
POWER SYSTEM STABILITY STUDIES 

USING MATLAB  
 

 

A Project Report Submitted in partial fulfillment of the requirements 

for the degree of 

 

Bachelor of Technology in Electrical EngineeringBachelor of Technology in Electrical EngineeringBachelor of Technology in Electrical EngineeringBachelor of Technology in Electrical Engineering    

 

By 
 
 

PRANAMITA BASU 

( Roll No. – 10502064 ) 

 
AISWARYA HARICHANDAN 

( Roll No. – 10502019 )  
 

 

 
 

 

 

 

 
 

  
 

 

National Institute of Technology Rourkela  
Rourkela-769008, Orissa 

 



 2 

 

POWER SYSTEM STABILITY STUDIES 

USING MATLAB  
 

 

A Project Report Submitted in partial fulfillment of the requirements 

for the degree of 

 

Bachelor of TechBachelor of TechBachelor of TechBachelor of Technology in Electrical Engineeringnology in Electrical Engineeringnology in Electrical Engineeringnology in Electrical Engineering    

 

By 
 
 

PRANAMITA BASU 

( Roll No. – 10502064 ) 

 
AISWARYA HARICHANDAN 

( Roll No. – 10502019 )  
 

 

Under the guidance of 

PROF. P.C. PANDA 

 

 

 

 
 

 
 

 

National Institute of Technology Rourkela  
Rourkela-769008, Orissa 



 3 

 
  

 
 

 

        

NNNNNNNNAAAAAAAATTTTTTTTIIIIIIIIOOOOOOOONNNNNNNNAAAAAAAALLLLLLLL        IIIIIIIINNNNNNNNSSSSSSSSTTTTTTTTIIIIIIIITTTTTTTTUUUUUUUUTTTTTTTTEEEEEEEE        OOOOOOOOFFFFFFFF        TTTTTTTTEEEEEEEECCCCCCCCHHHHHHHHNNNNNNNNOOOOOOOOLLLLLLLLOOOOOOOOGGGGGGGGYYYYYYYY,,,,,,,,        RRRRRRRROOOOOOOOUUUUUUUURRRRRRRRKKKKKKKKEEEEEEEELLLLLLLLAAAAAAAA        

        

                                                  

CERTIFICATECERTIFICATECERTIFICATECERTIFICATE    

 
This is to certify that the project entitled “POWER SYSTEM STABILITY USING MATLAB” 

submitted by Ms. Pranamita Basu ( Roll No. 10502064 ) and Ms. Aiswarya Harichandan (Roll 

No. 10502019 in partial fulfillment of the requirements for the award of Bachelor of Technology 

Degree in Electrical Engineering at NIT Rourkela is an authentic work carried out by them under 

my supervision and guidance. 

 

 

 

 

 

 

 
Date:                                                                                             (Prof. P. C. Panda)                                                     

Rourkela                                                                                       Dept. of Electrical Engg. 

                                                                                                      National Institute of Technology                                            

                                                                                                      Rourkela-769008, Orissa 

 
                                                                                                              

 

 



 4 

 

 

 

 ACKNOWLEDGEMENT 

 

 

I would like to thank NIT Rourkela for giving me the opportunity to use their resources and work in 

such a challenging environment. . 

 

First and foremost I take this opportunity to express my deepest sense of gratitude to my guide Prof. 

P. C. Panda for his able guidance during my project work. This project would not have been 

possible without his help and the valuable time that he has given me amidst his busy schedule. 

 

I would also like to extend my gratitude to my friends and senior students of  this department who 

have always encouraged and supported me in doing my work. 

 

Last but not the least I would like to thank all the staff members of Department of Electrical 

Engineering who have been very cooperative with us. 

 

                                                                                       

                                                                                
 

 

                                                                                                

 

Pranamita Basu                      

 
                                                                                     Aiswarya Harichandan                              

 

 

 

 



 5 

   

 

 

CONTENTS 
 

Certificate                03  

Acknowledgement                         04  

Contents        05 

List of Figures  08  

Abstract  10 

1. Introduction                 11  

2. Study of Swing Equation                           13  

2.1 Stability                14 

2.2 Swing Equation               15 

3. Steady State Stability                17 

                  3.1 Analysis of Steady-State Stability by Swing Equation          18 

                  3.2 Damping Torque               19 

                  3.3 Illustration                20 

                  3.4 Matlab Code                21 

                  3.5 Waveforms for Steady-State Analysis            22 

4. Transient Stability Studies               23 

                   4.1 Numerical Solution of Swing Equation            24 

                   4.2 Illustration                25 

                   4.3 Matlb Code                25 

                   4.4 Simulink Design               34 

                   4.5 Output Waveforms                 35 

                   4.6 Point-by-Point Method              38 

                   4.7 Matlab Code for Point-By-Point Method            40 

                   4.8 Outputs                42 



 6 

5. Multimachine System Analysis               43 

                   5.1 Mutimachine Systems              44 

                   5.2 Illustration                45 

                   5.3 Matlab Code                45 

                   5.4 Output Waveforms               59 

6. Small Signal Stability Including Effects of Rotor Circuit Dynamics          61 

                   6.1 Small Signal Stability              62 

                   6.2 Effect of Synchronous Machine Field Circuit Dynamics          63        

                            6.2.1 Synchronous Machine Equations            63 

                            6.2.2 Network Equations              65 

                            6.2.3 Linearized System Equations             66 

                            6.2.4 Representing Saturation in Small-Signal Studies          68 

                            6.2.5 Summary of Procedure for Formulating the State Matrix         69 

                   6.3 Block Diagram Representation             70 

                            6.3.1 Expressions for K Constants in Expanded Form          72 

                            6.3.2 Effect of Field Flux Linkage Variation on System Stability         74 

                            6.3.3 Special Situations with K4 negative            75 

                   6.4 Illustration                76 

                   6.5 Matlab Code                77 

                   6.6 Results                82 

7. Transient Stability Analysis Including Damping                85      

                   7.1 An Elementary View of Transient Stability            86 

                   7.2 Response to a Step Change in Pm               88 

                   7.3 Response to a Short Circuit Fault`             90 

                   7.4 Factors Affecting Transient Stability             90 

                   7.5 Numerical Integration Methods             91 

                             7.5.1 Runge-Kutta (R-K) Methods            92 

                                          7.5.1.1 Second-order R-K Method           92 

                                          7.5.1.2  Fourth-order R-K Mehtod           93 

                   7.6 Illustration                93 

                   7.7 Solution                94 



 7 

                   7.8 Matlab Code                95 

                   7.9 Results                101 

                   7.10 Simulation of Power System Dynamics            103 

                               7.10.1 Structure of the Power System Model           103 

                               7.10.2 Synchronous Machine Representation (Including Damping)        103 

                                            7.10.2.1 Equations of Motion            104 

                   7.11 Illustration                104 

                   7.12 Matlab Code                105 

                   7.13 Results                106 

8. Conclusion and References               107 

                   8.1 Conclusion                108 

                   8.2 References                110 

 

 

              

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 8 

LIST OF FIGURES 
 

Fig. 3.1 Diagram for steady state stability problem       11 

Fig. 3.2 Rotor angle and frequency vs time        12 

Fig.4.1 Diagram for transient state stability design       15 

Fig. 4.2 Simulink Design for Transient Stability Design      24 

Fig. 4.3 Swing Curve using Modified Euler Method for fault cleared at 0.3s   25 

Fig. 4.4 Swing Curve using Runge-Kutta Mehod for fault cleared at 0.3s    25 

Fig. 4.5 Swing Curve using Modified Euler Method for fault cleared at 0.5s   26 

Fig. 4.6 Swing Curve using Modified Euler Method for fault cleared at 0.5s   26 

Fig. 4.7 Swing Curve using Modified Euler Method for fault cleared at 0.4s   27 

Fig. 4.8 Swing Curve using Runge-Kutta Method for fault cleared at 0.4s    27 

Fig 4.9 Diagram for study of Point by point Method       29 

Fig. 4.10 Swing Curve: Fault cleared in 0.125s       32 

Fig. 4.11 Swing Curve: Fault cleared in 0.5s        32 

Fig 5.1 Diagram for multimachine stability        35 

Fig. 5.2 Multimachine Stability for Fault cleared at 0.4 sec      49 

Fig. 5.3 Multimachine Stability for Fault cleared at 0.8 sec      50 

Fig. 5.4 Multimachune Stability for Fault cleared at 0.697 sec     50 

Fig. 6.1 Small-signal Studies (a) General Configuration (b) Equivalent System   52 

Fig. 6.2 Representation of the rotor angle and EB       53 

Fig. 6.3 The equivalent circuit relating the machine flux linkages and currents   54 

Fig. 6.4 Distinction between incremental and total saturation     59 

Fig. 6.5 Block Diagram Representation of Small-Signal Performance    61 

Fig. 6.6 Positive damping torque and negative synchronizing torque due to K2∆ψfd  65 

Fig. 6.7 A thermal generating station consisting of four 555MVA, 24 kV, 60Hz units  66 

Fig. 6.8 The Equivalent circuit model of the system       67 

Fig. 7.1 Single-machine infinite bus system        76 

Fig 7.2 System representation with generator represented by classical model   76 

Fig.7.3 Power-angle relationship         77 



 9 

Figure 7.4 Response to a step change in mechanical power output     79 

Fig. 7.5 Equivalent circuit of the thermal generating station      84 

Fig. 7.6 Equivalent Circuit for prefault, during fault and post fault conditions   85 

Fig. 7.7 One-machine system swing curve Fault cleared at 0.07 second    91 

Fig. 7.8 One-machine system swing curve Fault cleared at 0.07 second    92 

Fig. 7.9 One-machine system swing curve Fault cleared at 0.07 second    92 

Fig. 7.10 Synchronous machine equivalent circuits       94 

Fig. 7.11 One-machine system swing curve Fault cleared at 0.07 second    96

    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 10 

ABSTRACT 
 

The stability of an interconnected power system is its ability to return to normal or stable operation 

after having been subjected to some form of disturbance. With interconnected systems continually 

growing in size and extending over vast geographical regions, it is becoming increasingly more 

difficult to maintain synchronism between various parts of the power system.  

• In our project we have studied the various types of stability- steady state stability, transient 

state stability and the swing equation and its solution using numerical methods using 

MATLAB and Simulink .  

• We have presented the solution of swing equation for transient stability analysis using three 

different methods – Point-by-Point method, Modified Euler method and Runge-Kutta 

method.  

• Modern power systems have many interconnected generating stations, each with several 

generators and many loads. So our study is not limited to one-machine system but we have 

also studied multi-machine stability.  

• We study the small-signal performance of a machine connected to a large system through 

transmission lines. We gradually increase the model detail by accounting for the effects of 

the dynamics of the field circuit. We have analysed the small-signal performance using 

eigen value analysis. 

• Further a more detailed transient stability analysis is done whereby the classical model is 

slightly improved upon by taking into account the effect of damping towards transient 

stability response. Characteristics of the various components of a power system during 

normal operating conditions and during disturbances have been examined, and effects on the 

overall system performance are analyzed. 
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 INTRODUCTION 

 
Successful operation of a power system depends largely on the engineer's ability to provide reliable 

and uninterrupted service to the loads. The reliability of the power supply implies much more than 

merely being available. Ideally, the loads must be fed at constant voltage and frequency at all times.  

The first requirement of reliable service is to keep the synchronous generators running in parallel 

and with adequate capacity to meet the load demand. Synchronous machines do not easily fall out 

of step under normal conditions. If a machine tends to speed up or slow down, synchronizing forces 

tend to keep it in step. Conditions do arise, however, such as a fault on the network, failure in a 

piece of equipment, sudden application of a major load such as a steel mill, or loss of a line or 

generating unit., in which operation is such that the synchronizing forces for one or more machines 

may not be adequate, and small impacts in the system may cause these machines to lose 

synchronism.  

A second requirement of reliable electrical service is to maintain the integrity of the power network. 

The high-voltage transmisssion system connects the generating stations and the load centers. 

Interruptions in this network may hinder the flow of power to the load. This usually requires a study 

of large geographical areas since almost all power systems are interconnected with neighboring 

systems.  

Random changes in load are taking place at all times, with subsequent adjustments of generation. 

We may look at any of these as a change from one equilibrium state to another. Synchronism 

frequently may be lost in that transition period, or growing oscillations may occur over a 

transmission line, eventually leading to its tripping. These problems must be studied by the power 

system engineer and fall under the heading "power system stability".                                                                            
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 2.1 STABILITY 
 

The tendency of a power system to develop restoring forces equal to or greater than the disturbing 

forces to maintain the state of equilibrium is known as “STABILITY”. 

 The problem of interest is one where a power system operating under a steady load condition is 

perturbed, causing the readjustment of the voltage angles of the synchronous machines. If such an 

occurrence creates an unbalance between the system generation and load, it results in the 

establishment of a new steady-state operating condition, with the subsequent adjustment of the 

voltage angles. The perturbation could be a major disturbance such as the loss of a generator, a fault 

or the loss of a line, or a combination of such events. It could also be a small load or random load 

changes occurring under normal operating conditions. Adjustment to the new operating condition is 

called the transient period. The system behavior during this time is called the dynamic system 

performance, which is of concern in defining system stability. The main criterion for stability is that 

the synchronous machines maintain synchronism at the end of the transient period. 

