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Abstract

With the explosive growth of the amount of publicly available genomic data, a new

field of computer science i.e., bioinformatics has been emerged, focusing on the use of

computing systems for efficiently deriving, storing, and analyzing the character strings

of genome to help to solve problems in molecular biology. The flood of data from bi-

ology, mainly in the form of DNA, RNA and Protein sequences, puts heavy demand

on computers and computational scientists. At the same time, it demands a transfor-

mation of basic ethos of biological sciences. Hence, Data mining techniques can be

used efficiently to explore hidden pattern underlying in biological data. Un-supervised

classification, also known as Clustering; which is one of the branch of Data Mining can

be applied to biological data and this can result in a better era of rapid medical devel-

opment and drug discovery.

In the past decade, the advent of efficient genome sequencing tools have led to

enormous progress in life sciences. Among the most important innovations, microar-

ray technology allows to quantify the expression for thousand of genes simultaneously.

The characteristic of these data which makes it different from machine-learning/pattern

recognition data includes, a fair amount of random noise, missing values, a dimension

in the range of thousands, and a sample size in few dozens. A particular application of

the microarray technology is in the area of cancer research, where the goal is for precise

and early detection of tumorous cells with high accuracy. The challenge for a biologist

and computer scientist is to provide solution based on terms of automation, quality and

efficiency.

In this thesis, comprehensive studies have been carried out on application of clus-

tering techniques to machine learning data and bioinformatics data. Two sets of dataset

have been considered in this thesis for the simulation study. The first set contains fifteen

datasets with class-labeled information and second set contains three datasets without

class-labeled information. Since the work carried out in this thesis is based on un-

supervised classification (i.e., clustering); class-labeled information was not used while

forming clusters. To validate clustering algorithm, for first set of data (i.e., data with



class-labeled information), clustering accuracy was used as cluster validation metric

while for second set of data (i.e., data without class-labeled information), HS Ratio

was used as cluster validation metric. Considering machine learning data, studies have

been made on Iris data and WBCD (Wisconsin Breast Cancer Data) and for bioinfor-

matics data, studies have been done on microarray data. Varieties of microarray cancer

data have been considered e.g., Breast Cancer, Leukemia Cancer, Lymphoma Cancer

(DLBCL), Lung Cancer, Serum cancer etc. to assess the performance of clustering al-

gorithm.

This thesis explores and evaluates Hard C-means (HCM) and Soft C-means (SCM)

algorithm for machine learning data as well as bioinformatics data. Unlike HCM, SCM

algorithm provides a presence of a gene in more than one cluster at a time with different

degree of membership. Simulation studies have been carried out using datasets having

class labeled information. Comparative studies have been made between results of Hard

C-means and Soft C-means clustering algorithms.

In this thesis, a family of Genetic algorithm (GA) based clustering techniques have

been studied. Problem representation is one of the key decision to be made when apply-

ing a GA to a problem. Problem representation under GA, determines the shape of the

solution space that GA must search. As a result, different encodings of the same prob-

lem are essentially different problems for a GA. Four different type of encoding schemes

for chromosome representation have been studied for supervised/un-supervised classi-

fication. The novelty of the algorithm lies with two factors i.e., 1) proposition of new

encoding schemes and, 2) application of novel fitness function (HS Ratio). Simulation

studies have been carried out using dataset having class labeled information. Extensive

computer simulation shows that GA based clustering algorithm was able to provide the

highest accuracy and generalization of results compared to Non-GA based clustering

Algorithm.

In this thesis, a Brute-Force method was also proposed for clustering. Simulation

studies have been carried out using datasets without class labeled information. Ad-

vantage of the proposed approach is that it is computationally faster compared to con-

ventional HCM clustering algorithm and thus it could be useful for high dimensional



bioinformatics data. Unlike HCM, the proposed Brute-Force clustering algorithm does

not require number of cluster “C” from the user and thus provides automation.

A Simulated Annealing (SA) based preprocessing method was also proposed for

data diversification. Simulation studies have been carried out using dataset without

class labeled information. Extensive simulation on real and artificial data shows that

HCM algorithm with SA based preprocessing performs superior compared to conven-

tional HCM clustering algorithm.

