
1 
 

SYNTHESIS OF Al-Si-Ni NANOSTRUSTURED 

MATERIALS BY MECHANICAL ALLOYING 

 

SUBMITTED BY 

HEMANT KUMAR GUSAIWAL 

ROLL NO. :-10504013 

SRIKANTA PATTNAIK 

ROLL NO. :-10504033 

                                             

                                   UNDER THE GUIDANCE OF 

Dr. S. MULA 

 

 

 

DEPARTMENT OF METALLURGICAL & MATERIALS ENGINEERING 

NATIONAL INSTITUTE OF TECHNOLOGY ROURKELA 

 

 



2 
 

 

National Institute of Technology 

Rourkela 

 

CERTIFICATE 

 
       This is to certify that the thesis entitled, ―Synthesis of Al-Si-Ni  nanostructured materials 

by Mechanical alloying‖ being submitted by Hemant Kumar Gusaiwal and Srikanta 

Pattanaik to the Metallurgical and Materials Engineering Department at the National 

Institute of Technology, Rourkela, for the degree of Bachelor of Technology, is a record of 

bonafide research work carried out under my supervision and guidance. The result presented in 

this thesis has not been submitted elsewhere for the award of any Degree or Diploma. 

 

      This work, in my opinion, has reached the standard of fulfilling the requirements for the 

award of the degree of Bachelor of Technology in accordance with the regulation of the institute 

Date : 

                                                                     (Dr. Suhrit Mula) 

               Dept. of Met. & Mat. Eng. 

National Institute of Technology  

Rourkela-769008 

                               
 
                             



3 
 

                          ACKNOWLEDGEMENT 

 

            I want to take the opportunity to extend my hearty indebtedness to my guide S. Mula for 

his invaluable guidance, patience, regular monitoring and meticulous attention at all stages 

during my course of work for which this work has come to fruition. 

. 

                    I express my grateful thanks to Prof. B. B. Verma, Head of the Department for 

providing me the necessary facilities in the Department. I am also grateful to Prof. A. K. Panda 

for their constant concern and encouragement for execution of this work. 

 

                 I also express my sincere special gratitude to Prof. S Bhattacharya, Head, Dept. of 

Ceramic Engineering for his timely help during the characterization of some work. 

 

                  I am thankful to Sri Udayanath Sahu, Sri Rajesh Pattnaik, Metallurgical & 

Materials Engineering, Technical assistants, for their co-operation in experimental work. Special 

thanks to all my family members and friends for being so supportive and helpful in every 

possible way. 

 
                     

 

   

                                                                                                               HEMANT KUMAR GUSAIWAL 

 



4 
 

 

ABSTRACT 

                        

                                     An effort has been made to synthesize Al-based nanostructure by 

mechanical alloying (MA). Elemental powder of Al, Si and Ni were blended to obtain nominal 

composition of Al75Si15Ni10. Alloying was carried out in a high energy planetary ball mill using 

stainless steel grinding media at 300 r.p.m. up to 50 h. Toluene was used as the process control 

agent (PCA). The ball to powder weight ratio was maintained at 10:1. The phase evolution of the 

milled samples was studied by X-ray diffraction (XRD) analysis. The microstructural 

characterization of the milled powder was followed by scanning electron microscopy (SEM) and 

XRD. Dissolution of Si and Ni in Al was found to be 15% and 10% respectively along with the 

formation of some intermetallic phases.  

 

                            

                        SEM micrographs showed that the powder morphology was changed from coarse 

layered structures obtained by very short period of milling to finer as the milling time increased. 

XRD and energy dispersive X-ray analysis (EDX) showed the formation of a homogeneous solid 

solution of the above said blends after milling for 50 h. The crystallite size, lattice strain (%) and 

lattice parameter were calculated from major XRD peaks. It shows that the crystal size decreased 

very rapidly up to 25 h of milling and then slowly became almost constant with further milling, 

whereas, lattice strain (%) increased gradually up to 25 h very rapidly and then very slowly 

became nearly constant with progress of milling. This suggests that major structural changes and 

dissolution of the alloying elements almost completed by 25 h, and further milling refined the 

product by MA. The lattice microstrain of the material increases exponentially. It increases 

rapidly up to 25 h and then increased slowly as the milling progresses further. The change of 

lattice parameter of Al-rich solid solution showed a rapid decrease throughout the process of 

MA. This is because of the entrance of Si and Ni atoms into the lattice of the Al which causes 

distortion in it. The change in the above mentioned parameters were determined up to 30 h of 

milling as on further milling Al peaks vanishes because of formation of partially amorphous 

structure along with some intermetallic phases. 
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1: INTRODUCTION : 

                 Nanomaterials have been the subject of widespread research over the past couple 

of decades with significant advancement in their understanding especially in last few years [1]. 

As the name suggests they are single or multiphased polycrystals with size range of order <100 

nm. Nanomaterials are characterised by some excellent mechanical properties than conventional 

coarse grain materials. 

                  Generally nanomaterials exhibit high strength properties. As the grain size decreased, 

an increasing fraction of atoms can be ascribed to the grain boundaries. As the grain boundaries 

act as pinning points for dislocation movement, its increase in density helps in strengthening   the 

structure hence increases the yield strength of the material [2]. Nanomaterials exhibit improved 

toughness, enhanced diffusivity, higher specific heat, enhanced thermal coefficient, superior 

magnetic properties. 

                      The starting point for the development of new high strength Al-alloys was the 

discovery of high tensile strength exceeding 1200 MPa for melt-spun Al-ETM-LTM amorphous 

ribbons [3]. Such strength levels are twice as high as for conventional crystalline alloys. 

Generally Al-alloys are preferred because of its combination of light weight with excellent yield 

strength [4]. It has corrosion resistance properties because of formation of aluminium oxide on 

the surface [4]. Another interesting materials, consisting of a nanoscale phase mixture of 

quasicrystalline particles, coexisting with a ductile FCC Al-phase, has been produced in various 

melt-spun Al-based ribbons [5]. This type of mixed structures exhibit good ductility and high 

temperature tensile strength about 100-1340MPa [5]. The quasicrystals act as strength bearing 

component, while Al-matrix supplies ductility. 

                            During past decades great efforts have been devoted to the research of rapidly 

solidified (RS) aluminium alloys [6].Particularly, RS multicomponent Al-TM(TM-Transition 

metals) alloys have been studied extensively. Some Al-Si alloys show moderate strength levels 

(300MPa) and a low thermal stability. Al alloys containing Silicon, a rare earth material, and 

Nickel, a late transition metal, combine high tensile strength and good wear resistance [7]. Some 

researches have already been performed by Jerzy Latuch, Grzegorz Cieslak, Tadeusz Kulik 

(Warsaw university of Technology) on fabrication of bulk nanocrystalline Al-Si-Ni alloys 

produced by ball milling of rapidly solidifies ribbons followed by hot isostatic pressing [8] for 

high strength applications [9]. 
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                              The aim of the present work is to synthesize Al-Si-Ni nanostructured material 

by mechanical alloying and characterisation of the product.   

 

Objectives and Scope of Present Study: 

 

 Synthesize Al based alloy having compositions Al75Si15Ni10  by MA. 

 Characterization of the powder products by XRD analysis. 

 Characterization of the powder products by SEM and EDX analysis. 

 Finally, correlate the structures and properties. 

 

2: LITERATURE REVIEW:- 

      2.1 Nano material: 

                             Nanomaterials are defined as the materials having size order in a 

range of 1-200nm.They are applications with morphological features smaller than a one tenth of 

a micrometer in at least one dimension [10]. A logical definition would situate the nanoscale 

between micro scale (0.1µm) and molecular/atomic scale (0.2µm). Nanomaterials are widely 

accepted as it miniaturizes the structure providing some excellent properties compared to 

conventional coarser materials. 

                   Nanomaterials have been classified on different basis e.g. Siegel classified 

nanostructured materials into four categories according to dimensionality i.e. 0D-nanoclusters; 

1D-multilayers; 2D-nanogra-ned layers; 3D-equiaxed bulk solids. Classification is also based on 

the grain size. Gieter classified according to morphology and distribuition of nanocrystalline 

component. According to shape of the crystallities, crys-three categories of nanomaterials may 

be distinguished; layer shaped tallities, rod shaped crystallities and nanostructures composed of 

equiaxed nanometer sized crystallites. 

      2.2 Nanomaterials Vs Conventional materials: 

                       Nanomaterials are dominating the conventional coarser materials because its 

wide range of advantages as they exhibit some excellent mechanical properties along with 

miniaturizing the structure. Mechanical properties i.e. yield stress, ductility, strain hardening, 

strain sensitivity, dynamic response, creep, fatigue, temperature stability etc.      

             2.2.1 Yield strength: Grain size is known to have significant effect on the 

mechanical properties, in particular, the yield stress. The dependence of yield stress in the 
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conventional polycrystalline range. Yield stress, σy, for materials with grain size d, is found to 

follow the Hall-Patch relation. 