So we can say that if the oscillatory response of a power system during the transient period 

following a disturbance is damped and the system settles in a finite time to a new steady operating 

condition, we say the system is stable. If the system is not stable, it is considered unstable. This 

primitive definition of stability requires that the system oscillations be damped. This condition is 

sometimes called asymptotic stability and means that the system contains inherent forces that tend 

to reduce oscillations. This is a desirable feature in many systems and is considered necessary for 

power systems. The definition also excludes continuous oscillation from the family of stable 

systems, although oscillators are stable in a mathematical sense. The                                                                                                                                     

reason is practical since a continually oscillating system would be undesirable for both the supplier 

and the user of electric power. Hence the definition describes a practical specification for an 
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acceptable operating condition. The stability problem is concerned with the behavior of the 

synchronous machines after a disturbance. For convenience of analysis, stability problems are 

generally divided into two major categories-steady state stability and transient state stability and 

transient state stability. 

2.2 SWING EQUATION 

 
Under normal operating conditions, the relative position of the rotor axis and the resultant magnetic 

field axis is fixed. The angle between the two is known as the power angle or torque angle. During 

any disturbance, rotor will decelerate or accelerate with respect to the synchronously rotating air 

gap mmf, a relative motion begins. The equation describing the relative motion is known as the 

swing equation.  

Synchronous machine operation: 

• Consider a synchronous generator with electromagnetic torque Te running at synchronous 

speed ωsm.  

• During the normal operation, the mechanical torque Tm = Te.  

• A disturbance occur will result in accelerating/decelerating torque Ta=Tm-Te (Ta>0 if 

accelerating, Ta<0 if decelerating).  

• By the law of rotation –  

 

where J is the combined moment of inertia of prime mover and generator 

• θm is the angular displacement of rotor w.r.t. stationery reference frame on the stator 

• θm = ωsmt+δm, ωsm is the constant angular velocity 

•  Taking the derivative of θm, we obtain –                                                                 
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• Taking the second derivative of  θm – 

 

• Substituting into law of rotation- 

 

• Multiplying ωm to obtain power equation 

 

 

       Where Pm and Pe are mechanical power and electromagnetic power. 

• Swing equation in terms of inertial constant M 

 

• Relations between electrical power angle δ and mechanical power angle δm and electrical 

speed and mechanical speed  

  

 

• Swing equation in terms of electrical power angle δ 

  

 

• Converting the swing equation into per unit system 
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STEADY STATE STABILITY 

The ability of power system to remain its synchronism and returns to its original state when 

subjected to small disturbances. Such stability is not affected by any control efforts such as 

voltage regulators or governor. 

3.1 Analysis of steady-state stability by swing equation 

• starting from swing equation 

 

 

• introduce a small disturbance ∆δ 

• derivation is from  δ=δ0+∆δ 

• simplify the nonlinear function of power angle δ 

• Analysis of steady-state stability by swing equation 

• swing equation in terms of ∆δ 

 

• PS= Pmax cosδ0: the slope of the power-angle curve at δ0, PS is positive when 0
0
 < δ < 

90
o 
 

• the second order differential equation 

 

• Characteristic equation: 

 

rule 1: if PS is negative, one root is in RHP and system is unstable 

rule 2: if PS is positive, two roots in the jω axis and motion is oscillatory and undamped, 

system is marginally stable 

δ
δ

π
sinmax)()(2

2

0

PPPP
dt

d

f

H
mpuepum −=−=

0cos 02

2

0

=∆+
∆

δδ
δ

π
mP

dt

d

f

H

0max cos
0

δ
δ

δ P
d

dP
PS ==

0
2

2

0

=∆+
∆

δ
δ

π
SP

dt

d

f

H

SP
H

f
s 02 π

−=



 19 

 

   The oscillatory frequency of the undamped system  

3.2 Damping torque: 

• phenomena: when there is a difference angular velocity between rotor and air gap field, 

an induction torque will be set up on rotor tending to minimize the difference of 

velocities 

• introduce a damping power by damping torque 

 

• introduce the damping power into swing equation 

• Characteristic equation: 

 

 

 

• Analysis of characteristic equation 

 

 

• for damping coefficient 

• roots of characteristic equation 

 

• damped frequency of oscillation 

  

• positive damping (1>ζ>0): s1,s2 have negative real part if PS is positive, this implies 

the response is bounded and system is stable   
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• Solution of the swing equation 

 

 

• roots of swing equation 

                  

 

• rotor angular frequency  

 

 

• response time constant 

 

 

• settling time: 

• relations between settling time and inertia constant H: increase H will result in longer 

ts, decrease ωn and ζ 

3.3 Illustration: A 60 Hz synchronous generator having inertia constant H =9.94 MJ/MVA 

and a transient reactance Xd’=0.3 p.u. is connected to an infinite bus through a purely reactive 

circuit as shown in figure 3.1. Reactances are marked on the diagram on a common system 

base. The generator is delivering real power of 0.6 p.u., 0.8 power factor lagging to the infinite 

bus at a voltage of V=1 per unit.  
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                       Fig. 3.1 Diagram for steady state stability problem                                                            

3.4 MATLAB CODE FOR STEADY STATE STABILITY DESIGN 

 
global  Pm f H E V X1 X2 X3 

Pm = 0.80;  E = 1.17;  V = 1.0; 

X1 = 0.65; X2 = 1.80; X3 = 0.8; 

H = 5.0; f = 60; tf = 1; Dt = 0.01; 

%  Fault is cleared in 0.3 sec. 

tc = 0.3; 

swingmeu(Pm, E, V, X1, X2, X3, H, f, tc, tf, Dt) 

%  Fault is cleared in 0.4 sec. and 0.5 sec. 

tc = .5; 

swingmeu(Pm, E, V, X1, X2, X3, H, f, tc, tf, Dt) 

tc = .4; 

swingmeu(Pm, E, V, X1, X2, X3, H, f, tc, tf, Dt) 

disp('Parts (a) & (b) are repeated using swingrk4') 

disp('Press Enter to continue') 

pause 

tc = 0.3; 
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swingrk4(Pm, E, V, X1, X2, X3, H, f, tc, tf) 

tc = .5; 

swingrk4(Pm, E, V, X1, X2, X3, H, f, tc, tf) 

tc = .4; 

swingrk4(Pm, E, V, X1, X2, X3, H, f, tc, tf) 

                                                                                              

3.5 Wave form for steady state response 

 

 
Fig. 3.2 Rotor angle and frequency vs time 
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Chapter 4 
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The transient stability studies involve the determination of whether or not synchronism is 

maintained after the machine has been subjected to severe disturbance. This may be sudden 

application of load, loss of generation, loss of large load, or a fault on the system. In most 

disturbances, oscillations are of such magnitude that linearization is not permissible and the 

nonlinear swing equation must be solved. 

4.1 NUMERICAL SOLUTION OF SWING EQUATION 

The transient stability analysis requires the solution of a system of coupled non-linear differential 

equations. In general, no analytical solution of these equations exists. However, techniques are 

available to obtain approximate solution of such differential equations by numerical methods and 

one must therefore resort to numerical computation techniques commonly known as digital 

simulation. Some of the commonly used numerical techniques for the solution of the swing 

equation are: 

• Point by point method 

• Euler modified method 

• Runge-Kutta method 

In our analysis, we have used Euler modified method and Point-by Point Method.  

The swing equation can be transformed into state variable form as 

 

 

 

We now apply modified Euler’s method to the above equations as below 
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Then the average value of the two derivatives is used to find the corrected values. 

 

 

This is illustrated in the following design. 

4.2 Illustration: A 60 Hz synchronous generator having inertia constant, H = 5MJ/MVA and a 

direct axis transient reactance Xd’ = 0.3p.u. is connected to an infinite bus through a purely 

reactive circuit as shown in Fig. 1. Reactances are shown on the diagram in a common system 

base. The generator is delivering reactive power Pe=0.8p.u. and Q = 0.074p.u. to the infinite bus at 

a voltage of 1p.u. A three phase fault occurs at the middle of one line and is cleared by isolating 

the faulted circuit simultaneously at both ends as shown in Fig.4.1. The fault is cleared in 0.3 

second. The numerical solution is obtained for 1.0 second using the modified Euler method with a 

step size of ∆t= 0.01second in Matlab7.0. The swing curve is used to determine the system 

stability and the critical clearing time is determined. The simulation was repeated and the swing 

plots obtained using SIMULINK. 

 

Fig.4.1 Diagram for transient state stability design 

4.3 MATLAB CODE FOR TRANSIENT STATE STABILITY DESIGN 
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H = 5.0; f = 60; tf = 1; Dt = 0.01; 

%  Fault is cleared in 0.3 sec. 

tc = 0.3;  

swingmeu(Pm, E, V, X1, X2, X3, H, f, tc, tf, Dt) 

%  Fault is cleared in 0.4 sec. and 0.5 sec. 

tc = .5; 

swingmeu(Pm, E, V, X1, X2, X3, H, f, tc, tf, Dt) 

tc = .4; 

swingmeu(Pm, E, V, X1, X2, X3, H, f, tc, tf, Dt) 

disp('Parts (a) & (b) are repeated using swingrk4') 

disp('Press Enter to continue') 

pause 

tc = 0.3; 

swingrk4(Pm, E, V, X1, X2, X3, H, f, tc, tf) 

tc = .5; 

swingrk4(Pm, E, V, X1, X2, X3, H, f, tc, tf) 

tc = .4; 

swingrk4(Pm, E, V, X1, X2, X3, H, f, tc, tf) 

% This program solves the swing equation of a one-machine system 

% when subjected to a three-phase fault with subsequent clearance 

% of the fault. Modified Euler method 

function swingmeu(Pm, E, V, X1, X2, X3, H, f, tc, tf, Dt) 

%global  Pm f H E V X1 X2 X3 
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clear t 

if exist('Pm')~=1 

Pm = input('Generator output power in p.u. Pm = '); else, end 

if exist('E')~=1 

E = input('Generator e.m.f. in p.u. E = '); else, end 

if exist('V')~=1 

V = input('Infinite bus-bar voltage in p.u. V = '); else, end 

if exist('X1')~=1 

X1 = input('Reactance before Fault in p.u. X1 = '); else, end 

if exist('X2')~=1 

X2 = input('Reactance during Fault X2 = '); else, end 

if exist('X3')~=1 

X3 = input('Reactance after Fault X3 = '); else, end 

if exist('H')~=1 

H  = input('Generator Inertia constant in sec. H = '); else, end 

if exist('f')~=1 

f  = input('System frequency in Hz f = '); else, end 

if exist('Dt')~=1 

Dt = input('Time interval  Dt = '); else, end 

if exist('tc')~=1 

tc = input('Clearing time of fault in sec tc = '); else, end 

if exist('tf')~=1 

tf = input('Final time for swing equation in sec tf = '); else, end 
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Pe1max = E*V/X1; Pe2max=E*V/X2; Pe3max=E*V/X3; 

clear t x1 x2  delta  

d0 =asin(Pm/Pe1max); 

t(1) = 0; 

x1(1)= d0; 

x2(1)=0; 

np=tf /Dt; 

Pemax=Pe2max; 

ck=pi*f/H; 

for k = 1:np 

    if t(k) >= tc 

    Pemax=Pe3max; 

    else, end 

t(k+1)=t(k)+Dt; 

Dx1b=x2(k); 

Dx2b=ck*(Pm-Pemax*sin(x1(k))); 

x1(k+1)=x1(k)+Dx1b*Dt; 

x2(k+1)=x2(k)+Dx2b*Dt; 

Dx1e=x2(k+1); 

Dx2e=ck*(Pm-Pemax*sin(x1(k+1))); 

Dx1=(Dx1b+Dx1e)/2; 

Dx2=(Dx2b+Dx2e)/2; 

x1(k+1)=x1(k)+Dx1*Dt; 
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x2(k+1)=x2(k)+Dx2*Dt; 

end 

delta=180*x1/pi; 

clc 

fprintf('\nFault is cleared at %4.3f Sec. \n', tc) 

head=['                              ' 

      '     time     delta      Dw   ' 

      '      s       degrees    rad/s' 

      '                              ']; 

disp(head) 

disp([t', delta' x2']) 

h=figure; figure(h) 

plot(t, delta), grid 

title(['One-machine system swing curve. Fault cleared at ', num2str(tc),'s']) 

xlabel('t, sec'), ylabel('Delta, degree') 

cctime(Pm, E, V, X1, X2, X3, H, f)    % Obtains the critical clearing time 

% This program solves the swing equation of a one-machine system 

% when subjected to a three-phase fault with subsequent clearance 

% of the fault. 

function swingrk4(Pm, E, V, X1, X2, X3, H, f, tc, tf, Dt) 

%global  Pm f H E V X1 X2 X3 

if exist('Pm') ~= 1 

Pm = input('Generator output power in p.u. Pm = '); else, end 
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if exist('E') ~= 1 