Comprehensive study has also been taken up for cluster validation metrics for sev-

eral clustering algorithms. For gene expression data, clustering results in groups of

co-expressed genes (gene based clustering), groups of samples with a common pheno-

type (sample based clustering), or “blocks” of genes and samples involved in specific

biological processes (subspace clustering). However, different clustering validation pa-

rameter, generally result in different sets of clusters. Therefore, it is important to com-

pare various cluster validation metrics and select the one that fits best with the “true”

data distribution. Cluster validation is the process of assessing the quality and reliabil-

ity of the cluster sets derived from various clustering processes. A comparative study

has been done on three cluster validation metrics namely, HS Ratio, Figure oF Merit

(FOM) and cluster Accuracy for assessing the quality of different clustering algorithm.
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Chapter 1

Introduction

The most important characteristic of the information age is the knowledge discovery

from the huge pool of abundant data. Advances in computer technology, in particular

the Internet, have led to “data explosion”. Of late, the aspect of data availability has been

increased much more than assimilation capacity of any normal human being. According

to a recent study conducted at UC Berkeley, the amount of generated data have grown

exponentially in last one decade [1]. This increase in both the volume and the variety

of data calls for advances in methodology to understand, process, and summarize the

data. From a more technical point of view, understanding the structure of large data sets

arising from the data explosion is of fundamental importance in data mining, pattern

recognition, and machine learning. In this thesis work, focus has been given on data

mining techniques particularly clustering for data analysis in machine learning as well

as in bioinformatics. The characteristic of bioinformatics data which makes it different

from machine-learning data includes, a fair amount of random noise, missing values, a

dimension in the range of thousands, and a sample size in few dozens.

1.1 Data Analysis

The word “data”, as simple as it seems, is not easy to define precisely. In this thesis,

a pattern recognition perspective has been considered for data and it defines the data

as the description of “a set of objects or patterns” that can be processed by a comput-

ing system. The objects are assumed to have some commonalities, so that the same

systematic procedure can be applied to all the objects to generate the description.
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1.1 Data Analysis

1.1.1 Types of Data

Data can be classified into different types. Most often, an object is represented by the

results of measurement of its various properties [2]. A measurement result is called a “

feature” in pattern recognition or “a variable” in statistics. The concatenation of all the

features of a single object forms the feature vector. By arranging the feature vectors of

different objects in different rows, a pattern matrix (also called “data matrix”) of size

“n” by “N” is obtained, where “n” is the total number of objects and “N” is the number

of features. This representation is very popular because it converts different kinds of

objects into a standard representation. If all the features are numerical, an object can be

represented as a point in RN . This enables a number of mathematical tools which can

be used to analyze the objects.

1.1.2 Types of Features

The feature vector representation, descriptions of an object can be classified into differ-

ent types [3]. A feature is essentially a measurement, and the “scale of measurement”

can be used to classify features into different categories. They are:

• Nominal: discrete, unordered. Examples: “apple”, “orange”, and “banana”.

• Ordinal: discrete, ordered. Examples: “conservative”, “moderate”, and “liberal”.

• Interval: continuous, no absolute zero can be negative. Examples: temperature in

Fahrenheit.

• Ratio: continuous, with absolute zero, positive. Examples: length, weight.

• Numerical: continuous, with positive, zero and negative values.

In this thesis, studies have been made on microarray data which are numerical in nature.

1.1.3 Types of Analysis

The analysis to be performed on the data can be classified into different types [4]. It

can be exploratory/descriptive, meaning that the investigator does not have a specific
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goal and only wants to understand the general characteristics or structure of the data.

It can be confirmatory/inferential, meaning that the investigator wants to confirm the

validity of a hypothesis/model or a set of assumptions using the available data. In pat-

tern recognition, most of the data analysis is concerned with predictive modeling: given

some existing data (“training data”), goal is to predict the behavior of the unseen data

(“testing data”). This is often called “machine learning” or simply “learning.” Depend-

ing on the type of feedback one can get in the learning process, three types of learning

techniques have been suggested [2]. In supervised learning, labels on data points are

available to indicate if the prediction is correct or not. In un-supervised learning, such

label information is missing. In reinforcement learning, only the feedback after a se-

quence of actions that can change the possibly unknown state of the system is given.