                                                            σy = σo  +  K/√d    

 

                               Where, σo is the friction stress and K is a material constant called 

strengthening co-efficient. This is indeed an approximation to keep the power in a range of 0.3-

0.7.The smaller is the grain size, more will be the number of grains, hence the strength of 

material increases as grain boundaries act as pinning points for dislocations. Since the lattice 

structure of adjacent grains differs in orientation, it requires more energy for a dislocation from 

moving in a continuous slip plane. Impeding this dislocation movement will hinder the onset of 

plasticity and hence increase the yield strength [10]. The grain boundary is also much more 

disorder than inside the grain which also prevents the dislocation from moving in a continuous 

slip plane. The mechanical properties of FCC metals with nano-range grain sizes have been 

estimated from uniaxial tension/compression test and nano-indentation. Often micro size tensile 

specimens are used to a- void the influence of imperfections [11] e.g. voids that might adversely 

influence the mechanical response of the material. 

 

                              Fig 1: Hall-Petch strengthening limit by size of dislocations. 
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               2.2.2 Ductility: In the conventional grain size regime, usually a reduction in 

grain size leads to an increase in ductility. Thus one should expect a ductility increase as the 

grain size is reduced to nanoscale. However, the ductility is small for the most grain sizes 

<25mm for metals that in the conventional grain size have tensile ductilities of 40-60% 

elongation. Koch identified three major sources of limited ductility in nano-crystalline materials, 

namely; (i)articrafts from processing; (ii)tensile instability; (iii)crack nucleation or shear 

instability. It is difficult to process nanostructured materials free from the articrafts that mask the 

inherent mechanical properties. As a result, molecular dynamics simulation has been considered 

to be a valuable tool in aiding our understanding of their deformation mechanism [12].The result 

of atomic simulations have allowed several investigators to suggest different plastic deformation 

mechanisms as a function of grain size [13].There seems to be a agreement in this existence of 

three regimes: (a) grain size d<1µm regime in which unit dislocations and work hardening 

control plasticity; (b)smallest grain size d<10nm regime, where limited intragranular dislocation 

activity occurs and grain boundary shear is believed to be the mechanism of deformation. The 

intermediate grain size regime i.e. 10nm-1µm is less well understood. These mechanisms are 

thought to be affecting ductility significantly. 

              2.2.3 Strain Hardening: Nanocrysalline and ultrafine grained materials 

cannot generally sustain uniform tensile elongation. Several reports virtually no strain hardening 

after an initial stage of rapid strain hardening over a small plastic strain regime (1-3%) which is 

different from the response of coarse grained polycrystalline metals [12]. 

The density of dislocations in a nanocrystalline sample saturates due to dynamic recovery or due 

to the annihilation of dislocations into the grain boundaries. It is only during large additional 

strain that work hardening is observed. Dynamic recovery is known to occur during severe 

plastic deformation [14]. Due to the rise in the temperature, recovery converts the deformed 

microstructure into ultra.ne grains having both low-angle and high-angle grain boundaries. Low 

strain hardening behavior has been observed for samples processed by both equal angular 

channel pressing and powder consolidation [14]. 

                 

              The stress–strain response of a nanocrystalline metal, e.g. copper under tension shows a 

rapid peak and subsequent softening due largely to necking. The absence of strain hardening 

(dr/de = 0) causes localized deformation leading to low ductility. Flat compression curves have 

also been observed for other nanocrystalline metals including Fe (BCC) and Ti (HCP) [14]. 

Necking is observed in most cases with the severe case of instability, and shear bands form in the 

consolidated Fe [15]. 

 

               2.2.4 Strain Rate Sensitivity: There have been reports of both increased 

and decreased strain rate sensitivity with decreasing grain size in metals. Iron, which is normally 

rate sensitive, with a strain rate exponent ‗m’. Hardening exponent on the order of 0.04, goes 
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down in the value to 0.004 when the grain size is 80 nm. Malow et al. prepared nanocrystalline 

Fe using ball milling and consolidation, and found a low m 0.006 at d 20 nm. An opposite e.ect 

was found by Gray et al. on ultrafine grained FCC metals produced by ECAP: Cu, Ni and Al–

4Cu 0.5Zr. Their mechanical response was found to depend on the applied strain rate, which 

ranged from 0.001 to 4000 s 1.The strain rate sensitivity, m, based on the above strain rate range, 

was measured to be 0.015 for Cu, 0.006 for Ni and 0.005 for Al–4Cu–0.5 Zr. Gray et al.  Stress–

strain response of ultra.ne grained: (a) Cu, (b) Ni. Relatively high rate sensitivity, coupled with 

the nearly zero post-yield work hardening rates in the ultra fine grained Cu and Ni, to a high pre-

existing dislocation density. 

 

                2.2.5Creep of Nanocrystalline Materials:  Creep in coarse grained 

materials has been widely studied for approximately one century and accurate models exist that 

capture deformation features and explain mechanisms involved therein. Creep in nanocrystalline 

materials has been studied only in recent years owing to several complications involved. First of 

all is the limitation of synthesizing bulk nanomaterial free of defects (porosity and impurities) 

with uniform grain size distribution that could provide reliable data to explain the deformation 

process. Second is the significant increase in the volume fraction of grain boundaries and 

intercrystalline defects such as triple lines and quadruple junctions that renders the creep 

mechanism complicated and leads to associated challenges in developing a model that could 

explain the deformation process. Third, grain growth occurs at much lower temperature as 

compared to coarse grained materials limiting the testing temperatures to a low fraction of the 

melting point. Since the volume fraction of grain boundaries is high, diffusion creep is 

considered to be significant. The high temperature deformation of crystalline materials is given 

by the following (Bird–Dorn–Mukherjee) equation: 

       

                                                 Є=ADGb/kT (b/d)
p 
(∂/G)

n 

 

Where, є is the strain rate, A is a dimensionless constant, G is the shear modulus, b is the 

magnitude of the Burgers vector, k is Boltzmann‘s constant, T is the absolute temperature, p is 

the inverse grain size exponent, and n is the stress exponent. Among the established diffusional 

creep mechanisms in coarse grained materials are the Nabarro–Herring creep that involves 

vacancy flow through the lattice and Coble creep that involves vacancy flow along the grain 

boundaries.           

     

    
 

                 2.2.6 Fatigue in Nanocrystalline materials: There have not been 

many reports on the fatigue properties of nanocrystalline materials. Among the earliest study is 

Whitney et al. [16] on tension–tension cycling of nanocrystalline copper prepared by inert gas 

condensation, with a maximum stress that ranged from 50% to 80% of the yield stress. The 
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minimum stress was 10MPa. After several hundred thousand cycles, a moderate increase in grain 

size was observed (approximately 30%). The samples were shown to elongate slightly in the 

course of a prolonged fatigue test. The amount of strain is similar to the room temperature creep 

strain observed previously in nanocrystalline copper under a constant stress comparable to the 

maximum cyclic stress. The cyclic deformation appeared to be elastic. However, an elastic 

modulus was measured that is a factor of 2 smaller than the modulus for ordinary copper. 

 

 

 

 

2.3 PREPARATION  METHODS : 

 

          2.3.1 Inert Gas Condensation : The inert gas condensation technique, 

conceived by Gleiter [17], consists of evaporating a metal (by resistive heating, radio-frequency, 

heating, sputtering, electron beam heating, laser/plasma heating, or ion sputtering) inside a 

chamber that is evacuated to a very high vacuum of about 10_7 Torr and then backfilled with a 

low-pressure inert gas like helium. The evaporated atoms collide with the gas atoms inside the 

chamber, lose their kinetic energy, and condense in the form of small particles. Convection 

currents, generated by the heating of the inert gas by the evaporation source and by the cooling 

of the liquid nitrogen-filled collection device (cold finger) carry the condensed fine powders to 

the collector device. The deposit is scraped off into a compaction device. Compaction is carried 

out in two stages: (a) low pressure compacted pellet; (b) high pressure vacuum compaction. The 

scraping and compaction processes are carried out under ultrahigh vacuum conditions to 

maintain the cleanliness of the particle surfaces and to minimize the amount of trapped gases. 

The inert gas condensation method produces equiaxed (3D) crystallites. The crystal size of the 

powder is typically a few nanometers and the size distribution is narrow. The crystal size is 

dependent upon the inert gas pressure, the evaporation rate, and the gas composition. Extremely 

.ne particles can be produced by decreasing either the gas pressure in the chamber or the 

evaporation rate and by using light rather than heavy inert gases (such as Xe). A great deal of the 

early work on mechanical properties of nanocrystalline materials used the inert gas condensation 

technique. One shortcoming is the possibility of contamination of powders and porosity due to 

insufficient consolidation. There is also the possibility of imperfect bonding between particles, 

since most of the early work used cold consolidation. Nevertheless, the results obtained using 

specimens prepared by this method led the foundation of our understanding. The important 

contributions of Weertman, Siegel, and coworkers [18] have used materials produced by this 

method. They were the first systematic studies on the mechanical properties of nanocrystalline 
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metals (Cu and Pd) and were initiated in 1989. Nanocrystalline alloys can also be synthesized by 

evaporating the different metals from more than one evaporation source. Rotation of the cold 

finger helps in achieving a better mixing of the vapor. Oxides, nitrides, carbides, etc. of the 

metals can be synthesized by filling the chamber with oxygen or nitrogen gases or by 

maintaining a carbonaceous atmosphere. Additionally, at small enough particle sizes, metastable 

phases are also produced. 

Thus, this method allows the synthesis of a variety of nanocrystalline materials. The peak 

densities of the as-compacted metal samples have been measured with values of about 98.5% of 

bulk density. However, it has been established that porosity has a profound effect on the 

mechanical strength, especially in tension. 

