of a single storey n bay frame was 

established and the same used to study the sway characteristics of a frame with 

increase in number of storeys. It was found that the deflection at any node increases 

with the increase in number of storey. Also the sway or deflection of the topmost 

node increases steeply with increase in number of storeys. 

• A general formulation for dynamic analysis of single bay n storeyed frames was 

established and a code developed in MATLAB environment showing that the 

natural modal frequencies decrease as the numbers of storey’s are increased. 

• Both the static and dynamic formulations can be extended to n bay frames 
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