In the past few years, a hybrid learning scenario between supervised and un-supervised

learning, known as semi-supervised learning, transductive learning [5], or learning with

unlabeled data [6], has been emerged, where only some of the data points have labels.

This scenario happens frequently in bioinformatics applications, since data collection

and feature extraction can often be automated, whereas the labeling of patterns or ob-

jects has to be done manually, but this job is expensive both in time and cost.

In this thesis, work has been carried out on un-supervised classification i.e., Clustering

to investigate the hidden pattern available in machine learning data as well as bioinfor-

matics data.

1.2 Data Mining and Knowledge Discovery

With the enormous amount of data stored in files, databases, and other repositories, it

is increasingly important, to develop powerful means for analysis and perhaps inter-

pretation of such data and for the extraction of interesting knowledge that could help

in decision-making. Data Mining, also popularly known as Knowledge Discovery in

Databases (KDD), refers to as “the nontrivial process of identifying valid, novel, po-

tentially useful and ultimately understandable pattern in data”. While data mining and

knowledge discovery in databases (KDD) are frequently treated as synonyms, data min-

ing is actually part of the knowledge discovery process. Figure 1.1 shows data mining as

a step in an iterative knowledge discovery process. The task of the knowledge discovery
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1.2 Data Mining and Knowledge Discovery

and data mining process is to extract knowledge from data such that the resulting knowl-

edge is useful in a given application. The Knowledge Discovery process in Databases

comprises of a few steps leading from raw data collections to some form of retrieving

new knowledge. The iterative process consists of the following steps:

Figure 1.1: Complete Overview of Knowledge discovery from Databases

• Data cleaning: Also known as data cleansing, it is a phase in which noisy data

and irrelevant data are removed from the collection.

• Data integration: At this stage, multiple data sources, often heterogeneous, may

be combined in a common source.

• Data selection: At this step, the data relevant to the analysis is decided on and

retrieved from the data collection.

• Data mining: It is the crucial step in which clever techniques are applied to extract

data patterns potentially useful.
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• Pattern evaluation: In this step, strictly interesting patterns representing Knowl-

edge is identified based on given measures.

• Knowledge representation: Is the final phase in which the discovered knowledge

is visually represented to the user. This essential step uses visualization tech-

niques to help users understand and interpret the data mining results.

It is common practice to combine some of steps together for specific application. For in-

stance, data cleaning and data integration can be performed together as a pre-processing

phase to generate a data warehouse (1.1). Data selection and data transformation can

also be combined where the consolidation of the data is the result of the selection, or, as

for the case of data warehouses, the selection is done on transformed data. The KDD is

an iterative process. Once the discovered knowledge is presented to the user, the eval-

uation measures can be enhanced, the mining can be further refined, new data can be

selected or further transformed, or new data sources can be integrated, in order to get

different, more appropriate results.

1.3 Data Mining Models

There are several data mining models, some of these are narrated below which are

conceived to be important in the area of “Data Mining” [7], [8].

• Clustering: It segments a large set of data into subsets or clusters. Each cluster is

a collection of data objects that are similar to one another with the same cluster

but dissimilar to object in other clusters [7], [8], [9], [10], [11].

• Classification: Decision trees, also known as classification trees, are a statistical

tool that partitions a set of records into disjunctive classes. The records are given

as tuples with several numerics and categorical attributes with one additional at-

tribute being the class to predict. Decision trees algorithm differs in selection of

variables to split and how they pick the splitting point [7], [8].

• Association Mining: It uncovers interesting correlation patterns among a large set

of data items by showing attribute value conditions that occur together frequently

[7], [8].
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1.6 Objective

1.4 Application of Data mining

Data mining has become an important area of research since last decade. Important

area where Data mining can be effectively applied are as follows: Health sector (Bi-

ology/Bioinformatics), Image Processing(Image segmentation), Ad-Hoc wireless Net-

work(clustering of nodes), Intrusion detection system, Finance sector etc.

In this thesis focus has been given on clustering techniques and their application to

machine learning and bioinformatics data.

1.5 Motivation

A number of clustering methods have been studied in the literature; they are not satis-

factory in terms of: 1) automation, 2) quality, and 3) efficiency.