 

           2.3.2 Electrodeposition:  The electrodeposition technique has significant 

advantages over other methods for synthesizing nanocrystalline materials: (1) potential of 

synthesizing large variety of nanograin. Materials—pure metals, alloys and composite systems 

with grain sizes as small as 20 nm,(2) low investment, (3) high production rates, (4) few size and 

shape limitations, and (5)high probability of transferring this technology to existing 

electroplating and electroforming industries. 

                          Over the past few years, Erbetal [19] have studied the synthesis, structure and 

properties of nanocrystalline nickel synthesized by pulse electrodeposition. They demonstrated 

that grain refinement of electroplated nickel into the nanometer range results in unique and, in 

many cases, improved properties as compared to conventional polycrystalline nickel. 

Electrodeposition of multilayered (1D) metals can be achieved using either two separate 

electrolytes or much more conveniently using one electrolyte by appropriate control of agitation 

and the electrical conditions. Also, 3D nanostructure crystallites can be prepared using this 

method by utilizing the interface of one ion with the deposition of the other. It has been shown 

that electrodeposition yields grain sizes in the nanometer range when the electrodeposition 

variables are chosen such that nucleation of new grains is favored rather than growth of existing 

grains. This was achieved by using high deposition rates, formation of appropriate complexes in 

bath, addition of suitable surface-active elements to reduce surface diffusion of ad-atoms, etc. 

This technique can yield porosity-free finished products that do not require subsequent 

consolidation processing. Furthermore, this process requires low capital investment and provides 

high production rates with few shape and size limitations. This high annealing twin density is 

responsible for the enhancement of ductility which will be discussed later. 

 

             2.3.3 Crystallization from amorphous solids: The basic principle for 

the crystallization method from the amorphous state [20] is to control the crystallization kinetics 

by optimizing the heat treatment conditions so that the amorphous phase crystallizes completely 

into a polycrystalline material with ultrafine crystallites. The metallic glasses can be prepared by 

means of the existing routes, such as melt-spinning, splat-quenching, mechanical alloying, vapor 
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deposition, or electrodeposition. Crystallization of amorphous solids has been successfully 

applied in producing nanometer-sized polycrystalline materials in various alloy systems, e.g., in 

Fe-, Ni-, and Co-based alloys, as well as some elements. The complete crystallization of 

amorphous solids is a promising method for the synthesis of nanocrystalline materials because it 

possesses some unique advantages, the most important being porosity-free product and the ease 

of synthesizing nanocrystalline, intermetallics, supersaturated metallic solid solutions, and 

composites. The amorphous solids are in thermodynamic metastable states and they transfer into 

more stable states under appropriate circumstances. The driving force for the crystallization is 

the difference in the Gibbs free energy between the amorphous and crystalline states. Usually, 

amorphous solids may crystallize into polycrystalline phases when they are subjected to heat 

treatment, irradiation, or even mechanical attrition. Of these techniques, conventional thermal 

annealing is most commonly utilized in investigations of amorphous solids. 

 

              2.3.4 Severe Plastic deformation: Severe plastic deformation breaks down 

the microstructure into finer and finer grains. As early as 1960, Langford and Cohen and Rack 

and Cohen [21] demonstrated that the microstructure in Fe–0.003%C subjected to high strains by 

wire drawing exhibited sub grain sizes in the 200–500 nm range. The use of severe plastic 

deformation (SPD) for the processing of bulk ultra.ne-grained materials is now widespread [22]. 

Again, this is not a new technology, since piano wire, known for over a century, owes its 

strength to an ultrafine grain size. Although any means of introducing large plastic strains in 

metals may lead to the reduction of the grain size, two principal methods for subjecting a 

material to severe plastic deformation have gained acceptance: these are known as equal-channel 

angular pressing (ECAP) and high-pressure torsion (HPT). 

 

              2.3.5 Sol gel Synthesis: The sol-gel process is a wet-chemical technique 

(chemical solution deposition) widely used recently in the fields of materials science and ceramic 

engineering. Such methods are used primarily for the fabrication of materials (typically a metal 

oxide) starting from a chemical solution which acts as the precursor for an integrated network (or 

gel) of either discrete particles or network polymers. Typical precursors are metal alkoxides and 

metal chlorides, which undergo various forms of hydrolysis and polycondensation reactions. The 

formation of a metal oxide involves connecting the metal centers with oxo (M-O-M) or hydroxo 

(M-OH-M) bridges, therefore generating metal-oxo or metal-hydroxo polymers in solution. 

Thus, the sol evolves towards the formation of a gel-like diphasic system containing both a liquid 

phase and solid phase whose morphologies range from discrete particles to continuous polymer 

networks. 

                   In the case of the colloid, the volume fraction of particles (or particle density) may be 

so low that a significant amount of fluid may need to be removed initially for the gel-like 

properties to be recognized. This can be accomplished in any number of ways. The simplest 

http://en.wikipedia.org/wiki/Materials_science
http://en.wikipedia.org/wiki/Ceramic_engineering
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http://en.wikipedia.org/wiki/Ceramic_engineering
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method is to allow time for sedimentation to occur, and then pour off the remaining liquid. 

Centrifugation can also be used to accelerate the process of phase separation. 

Removal of the remaining liquid (solvent) phase requires a drying process, which is typically 

accompanied by a significant amount of shrinkage and densification. The rate at which the 

solvent can be removed is ultimately determined by the distribution of porosity in the gel. The 

ultimate microstructure of the final component will clearly be strongly influenced by changes 

imposed upon the structural template during this phase of processing. Afterwards, a thermal 

treatment, or firing process, is often necessary in order to favor further polycondensation and 

enhance mechanical properties and structural stability via final sintering, densification and grain 

growth. One of the distinct advantages of using this methodology as opposed to the more 

traditional processing techniques is that densification is often achieved at a much lower 

temperature. 

             The precursor sol can be either deposited on a substrate to form a film (e.g., by dip 

coating or spin coating), cast into a suitable container with the desired shape (e.g., to obtain 

monolithic ceramics, glasses, fibers, membranes, aerogels), or used to synthesize powders (e.g., 

microspheres, nanospheres). The sol gel approach is a cheap and low-temperature technique that 

allows for the fine control of the product‘s chemical composition. Even small quantities of 

dopants, such as organic dyes and rare earth elements, can be introduced in the sol and end up in 

uniformly dispersed in the final product. It can be used in ceramics processing and 

manufacturing as an investment casting material, or as a means of producing very thin films of 

metal oxides for various purposes. Sol-gel derived materials have diverse applications in optics, 

electronics, energy, space, (bio)sensors, medicine (e.g., controlled drug release), reactive 

material and separation (e.g., chromatography) technology. 

           The interest in sol-gel processing can be traced back in the mid-1880s with the 

observation that the hydrolysis of tetraethyl orthosilicate (TEOS) under acidic conditions led to 

the formation of SiO2 in the form of fibers and monoliths.  

 

2.3.6 Mechanical alloying: Scientific investigations by materials scientists 

have been continuously directed towards improving the properties and performance of materials. 

Significant improvements in mechanical, chemical, and physical properties have been achieved 

through chemistry modifications and conventional thermal, mechanical, and thermo mechanical 

processing methods. However, the ever-increasing demands for ``hotter, stronger, stiffer, and 

lighter'' than traditional materials have led to the design and development of advanced materials. 

The high-technology industries have given an added stimulus to these efforts. Advanced 

materials may be defined as those where first consideration is given to the systematic synthesis 

and control of the structure of the materials in order to provide a precisely tailored set of 

properties for demanding applications [23]. It is now well recognized that the structure and 
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constitution of advanced materials can be better controlled by processing them under non-

equilibrium (or far-from-equilibrium) conditions. Amongst many such processes, which are in 

commercial use, rapid solidification from the liquid state, mechanical alloying, plasma 

processing, and vapor deposition have been receiving serious attention from researchers. The 

central underlying theme in all these techniques is to synthesize materials in a non-equilibrium 

state by ``energizing and quenching''. The energization involves bringing the material into a 

highly non-equilibrium (metastable) state by some external dynamical forcing, e.g., through 

melting, evaporation, irradiation, application of pressure, or storing of mechanical energy by 

plastic deformation. Such materials are referred to as ``driven materials'' by Martin and Bellon 

[24]. The energization may also usually involve a possible change of state from the solid to 

liquid or gas. The material is then quenched into a configurationally frozen state, which can then 

be used as a precursor to obtain the desired chemical constitution and/or microstructure by 

subsequent heat treatment/processing. It has been shown that materials processed this way 

possess improved physical and mechanical characteristics in comparison with conventional ingot 

(solidification) processed materials. 

 

          Process of mechanical alloying:  The actual process of MA starts with 

mixing of the powders in the right proportion & loading the powder mix into the mill along with 

the grinding medium (generally steel balls). This mix is then milled for the desired length of time 

until a steady state is reached when the composition of every powder particle is the same as the 

proportion of the elements in the starting powder mix. The milled powder is then consolidated 

into a bulk shape and heat treated to obtain the desired microstructure and properties. Thus the 

important components of the MA process are the raw materials, the mill, and the process 

variables. We will now discuss the different parameters involved in the selection of raw 

materials, types of mills, and process variables. 