E = input('Generator e.m.f. in p.u. E = '); else, end 

if exist('V') ~= 1 

V = input('Infinite bus-bar voltage in p.u. V = '); else, end 

if exist('X1') ~= 1 

X1 = input('Reactance before Fault in p.u. X1 = '); else, end 

if exist('X2') ~= 1 

X2 = input('Reactance during Fault X2 = '); else, end 

if exist('X3') ~= 1 

X3 = input('Reactance after Fault X3 = '); else, end 

if exist('H') ~= 1 

H  = input('Generator Inertia constant in sec. H = '); else, end 

if exist('f') ~= 1 

f  = input('System frequency in Hz f = '); else, end 

if exist('tc') ~= 1 

tc = input('Clearing time of fault in sec tc = '); else, end 

if exist('tf') ~= 1 

tf = input('Final time for swing equation in sec tf = '); else, end 

Pe1max = E*V/X1; Pe2max=E*V/X2; Pe3max=E*V/X3; 

clear t  x  delta 

d0 =asin(Pm/Pe1max); 

t0 = 0;  

x0 = [d0;  0]; 
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tol=0.001; 

tspan = [t0; tc];                             

[t1,xf]=ode45('pfpower', tspan, x0); % During fault solution 

x0c =xf(length(xf), :); 

tspan = [tc, tf];                             

[t2,xc] =ode45('afpower', tspan, x0c); % After fault solution  

t =[t1; t2]; x = [xf; xc]; 

delta = 180/pi*x(:,1); 

clc 

fprintf('\nFault is cleared at %4.3f Sec. \n', tc) 

head=['                              ' 

      '     time     delta      Dw   ' 

      '      s       degrees    rad/s' 

      '                              ']; 

disp(head) 

disp([t, delta, x(:, 2)]) 

h=figure; figure(h) 

plot(t, delta), grid 

title(['One-machine system swing curve. Fault cleared at ', num2str(tc),'s']) 

xlabel('t, sec'), ylabel('Delta, degree') 

cctime(Pm, E, V, X1, X2, X3, H, f)    % Obtains the critical clearing time 

% This function  Simulates the swing equation of a one-machine system 

% and returns the critical clearing time for stability. 
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function  cctime(Pm, E, V, X1, X2, X3, H, f) 

Pe1max = E*V/X1; Pe2max=E*V/X2; Pe3max=E*V/X3; 

d0 =asin(Pm/Pe1max); 

dmax = pi-asin(Pm/Pe3max); 

cosdc = (Pm*(dmax-d0)+Pe3max*cos(dmax)-Pe2max*cos(d0))/(Pe3max-Pe2max); 

  if abs(cosdc) > 1 

  fprintf('No critical clearing angle could be found.\n') 

  fprintf('System can remain stable during this disturbance.\n\n') 

  return 

  else, end 

dc = acos(cosdc); 

  if dc > dmax 

  fprintf('No critical clearing angle could be found.\n') 

  fprintf('System can remain stable during this disturbance.\n\n') 

  return 

  else, end 

tf = 0.4; 

x0 = [d0; 0]; 

tspan = [0, tf];                                   

options = odeset('RelTol', 0.00001);               

[t1,xf] =ode23('pfpower', tspan, x0, options);     

kk=find(xf(:,1) <= dc); k=max(kk); 

tt=t1(k); 
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while tf <= tt & tf <= 3.6 

tf=tf+.4; 

   fprintf('\nSearching with a final time of %3.2f Sec. \n', tf) 

   tol=0.00001+tf*2.5e-5; 

   tspan = [0, tf];                                 

   options = odeset('RelTol', tol);                 

   [t1,xf] =ode23('pfpower', tspan, x0, options);   

   kk=find(xf(:,1) <= dc); k=max(kk);  

      tt= t1(k); 

end 

tmargin = t1(k); 

if tf >= 3.6 

  fprintf('\nA clearing time could not be found up to 4 sec. \n\n') 

  return 

  else, end 

fprintf('\nCritical clearing time =  %4.2f seconds \n', tmargin) 

fprintf('Critical clearing angle = %6.2f degrees \n\n', dc*180/pi 
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4.4 SIMULINK DESIGN 

 

Fig. 4.2 Simulink Design for Transient Stability Design 
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4.5 OUTPUT WAVEFORMS 

 

USING MODIFIED EULER METHOD 
 

 
 

Fig. 4.3 Swing Curve using Modified Euler Method for fault cleared at 0.3s 

 

USING RUNGE-KUTTA METHOD 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.4 Swing Curve using Runge-Kutta Mehod for fault cleared at 0.3s 
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USING MODIFIED EULER METHOD 
 

 
Fig. 4.5 Swing Curve using Modified Euler Method for fault cleared at 0.5s 

 

USING RUNGE-KUTTA METHOD 

 

 
Fig. 4.6 Swing Curve using Modified Euler Method for fault cleared at 0.5s 
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USING MODIFIED EULER METHOD 
 

 
Fig. 4.7 Swing Curve using Modified Euler Method for fault cleared at 0.4s 

 
USING RUNGE-KUTTA METHOD 

 

 
 

Fig. 4.8 Swing Curve using Runge-Kutta Method for fault cleared at 0.4s 
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The swing curve shows that the power angle returns after a maximum swing indicating that with 

system damping, the oscillation will subside and a new operating angle is attained. Hence the 

system is found to be stable for this fault clearing time. The critical clearing time is determined by 

the program to be  

Critical clearing time = 0.41 seconds  

Critical clearing angle = 98.83 degrees  

The above program is run for a clearing time of tc =0.4 second and tc=0.5 second with the results 

shown in figure. The swing curve for tc =0.4 second corresponds to the critical clearing time. The 

swing curve for tc = 0.5 second shows that the power angle δ  is increasing with out limit. Hence 

the system is unstable for this clearing time. 

4.6 Point-by-Point Method 

It is always required to know the critical clearing time corresponding to critical clearing angle so 

as to design the operating times of the relay and circuit breaker so that time taken by them should 

be less than the critical clearing time for stable operation of the system. So the point-by-point 

method is used for the solution of critical clearing time associated with critical clearing angle and 

also for the solution of multi machine system. The step-by-step or point-by-point method is the 

conventional, approximate but proven method. This involves the calculation of the rotor angle as 

time is incremented. The accuracy of the solution depends upon the time increment used in the 

analysis. 

The following parameters are evaluated for each interval (n) 

The accelerating power  Pa (n-1)=Ps - Pe(n-1) 

From the swing equation α(n-1)=Pa(n-1)/M  

∆ωn-1/2= αn-1∆t 

ωn-1/2 = ωn-3/2+αn-1∆t 
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∆δn = ωn-1/2 ∆t =( ωn-3/2 + αn-1∆t) ∆t 

            = ∆δn-1+ αn-1∆t2 

            = ∆δn-1+ Pa(n-1) ∆t2/M 

δn== δn-1+∆δn 

The above calculations have been programmed using MATLAB-7.0 for a 20 MVA, 

50 Hz generator delivering 18 MW over a double circuit line to an infinite bus. The generator has 

kinetic energy of 2.52MJ/MVA at rated speed. The generator has transient reactance of Xd’=0.32 

p.u. Each transmission circuit has zero resistance and a reactance of 0.2 p.u. on a 20 MVA base 

.Magnitude of E’ is 1.1p.u. and infinite base voltage of 1.0∟00. A three phase circuit occurs at the 

mid point of one of the transmission line. The fault is cleared by simultaneous opening of breakers 

and both ends of line at 2.5 cycles and 6.25 cycles after the occurrence of the fault. 

 

Fig 4.9. Diagram for study of Point by point Method 

 

To find the critical clearing time swing curves can be obtained, similarly, for progressively greater 

clearing time till the torque angle δ increases without bound. 
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4.7 MATLAB CODE FOR POINT-BY-POINT METHOD DESIGN 
 
t=0 

tf=0 

tfinal=0.5 

tc=0.125 

tstep=0.05 

M=2.52/(180*50) 

i=2 

delta=21.64*pi/180 

ddelta=0 

time(1)=0 

ang(1)=21.64 

Pm=0.9 

Pmaxbf=2.44 

Pmaxdf=0.88 

Pmaxaf=2.00 

while t<tfinal, 

    if (t==tf), 

        Paminus=0.9-Pmaxbf*sin(delta) 

        Paplus=0.9-Pmaxdf*sin(delta) 

        Paav=(Paminus+Paplus)/2 

        Pa=Paav 

    end 
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    if (t==tc), 

        Paminus=0.9-Pmaxdf*sin(delta) 

        Paplus=0.9-Pmaxaf*sin(delta) 

        Paav=(Paminus+Paplus)/2 

        Pa=Paav 

    end 

    if(t>tf & t<tc), 

        Pa=Pm-Pmaxdf*sin(delta) 

    end 

    if(t>tc), 

        Pa=Pm-Pmaxaf*sin(delta) 

    end 

    ddelta=ddelta+(tstep*tstep*Pa/M) 

    delta=(delta*180/pi+ddelta)*pi/180 

    deltadeg=delta*180/pi 

    t=t+tstep 

    pause  

    time(i)=t 

    ang(i)=deltadeg 

    i=i+1 

end 

axis([0 0.6 0 160]) 

plot(time,ang,'ko-') 
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4.8 OUTPUTS 

 
Critical clearing angle = 118.62 degrees 

Critical clearing time = 0.38 seconds 

USING POINT-BY-POINT METHOD 
 

 
Fig. 4.10 Swing Curve: Fault cleared in 0.125s 

 

 
 Fig. 4.11 Swing Curve: Fault cleared in 0.5s  
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Chapter 5 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

MULTIMACHINE SYSTEM ANALYSIS 
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5.1 MULTIMACHINE SYSTEMS 

• Multi-machine system can be written similar to one-machine system by the following 

assumptions: 

• Each synchronous machine is represented by a constant voltage E behind Xd (neglect 

saliency and flux change) 

• Input power remain constant 

• using prefault bus voltages, all loads are in equivalent admittances to ground 

• damping and asynchronous effects are ignored 

• δmech = δ  

• machines belong to the same station swing together and are said to be coherent, coherent 

machines can equivalent to one machine 

• Solution to multi-machine system: 

• solve initial power flow and determine initial bus voltage magnitude and phase angle 

 

• calculating load equivalent admittance 

 

• nodal equations of the system  

 

 

• electrical and mechanical power output of machine at steady state prior to disturbances 

• Classical transient stability study is based on the application of the three-phase fault 
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• Swing equation of multi-machine system 

 

• Yij are the elements of the faulted reduced bus admittance matrix 

• state variable model of swing equation 

 

 

 

5.2 Illustration: 

The power system network of an electrical company is shown in Fig-5.1. 

The load data, voltage magnitude, generation schedule and the reactive power limits for the 

regulated buses are tabulated below in table-1, table-2, table-3 respectively. 

Bus 1, whose voltage is specified as V1=1.04∟00,is taken as slack bus. 

 

Fig 5.1 Diagram for multimachine stability 

 

5.3 MATLAB CODE FOR MULTIMACHINE STABILITY DESIGN 
 

basemva =100;   accuracy=0.0001;  maxiter=10; 

busdata=[1   1   1.06    0   0     0     0     0   0     0   0; 
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         2   2   1.04    0   0     0     150   0   0     140 0; 

         3   2   1.03    0   0     0     100   0   0     90  0; 

         4   0   1       0   100   70    0     0   0     0   0; 

         5   0   1       0   90    30    0     0   0     0   0; 

         6   0   1       0   160   110   0     0   0     0   0];        

      %Sixth column is Transformer Tap position   

linedata=[1   4   0.035     0.225    0.0065     1; 

          1   5   0.025     0.105    0.0045   1;     

          1   6   0.040     0.215    0.0055   1; 

          2   4   0.0       0.035    0.0   1; 

          3   5   0.0       0.042    0.0   1; 

          4   6   0.026     0.125     0.0035   1; 

          5   6   0.026     0.175     0.0300   1]; 

      gendata=[1    0   0.2    20; 

               2   0   0.15   4; 

               3   0   0.25   5];              

 %  This program obtains th Bus Admittance Matrix for power flow solution 

j=sqrt(-1); i = sqrt(-1); 

nl = linedata(:,1); nr = linedata(:,2); R = linedata(:,3); 

X = linedata(:,4); Bc = j*linedata(:,5); a = linedata(:, 6);                                                      

nbr=length(linedata(:,1)); nbus = max(max(nl), max(nr)); 

Z = R + j*X; y= ones(nbr,1)./Z;        %branch admittance 

for n = 1:nbr 
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if a(n) <= 0  a(n) = 1; 

else  

end 

Ybus=zeros(nbus,nbus);     % initialize Ybus to zero 

               % formation of the off diagonal elements 

for k=1:nbr; 

       Ybus(nl(k),nr(k))=Ybus(nl(k),nr(k))-y(k)/a(k); 

       Ybus(nr(k),nl(k))=Ybus(nl(k),nr(k)); 

    end 

end 

              % formation of the diagonal elements 

for  n=1:nbus 

     for k=1:nbr 

         if nl(k)==n 

         Ybus(n,n) = Ybus(n,n)+y(k)/(a(k)^2) + Bc(k); 

         elseif nr(k)==n 

         Ybus(n,n) = Ybus(n,n)+y(k) +Bc(k); 

         else, end 

     end 

end 

clear pgg 

%   Power flow solution by Newton-Raphson method 

ns=0; ng=0; Vm=0; delta=0; yload=0; deltad=0; 
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nbus = length(busdata(:,1)); 

for k=1:nbus 

n=busdata(k,1); 

kb(n)=busdata(k,2); Vm(n)=busdata(k,3); delta(n)=busdata(k, 4); 

Pd(n)=busdata(k,5); Qd(n)=busdata(k,6); Pg(n)=busdata(k,7); Qg(n) = busdata(k,8); 