• With regard to automation, most clustering algorithms request users to input some

parameters needed to conduct the clustering task. For example, Hard C-means

clustering algorithm ( [7], [8], [9], [10], [11] ) requires the user to input the num-

ber of clusters “C” to be generated. However, in real life applications, it is of-

ten difficult to predict the correct value of ‘C’. Hence, an automated clustering

method is required.

• As for quality, an accurate validation method for evaluating the quality of clus-

tering results is lacking. Consequently, it is difficult to provide the user with

information regarding how good each clustering result is.

• As for efficiency, the existing clustering algorithms(e.g., Hard C-means) may not

perform well when the optimal or near-optimal clustering result is required from

the global point of view.

1.6 Objective

Based on the motivation outlined in the previous section, the main objective of the study

is clustering of gene expression data i.e., to group genes based on similar expressions

over all the conditions. That is, genes with similar corresponding vectors should be
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classified into the same cluster. More specifically, the main objectives of the study is as

follows:

• For cluster formation; C-means algorithm (Hard C-means) [7], [8], [9], [10], [11]

to machine intelligence data as well as to various bioinformatics data (Gene ex-

pression microarray cancer data) and to assess the effectiveness of the algorithm

has been studied.

• To apply soft C-means algorithm (or, Fuzzy C-Means, FCM) ([7], [8], [9], [10],

[11] to same data and to explore how its helps in fuzzy partition of the data (i.e.

how it intends to accommodate one gene to two different clusters at same time

with different degree of membership).

• To propose family of Genetic Algorithm based clustering techniques for multi-

variate data. Four different types of encoding schemes for clustering has been

studied.

• Lastly, a Brute-Force incremental approach for clustering and a Simulated An-

nealing (SA) [12] based method for diversification of the data has been proposed.

• To assess the performance of the proposed model; three Clustering Validation

metrics : Clustering accuracy, HS Ratio [13] and Figure of Merit (FOM [13] )

have been considered.

1.7 Organization of the Thesis

The contents of the thesis is organized as follows:

Chapter 2 discusses the background concepts used in the thesis. First, discussion

has been made on bioinformatics and after that application of clustering to gene expres-

sion microarray data.

Chapter 3 provides a brief review of related work on microarray data and clustering

techniques. Emphasis has been given on research work reported in literature in context

to HCM, SCM and Genetic algorithm based clustering algorithm and their application

to pattern recognition data (machine learning data) and gene expression bioinformatics

data.
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Chapter 4 presents comparative study on conventional Hard C-means clustering

algorithm and Soft C-means clustering. In this chapter, initially discussion has been

made on basic steps involved in Hard C-means and Soft C-means clustering algorithm

and then their application to several machine learning data as well as bioinformatics

data.

Chapter 5 presents Family of Genetic algorithm based clustering algorithm. In this

chapter, first, discussion has been made on basic steps involved in GA based clustering.

Next, discussion has been carried out on four novel methods for representing a chromo-

some and HS Ratio ratio as fitness function for evaluation of fitness of a chromosome.

Later discussion has been made on application of GA based clustering algorithm to

machine learning data and bioinformatics data.

Chapter 6 presents an incremental Brute-Force based clustering method and Sim-

ulated Annealing based method for diversification of the data.

Chapter 7 presents comparative studies on several cluster validation matrices for

assessing the goodness of a clustering algorithm.

Chapter 8 presents the conclusion about work done in this thesis.
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Chapter 2

Background Concepts

This chapter discusses background concepts, definitions, and notations on bioinformat-

ics and clustering, that are used throughout the thesis.

2.1 Bioinformatics

Bioinformatics ([13], [14], [15], [16]) is the application of information technology to the

field of molecular biology. The term bioinformatics was coined by Paulien Hogeweg in

1978 for the study of informatics processes in biotic systems. The National Center for

Biotechnology Information (NCBI, 2001) defines bioinformatics as “the field of science

in which biology, computer science, and information technology merges into a single

discipline”. There are three important area in bioinformatics: 1.) the development of

new algorithms and statistics with which to assess relationships among members of

large data sets; 2.) the analysis and interpretation of various types of data including nu-

cleotide and amino acid sequences, protein domains, and protein structures; 3.) and the

development and implementation of tools that enable efficient access and management

of different types of information. The explosive growth in the amount of biological data

demands the use of computing systems for the organization, the maintenance and the

analysis of biological data. The aims of bioinformatics are:

1. The organization of data in such a way that allows researchers to access existing

information and to submit new entries as they are produced.