 

            2.3.6.1. Raw Materials: The raw materials used for MA are widely 

available commercially pure powders that have particle sizes in the range of 1±200 mm. But, the 

powder particle size is not very critical, except that it should be smaller than the grinding ball 

size. This is because the powder particle size decreases exponentially with time and reaches a 

small value of a few microns only after a few minutes of milling. The raw powders fall into the 

broad categories of pure metals, master alloys, prealloyed powders, and refractory compounds. 

Dispersion strengthened materials usually contain additions of carbides, nitrides, and oxides. 

Oxides are the most common and these alloys are known as oxide-dispersion strengthened 

(ODS) materials. In the early days of MA, the powder charge consisted of at least 15 vol% of a 

ductile compressibly deformable metal powder to act as a host or a binder. However, in recent 

years, mixtures of fully brittle materials have been milled successfully resulting in alloy 

formation. Thus, the requirement of having a ductile metal. Powder during milling is no longer 

necessary. Accordingly, ductile-ductile, ductile-brittle, and brittle-brittle powder mixtures are 



18 
 

milled to produce novel alloys. Mixtures of solid powder particles and liquids have also been 

milled in recent times [25]. Occasionally, metal powders are milled with a liquid medium and 

this is referred to as wet grinding; if no liquid is involved then it is referred to as dry grinding. 

(Cryomilling also is wet grinding if the liquid used is at cryogenic temperatures). It has been 

reported that wet grinding is a more suitable method than dry grinding to obtain finer-ground 

products because the solvent molecules are adsorbed on the newly formed surfaces of the 

particles and lower their surface energy. The less-agglomerated condition of the powder particles 

in the wet condition is also a useful factor. It has been reported that the rate of amorphization is 

faster during wet grinding than during dry grinding. A disadvantage of the wet grinding, 

however, is the increased contamination of the powder. Thus, most of the MA/MM operations 

have been carried out dry. Additionally, dry grinding has been found to be more efficient than 

wet grinding in the decomposition of Cu(OH)2 to Cu. 

 

            2.3.6.2. Types of Mills: Different types of high-energy milling equipment 

are used to produce mechanically alloyed powders. They differ in their capacity, efficiency of 

milling and additional arrangements for cooling, heating, etc.  

 

                 (a)SPEX Shaker Mills: Shaker mills such as SPEX mills, which mill 

about 10-20 g of the powder at a time, are most commonly used for laboratory investigations and 

for alloy screening purposes. These mills are manufactured by SPEX CertPrep, Metuchen, NJ. 

The common variety of the mill has one vial, containing the sample and grinding balls, secured 

in the clamp and swung energetically back and forth several thousand times a minute. The back-

and-forth shaking motion is combined with lateral movements of the ends of the vial, so that the 

vial appears to be describing in the figure or infinity sign as it moves. With each swing of the 

vial the balls impact against the sample and the end of the vial, both milling and mixing the 

sample. Because of the amplitude (about 5 cm) and speed (about 1200rpm) of the clamp motion, 

the ball velocities are high (on the order of 5 m/s) and consequently the force of the ball's impact 

is unusually great. Therefore, these mills can be considered as high-energy variety. The most 

recent design of the mills has provision for simultaneously milling the powder in two vials to 

increase the throughput. This machine incorporates forced cooling to permit extended milling 

times. A variety of vial materials is available for the SPEX mills and these include hardened 

steel, alumina, tungsten carbide, zirconia, stainless steel, silicon nitride, agate, plastic, and 

methacrylate.  
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            (b)Planetary ball mills: Another popular mill for conducting MA 

experiments is the planetary ball mill(referred to as Pulverisette) in which a few hundred grams 

of the powder can be milled at a time These are manufactured by Fritsch GmbH in Germany and 

marketed by Gilson Co., in the US and Canada. The planetary ball mill owes its name to the 

planet-like movement of its vials. These are arranged on a rotating support disk and a special 

drive mechanism causes them to rotate around their own axes. The centrifugal force produced by 

the vials rotating around their own axes and that produced by the rotating support disk both act 

on the vial contents, consisting of material to be ground and the grinding balls. Since the vials 

and the supporting disk rotate in opposite directions, the centrifugal forces alternately act in like 

and opposite directions. This causes the grinding balls to run down the inside wall of the vial-the 

friction effect, followed by the material being ground and grinding balls lifting off and traveling 

freely through the inner chamber of the vial and colliding against the opposing inside wall-the 

impact effect. Even though the disk and the vial rotation speeds could not be independently 

controlled in the earlier versions, it is possible to do so in the modern versions. In a single mill 

one can have either two (Pulverisette 5 or 7) or four (Pulverisette 5) milling stations. Recently, a 

single-station mill was also developed (Pulverisette 6).Grinding vials and balls are available in 

eight different materials-agate, silicon nitride, sintered corundum, zirconia, chrome steel, Cr-Ni 

steel, tungsten carbide and plastic polyamide. Even though the linear velocity of the balls in this 

type of mill is higher than that in the SPEX mills, the frequency of impacts is much more in the 

SPEX mills. Hence, in comparison to SPEX mills, Fritsch Pulverisette can be considered lower 

energy mills. 
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                                        Fig:-Showing types of forces acting 

 

           (c) Attritor mills: A conventional ball mill consists of a rotating horizontal 

drum half-filled with small steel balls. As the drum rotates the balls drop on the metal powder 

that is being ground and the rate of grinding increases with the speed of rotation. At high speeds, 

however, the centrifugal force acting on the steel balls exceeds the force of gravity, and the balls 

are pinned to the wall of the drum. At this point the grinding action stops. An attritor (a ball mill 

capable of generating higher energies) consists of a vertical drum with a series of impellers 

inside it. Set progressively at right angles to each other, the impellers energize the ball charge, 

causing powder size reduction because of impact between balls, between balls and container 
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wall, and between balls, agitator shaft, and impellers. Some size reduction appears to take place 

by interparticle collisions and by ball sliding. A powerful motor rotates the impellers, which in 

turn agitate the steel balls in the drum. Attritors are the mills in which large quantities of powder 

(from about 0.5 to 40kg) can be milled at a time. Commercial attritors are available from Union 

Process, Akron, OH. The velocity of the grinding medium is much lower (about 0.5 m/s) than in 

Fritsch or SPEX mills and consequently the energy of the attritors is low. Attritors of different 

sizes and capacities are available. The grinding tanks or containers are available either in 

stainless steel or stainless steel coated inside with alumina, silicon carbide, silicon nitride, 

zirconia, rubber, and polyurethane. A variety of grinding media also is available-glass, flint 

stones, steatite ceramic, mullite, silicon carbide, silicon nitride, sialon, alumina, zirconium 

silicate, zirconia, stainless steel, carbon steel, chrome steel, and tungsten carbide. The operation 

of an attritor is simple. The powder to be milled is placed in a stationary tank with the grinding 

media. This mixture is then agitated by a shaft with arms, rotating at a high speed of about 250 

rpm. This causes the media to exert both shearing and impact forces on the material. The 

laboratory attritor works up to 10 times faster than conventional ball mills. 

 

 

 
 
 

               (d) Commercial mills: Commercial mills for MA are much larger in size 

than the mills described above and can process several hundred pounds at a time. Mechanical 

alloying for commercial production is carried out in ball mills of up to about 3000 lb (1250kg) 

capacity. The milling time decreases with an increase in the energy of the mill. It has been 

reported that 20 min of milling in a SPEX mill is equivalent to 20h of milling in a low-energy 

mill of the type Invicta BX 920/2. As a rule of thumb, it can be estimated that a process that 
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takes only a few minutes in the SPEX mill may take hours in an attritor and a few days in a 

commercial mill even though the details can be different depending on the efficiency of the 

different mills. 

 

         2.3.6.3. Process Variables: Mechanical alloying is a complex process and 

hence involves optimization of a number of variables to achieve the desired product phase and/or 

microstructure. Some of the important parameters that have an effect on the final constitution of 

the powder are: 

     . Type of mill, 

     . Milling container, 

     . Milling speed, 

     . Milling time, 

     . Type, size, and size distribution of the grinding medium, 

     . Ball-to-powder weight ratio, 

     . Extent of filling the vial, 

     . Milling atmosphere, 

     . Process control agent, and 

     . Temperature of milling. 

 

          All these process variables are not completely independent. For example, the optimum 

milling time depends on the type of mill, size of the grinding medium, temperature of milling, 

ball-to-powder ratio, etc. Even then, we will discuss, in the following paragraphs, the effect of 

these variables (Assuming mostly that other variables have no significant effect on the specific 

variable being discussed) on the final product obtained after MA. 

 

                (a)Type of mill: As described above there are a number of different types 

of mills for conducting MA. These mills differ in their capacity, speed of operation, and their 

ability to control the operation by varying the temperature of milling and the extent of 

minimizing the contamination of the powders. Depending on the type of powder, the quantity of 

the powder, and the final constitution required, a suitable mill can be chosen. Most commonly, 

however, the SPEX shaker mills are used for alloy screening purposes. The Fritsch Pulverisette 

planetary ball mills or the attritors are used to produce large quantities of the    milled powder. 

Specially designed mills are used for specific applications. 