Qmin(n)=busdata(k, 9); Qmax(n)=busdata(k, 10); 

Qsh(n)=busdata(k, 11); 

    if Vm(n) <= 0  Vm(n) = 1.0; V(n) = 1 + j*0; 

    else delta(n) = pi/180*delta(n); 

         V(n) = Vm(n)*(cos(delta(n)) + j*sin(delta(n))); 

         P(n)=(Pg(n)-Pd(n))/basemva;  

         Q(n)=(Qg(n)-Qd(n)+ Qsh(n))/basemva; 

         S(n) = P(n) + j*Q(n); 

    end 

end 

for k=1:nbus 

if kb(k) == 1, ns = ns+1; else, end 

if kb(k) == 2 ng = ng+1; else, end 

ngs(k) = ng; 

nss(k) = ns; 

end 

Ym=abs(Ybus); t = angle(Ybus); 

m=2*nbus-ng-2*ns; 
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maxerror = 1; converge=1; 

iter = 0; 

% Start of iterations 

clear A  DC   J  DX 

while maxerror >= accuracy & iter <= maxiter % Test for max. power mismatch 

for i=1:m 

for k=1:m 

   A(i,k)=0;      %Initializing Jacobian matrix 

end, end 

iter = iter+1; 

for n=1:nbus 

nn=n-nss(n); 

lm=nbus+n-ngs(n)-nss(n)-ns; 

J11=0; J22=0; J33=0; J44=0; 

   for i=1:nbr 

     if nl(i) == n | nr(i) == n 

        if nl(i) == n,  l = nr(i); end 

        if nr(i) == n,  l = nl(i); end 

        J11=J11+ Vm(n)*Vm(l)*Ym(n,l)*sin(t(n,l)- delta(n) + delta(l)); 

        J33=J33+ Vm(n)*Vm(l)*Ym(n,l)*cos(t(n,l)- delta(n) + delta(l)); 

        if kb(n)~=1 

        J22=J22+ Vm(l)*Ym(n,l)*cos(t(n,l)- delta(n) + delta(l)); 

        J44=J44+ Vm(l)*Ym(n,l)*sin(t(n,l)- delta(n) + delta(l));                                               



 50 

        else, end 

        if kb(n) ~= 1  & kb(l) ~=1 

        lk = nbus+l-ngs(l)-nss(l)-ns; 

        ll = l -nss(l); 

      % off diagonalelements of J1 

        A(nn, ll) =-Vm(n)*Vm(l)*Ym(n,l)*sin(t(n,l)- delta(n) + delta(l)); 

              if kb(l) == 0  % off diagonal elements of J2 

              A(nn, lk) =Vm(n)*Ym(n,l)*cos(t(n,l)- delta(n) + delta(l));end 

              if kb(n) == 0  % off diagonal elements of J3 

              A(lm, ll) =-Vm(n)*Vm(l)*Ym(n,l)*cos(t(n,l)- delta(n)+delta(l)); end 

              if kb(n) == 0 & kb(l) == 0  % off diagonal elements of  J4 

              A(lm, lk) =-Vm(n)*Ym(n,l)*sin(t(n,l)- delta(n) + delta(l));end 

        else end 

     else , end 

   end 

   Pk = Vm(n)^2*Ym(n,n)*cos(t(n,n))+J33; 

   Qk = -Vm(n)^2*Ym(n,n)*sin(t(n,n))-J11; 

   if kb(n) == 1 P(n)=Pk; Q(n) = Qk; end   % Swing bus P 

     if kb(n) == 2  Q(n)=Qk; 

         if Qmax(n) ~= 0 

           Qgc = Q(n)*basemva + Qd(n) - Qsh(n); 

           if iter <= 7                  % Between the 2th & 6th iterations 

              if iter > 2                % the Mvar of generator buses are 
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                if Qgc  < Qmin(n),       % tested. If not within limits Vm(n) 

                Vm(n) = Vm(n) + 0.01;    % is changed in steps of 0.01 pu to 

                elseif Qgc  > Qmax(n),   % bring the generator Mvar within 

                Vm(n) = Vm(n) - 0.01;end % the specified limits. 

              else, end 

           else,end  

         else,end 

     end 

   if kb(n) ~= 1 

     A(nn,nn) = J11;  %diagonal elements of J1 

     DC(nn) = P(n)-Pk; 

   end 

   if kb(n) == 0 

     A(nn,lm) = 2*Vm(n)*Ym(n,n)*cos(t(n,n))+J22;  %diagonal elements of J2 

     A(lm,nn)= J33;        %diagonal elements of J3 

     A(lm,lm) =-2*Vm(n)*Ym(n,n)*sin(t(n,n))-J44;  %diagonal of elements of J4 

     DC(lm) = Q(n)-Qk; 

   end 

end 

DX=A\DC'; 

for n=1:nbus 

  nn=n-nss(n); 

  lm=nbus+n-ngs(n)-nss(n)-ns; 
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    if kb(n) ~= 1 

    delta(n) = delta(n)+DX(nn); end 

    if kb(n) == 0 

    Vm(n)=Vm(n)+DX(lm); end 

 end 

  maxerror=max(abs(DC)); 

     if iter == maxiter & maxerror > accuracy  

   fprintf('\nWARNING: Iterative solution did not converged after ') 

   fprintf('%g', iter), fprintf(' iterations.\n\n') 

   fprintf('Press Enter to terminate the iterations and print the results \n') 

   converge = 0; pause, else, end 

end 

if converge ~= 1 

   tech= ('                      ITERATIVE SOLUTION DID NOT CONVERGE'); else,  

   tech=('                   Power Flow Solution by Newton-Raphson Method');                                    

end    

V = Vm.*cos(delta)+j*Vm.*sin(delta); 

deltad=180/pi*delta; 

i=sqrt(-1); 

k=0; 

for n = 1:nbus 

     if kb(n) == 1 

     k=k+1; 
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     S(n)= P(n)+j*Q(n); 

     Pg(n) = P(n)*basemva + Pd(n); 

     Qg(n) = Q(n)*basemva + Qd(n) - Qsh(n); 

     Pgg(k)=Pg(n); 

     Qgg(k)=Qg(n);      

     elseif  kb(n) ==2 

     k=k+1; 

     S(n)=P(n)+j*Q(n); 

     Qg(n) = Q(n)*basemva + Qd(n) - Qsh(n); 

     Pgg(k)=Pg(n); 

     Qgg(k)=Qg(n);   

  end 

yload(n) = (Pd(n)- j*Qd(n)+j*Qsh(n))/(basemva*Vm(n)^2); 

end 

busdata(:,3)=Vm'; busdata(:,4)=deltad'; 

Pgt = sum(Pg);  Qgt = sum(Qg); Pdt = sum(Pd); Qdt = sum(Qd); Qsht = sum(Qsh) 

%   'busout'  Prints the power flow solution on the screen 

disp(tech) 

fprintf('                      Maximum Power Mismatch = %g \n', maxerror) 

fprintf('                             No. of Iterations = %g \n\n', iter) 

head =['    Bus  Voltage  Angle    ------Load------    ---Generation---   Injected' 

       '    No.  Mag.     Degree     MW       Mvar       MW       Mvar       Mvar ' 

       '                                                                          ']; 
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disp(head) 

for n=1:nbus 

     fprintf(' %5g', n), fprintf(' %7.3f', Vm(n)), 

     fprintf(' %8.3f', deltad(n)), fprintf(' %9.3f', Pd(n)), 

     fprintf(' %9.3f', Qd(n)),  fprintf(' %9.3f', Pg(n)), 

     fprintf(' %9.3f ', Qg(n)), fprintf(' %8.3f\n', Qsh(n)) 

end 

    fprintf('      \n'), fprintf('    Total              ') 

    fprintf(' %9.3f', Pdt), fprintf(' %9.3f', Qdt), 

    fprintf(' %9.3f', Pgt), fprintf(' %9.3f', Qgt), fprintf(' %9.3f\n\n', Qsht) 

   %global Pm f H E  Y th ngg 

f=60; 

%zdd=gendata(:,2)+j*gendata(:,3); 

ngr=gendata(:,1); 

%H=gendata(:,4); 

ngg=length(gendata(:,1)); 

%% 

for k=1:ngg 

zdd(ngr(k))=gendata(k, 2)+j*gendata(k,3); 

%H(ngr(k))=gendata(k, 4); 

H(k)=gendata(k,4);   % new 

end 

%% 
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for k=1:ngg 

I=conj(S(ngr(k)))/conj(V(ngr(k))); 

%Ep(ngr(k)) = V(ngr(k))+zdd(ngr(k))*I; 

%Pm(ngr(k))=real(S(ngr(k))); 

Ep(k) = V(ngr(k))+zdd(ngr(k))*I;  % new 

Pm(k)=real(S(ngr(k)));            % new  

end 

E=abs(Ep); d0=angle(Ep); 

for k=1:ngg 

nl(nbr+k) = nbus+k; 

nr(nbr+k) = gendata(k, 1); 

%R(nbr+k)  = gendata(k, 2); 

%X(nbr+k)  = gendata(k, 3); 

R(nbr+k)  = real(zdd(ngr(k))); 

X(nbr+k)  = imag(zdd(ngr(k))); 

Bc(nbr+k)  = 0; 

a(nbr+k) = 1.0; 

yload(nbus+k)=0; 

end 

nbr1=nbr; nbus1=nbus; 

nbrt=nbr+ngg; 

nbust=nbus+ngg; 

linedata=[nl, nr, R, X, -j*Bc, a]; 
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[Ybus, Ybf]=ybusbf(linedata, yload, nbus1,nbust); 

fprintf('\nPrefault reduced bus admittance matrix \n') 

Ybf 

Y=abs(Ybf); th=angle(Ybf); 

Pm=zeros(1, ngg); 

disp(['      G(i)    E''(i)     d0(i)      Pm(i)']) 

for ii = 1:ngg 

for jj = 1:ngg 

Pm(ii) = Pm(ii) + E(ii)*E(jj)*Y(ii, jj)*cos(th(ii, jj)-d0(ii)+d0(jj)); 

end, 

fprintf('       %g', ngr(ii)), fprintf('   %8.4f',E(ii)), fprintf('   %8.4f', 180/pi*d0(ii)) 

fprintf('  %8.4f \n',Pm(ii)) 

end 

respfl='y'; 

while respfl =='y' | respfl=='Y'  

nf=input('Enter faulted bus No. -> '); 

fprintf('\nFaulted reduced bus admittance matrix\n') 

Ydf=ybusdf(Ybus, nbus1, nbust, nf) 

%Fault cleared 

[Ybus,Yaf]=ybusaf(linedata, yload, nbus1,nbust, nbrt); 

fprintf('\nPostfault reduced bus admittance matrix\n') 

Yaf 

resptc='y'; 
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while resptc =='y' | resptc=='Y' 

tc=input('Enter clearing time of fault in sec. tc = '); 

tf=input('Enter final simulation time in sec.  tf = '); 

clear t  x  del 

t0 = 0; 

w0=zeros(1, length(d0)); 

x0 = [d0,  w0]; 

tol=0.0001; 

Y=abs(Ydf); th=angle(Ydf); 

%[t1, xf] =ode23('dfpek', t0, tc, x0, tol);  % Solution during fault (use with MATLAB 4) 

tspan=[t0, tc];                                        %use with MATAB 5 

[t1, xf] =ode23('dfpek', tspan, x0);  % Solution during fault (use with MATLAB 5) 

x0c =xf(length(xf), :); 

Y=abs(Yaf); th=angle(Yaf); 

%[t2,xc] =ode23('afpek', tc, tf, x0c, tol); % Postfault solution (use with MATLAB 4) 

tspan = [tc, tf];                           % use with MATLAB 5 

[t2,xc] =ode23('afpek', tspan, x0c);        % Postfault solution (use with MATLAB 5) 

t =[t1; t2]; x = [xf; xc]; 

fprintf('\nFault is cleared at %4.3f Sec. \n', tc) 

for k=1:nbus 

    if kb(k)==1 

    ms=k; else, end 

end 
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fprintf('\nPhase angle difference of each machine \n') 

fprintf('with respect to the slack in degree.\n') 

fprintf('   t - sec')  

kk=0; 

for k=1:ngg 

    if k~=ms 

    kk=kk+1; 

    del(:,kk)=180/pi*(x(:,k)-x(:,ms)); 

    fprintf('    d(%g,',ngr(k)), fprintf('%g)', ngr(ms)) 

    else, end 

end 

fprintf(' \n') 

disp([t, del]) 

h=figure; figure(h) 

plot(t, del) 

title(['Phase angle difference (fault cleared at ', num2str(tc),'s)']) 

xlabel('t, sec'), ylabel('Delta, degree'), grid 

   resp=0; 

   while strcmp(resp, 'n')~=1 & strcmp(resp, 'N')~=1 & strcmp(resp, 'y')~=1 & strcmp(resp, 'Y')~=1 

   resp=input('Another clearing time of fault? Enter ''y'' or ''n'' within quotes -> '); 

   if strcmp(resp, 'n')~=1 & strcmp(resp, 'N')~=1 & strcmp(resp, 'y')~=1 & strcmp(resp, 'Y')~=1 

   fprintf('\n Incorrect reply, try again \n\n'), end 

   end 
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resptc=resp; 

end 

    resp2=0; 

    while strcmp(resp2, 'n')~=1 & strcmp(resp2, 'N')~=1 & strcmp(resp2, 'y')~=1 & strcmp(resp2, 

'Y')~=1 

    resp2=input('Another fault location: Enter ''y'' or ''n'' within quotes -> '); 

    if strcmp(resp2, 'n')~=1 & strcmp(resp2, 'N')~=1 & strcmp(resp2, 'y')~=1 & strcmp(resp2, 

'Y')~=1 

    fprintf('\n Incorrect reply, try again \n\n'), end 

    respf1=resp2; 

    end 

    if respf1=='n' | respf1=='N', return, else, end 

5.4 OUTPUT WAVEFORMS       

MULTIMACHINE STABILITY 
 

 

                               
Fig. 5.2 Multimachine Stability for Fault cleared at 0.4 sec 
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Fig. 5.3 Multimachine Stability for Fault cleared at 0.8 sec 

 

                               
 Fig. 5.4 Multimachune Stability for Fault cleared at 0.697 sec  

 

Figure shows that the phase angle differences, after reaching a maximum of δ21=123.9
0
 and 

δ31=62.95
0
 will decrease, and the machines swing together. Hence, the system is found to be stable 

when fault is cleared in 0.4 second. 