 

 

            (b) Milling container: The material used for the milling container (grinding vessel, 

vial, jar, or bowl are some of the other terms used) is important since due to impact of the 

grinding medium on the inner walls of the container, some material will be dislodged and get  
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annealing formed either V2C or a mixture of V + VC incorporated into the powder. This can 

contaminate the powder or alter the chemistry of the powder. If the material of the grinding 

vessel is different from that of the powder, then the powder may be contaminated with the 

grinding vessel material. On the other hand, if the two materials are the same, then the chemistry 

may be altered unless proper precautions are taken to compensate for the additional amount of 

the element incorporated into the powder. Hardened steel, tool steel, hardened chromium steel, 

tempered steel, stainless steel, WC-Co, WC lined steel [26], and bearing steel are the most 

common types of materials used for the grinding vessels. Some specific materials are used for 

specialized purposes; these include copper, titanium sintered corundum, yttria-stabilized zirconia 

(YSZ), partially stabilized zirconia + yttria, sapphire, agate, hard porcelain, Si3N4, and Cu-Be. 

The shape of the container also seems to be important, especially the internal design of the 

container. Both flat-ended and round-ended SPEX mill containers have been used. Alloying was 

found to occur at significantly higher rates in the flat-ended vial than in the round-ended 

container. The time required to reach a constant intensity and shape of the (111) peak in the X-

ray diffraction pattern of the Si-Ge mixture was 9 h for the flat-ended vial and 15 h in the round-

ended vial. 

 

             (c)Milling speed: It is easy to realize that the faster the mill rotates the higher 

would be the energy input into the powder. But, depending on the design of the mill there are 

certain limitations to the maximum speed that could be employed. For example, in a 

conventional ball mill increasing the speed of rotation will increase the speed with which the 

balls move. Above a critical speed, the balls will be pinned to the inner walls of the vial and do 

not fall down to exert any impact force. Therefore, the maximum speed should be just below this 

critical value so that the balls fall down from the maximum height to produce the maximum 

collision energy. Another limitation to the maximum speed is that at high speeds (or intensity of 

milling), the temperature of the vial may reach a high value. This may be advantageous in some 

cases where diffusion is required to promote homogenization and/or alloying in the powders. 

But, in some cases, this increase in temperature may be a disadvantage because the increased 

temperature accelerates the transformation process and results in the decomposition of 

supersaturated solid solutions or other metastable phases formed during milling [27]. 

Additionally, the high temperatures generated may also contaminate the powders. It has been 

reported that during nanocrystal formation, the average crystal size increases and the internal 

strain decreases at higher milling intensities due to the enhanced dynamical recrystallization. The 

maximum temperature reached is different in different types of mills and the values vary widely. 

Calka et al. [28] reported that when vanadium and carbon powders were milled together at 

different energy levels (by adjusting the positions of the magnets in the Uni-Ball mill), the final 

constitution of the powder was different. For example, at very low milling energy (or speed), the 

powder consisted of nanometer-sized grains of vanadium and amorphous carbon, which on. At 

intermediate energy level, the as milled powder contained a nanostructure, which on annealing 
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transformed to VC. At the highest energy level, the VC formed directly on milling. Similarly, a 

fully amorphous phase formed in a Ni-Zr powder mixture at high energy of milling whereas a 

mixture of crystalline and amorphous phases formed at low and intermediate milling energies 

[29]. 

 

             (c) Milling time: The time of milling is the most important parameter. 

Normally the time is so chosen as to achieve a steady state between the fracturing and cold 

welding of the powder particles. The times required vary depending on the type of mill used, the 

intensity of milling, the ball-to-powder ratio, and the temperature of milling. These times have to 

be decided for each combination of the above parameters and for the particular powder system. 

But, it should be realized that the level of contamination increases and some undesirable phases 

form if the powder is milled for times longer than required. Therefore, it is desirable that the 

powder is milled just for the required duration and not any longer. 

 

         (d)Grinding medium: Hardened steel, tool steel, hardened chromium steel, 

tempered steel, stainless steel, WC-Co, and bearing steel are the most common types of materials 

used for the grinding medium. The density of the grinding medium should be high enough so 

that the balls create enough impact force on the powder. However, as in the case of the grinding 

vessel, some special materials are used for the grinding medium and these include copper, 

titanium, niobium, zirconia (ZrO2), agate, yttria stabilized zirconia (YSZ), partially stabilized 

zirconia + yttria, sapphire, silicon nitride (Si3N4), and Cu-Be. It is always desirable, whenever 

possible, to have the grinding vessel and the grinding medium made of the same material as the 

powder being milled to avoid cross contamination. The size of the grinding medium also has an 

influence on the milling efficiency. Generally speaking, a large size (and high density) of the 

grinding medium is useful since the larger weight of the balls will transfer more impact energy to 

the powder particles. It has also been reported that the final constitution of the powder is 

dependent upon the size of the grinding medium used. For example, when balls of 15 mm 

diameter were used to mill the blended elemental Ti-Al powder mixture, a solid solution of 

aluminum in titanium was formed. On the other hand, use of 20 and 25 mm diameter balls 

resulted in a mixture of only the titanium and aluminum phases, even after a long milling 

duration [8]. In another set of investigations, it has been reported that an amorphous phase could 

be produced faster in Ti-Al alloys by using steel balls of 3/16‖ diameter than by using balls of 

¾‖ diameter. In fact, in some cases, an amorphous phase was not produced and only the stable 

crystalline compound formed when milling was done with large steel balls [30]. In yet another 

investigation it was reported that an amorphous phase formed only when the Ti-Al powder 

mixture was milled using either 5 or 8 mm diameter balls; an amorphous phase did not form 

when 12 mm diameter balls were used for milling. A similar situation was also reported in the 

Pd-Si system where it was reported that a smaller ball size favored amorphous phase formation 

[31]. It was suggested that the smaller balls produced intense frictional action, which promoted 
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the amorphous phase formation. In fact, it appears that ``soft'' milling conditions (small ball 

sizes, lower energies, and lower ball-to-powder ratios) seem to favor amorphization or 

metastable phase formation [31].Even though most of the investigators generally use only one 

size of the grinding medium, there have been instances when different sized balls have been used 

in the same investigation. It has been predicted that the highest collision energy can be obtained 

if balls with different diameters are used. In the initial stages of milling, the powder being milled 

gets coated onto the surface of the grinding medium and also gets cold welded. This is 

advantageous since it prevents excessive wear of the grinding medium and also avoids 

contamination of the powder due to the wear of the grinding medium. However, the thickness of 

this layer must be kept to a minimum to avoid formation of a heterogeneous product [32]. But, 

the disadvantage of this powder coating is that it is difficult to detach this powder and so the 

powder yield is low. It has been reported that a combination of large and small size balls during 

milling minimizes the amount of cold welding and the amount of powder coated onto the surface 

of the balls [33]. Although no specific explanation has been given for the improved yield under 

these conditions, it is possible that the different sized balls produce shearing forces that may help 

in detaching the powder from the surface of the balls. Use of grinding balls of the same size in 

either a round or at bottom vial has been shown to produce tracks. Consequently, the balls roll 

along a well-defined trajectory instead of hitting the end surfaces randomly. Therefore it is 

necessary to use several balls, generally a combination of smaller and larger balls to 

``randomize'' the motion of the balls [34]. 

 

             (e)Ball to powder ratio: The ratio of the weight of the balls to the powder 

(BPR), sometimes referred to as charge ratio (CR), is an important variable in the milling 

process. This has been varied by different investigators from a value as low as 1:1 to as high as 

220:1 [35]. Generally speaking, a ratio of 10:1 is most commonly used while milling the powder 

in a small capacity mill such as a SPEX mill. But, when milling is conducted in a large capacity 

mill, like an attritor, a higher BPR of up to 50:1 or even 100:1 is used. The BPR has a significant 

effect on the time required to achieve a particular phase in the powder being milled. The higher 

the BPR, the shorter is the time C. Suryanarayana / Progress in Materials Science 46 (2001) 1-

184 24 required. For example, formation of an amorphous phase was achieved in a Ti-33 at% Al 

powder mixture milled in a SPEX mill in 7 h at a BPR of 10:1, in 2 h at a BPR of 50:1 and in 1 h 

at a BPR of 100:1 [36]. At a high BPR, because of an increase in the weight proportion of the 

balls, the number of collisions per unit time increases and consequently more energy is 

transferred to the powder particles and so alloying takes place faster. Several other investigators 

also have reported similar results. It is also possible that due to the higher energy, more heat is 

generated and this could also change the constitution of the powder. The amorphous phase 

formed may even crystallize if the temperature rise is substantial. As mentioned earlier, ``soft'' 

conditions (e.g., low BPR values, low speeds of rotation, etc.) of MA produce metastable phases 

whereas ``hard'' condition produce the equilibrium phases. This was first very clearly 
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demonstrated in the Zr-Co system when an amorphous phase was obtained under ``soft'' milling 

conditions, while a mixture of the equilibrium crystalline phases was obtained under ``hard'' 

milling conditions [37]. Similar results were also reported for other alloy systems. For example, 

a metastable cubic phase was formed at low BPR, while the stable equilibrium tetragonal phase 

was formed at higher BPR in the mechanically alloyed Cu-In-Ga-Se powder system [38]. 

 

                  (f)Extent of filling the vial: Since alloying among the powder 

particles occurs due to the impact forces exerted on them, it is necessary that there is enough 

space for the balls and the powder particles to move around freely in the milling container. 

Therefore, the extent of filling the vial with the powder and the balls is important. If the quantity 

of the balls and the powder is very small, then the production rate is very small. On the other 

hand, if the quantity is large, then there is not enough space for the balls to move around and so 

the energy of the impact is less. Thus, care has to be taken not to overfill the vial; generally about 

50% of the vial space is left empty. 