           The swing curves shown in figure show that machine 2 phase angle increases without limit. 

Thus, the system is unstable when fault is cleared in 0.5 second. The simulation is repeated for a 

clearing time of 0.45 second which is found to be critically stable 
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6.1 SMALL-SIGNAL STABILITY 
 

Small signal stability is the ability of the power system to maintain synchronism when subjected to 

small disturbances. Here we study the small-signal performance of a machine connected to a large 

system through transmission lines. A general system configuration is shown below in Fig. 6.1. For 

the sake of analysis Fig.6.1(a) can be reduced to Fig.6.1(b) by using Thevenin’s equivalent of the 

transmission network external to the machine and adjacent transmission. 

 

Fig. 6.1 Small-signal Studies (a) General Configuration (b) Equivalent System  

 We had already discussed the classical model of the generator in the first half of our project work 

done before. So here we will gradually increase the model detail by accounting for the effects of the 
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dynamics of the field circuit and excitation systems. We will develop the expressions for the 

elements of the state matrix as explicit functions of system parameters. While this method is not 

suited for a detailed study of large systems, it is useful in gaining a physical insight into the effects 

of field circuit dynamics and in establishing the basis for methods of enhancing stability through 

excitation control. 

 

6.2 EFFECT OF SYNCHRONOUS MACHINE FIELD CIRCUIT DYNAMICS 
 

We consider the system performance including the effect of the field flux variations. The field 

voltage will be assumed constant (manual excitation control). We will develop the state-space 

model of the system by first reducing the synchronous machine equations to an appropriate form 

and then combining them with the network equations. We will express time in seconds, angles in 

electrical radians and all other variables in per unit. 

6.2.1 Synchronous Machine Equations 
 

The rotor angle δ is the angle ( in electrical radian) by which the q-axis leads the reference EB. With 

amortisseurs neglected, the equivalent circuits relating the machine flux linkages and current are as 

shown min Fig. 6.2. 

 

Fig. 6.2 Representation of the rotor angle and EB 
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Fig. 6.3 The equivalent circuit relating the machine flux linkages and currents 

The stator and rotor flux linkages are given by 

ψd = -Llid + Lads(-id+ifd) 

     = -Llid + ψad                                                                                                                          (1) 

ψq = -Lliq + Laqs(-iq) 

     = -Lliq + ψaq             (2) 

ψfd = -Lads(-id+ifd) + Lfdifd 

      = ψad + Lfdifd       (3) 

In the above equations, ψad and ψaq are the air-gap(mutual) flux linkages and Lads and Laqs are the 

saturated values of mutual inductances. 

From eqn, the field current may be expressed as 

ifd = (ψfd-ψad)/Lfd    (4) 

The d-axis mutual flux linkage can be written in terms of ψfd and id as follows 

                                        ψad = -Ladsid+Ladsifd 

                                              = -Ladsid+Lads(ψfd-ψad)/Lfd 

            = Lads’(-id+ ψfd/Lfd)  (5) 
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where 

      Lads’=1/(1/Lads+1/Lfd)   (6) 

Since there are no rotor circuits considered in the q-axis, the mutual flux linkage is given by 

Ψaq = -Laqsiq     (7) 

The air-gap torque is  

Te = ψdiq- ψqid 

                                               = ψadiq- ψaqid  (8) 

With pψ terms and speed variations neglected the stator voltage equations become 

                                                ed = -Raid-ψq 

                  = - Raid+(Lliq- Ψaq)  (9) 

                                                eq = -Raiq-ψd 

          = - Raiq+(Llid- Ψad)    (10)  

6.2.2 Network Equations 

 
Since there is only one machine, the machine as well as network equations can be expressed in 

terms of one reference frame, ie. the d-q reference frame of the machine. Referring to Fig. , the 

machine terminal and infinite bus voltages in terms of the d and q components are 

Et = ed+jeq     (11) 

EB = EBD+jEbq     (12) 

The network constraint equation for the system of Fig. 2 is 

Et = EB + (RE+jXE)It    (13) 

ed+jeq = (EBD+jEbq)+(RE+jXE)(id+jiq)  (14) 

Resolving into d and q components gives 

ed=REid-XEiq+EBd    (15) 
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eq=REiq-XEid+EBq    (16) 

where 

EBd = EBsinδ     (17) 

EBq = EBcosδ     (18) 

Using equations and to eliminate ed, eq in equations and and using the expressions for ψad and ψaq 

given by equations and, we obtain the following expressions for id and iq in terms of state variables 

ψfd and δ. 

id = (Xtq[ψfd(Lads/(Lads+Lfd)- EBcosδ] - RTEBsinδ)/D   (19) 

iq = (RT[ψfd(Lads/(Lads+Lfd)- EBcosδ] - XTdEBsinδ)/D   (20) 

where 

RT = Ra + RE       (21) 

XTq = XE+(Laqs+Ll) = XE+Xqs     (22) 

XTd = XE+(Lads’+Ll) = XE+Xds’    (23) 

D = RT
2
 + XTqXTd      (24) 

The reactances Xqs and Xds’ are saturated values. In per unit they are equal to the corresponding 

inductances. 

6.2.3 Linearized System Equations 

Expressing equations and in terms of perturbed values, we may write  

                                              ∆id = m1∆δ + m2∆ψfd     (25) 

                            ∆iq = n1∆δ + n2∆ψfd                                    (26) 

where 

m1 = EB(XTqsinδ0 - RTcosδ0)/D      

n1 = EB(RTsinδ0 - XTdcosδ0)/D      
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         m2 = (XTq/D)* Lads/(Lads+Lfd)      (27) 

n2 = (RT/D)* Lads/(Lads+Lfd)       

By linearizing equations (5) and (7) and substituting in them the above expressions for ∆id and ∆iq, 

we get  

∆ψad = Lads’(-∆id + ∆ψfd/Lfd)      

= (1/ Lfd – m2) Lads’ ∆ψfd - m2Lads’ ∆δ                      (28) 

∆ ψaq = Lads’(-∆id + ∆ψfd/Lfd)      

= – n2Laqs∆ψfd – n1Laqs∆δ     (29) 

Linearizing equation (4) and substituting for ∆ψad from equation (28) gives 

∆ifd = (∆ψfd- ∆ψad)/Lfd       

= (1- Lads’/ Lfd+m Lads’) ∆ψfd/ Lfd    (30) 

The linearized form of equation (8) is  

∆Te = ψad0∆iq + iq0∆ψad - ψaq0∆id + id0∆ψaq   (31) 

Substituting for ∆id, ∆iq, ∆ψad and ∆ψaq from equations (25) to (29), we obtain 

∆Te = K1∆δ +K2 ∆ψfd               (32) 

where            K1 = n1(ψad0+ Laqsid0) – m1(ψaq0+ Lads’iq0) 

                      K2 = n2(ψad0+ Laqsid0) – m2(ψaq0+ Lads’iq0) + Lads’/ Lfd iq0 (33) 

By using the expressions for ∆ifd and ∆Te given by equations (30) and (32), we obtain the system 

equations in the desired final form: 

where 

a11 = -KD/(2H)          

a12 = -K1/(2H)          

a13 = -K2/(2H)          
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a21 = ω0 = 2Πf0         

   a32 = - (ω0Rfd/ Lfd)m1Lads’       (35) 

a33 = - ω0Rfd/ Lfd[1- Lads’/ Lfd+m2Lads’]      

b11=1/(2H)          

b32 = ω0Rfd/ Ladu         

and ∆Tm and ∆Efd depend on prime-mover and excitation controls. With constant mechanical input 

torque, ∆Tm=0; with constant exciter output voltage, ∆Efd =0.  

        The mutual inductances Lads and Laqs in the above equations are saturated values. 

6.2.4 Representation of saturation in small-signal studies 
 

Since we are expressing small-signal performance in terms of perturbed values of flux linkages and 

currents, a distinction has to be made between total saturation and incremental saturation. 

  Total saturation is associated with total values of flux linkages and currents.  

Incremental saturation is associated with perturbed values of flux linkages and currents. Therefore, 

the incremental slope of the saturation curve is used in computing the incremental saturation as 

shown in figure. 

 Denoting the incremental saturation factor Ksd(incr), we have 

                                                      Lads(incr) =  Ksd(incr) Ladu                        (36) 

Based on the definitions of Asat, Bsat and ψT1 it is shown that 

                                Ksd(incr)  =  1/(1+ AsatBsate
Bsat(ψ

at0
-ψ

T1
)
)             (37) 

A similar treatment applies to q-axis saturation. 

For computing the initial values of system variables (denoted by subscript 0) total saturation is used. 
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Fig. 6.4 Distinction between incremental and total saturation 

 

6.2.5 Summary of procedure for formulating the state matrix  

(a) The following steady-state operating conditions, machine parameters and network 

parameters are given: 

 Pt      Qt     Et     RE     XE 

 Ld     Lq     Ll     Ra      Lfd      Rfd        Asat          Bsat        ψT1 

Alternatively EB may be specified instead of Qt or Et. 

(b) The first step is to compute the initial steady-state values of system variables: 

                It,       power factor angle Φ 

                      Total saturation factors Ksd and Ksq 

  Xds = Lds = KsdLadu + Ll 

  Xqs = Lqs = KsqLaqu + Ll 

  δi = tan
-1

((ItXqscosФ – ItRasinФ)/( Et + ItRacosФ – ItXqssinФ)) 

 ed0 = Etsinδi 
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 eq0 = Etcosδi 

 id0 = Itsin(δi+Ф) 

 iq0 = Itcos(δi+Ф) 

 EBd0 = ed0 – REid0+XEiq0 

 EBq0 = eq0 – REiq0+XEid0 

 δ0 = tan
-1

(EBd0/ EBq0) 

 EB = (EBd0
2
 + EBq0

2
)

1/2 

 
 ifd0 = (eq0 + Raiq0 + Ldsido)/Lads 

 Efd0 = Laduifd0 

 Ψad0 = Lads(-id0+ifd0) 

 Ψaq0 = -Laqsiq0 

(c) The next step is to compute incremental saturation factors and the corresponding saturated 

values of Lads, Laqs, L’ads and then 

RT, XTq, XTd, D 

m1,m2, n1,n2 

K1,K2 

(d) Finally, compute the elements of matrix A from equation (35) 

6.3 BLOCK DIAGRAM REPRESENTATION 

Figure 6.5 shows the block diagram representation of the small-signal performance of the system. In 

this representation, the dynamic characteristics of the system are expressed in terms of the so-called 

K constants. The basis for the block diagram and the expressions for the associated constants are 

developed below. 
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Fig. 6.5 Block Diagram Representation of Small-Signal Performance 

From equation 32 we may express the change in air-gap torque as a function of ∆δ and ∆ψfd as 

follows: 

          ∆Te =K1∆δ + K2 ∆ψfd 

Where  

      K1= ∆Te/ ∆δ with constant ψfd  

      K2= ∆Te/ ∆ψfd with constant rotor angle δ 

The expressions for K1 and K2 are given by Equations 33 and 34. 

   The component of torque given by K1∆δ is in phase with ∆δ and hence represents a synchronizing 

torque component. 

   The component of torque resulting from variations in field flux linkage is given by 

 K2∆ψfd. 

  The variation of ψfd is determined by the field circuit dynamic equation: 

p∆ψfd  =a32∆δ +a33∆ψfd +b32∆Efd 

By grouping terms involving ∆ψfd and rearranging, we get  

                ∆ψfd = K3 (∆Efd – K4 ∆δ)/(1 + pT3)                    (38) 
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where 

            K3 = -b32/a33 

            K4 = -a32/b32                                                         (39) 

            T3 = -1/a33 = K3 T’d0Ladu/Lffd 

Equations (38) with s replacing p, accounts for the field circuit block in figure 

6.3.1 Expressions for the K constants in the expanded form:  

We have expressed K constants in terms of the elements of matrix A. In the literature, they are 

usually expressed explicitly in terms of the various system parameters, as summarized below.   

    The constant K1 was expressed in Equation (33) as 

                   K1 = n1 (ψad0+ Laqsid0) – m1 (ψaq0 + L’ads Laqs iq0 ) 

From equation (10), the first term in parentheses in the above expression for K1 may be written as:  

                   ψad0 + Laqs id0  =eq0 + Raiq0 + Xqs id0 = Eq0 (40) 

where Eq0 is the pre disturbance value of the voltage behind Ra + jXq . The second term in 

parentheses in the expression for K1 may be written as 

                  ψaq0 + L’aqs iq0 = -Laqs iq0 + L’ads iq0 

                                                                                                 (41)   

                                         = - (Xq - X’d) iq0 

Substituting for n1, m1 from Equation (27) and for the terms given by Equations (40) and (41) in 

the expression for K1, yields  

K1 = EB Eq0 (RT sinδ0 + XTd cosδ0)/D + EB iq0 (Xq – X’d)( XTq sinδ0 - RT cosδ0)/D  (42) 

Similarly, the expanded form of the expression for the constant K2 is                   

K2 = Lads [RT Eq0/D + ((XTq (Xq – X’d)/D) + 1) iq0]/(Lads + Lfd)                      (43) 

From Equations (6),(27) and (35) we may write 
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a33 = (-ω0 Rfd/Lfd) [1- (Lads/(Lads + Lfd))+ (XTq Lads Lads Lfd/D(Lads + Lfd)(Lads + Lfd))]                            

      = -ω0 Rfd/(Lads + Lfd)[1 + (XTq Lads
2
/D(Lads + Lfd))]                     (44)                      

     
  =

 
-ω0 Rfd/(Lads + Lfd)[1 + XTq(Xd – X’d)/D]             

Substitution of the above in the expression for K3 and T3 given by Equation (39) yields  

K3 = (Lads + Lfd)/ (Ladu(1 + XTq(Xd – X’d)/D))                                (45) 

T3 = (Lads + Lfd)/ (ω0Rfd (1 + XTq(Xd – X’d)/D))                                      (46) 

    = T’d0s/(1 + XTq(Xd – X’d)/D) 

Where T’d0s is the saturated value of T’d0. Similarly, from Equations (6),(27) and (35) we may 

write 

a32 = (-ω0 Rfd EB/D Lfd)( XTq sinδ0 - RT cosδ0) LadsLfd/(Lads + Lfd)  

Substitution of the above in the expression for K4 given by Equation (39) yields  

        K4 = Ladu Lads EB (XTq sinδ0 - RT cosδ0) /(D (Lads + Lfd))   (47)                       

If the effect of saturation is neglected, this simplifies to 

       K4 = EB (Xd – X’d) (XTq sinδ0 - RT cosδ0)/D   (48) 

If the elements of matrix A are available, the K constants may be computed directly from them. The 

expanded forms are derived here to illustrate the form of expressions used in the literature. An 

advantage of these expanded forms is that the dependence of the K constants on the various system 

parameters is more readily apparent. A disadvantage, however, is that some inconsistencies appear 

in representing saturation effects. 

In the literature, E’q = (Lad/ Lffd) ψfd is often used as a state variable instead of ψfd. The effect of this 

is to remove the Lad/( Lad + Lfd) term from the expressions for K2 and K3. The product K2K3 would, 

however remain the same. 
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6.3.2 Effect of field flux linkage variation on system stability  

We see from the block diagram of figure 23452342 that, with constant field voltage (∆Efd =0), the 

field flux variations are caused only by feedback of ∆δ through the coefficient K4. This represents 

the demagnetizing effect of the armature reaction. 

The change in air-gap torque due to field flux variations caused by rotor angle changes is given by 

                      (∆Te/ ∆δ) (due to ∆ψfd) = -K2K3K4/(1+sT3)     (49) 

The constants K2, K3 and K4 are usually positive. The condition of ∆ψfd to synchronizing and 

damping torque components depends on the oscillating frequency as discussed below. 

(a) In the steady state and at very low oscillating frequencies (s = jω→0): 

  ∆Te due to ∆ψfd = -K2K3K4 ∆δ 

The field flux variation due to ∆δ feed back (i.e. , due to armature reaction) introduces a 

negative synchronizing torque component. The system becomes monotonically unstable when 

this exceeds K1∆δ. The steady state stability limit is reached when 

                                       K2K3K4 = K1 

    (b) At oscillating frequencies much higher than 1/T3 

                      ∆Te ≈ -K2K3K4∆δ / jωT3 

 = K2K3K4 j∆δ / ωT3 

Thus, the component of air-gap torque due to ∆ψfd is 90
o 
ahead of ∆δ or in phase with ∆ω . Hence, 

∆ψfd results in a positive damping torque component. 

(b) At typical machine oscillating frequencies of about 1 Hz (2∏ rad/s), ∆ψfd results in a 

positive damping torque component and a negative synchronizing torque component. The 
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net effect is to reduce slightly the synchronizing torque component and increase the damping 

torque component. 

 

      Fig. 6.6 Positive damping torque and negative synchronizing torque due to K2∆ψfd 

 

6.3.3 Special situations with K4 negative 

The coefficient K4 is normally positive. As long as it is positive, the effect of field flux variation 

due to armature reaction (∆ψfd with constant Efd) is to introduce a positive torque component. 

However, there can be situations where K4 is negative. From the expression given by Equation 

58978698, K4 is negative when (XE+XQ) sinδ0 – (Ra+RE) cos δ0 is negative. This is the situation 

when a hydraulic generator without damper windings is operated at light load and is connected by a 

line of relatively high resistance to reactance ratio to a large system 

Also K4 can be negative when a machine is connected to a large local load, supplied partly by the 

generator and partly by the remote large system. Under such conditions, the torques produced by 

induced currents in the field due to armature reaction have components out of phase with ∆ ω, and 

produce negative damping.        
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6.4 Illustration  

The analysis of small-signal stability of the system of the figure 6.7 including the effects of the 

generator field circuit dynamics. The parameters of each of the four generators of the plant in pu on 

its rating are as follows: 

Xd = 1.81         Xq = 1.76          Xd’ = 0.3         Xl=0.16          Ra=0.003         Td0’=8.00          

H=3.5          Kd=0    

 

          Fig. 6.7 A thermal generating station consisting of four 555MVA, 24 kV, 60Hz units 

 

The above parameters are unsaturated values. The effect of saturation is to be represented by 

assuming that d and q axes have similar saturation characteristics with Asat=0.031   Bsat = 6.93    

ΨT1 = 0.8 

The effects of the amortisseurs may be neglected. The exciting system is on manual control 

( constant Efd) and transmission circuit 2 is out of service. 

If the plant output in pu on 2220MVA, 24KV base is P=0.9  Q=0.3(over excited), Et=1.0 

Compute the following: 

(i) The elements of the state matrix A representing the small signal performance of the 

system. 
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(ii) The constants K1 to K4 and T3 associated with the block diagram representation of 

figure. 

(iii) Eigenvalues of A and the corresponding eigen vectors and participation matrix; 

frequency and damping ratio of the oscillatory mode. 

(iv) Steady state synchronizing torque coefficient, damping and synchronizing torque 

coefficients at the rotor oscillating frequency. 

The four units of the plant may be represented by a single generator whose parameters on 

2220MVA base are the same as those of each unit on its rating. The circuit model of the system in 

pu on 2220MVA base is shown in fig.6.8 

 

                                    Fig. 6.8 The Equivalent circuit model of the system 

 

6.5 MATLAB CODE 

 
%-------------------------- INPUTS -------------------------% 

Xd=1.81;        Xq=1.76;      Xl=0.16;    

Ldh=0.3;        Xdh=0.3;      Ra=0.003; 

f0=60;          Td0h=8.0;     H=3.5; 

Kd=0;           Pt=0.9;       RE=0; 

XE=0.65i;       Qt=0.3;       Et=1; 

Asat=0.031;     Bsat=6.93;    SIt1=0.8; 
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%------ COMPUTATION OF INITIAL STEADY STATE VALUES OF THE SYSTEM ------% 

fprintf('\nCOMPUTATION OF INITIAL STEADY STATE VALUES OF THE SYSTEM\n'); 

Ladu=Xd-Xl; 

Laqu=Xq-Xl; 

Ll=Xl; 

Lfd=Ladu*(Ldh-Ll)/(Ladu-Ldh+Ll); 

Rfd=(Ladu+Lfd)/(377*Td0h); 

It=sqrt(power(Pt,2)+power(Qt,2)); 

Phi=acosd(Pt/It*Et); 

Ith=It*(cosd(Phi)-sind(Phi)*i); 

Ea=Et+(Ra+Xl*i)*Ith; 

SIat=abs(Ea); 

SIi=Asat*exp(Bsat*(SIat-SIt1)); 

Ksd=SIat/(SIat+SIi) 

Ksq=Ksd 

Xadu=Ladu; 

Xad=Ksd*Xadu; 

Xd=Xad+Xl; 

Xaqu=Laqu; 

Xaq=Ksq*Xaqu; 

Xq=Xaq+Xl; 

DELi=atand((Xq*It*cosd(Phi)-Ra*It*sind(Phi))/(Et+Ra*It*cosd(Phi)+Xq*It*sind(Phi))) 

ed0=Et*sind(DELi) 
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eq0=Et*cosd(DELi) 

id0=It*sind(DELi+Phi) 

iq0=It*cosd(DELi+Phi) 

EBd0=ed0-RE*id0+abs(XE)*iq0; 

EBq0=eq0-RE*iq0-abs(XE)*id0; 

DEL0=atand(EBd0/EBq0) 

EB=sqrt(power(EBd0,2)+power(EBq0,2)); 

Lds=Ksd*Ladu+Ll; 

Lads=Ksd*Ladu; 

Laqs=Ksq*Laqu; 

ifd0=(eq0+Ra*iq0+Lds*id0)/Lads; 

Efd0=Ladu*ifd0 

Ksdincr=1/(1+(Asat*Bsat*exp(Bsat*(SIat-SIt1)))) 

Ksqincr=Ksdincr 

%---------------- COMPUTATION OF THE VALUES AFTER PERTURBATION ---------% 

fprintf('\nCOMPUTATION OF THE VALUES AFTER PERTURBATION\n'); 

Laqsi=Ksqincr*Laqu 

Ladsi=Ksdincr*Ladu 

XTq=abs(XE)+(Laqsi+Ll) 

Ladsh=1/((1/Ladsi)+(1/Lfd)) 

XTd=abs(XE)+Ladsh+Ll 

RT=Ra+RE 

D=power(RT,2)+(XTq*XTd) 
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m1=EB*(XTq*sind(DEL0)-RT*cos(DEL0))/D 

n1=EB*((RT*sind(DEL0))+(XTd*cosd(DEL0)))/D 

m2=(XTq*Ladsi)/(D*(Ladsi+Lfd)) 

n2=(RT*Ladsi)/(D*(Ladsi+Lfd)) 

SIad0=Lads*(ifd0-id0); 

SIaq0=-Laqs*iq0; 

K1=n1*(SIad0+(Laqsi*id0))-m1*(SIaq0+(Ladsh*iq0)); 

K2=n2*(SIad0+(Laqsi*id0))-m2*(SIaq0+(Ladsh*iq0))+(Ladsh*iq0/Lfd); 

a11=-Kd/2*H; 

a12=-K1/(2*H); 

a13=-K2/(2*H); 

a21=2*pi*f0; 

a32=-(2*pi*f0*Rfd*m1*Ladsh)/Lfd; 

a33=-2*pi*f0*Rfd*(1-(Ladsh/Lfd)+(m2*Ladsh))/Lfd; 

b11=1/(2*pi); 

b32=2*pi*f0*Rfd/Ladu; 

K3=-b32/a33; 

K4=-a32/b32; 

T3=-1/a33; 

A=[a11,a12,a13;a21,0,0;0,a32,a33]; 

[V,D]=eig(A); 

Shi=inv(V); 

for r=1:3 
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    for c=1:3 

        P(r,c)=V(r,c)*Shi(c,r); 

    end 

end 

Ks=K1-K2*K3*K4; 

fprintf('\n Steady-state torque coefficient Ks = %4.3f \n',Ks); 

s=imag(D(1,1))*i; 

Ksrf=K1-abs(((K2*K3*K4)/(1-power(s,2)*power(T3,2)))); 

Kdrf=abs((K2*K3*K4*T3*2*pi*f0)/(1-power(s,2)*power(T3,2))); 

Wn=sqrt((Ksrf*2*pi*f0)/(2*H)); 

Ep=(1/2)*(Kdrf/sqrt(Ksrf*2*H*2*pi*f0)); 

fprintf('\n State matrix A \n'); 

A 

fprintf('\n Constants associated with the block diagram \n'); 

fprintf('\n K1 = %4.3f \n',K1); 

fprintf('\n K2 = %4.3f \n',K2); 

fprintf('\n K3 = %4.3f \n',K3); 

fprintf('\n K4 = %4.3f \n',K4); 

fprintf('\n T3 = %4.3f \n',T3); 

fprintf('\n Eigen values L1= %4.3f , L2=%4.3f , L3=%4.3f \n',D(1,1),D(2,2),D(3,3)); 

fprintf('\n Eigen vectors matrix \n'); 

V 

fprintf('\n Participation matrix \n'); 
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P 

fprintf('\n Steady-state synchronizing torque coefficient Ks = %4.3f \n',Ks); 

fprintf('\n Synchronizing torque coefficient at rotor oscillating frequency Ksrf = %4.3f \n',Ksrf); 

fprintf('\n Damping coefficient at rotor oscillating frequency Kdrf = %4.3f \n',Kdrf); 

fprintf('\n Undamped natural frequency of the oscillatory mode Wn = %4.3f \n',Wn); 

fprintf('\n Damping ratio of the oscillatory mode Ep = %4.3f \n',Ep) 