 

               (g)Milling atmosphere: The major effect of the milling atmosphere is on 

the contamination of the powder. Therefore, the powders are milled in containers that have been 

either evacuated or filled with an inert gas such as argon or helium. (Nitrogen has been found to 

react with metal powders and consequently it cannot be used to prevent contamination during 

milling, unless one is interested in producing nitrides.) High-purity argon is the most common 

time, but in a nitrogen atmosphere, picked up 4.7 wt% oxygen; a difficult to explain observation. 

Normally, the loading and unloading of the powders into the vial is carried out inside 

atmosphere-controlled glove boxes. These glove boxes are usually repeatedly evacuated and 

refilled with the argon gas. Some investigators have even conducted the milling operation in 

mills that have been placed inside the evacuated glove boxes. Different atmospheres have been 

used during milling for specific purposes. Nitrogen or ammonia atmospheres have been used to 

produce nitrides [39]. Hydrogen atmosphere was used to produce hydrides. The presence of air 

in the vial has been shown to produce oxides and nitrides in the powder, especially if the 

powders are reactive in nature. Thus, care has to be taken to use an inert atmosphere during 

milling. The type of atmosphere also seems to affect the nature of the final phase. For example, it 

has been shown that when Cr-Fe powder mixtures were milled in different types of atmosphere, 

the constitution of the final powder was different. When the powder was milled in an argon 

atmosphere, no amorphous phase formed and Cr peaks remained in the X-ray diffraction pattern. 

On the other hand, when the powder was milled in either air containing argon or a nitrogen 

atmosphere, the powder became completely amorphous. Similarly, oxygen was shown to 

enhance the kinetics of amorphization in the Ni-Nb system [40]. 

 

                     (h)Process control agents: The powder particles get cold-welded 

to each other, especially if they are ductile, due to the heavy plastic deformation experienced by 
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them during milling. But, true alloying among powder particles can occur only when a balance is 

maintained between cold welding and fracturing of particles. A process control agent (PCA) 

(also referred to as lubricant or surfactant) is added to the powder mixture during milling to 

reduce the effect of cold welding. The PCAs can be solids, liquids, or gases. They are mostly, but 

not necessarily, organic compounds, which act as surface-active agents. The PCA adsorbs on the 

surface of the powder particles and minimizes cold welding between powder particles and 

thereby inhibits agglomeration. The surface-active agents adsorbed on particle surfaces interfere 

with cold welding and lower the surface tension of the solid material. Since the energy required 

for the physical process of size reduction, E is given by 

 

E= g* ∆S 

 

Where, g is the specific surface energy and ∆S is the increase of surface area, a reduction in 

surface energy results in the use of shorter milling times and/or generation of finer powders. A 

wide range of PCAs has been used in practice at a level of about 1-5 wt% of the total powder 

charge. The most important of the PCAs include stearic acid, hexane, methanol, and ethanol. A 

partial listing of the PCAs used in different investigations and their quantities is presented in 

Table 5. Additionally, other exotic PCAs such as sodium-1,2-bis-(dodecyl carbonyl)ethane-1-

sulfonate, lithium- 1,2-bis-dodecyloxy carbonyl sulfasuccinate, diodecyl dimethyl ammonium 

acetate (DDAA), didocyldimethyl ammonium bromide (DDAB), trichlorotrifluoroethane. 

                                    

 

Table 2 

Process control agents (PCAs) and the quantities used in different investigations 

 

PCA                                                        Chemical formula                                          Quantity     

Benzene                                                                         C6H6                                              ---                    

C wax                                                   H35C17CONHC2H4NHCOC17H35                    1.5 wt%                                   

Ethanol                                                                C2H5OH                                                  4 wt%                   

Ethyl acetate                                                      CH3CO2C2H5                                            ---                         

Ethylenebisdistearamide Nopcowax-22 DSP   C2H2-2(C18H36ON)                                2 wt%                    

Graphite                                                                        C                                                    0.5 wt%              

Heptane                                                               CH3(CH2)5CH3                                     0.5 wt%             

                                                                                                                                                               

 

 

          (i)Temperature of milling: The temperature of milling is another important 

parameter in deciding the constitution of the milled powder. Since diffusion processes are 

involved in the formation of alloy phases irrespective of whether the final product phase is a 

solid solution, intermetallic, nanostructure, or an amorphous phase, it is expected that the 
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temperature of milling will have a significant effect in any alloy system. There have been only a 

few investigations reported where the temperature of milling has been intentionally varied. This 

was done by either dripping liquid nitrogen on the milling container to lower the temperature or 

electrically heating the milling vial to increase the temperature of milling. These investigations 

were undertaken to study the effect of milling temperature on the variation in solid solubility 

levels, or to determine whether an amorphous phase or a nanocrystalline structure forms at 

different temperatures. During the formation of nanocrystals, it was reported that the root mean 

square (rms) strain in the material was lower and the grain size larger for materials milled at 

higher temperatures [41]. The extent of solid solubility was reported to decrease at higher milling 

temperatures. For example, during planetary ball milling of a Cu-37at%Ag powder mixture, it 

was noted that a mixture of an amorphous and crystalline (supersaturated solid solution) phases 

was obtained on milling at room temperature; instead, only a Cu-8at%Ag solid solution was 

obtained on milling the powder at 200°C. Similar results were also reported by others in the Cu-

Ag, Zr-Al, and Ni-Ag alloy systems and were explained on the basis of the increased diffusivity 

and equilibration effects at higher temperatures of milling. 

 

 

        2.3.6.4 Mechanism of alloying: During high-energy milling the powder 

particles are repeatedly flattened, cold welded, fractured and rewelded. Whenever two steel balls 

collide, some amount of powder is trapped in between them. Typically, around 1000 particles 

with an aggregate weight of about 0.2 mg are trapped during each collision. The force of the 

impact plastically deforms the powder particles leading to work hardening and fracture. The new 

surfaces created enable the particles to weld together and this leads to an increase in particle size. 

Since in the early stages of milling, the particles are soft (if we are using either ductile-ductile or 

ductile-brittle material combination), their tendency to weld together and form large particles is 

high. A broad range of particle sizes develops, with some as large as three times bigger than the 

starting particles. The composite particles at this stage have a characteristic layered structure 

consisting of various combinations of the starting constituents. With continued deformation, the 

particles get work hardened and fracture by a fatigue failure mechanism and/or by the 

fragmentation of fragile flakes. Fragments generated by this mechanism may continue to reduce 

in size in the absence of strong agglomerating forces. At this stage, the tendency to fracture 

predominates over cold welding. Due to the continued impact of grinding balls, the structure of 

the particles is steadily refined, but the particle size continues to be the same. Consequently, 

the inter-layer spacing decreases and the number of layers in a particle increase. 

ambient to prevent oxidation and/or contamination of the powder. It has also been noted that 

oxidation can be generally prevented or minimized in the presence of nitrogen ambient. But, this 

does not appear to be true when reactive powders such as titanium or its alloy powders are 

milled. It has been reported that a Ti-48Al-2W (at %) powder milled in an oxygen atmosphere 

picked up 1.5 wt% oxygen after 20 h of milling. The same powder milled for the same length of  
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However, it should be remembered that the efficiency of particle size reduction is very low, 

about 0.1% in a conventional ball mill. The efficiency may be somewhat higher in high-energy 

ball milling processes, but is still less than 1%.The remaining energy is lost mostly in the form of 

heat, but a small amount is also utilized in the elastic and plastic deformation of the powder 

particles. 

 
 
 

3. EXPERIMENTAL:  

 
      3.1 Sample Preparation: Seven samples of nominal composition of 

Al75Si15Ni10  were prepared by taking a mixture of pure powder of Al (purity ~ 99.0%), Si (purity 

~98.0%) & Ni(purity ~90 %) by the process of mechanical milling in a planetary ball mill. Total 

weight of powder taken was 21gms each and milling was done by using stainless steel balls 

having diameter of 10 mm. The ball to powder ratio was taken as 10:1 and the milling speed was 

maintained at 300 rpm. Toluene was used as process control agent (PCA), which filled container 

slightly more than the half. The vials arranged on a rotating support disk and a special drive 

mechanism causes them to rotate around their own axes. The centrifugal force produced by the 

vials rotating around their own axes and that produced by the rotating support disk both act on 

the vial contents, consisting of material to be ground and the grinding balls. Since the vials and 

the supporting disk rotate in opposite directions, the centrifugal forces alternately act in like and 

opposite directions. This causes the grinding balls to run down the inside wall of the vial the 

friction effect, followed by the material being ground and grinding balls lifting of and traveling 

freely through the inner chamber of the vial and colliding against the opposing inside wall the 

impact effect 

       

                            The milling time for the whole milling process was 50 h. The seven samples 

were collected from the vial after 0, 5, 10, 20, 30, 40 and 50 h of mechanical alloying and were 

packed safely in an inert atmosphere. The samples were analyzed by X-ray diffraction (XRD) 

and scanning electron microscopy (SEM) to determine its microstructural features. 
 