6.6 RESULTS 

 
COMPUTATION OF INITIAL STEADY STATE VALUES OF THE SYSTEM 

Ksd =0.8491 

Ksq =    0.8491 

DELi =   43.1255 

ed0 =    0.6836 

eq0 =    0.7299 

id0 =    0.8342 

iq0 =    0.4518 

DEL0 =   79.1317 

Efd0 =    2.3947 

Ksdincr =    0.4337 

Ksqincr =    0.4337 

COMPUTATION OF THE VALUES AFTER PERTURBATION 

Laqsi =    0.6940 

Ladsi =    0.7156 

XTq =    1.5040 
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Ladsh =    0.1260 

XTd =    0.9360 

RT =    0.0030 

D =    1.4078 

m1 =    1.0458 

n1 =    0.1268 

m2 =    0.8802 

n2 =    0.0018 

 Steady-state torque coefficient Ks = 0.368  

 State matrix A  

A = 

         0   -0.1094   -0.1236 

  376.9911         0         0 

         0   -0.1942   -0.4229 

 Constants associated with the block diagram  

 K1 = 0.765  

 K2 = 0.865  

 K3 = 0.323  

 K4 = 1.422  

 T3 = 2.365  

 Eigen values L1= -0.110 , L2=-0.110 , L3=-0.204  

 Eigen vectors matrix  

V = 
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  -0.0003 + 0.0170i  -0.0003 - 0.0170i   0.0004           

   0.9994             0.9994            -0.7485           

  -0.0015 + 0.0302i  -0.0015 - 0.0302i   0.6631           

 Participation matrix  

P = 

   0.5005 - 0.0085i   0.5005 + 0.0085i  -0.0011 - 0.0000i 

   0.5005 - 0.0085i   0.5005 + 0.0085i  -0.0011 - 0.0000i 

  -0.0011 + 0.0171i  -0.0011 - 0.0171i   1.0022 + 0.0000i 

 Steady-state synchronizing torque coefficient Ks = 0.368  

 Synchronizing torque coefficient at rotor oscillating frequency Ksrf = 0.764  

 Damping coefficient at rotor oscillating frequency Kdrf = 1.531  

 Undamped natural frequency of the oscillatory mode Wn = 6.413  

 Damping ratio of the oscillatory mode Ep = 0.017 
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TRANSIENT STABILITY ANALYSIS INCLUDING DAMPING 
 

 

 

 

 

 



 86 

7.1 AN ELEMENTARY VIEW OF TRANSIENT STABILITY 

 
Consider the system shown in figure (7.1) consisting of a generator delivering power to a large 

system represented by an infinite bus through transmission circuits. An infinite bus represents a 

voltage source of constant voltage magnitude and constant frequency. 

                                     

                                          Fig. 7.1 Single-machine infinite bus system 

 

Fig 7.2(a) Equivalent circuit 

 

Fig 7.2(b) Reduced equivalent circuit 

 Fig 7.2 System representation with generator represented by classical model  

We will present fundamental concepts and principles of transient stability by analyzing the system 

response to large disturbances, using very simple models. All resistances are neglected. The 

generator is represented by the classical model (fig 7.1) and the speed governor effects are 

neglected. The corresponding system representation is shown in Figure (7.2 a). The voltage behind 

the transient reactance (Xd’) is denoted by E’. The rotor angle δ represents the angle by which E’ 
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leads EB. When the system is perturbed, the magnitude of E’ remains constant at its pre disturbance 

value and δ changes as the generator rotor speed deviates from synchronous speed ω0.  

The system model can be reduced to the form shown in Figure (7.2 b). It can be analyzed by using 

simple analytical methods and is helpful in acquiring a basic understanding of the transient stability 

phenomenon. 

The generator’s electrical output is   

                          

Since we have neglected the stator resistance, Pe represents the air-gap power as well as the terminal 

power. The power angle relationship with both transmission circuits in service (I/S) is shown 

graphically in Figure (7.3) as curve 1. With a mechanical power input of Pm, the steady-state 

electrical power output Pe is equal to Pm, and the operating condition is represented by point a on 

the curve. The corresponding rotor angle is δa.        

 

  Fig.7.3 Power-angle relationship 

If one of the circuits is out of service (O/S), the effective reactance XT is higher. The power-angle 

relationship with circuit 2 out of service is shown in Figure (7.3) as curve 2.The maximum power is 

now lower. With a mechanical power input of Pm, the rotor angle is now δb corresponding to the 

operating point b on curve 2; with a higher reactance, the rotor angle is higher in order to transmit 

the same steady-state power. 
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During a disturbance, the oscillation of δ is superimposed on the synchronous speed ω0, but the 

speed deviation (∆ωr = dδ/dt) is very much smaller than ω0. Therefore, the generator speed is 

practically equal to ω0 and  

the per unit (pu) air-gap torque may be considered to be equal to the pu air-gap power. We will 

therefore use torque and power interchangeably when referring to the swing equation. 

The equation of motion or the swing equation may be written as 

Where 

Pm     = mechanical power input, in pu 

Pmax = maximum electrical power output, in pu 

H     = inertia constant, in elec.rad 

t       = time, in s 

7.2 RESPONSE TO A STEP CHANGE IN Pm 

Let us now examine the transient behavior of the system, with both circuits in service, by 

considering a sudden increase in the mechanical power input from an initial value of Pm0 to Pm1 as 

shown in Figure (7.4). Because of the inertia of the rotor, the rotor angle can not change instantly 

from the initial value of δ0 to δ1 corresponding to the new equilibrium point b at which Pe = Pm1. 

The mechanical power is now in excess of the electrical power. The resulting accelerating torque 

causes the rotor to accelerate from the initial operating point a toward the new equilibrium point b, 

tracing the Pe-δ curve at a rate determined by the swing equation. The difference between Pm1 and 

Pe at any instant represents the accelerating power. 

When point b is reached, the accelerating power is zero, but the rotor speed is higher than the 

synchronous speed ω0 (which corresponds to the frequency of the infinite bus voltage). Hence, the 

rotor angle continues to increase. For values of δ higher than δ1, Pe is greater than Pm1 and the rotor 
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decelerates. At some peak value δm, the rotor speed recovers to the synchronous value ω0, but Pe is 

higher than Pm1. The rotor continues to decelerate with the speed dropping below ω0; the operating 

point retraces the Pe-δ curve from c to b and then to a. The rotor angle oscillates indefinitely about 

the new equilibrium angle δ1 with constant amplitude as shown by the time plot of δ in Figure (7.4 

b). 

In our representation of the power system in the above analysis, we have neglected all resistances 

and the classical model is used to represent the generator. In effect, this neglects all sources of 

damping. Therefore, the rotor oscillates continue unabated following the perturbation. There are 

many sources of positive damping including field flux variations and rotor amortisseur circuits. In a 

system which is small-signal stable, the oscillations damp out. 

 

Fig 7.4(a) Power angle variations 

 

Fig 7.4(b) Rotor angle time response 

Figure 7.4 Response to a step change in mechanical power output 
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7.3 RESPONSE TO A SHORT-CIRCUIT FAULT 

Let us consider the response of the system to a three-phase fault at location F on transmission circuit 

2, as shown in Figure 5(a). The corresponding equivalent circuit, assuming a classical generator 

model, is shown in Figure (5 b). The fault is cleared by opening circuit breakers at both the ends of 

the faulted circuit, the fault clearing time depending upon the relaying time and breaker time. 

If the fault location F is at the sending end (HT bus) of the faulted circuit, no power is transmitted to 

the infinite bus. The short-circuit current from the generator flows through pure reactances to the 

fault. Hence, only reactive power flows and the active power Pe and the corresponding electrical 

torque Te at the air-gap are zero during the fault. If we had included generator stator and transformer 

resistances in our model Pe would have a small value, representing the corresponding resistive 

losses. 

If the fault location F is at some distance away from the sending end as shown in Figures 5(a) and 

(b) some active power is transmitted to the infinite bus while the fault is still on. 

Figures 5(c) and (d) show Pe-δ plots for the network conditions : 

(i) pre fault (both circuits in service) 

(ii) with a three phase fault on circuit 2 at a location some distance from the sending end 

(iii) post fault (circuit 2 out of service) 

7.4 FACTORS INFLUENCING TRANSIENT STABILITY 

 
We conclude that transient stability of the generator is dependent on the following: 

(a) How heavily the generator is loaded 

(b) The generator output during fault. This depends on the fault location and type 

(c) The fault-clearing time 

(d) The post fault transmission system reactance 
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(e) The generator reactance. A lower reactance increases peak power and reduces initial rotor 

angle. 

(f) The generator inertia. The higher the inertia, the slower the rate of change in angle. This 

reduces the kinetic energy gained during fault; i.e., area A1 is reduced. 

(g) The generator internal voltage magnitude (E’). This depends on the field excitation. 

(h) The infinite bus voltage magnitude EB 

As a means of introducing basic concepts, we have considered a system having a simple 

configuration and represented by a simple model. This has enabled the analysis of stability by using 

a graphical approach. Although rotor angle plots as a function of time are shown in Figures 4 and 5, 

we have not actually computed them, and hence the time scales have not been defined for these 

plots. Practical power systems have complex network structures. Accurate analysis of their transient 

stability requires detailed models for generating units and other equipment. At present, the most 

practical available method of transient stability analysis is time-domain simulation in which non-

linear differential equations are solved by using step-by-step numerical integration techniques. 

7.5 NUMERICAL INTEGRATION METHODS 

 
The differential equations to be solved in power system stability analysis are nonlinear ordinary 

differential equations with known initial values: 

                                             

where x is the state vector of n dependent variables and t is the independent variable (time). Our 

objective is to solve x as a function of t, with the initial values of x and t equal to x0 and t0 

respectively. 



 92 

In this section we provide a general description of numerical integration methods applicable to the 

solution of equations of the above form. In describing these methods, without loss of generality, 

we’ll treat above equation as if it were a first order differential equation. 

 
7.5.1 RUNGE-KUTTA (R-K) METHODS 

                   
The R-K methods approximate the Taylor series solution; however, unlike the formal Taylor series 

solution, the R-K methods do not require explicit evaluation of derivatives higher than the first. The 

effects of higher derivatives are included by several evaluations of the first derivative. Depending 

on the number of terms effectively retained in the Taylor series, we have R-K methods of different 

orders. 

7.5.1.1 Second-order R-K method 

Referring to the above differential equation, the second order R-K formula for the value of x at t = t0 

+ ∆t is 

                      x 1 = x 0 +∆ x = x 0 + (k1 + k2)/2 

where 

                      k1 = f(x 0, t0) ∆t 

                      k2 = f(x 0 +  k1, t0 + ∆t ) ∆t 

This method is equivalent to considering first and second derivative terms in the Taylor series; error 

is on the order of  ∆t. 

               A general formula giving the value of x for (n + 1)
st
 step is 

                       xn+1 = xn + (k1 + k2)/2          

where 

                       k1 = f(x n, tn) ∆t 

                      k2 = f(x n +  k1, tn + ∆t) ∆t 
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7.5.1.2 Fourth-order R-K method 

The general formula giving the value of x for the (n + 1)
st
 step is 

                                     xn+1 = xn + (k1 + 2k2 + 2k3 + k4)/6 

         where 

                                      k1 = f(x n, tn) ∆t 

                                     k2 = f(x n +  k1/2, tn + ∆t/2) ∆t 

                             k3 = f(x n +  k2/2, tn + ∆t/2) ∆t 

                            k4 = f(x n +  k3, tn + ∆t) ∆t 

The physical interpretation of the above solution is as follows: 

     k1 = (slope at the beginning of time step) ∆t 

     k2 = (first approximation to slope at midstep) ∆t  

     k3 = (second approximation to slope at midstep) ∆t 

     k4 = ( slope at the end of step) ∆t 

    ∆x =  (k1 + 2k2 + 2k3 + k4)/6 

Thus ∆x is the incremental value of  x given by the weighted average of estimates based on slopes at 

the beginning, midpoint, and end of the time step. 

This method is equivalent to considering up to fourth derivative terms in the Taylor series 

expansion; it has an error on the order of ∆t 
5
  

7.6 Illustration: 

We examine the transient stability of a thermal generating station consisting of four 555 MVA, 24 

KV, 60 Hz units supplying power to an infinite bus through two transmission circuits as shown in 

Figure 7.5.  
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Fig. 7.5 Equivalent circuit of the thermal generating station 

The network reactances shown in the figure are in per unit on 2220 MVA, 24 kV base (referred to 

the LT side of the step-up transformer). Resistances are assumed to be negligible. 

The initial system –operating condition, with quantities expressed in per unit on 2220 MVA and 24 

kV base, is as follows: 

P = 0.9   Q = 0.436 (overexcited)  Et = 1.0∟28.34
◦     

EB = 0.90081∟0           The generators are 

modelled as a single equivalent generator represented by the classical model with the following 

parameters expressed in per unit on 2220 MVA, 24 kV base: 

    Xd’ = 0.3    H = 3.5 MW.s/MVA            KD = 0 

Circuit 2 experiences a solid three-phase fault at point F, and the fault is cleared by isolating the 

faulted circuit. 

     Determine the critical fault clearing time and the critical clearing angle by computing the time 

response of the rotor angle, using numerical integration. 

7.7 SOLUTION 

 
With the generator represented by the classical model, the reduced equivalent circuit representing 

the three system conditions: (i) prefault (ii) during fault (iii) post fault. Also shown in the figure are 

the corresponding expressions for the electrical power output as a function of δ. 
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Fig. 7.6 Equivalent Circuit for prefault, during fault and post fault conditions 

The equations of motion can be written as  

 

7.8 MATLAB CODE 

 
global  Pm f H E V X1 X2 X3 

Pm = 0.9;  E = 1.1626;  V = 0.90081; 

X1 = 0.775; X2 = 0.45; X3 = 0.95; 
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H = 3.5; f = 60; tf = 10.0; Dt = 0.05; 

disp('Parts (a) & (b) are repeated using swingrk4') 

disp('Press Enter to continue') 

pause 

tc = 0.07; 

swingrk2(Pm, E, V, X1, X2, X3, H, f, tc, tf) 

tc = 0.086; 

swingrk2(Pm, E, V, X1, X2, X3, H, f, tc, tf) 

tc = 0.087; 

swingrk2(Pm, E, V, X1, X2, X3, H, f, tc, tf) 

This program solves the swing equation of a one-machine system 

% when subjected to a three-phase fault with subsequent clearance 

% of the fault. 

function swingrk4(Pm, E, V, X1, X2, X3, H, f, tc, tf, Dt) 

%global  Pm f H E V X1 X2 X3 

if exist('Pm') ~= 1 

Pm = input('Generator output power in p.u. Pm = '); else, end 

if exist('E') ~= 1 

E = input('Generator e.m.f. in p.u. E = '); else, end 

if exist('V') ~= 1 

V = input('Infinite bus-bar voltage in p.u. V = '); else, end 

if exist('X1') ~= 1 

X1 = input('Reactance before Fault in p.u. X1 = '); else, end 
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if exist('X2') ~= 1 

X2 = input('Reactance during Fault X2 = '); else, end 

if exist('X3') ~= 1 

X3 = input('Reactance after Fault X3 = '); else, end 

if exist('H') ~= 1 

H  = input('Generator Inertia constant in sec. H = '); else, end 

if exist('f') ~= 1 

f  = input('System frequency in Hz f = '); else, end 

if exist('tc') ~= 1 

tc = input('Clearing time of fault in sec tc = '); else, end 

if exist('tf') ~= 1 

tf = input('Final time for swing equation in sec tf = '); else, end 

Pe1max = E*V/X1; Pe2max=E*V/X2; Pe3max=E*V/X3; 

clear t  x  delta 

d0 =asin(Pm/Pe1max); 

t0 = 0; 

x0 = [d0;  0]; 

%tol=0.001; 

%[t1,xf] =ode23('pfpower', t0, tc, x0, tol);  % During fault solution (use with MATLAB 4) 

tspan = [t0, tc];                             % use wint MATLAB 5 

[t1,xf] =ode23('pfpower', tspan, x0);  % During fault solution (use with MATLAB 5) 

x0c =xf(length(xf), :); 

%[t2,xc] =ode23('afpower', tc, tf, x0c, tol); % After fault solution (use with MATLAB 4) 
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tspan = [tc, tf]; 

[t2,xc] =ode23('afpower', tspan, x0c); % After fault solution (use with MATLAB 5) 

t =[t1; t2]; x = [xf; xc]; 

delta = 180/pi*x(:,1); 

clc 

fprintf('\nFault is cleared at %4.3f Sec. \n', tc) 

fprintf('\n %4.3f   %4.3f  %4.3f', x0,d0, Pe1max) 

head=['                              ' 

      '     time     delta      Dw   ' 

      '      s       degrees    rad/s' 

      '                              ']; 

disp(head) 

disp([t, delta, x(:, 2)]) 

h=figure; figure(h) 

plot(t, delta), grid 

title(['One-machine system swing curve. Fault cleared at ', num2str(tc),'s']) 

xlabel('t, sec'), ylabel('Delta, degree') 

cctime(Pm, E, V, X1, X2, X3, H, f)    % Obtains the critical clearing time 

% This function  Simulates the swing equation of a one-machine system 

% and returns the critical clearing time for stability. 

function  cctime(Pm, E, V, X1, X2, X3, H, f) 

Pe1max = E*V/X1; Pe2max=E*V/X2; Pe3max=E*V/X3; 

d0 =asin(Pm/Pe1max); 
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dmax = pi-asin(Pm/Pe3max); 

cosdc = (Pm*(dmax-d0)+Pe3max*cos(dmax)-Pe2max*cos(d0))/(Pe3max-Pe2max); 

  if abs(cosdc) > 1 

  fprintf('No critical clearing angle could be found.\n') 

  fprintf('System can remain stable during this disturbance.\n\n') 

  return 

  else, end 

dc = acos(cosdc); 

  if dc > dmax 

  fprintf('No critical clearing angle could be found.\n') 

  fprintf('System can remain stable during this disturbance.\n\n') 

  return 

  else, end 

tf = 0.4; 

x0 = [d0; 0]; 

%[t1,xf] = ode23('pfpower', 0, tf, x0, 0.00001);   % use with MATLAB 4 

tspan = [0, tf];                                  % use with MATLAB 5 

options = odeset('RelTol', 0.00001);              % use with MATLAB 5 

[t1,xf] = ode23('pfpower', tspan, x0, options);    % use with MATLAB 5 

kk=find(xf(:,1) <= dc); k=max(kk); 

tt=t1(k); 

while tf <= tt & tf <= 3.6 

tf=tf+.4; 
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   fprintf ('\nSearching with a final time of %3.2f Sec. \n', tf) 

   tol = 0.00001+tf*2.5e-5; 

   %[t1,xf] =ode23('pfpower', 0, tf, x0, tol);     % use with MATLAB 4 

   tspan = [0, tf];                                % use with MATLAB 5 

   options = odeset('RelTol', tol);                % use with MATLAB 5 

   [t1,xf] = ode23('pfpower', tspan, x0, options);  % use with MATLAB 5 

   kk = find(xf(:,1) <= dc); k=max(kk); 

      tt= t1(k); 

end 

%end 

tmargin = t1(k); 

if tf >= 3.6 

  fprintf('\nA clearing time could not be found up to 4 sec. \n\n') 

  return 

  else, end 

fprintf('\nCritical clearing time =  %4.2f seconds \n', tmargin) 

fprintf('Critical clearing angle = %6.2f degrees \n\n', dc*180/pi) 

% State variable representation of the swing equation of 

% the one-machine system during fault. 

function xdot = pfpower(t,x) 

global Pm E V X1 X2 X3 H f 

xdot = [x(2); pi*f/H*(Pm-E*V/X3*sin(x(1)))]; 

%State variable representation of the swing equation of 



 101 

% the one-machine system after fault clearance. 

function xdot = afpower(t,x) 

global Pm f H E  V X1 X2 X3 

xdot = [x(2); pi*f/H*(Pm-E*V/X3*sin(x(1))-0.02)]; 

7.9 RESULTS 

 
Critical clearing time = 0.22 seconds  

Critical clearing angle = 52.23 degrees 

 
Fig. 7.7 One-machine system swing curve Fault cleared at 0.07 second 
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Fig. 7.8 One-machine system swing curve Fault cleared at 0.07 second 

  

 
Fig. 7.9 One-machine system swing curve Fault cleared at 0.07 second 

 

 

 

 

 

 



 103 

7.10 SIMULATION OF POWER SYSTEM DYNAMIC RESPONSE 

 

7.10.1 Structure of the Power System Model 

 
Analysis of transient stability of power systems involves the computation of their nonlinear 

dynamic response to large disturbances, usually a transmission network fault, followed by the 

isolation of the faulted element by protective relaying. 

For transient stability analysis, non-linear system equations are solved. In addition, large 

discontinuities due to faults and network switching and small discontinuities due to limits on system 

variables appear in the system model. Bus voltages, line flows and performance of protection 

systems are of interest in addition to the basic information related to the stability of the system. 

The overall system representation includes models for the following individual components: 

• Synchronous generators and the associated excitation systems and prime movers 

• Interconnecting transmission network including static loads 

• Induction and synchronous motor loads 

• Other devices such as HVDC converters and SVCs 

The model used for each component should be appropriate for transient stability analysis and the 

system equations must be organized in a form suitable for applying numerical methods. 

As we will see in what follows, the complete system model consists of a large set of ordinary 

differential equations and large sparse algebraic equations. The transient stability analysis is thus a 

differential algebraic initial-value problem. 

7.10.2 SYNCHRONOUS MACHINE REPRESENTATION (INCLUDING DAMPING) 

 
To illustrate the implementation of the generator model for transient stability analysis, we assume 

that the generator is represented by a model with one d-axis and two q-axis amortisseurs as shown 
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in figure. However the equations presented here can be readily modified to account for a model with 

an arbitrary number of amortisseurs. 

 

                                        Fig. 7.10 Synchronous machine equivalent circuits 

The following is a summary of the synchronous machine equations as a set of first order differential 

equations, with time t in seconds, rotor angle δ in electrical radians, and all other quantities in per 

unit. 

7.10.2.1 Equations of motion 

                             

Where 

   ω0 = 2Πf0 electrical radian/sec 

  ∆ωr = pu rotor speed deviation 

    P   = derivative operator d/dt 

7.11 Illustration: 

 
We analyze the transient stability of the system considered in the previous example and including a 

more detailed model which would take into consideration the effects of damping at various stages 

which is consolidated and included as a parameter with constant KD in the equation of motion. The 

new system is simulated in Matlab and the resulting transient response is displayed. 
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7.12 MATLAB CODE 

global  Pm f H E V X1 X2 X3 

Pm = 0.9;  E = 1.1626;  V = 0.90081; 

X1 = 0.775; X2 = inf; X3 = 0.95; 

H = 3.5; f = 60; tf = 10.0; Dt = 0.05; 

disp('Parts (a) & (b) are repeated using swingrk4') 

disp('Press Enter to continue') 

pause 

tc = 0.07; 

swingrk2(Pm, E, V, X1, X2, X3, H, f, tc, tf) 

% The function swingrk2 is same as used in the previous example. 

% State variable representation of the swing equation of 

% the one-machine system during fault. 

function xdot = pfpower(t,x) 

global Pm E V X1 X2 X3 H f 

xdot = [x(2); pi*f/H*(Pm-E*V/X3*sin(x(1))-0.02*x(2))]; 

%State variable representation of the swing equation of 

% the one-machine system after fault clearance. 

function xdot = afpower(t,x) 

global Pm f H E  V X1 X2 X3 

xdot = [x(2); pi*f/H*(Pm-E*V/X3*sin(x(1))-0.02*x(2))]; 
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7.13 RESULTS 

 
Fig. 7.11 One-machine system swing curve Fault cleared at 0.07 second 

 

The waveform clearly shows that the effect of damping on the dynamic response of the system. The 

damping factor used is KD=0.02. The oscillations are clearly damped almost completely within a 

few cycles which give a beeter idea about stability. 
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Chapter 8 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CONCLUSION AND REFERENCES 

 

 

 

 



 108 

 

8.1 CONCLUSION 

Thus we see that a two-machine system can be equivalently reduced to a one machine system 

connected to infinite bus bar. In case of a large multi-machine system, to limit the computer 

memory and time requirements, the system is divided into a study subsystem and an external 

subsystem. The study subsystem is modeled in details whereas approximate modeling is carried 

out for the rest of the subsystem. The qualitative conclusions regarding system stability drawn 

from a two-machine or an equivalent one-machine infinite bus system can be easily extended to a 

multi-machine system. 

It can be seen that transient stability is greatly affected by the type and location of a fault so that a 

power system analyst must at the very outset of a stability study decide on these two factors. For 

the case of one-machine system connected to infinite bus it can be seen that an increase in the 

inertia constant M of the machine reduces the angle through which it swings in a given time 

interval offering a method of improving stability. But this can not be employed in practice because 

of economic reasons and for the reason of slowing down of the response of the speed-governor 

loop apart from an excessive rotor weight. 

For a given clearing angle, as the maximum power limit of the various power angles is raised, it 

adds to the transient stability limit of the system. The maximum steady power of a system can be 

increased by raising the voltage profile of a system and by reducing the transfer reactance. 

Thus we see that by considering the effect of rotor circuit dynamics we study the model in greater 

details. We have developed the expressions for the elements of the state matrix as explicit 

functions of system parameters. In addition to the state-space representation, we also use the block 

diagram representation to analyse the system stability characteristics. 
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While this approach is not suited for a detailed study of large systems, it is useful in gaining a 

physical insight into the effects of field circuit dynamics and in establishing the basis for methods 

of enhancing stability through excitation control. 

We have explored a more detailed model for transient stability analysis taking into account the 

effect of damping which is clearly visible from the dynamic response of the system. We have 

included a damping factor in the original swing equation which accounts for the damping taking 

place at various points within the system. 

Our aim should be to improvise methods to increase transient stability. A stage has been reached in 

technology whereby the methods of improving stability have been pushed to their limits. With the 

trend to reduce machine inertias there is a constant need to determine availability, feasibility and 

applicability of new methods for maintaining and improving stability.                                                                           
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