     3.2 X-ray diffraction (XRD) : XRD is a rapid analytical technique primarily 

used for phase identification of a material & can provide information on unit cell dimensions. X-

rays are used  
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to carry out XRD by causing the phenomenon of diffraction. The atomic planes of a crystal cause 

an incident beam of X-rays to interfere with one another as they leave the crystal. The 

phenomenon is called X-ray diffraction. X-rays are generally electromagnetic radiation having 

wavelength range of 0.01 to 10nm. X-rays are produced whenever high-speed electrons collide 

with a metal target. To produce x-ray a source of electrons (hot W filament), a high accelerating 

voltage between the cathode (W) and the anode and a metal target (Cu, Al, Mo, Mg etc). The 

anode is a water-cooled block of Cu containing desired target metal. Thus the x-rays are 

generated and are made incident on the sample so that it would cause diffraction. The diffraction 

phenomenon is governed by Bragg‘s law 

    

                                                              nλ = 2d.sinθ 
          

Where, 

 N is an integer determined by the order given. 

 λ is the wavelength of X-rays, and moving electrons, protons and neutrons. 

 d is the spacing between the planes in the atomic lattice. 

 θ is the angle between the incident ray and the scattering planes. 

 

              

                      XRD patterns (Intensity(I) vs Bragg angle (2θ)) are obtained and various 

parameters of a unit crystal are calculated  i.e. lattice parameters, crystal strain, crystal size, 

shape, phase etc. by studying the peak position, peak width & the peak intensity of the XRD 

http://en.wikipedia.org/wiki/Wavelength
http://en.wikipedia.org/wiki/Electron
http://en.wikipedia.org/wiki/Proton
http://en.wikipedia.org/wiki/Neutron
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pattern. X-ray diffraction (XRD) analyses were carried out with a Philip‘s X‘pert PRO 

highresolution X-ray diff- ractometer using Cu (λ=1.54 Å) as the target. The XRD patterns 

recorded in the 2θ range of 10-90° (step size of 2°, time per step 1 min). The aluminium 

crystallite sizes and lattice microstrain estimated with the broadening of XRD peaks by Scherrer 

equation]. The Al lattice parameter was calculated using first 3 Al XRD peaks and the average 

value is reported. 

 

                  

                     3.3 Scanning Electron Microscope (SEM): The scanning electron 

microscope (SEM) is a type of electron microscope that images the sample surface by scanning it 

with a high-energy beam of electrons in a raster scan pattern. The electrons interact with the 

atoms that make up the sample producing signals that contain information about the sample's 

surface topography, composition and other properties such as electrical conductivity. The types 

of signals produced by an SEM include secondary electrons, back scattered electrons (BSE), 

characteristic x-rays, light (cathodoluminescence), specimen current and transmitted electrons. 

These types of signal all require specialized detectors for their detection that are not usually all 

present on a single machine.  

 

                             The signals result from interactions of the electron beam with atoms at or near 

the surface of the sample. In the most common or standard detection mode, secondary electron 

imaging or SEI, the SEM can produce very high-resolution images of a sample surface, revealing 

details about 1 to 5 nm in size. Due to the way these images are created, SEM micrographs have 

a very large depth of field yielding a characteristic three-dimensional appearance useful for 

understanding the surface structure of a sample. The signals result from interactions of the 

electron beam with atoms at or near the surface of the sample. In the most common or standard 

detection mode, secondary electron imaging or SEI, the SEM can produce very high-resolution 

images of a sample surface, revealing details about 1 to 5 nm in size. 

 

 

 

http://en.wikipedia.org/wiki/Electron_microscope
http://en.wikipedia.org/wiki/Electron
http://en.wikipedia.org/wiki/Raster_scan
http://en.wikipedia.org/wiki/Topography
http://en.wikipedia.org/wiki/Electrical_conductivity
http://en.wikipedia.org/wiki/Secondary_electrons
http://en.wikipedia.org/wiki/Energy-dispersive_X-ray_spectroscopy
http://en.wikipedia.org/wiki/Cathodoluminescence
http://en.wikipedia.org/wiki/Nanometre
http://en.wikipedia.org/wiki/Depth_of_field
http://en.wikipedia.org/wiki/Nanometre
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           SEM(JEOL JSM-6480LV), NIT Rourkela 

 

                               The signals result from interactions of the electron beam with atoms at or 

near the surface of the sample. In the most common or standard detection mode, secondary 

electron imaging or SEI, the SEM can produce very high-resolution images of a sample surface, 

revealing details about 1 to 5 nm in size. Due to the way these images are created, SEM 

micrographs have a very large depth of field yielding a characteristic three-dimensional 

appearance useful for understanding the surface structure of a sample. This is exemplified by the 

micrograph of pollen shown to the right. A wide range of magnifications is possible, from about 

x 25 (about equivalent to that of a powerful hand-lens) to about x 250,000, about 250 times the 

magnification limit of the best light microscopes. Back-scattered electrons (BSE) are beam 

electrons that are reflected from the sample by elastic scattering. BSE are often used in analytical 

SEM along with the spectra made from the characteristic x-rays. Because the intensity of the 

BSE signal is strongly related to the atomic number (Z) of the specimen, BSE images can 

provide information about the distribution of different elements in the sample. For the same 

reason BSE imaging can image colloidal gold immuno-labels of 5 or 10 nm diameter, that would 

otherwise be difficult or impossible to detect in secondary electron images in biological 

specimens. Characteristic X-rays are emitted when the electron beam removes an inner shell 

electron from the sample, causing a higher energy electron to fill the shell and release energy. 

These characteristic x-rays are used to identify the composition and measure the abundance of 

elements in the sample.  

http://en.wikipedia.org/wiki/Nanometre
http://en.wikipedia.org/wiki/Depth_of_field
http://en.wikipedia.org/wiki/Light_microscope
http://en.wikipedia.org/wiki/Elastic_scattering
http://en.wikipedia.org/wiki/Colloidal_gold
http://en.wikipedia.org/wiki/X-ray
http://en.wikipedia.org/wiki/Electron_shell
http://en.wikipedia.org/wiki/Electron_shell
http://en.wikipedia.org/wiki/Electron_shell
http://en.wikipedia.org/wiki/Energy_level
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               In a typical SEM, an electron beam is thermionically emitted from an electron gun 

fitted with a tungsten filament cathode. Tungsten is normally used in thermionic electron guns 

because it has the highest melting point and lowest vapour pressure of all metals, thereby 

allowing it to be heated for electron emission, and because of its low cost. Other types of 

electron emitters include lanthanum hexaboride (LaB6) cathodes, which  can be used in a 

standard tungsten filament SEM if the vacuum system is upgraded and field emission guns 

(FEG), which may be of the cold-cathode type using tungsten single crystal emitters or the 

thermally-assisted Schottky type using emitters of zirconium oxide. The electron beam, which 

typically has an energy ranging from a few hundred eV to 40 keV, is focused by one or two 

condenser lenses to a spot about 0.4 nm to 5 nm in diameter. The beam passes through pairs of 

scanning coils or pairs of deflector plates in the electron column, typically in the final lens, 

which deflect the beam in the x and y axes so that it scans in a raster fashion over a rectangular 

area of the sample surface. When the primary electron beam interacts with the sample, the 

electrons lose energy by repeated random scattering and absorption within a teardrop-shaped 

volume of the specimen known as the interaction volume, which extends from less than 100 nm 

to around 5 µm into the surface. The size of the interaction volume depends on the electron's 

landing energy, the atomic number of the specimen and the specimen's density. The energy 

exchange between the electron beam and the sample results in the reflection of high-energy 

electrons by elastic scattering, emission of secondary electrons by inelastic scattering and the 

emission of electromagnetic radiation, each of which can be detected by specialized detectors. 

The beam current absorbed by the specimen can also be detected and used to create images o of 

the distribution of specimen current. Electronic amplifiers of various types are used to amplify 

the signals which are displayed as variations in brightness on a cathode ray tube. The raster 

scanning of the CRT display is synchronised with that of the beam on the specimen in the 

microscope, and the resulting image is therefore a distribution map of the intensity of the signal 

being emitted from the scanned area of the specimen.  

      

      

                       3.4. Energy Dispersive X-ray analysis (EDX): Energy dispersive 

X-ray spectroscopy (EDS, EDX or EDXRF) is an analytical technique used for the elemental 

analysis or chemical characterization of a sample. It is one of the variants of XRF. As a type of 

spectroscopy, it relies on the investigation of a sample through interactions between 

electromagnetic radiation and matter, analyzing x-rays emitted by the matter in response to being 

hit with charged particles. Its characterization capabilities are due in large part to the 

fundamental principle that each element has a unique atomic structure allowing x-rays that are 

characteristic of an element's atomic structure to be identified uniquely from each other. 

 

                                    To stimulate the emission of characteristic X-rays from a specimen, a high 

energy beam of charged particles such as electrons or protons (see PIXE), or a beam of X-rays, is 

http://en.wikipedia.org/wiki/Thermionically
http://en.wikipedia.org/wiki/Electron_gun
http://en.wikipedia.org/wiki/Tungsten
http://en.wikipedia.org/wiki/Cathode
http://en.wikipedia.org/wiki/Lanthanum_hexaboride
http://en.wikipedia.org/wiki/Field_emission_gun
http://en.wikipedia.org/wiki/Cold-cathode
http://en.wikipedia.org/wiki/Walter_H._Schottky
http://en.wikipedia.org/wiki/Zirconium_oxide
http://en.wikipedia.org/wiki/Energy
http://en.wikipedia.org/wiki/Electronvolt
http://en.wikipedia.org/wiki/Raster_scan
http://en.wikipedia.org/wiki/Elastic_scattering
http://en.wikipedia.org/wiki/Inelastic_scattering
http://en.wikipedia.org/wiki/Electromagnetic_radiation
http://en.wikipedia.org/wiki/Electronics
http://en.wikipedia.org/wiki/Cathode_ray_tube
http://en.wikipedia.org/wiki/Chemical_element
http://en.wikipedia.org/wiki/Characterization_(materials_science)
http://en.wikipedia.org/wiki/X-ray_fluorescence
http://en.wikipedia.org/wiki/Spectroscopy
http://en.wikipedia.org/wiki/Electromagnetic_radiation
http://en.wikipedia.org/wiki/X-ray
http://en.wikipedia.org/wiki/Atom
http://en.wikipedia.org/wiki/Electron
http://en.wikipedia.org/wiki/Proton
http://en.wikipedia.org/wiki/Particle-Induced_X-ray_Emission
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focused into the sample being studied. At rest, an atom within the sample contains ground state 

(or unexcited) electrons in discrete energy levels or electron shells bound to the nucleus. The 

incident beam may excite an electron in an inner shell, ejecting it from the shell while creating an 

electron hole where the electron was. An electron from an outer, higher-energy shell then fills 

the hole, and the difference in energy between the higher-energy shell and the lower energy shell 

may be released in the form of an X-ray. The number and energy of the X-rays emitted from a 

specimen can be measured by an energy dispersive spectrometer. As the energy of the X-rays 

emitted from a specimen can be measured by an energy dispersive spectrometer. As the energy 

of the X-rays is characteristic of the difference in energy between the two shells, and of the 

atomic structure of the element from which they were emitted, this allows the elemental 

composition of the specimen to be measured. 

 

 

 

4. RESULTS AND DISSCUSSION:    
   

         4.1. Structural Characterization of Mechanically Alloyed 

Powders  By XRD Analysis:  

          
                               Fig (1) shows XRD patterns of the Al75Si15Ni10 alloy for different milling 

times. At the early stage of milling all Al, Si and Ni peaks were observed. Towards the end of 

milling only Si was observed. The peak intensity decreased with increasing milling time with 

broadening. It can be observed that after 20h of milling Al and Ni peaks decreased drastically 

and disappeared gradually. The presence of Al-Ni, Ni-Si intermetallics have revealed to be 

present in a negligible amount from the diffraction pattern, which suggests only complete 

solubility. The significant broadening of the Al peaks may be due to the reduction and 

refinement of the grain size and the increase in the internal strain induced from the repeated 

fracturing and welding process during mechanical alloying 

http://en.wikipedia.org/wiki/Ground_state
http://en.wikipedia.org/wiki/Electron_shell
http://en.wikipedia.org/wiki/Electron_hole
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Fig (1): XRD patterns of Al75Si15Ni10 alloy with progress of MA. 

 

                                 
                  Crystallite size, lattice microstrain and lattice parameter of each alloy powder has 

calculated from the XRD peak broadening. Following Scherrer equation, the crystallite size and 

the lattice strain have been determined for milled samples.  

 

                                         Г= Kλ ∕ βcosθ 

 
                   Where,   Г - mean crystallite dimension 

                                  K - Shape Factor 

                                  λ- X-ray wavelength 

                                  β- FWHM (in radians) 

                                  θ - Bragg Angle 

 

The lattice parameter value were calculated from the peak positions of Al from XRD pattern by 

extrapolation of ‗aAl‘ against cos
2 θ/sinθ plot to cos θ =0 [42]. 

         

                       Fig (2) shows variation of (a) crystallite size (b) lattice microstrain and (c) lattice 

parameter of Al-rich solid solution in Al75Si15Ni10  alloy with milling time. There was a 

continuous reduction in the crystallite size during different stages of mechanical milling and it 

remained almost constant after 25 h of milling. 
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                           The crystallite size estimated from the XRD analysis of the powder was close to 

30 nm. The lattice strain induced increased rapidly during initial stages of mechanical milling up 

to 25 h and slowly became nearly constant with further milling. The induced lattice strain (%) is 

~0.22 during zero hour and increases to ~0.95. The estimated lattice strain (%) was found ~0.45. 

This suggests that major structural changes and dissolution of the alloying elements almost 

completed by 25 h, and further milling refined the product by MA.  
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Fig 2 (a) : Variation of crystallite size  

of Al-rich solid solution in Al75Si15Ni10 alloy with milling time. 
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Fig 2 (b) : Variation of (b) lattice microstrain  

of Al-rich solid solution in Al75Si15Ni10 alloy with milling time. 
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Fig 2(c) 

 

Fig 2(c) : Variation of lattice parameter  

of Al-rich solid solution in Al75Si15Ni10 alloy with milling time. 

 
 



38 
 

                         

                           The lattice parameter of Al-rich solid solution (aAl) was ~4.045 Å and showed 

a sharp decreasing value with the progress of milling varying from 4.049 Å to 4.0381 Å. This is 

because of the entrance of Si and Ni atoms into the lattice of the Al which causes distortion in it. 

The atomic radii of Ni (0.135 nm) and Si (0.117 nm) are smaller than that of Al (0.14318 nm). 

The atomic size difference is within the 15% of the atomic radius of Al [43]. The smaller Si and 

Ni atoms were expected to enter into the solid solution of Al during the early stage of mechanical 

alloying. The formation of nanocrystalline structures during milling may also enhance 

dissolution of Si and Ni in Al. because of formation of amorphous alloy. The change in the 

above mentioned parameters were determined up to 30 h of milling as on further milling Al 

peaks vanishes. 

 

 4.2. Morphology of Powdered Samples  

 

                           Fig 3 shows changes in the morphology of Al75Si15Ni10 powders after 

mechanical alloying for (a) 5 h; (b) 20 h; and (c) 50 h at 1000 X magnification. Initially at 0 h a 

coarse particle structure can be seen. After 20 h of milling course-layered structure has appeared 

which may be due to repeated cold welding and fracturing of the powder particles. The coarse 

layered structure gradually refined with the proceeding of milling as fracture predominates cold 

welding, because of strain hardening of materials. Then on further milling particle size decreases. 

Finally, after 50h of milling a finer refined structure has obtained. 

 

 
 

Fig 3(a) : SEM images of Al75Si15Ni10 powders milled for (a) 5 h 
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Fig 3(b) : SEM images of Al75Si15Ni10 powders milled for  20 h 

 
 

 

   
 

Fig 3(c) 

 
Fig 3(c) : SEM images of Al75Si15Ni10 powders milled for 50 h  
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  4.3 EDX Analysis: 
                     EDX (Energy Dispersive X-ray) analysis was done along with SEM, in order to 

see the chemical composition of each particle of the powders. As a type of spectroscopy, it relies 

on the investigation of a sample through interactions between electromagnetic radiation and 

matter, analyzing x-rays emitted by the matter in response to being hit with charged particles.  I 

It was used to determine the composition of powder particles after 50 h of milling and to know 

whether proper alloying has been achieved or not.  
 

Element Al75Si15NI10 Atomic% 

Al 75 81.35 

Si 15 12.50 

Ni 10 6.15 

 

Table 1: EDX analysis of Al75Si15Ni10 powder after MA for 0 h 

 
 

Element Al75Si15NI10 Atomic% 

Al 75 79.33 

Si 15 13.15 

Ni 10 7.52 

 

Table 2: EDX analysis of Al75Si15Ni10 powder after MA for 20 h 
 

Element Al75Si15NI10 Atomic% 

Al 75 74.33 

Si 15 16.15 

Ni 10 9.52 

 

Table 3: EDX analysis of Al75Si15Ni10 powder after MA for 50 h 
 

 

 

http://en.wikipedia.org/wiki/Spectroscopy
http://en.wikipedia.org/wiki/Electromagnetic_radiation
http://en.wikipedia.org/wiki/X-ray
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               The EDX analysis of Al75Si15Ni10 powders after 50h of milling has shown in Table. It 

shows atomic % and weight % which shows a homogeneous chemical composition has obtained 

for sample milled for 50 h. The atomic % of Si and Ni were found slightly greater and lesser 

respectively during the process of MA. 

 

 
5. CONCLUSION:   

 

From the present investigation on the formation of phases in Al-Si-Ni alloy developed by MA, 

the following conclusions can be made: 

 

1.The mechanical alloying of Al75Si15Ni10 up to 50 h resulted partially amorphous structure along 

with some intermetallic phases. 

 

2. The crystallite size was ~14 nm and lattice microstrain (%) increased to ~0.952 after 30 h of 

milling.  

 

3. The lattice parameter of Al-rich solid solution decreased with increase in milling time up to 30 

h indicating the progressive dissolution of Si and Ni in Al. 

 

4. The lattice parameter (aAl) of 30 h milled product was found to be ~4.0381 Å. 
 

5. EDX analysis revealed that a homogeneous nanostructure was formed during MA of 

Al75Si15Ni10  up to 50 h. 

 

 

  5.1 Scope for Future Work:    

               

1.  The present work leaves a wide scope for future investigators to explore many other aspects 

like TEM studies to determine directly the structured formed by MA.  

 

2. Consolidation of this nanostructure keeping nanofeatures may result high strength bulk 

nanocomposite. 
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