2. The development of tools that help in the analysis of data.

3. The use of these tools to analyze the individual systems in detail, in order to gain

new biological insights.
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2.1 Bioinformatics

In this thesis, work will be focused on the development of tools that help in the analysis

of data.

2.1.1 Application of Data Mining techniques to Bioinformatics

There are several sub areas in bioinformatics where Data mining can be effectively use

for finding useful information from the biological data [13], [14]. Some of the areas are

described below in brief:

• Data mining in Gene Expression: Gene expression analysis is the use of quan-

titative mRNA-level measurements of gene expression (the process by which a

gene’s coded information is converted into the structural and functional units of a

cell) in order to characterize biological processes and elucidate the mechanisms

of gene transcription [13].

• Data mining in genomics: Genomics is the study of an organism’s genome and

deals with the systematic use of genome information to provide new biological

knowledge ([14]).

• Data Mining in Proteomics: Proteomics is the large-scale study of proteins. Data

mining can be used particularly for prediction of protien’s structures and func-

tions [16].

As far as this thesis is concerned, the main area of focus is application of data mining

techniques to gene expression analysis. In next section, microarray technology has been

described for gene expression data.

2.1.2 Introduction to Microarray Technology

Compared with the traditional approach to genomic research, which is focused on the

local examination and collection of data on single genes, microarray technologies have

now made it possible to monitor the expression levels for tens of thousands of genes

in parallel. The two major types of microarray experiments are the cDNA microarray

and oligonucleotide arrays (abbreviated oligo chip). Despite differences in the details

of their experiment protocols, both types of experiments involve three common basic

procedures ( [13], [14], [15] ) :
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1. Chip manufacture: A microarray is a small chip (made of chemically coated glass,

nylon membrane or silicon), onto which tens of thousands of DNA molecules

(probes) are attached in fixed grids. Each grid cell relates to a DNA sequence.

2. Target preparation, labeling and hybridization: Typically, two mRNA samples (a

test sample and a control sample) are reverse-transcribed into cDNA (targets),

labeled using either fluorescent dyes or radioactive isotopic, and then hybridized

with the probes on the surface of the chip.

3. The scanning process: Chips are scanned to read the signal intensity that is emit-

ted from the labeled and hybridized targets.

Generally, both cDNA microarray and oligo chip experiments measure the expression

level for each DNA sequence by the ratio of signal intensity between the test sample

and the control sample, therefore, data sets resulting from both methods share the same

biological semantics. In this thesis work, unless explicitly stated, gene expression data

generated by both the cDNA microarray and the oligo chip as microarray technology

are similar in nature.

2.1.3 Gene Expression Data

A microarray experiment [15] typically assesses a large number of DNA sequences

(genes, cDNA clones, or expressed sequence tags) under multiple conditions. These

conditions may be a time series during a biological process or a collection of different

tissue samples (e.g., normal versus cancerous tissues). In this thesis work, studies have

been carried out on both time series as well as tissue sample microarray data. A gene

expression data set [13] from a microarray experiment can be represented by a real-

valued expression matrix E =
{

Ei j | 1≤ i≤ n,1≤ j ≤ N
}

as shown in fig. 2.2, where

the row forms the expression patterns of genes, the columns represent the expression

profiles of samples, and each cell is the measured expression level of gene ‘i’ in sample

‘ j’.
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2.2 Clustering

Figure 2.1: Microarray Technology: Overview of gene expression analysis using a
DNA microarray. (Source: P. O. Brown & D. Botstein, Nat. Genet, Vol. 21, No. 1, pp.
33-37, January 1999) .

2.2 Clustering

Clustering [7], [8], [9], [10], [11] is the process of grouping data objects into a set of

disjoint classes, called clusters, so that “objects within the same class have high simi-

larity to each other, while objects in separate classes are more dissimilar”. Clustering

is an example of un-supervised classification. “Classification” refers to a procedure that

assigns data objects to a set of predefined classes. ”Un-supervised” means that clus-

tering does not rely on predefined classes and training examples while classifying the

data objects. Thus, clustering is distinguished from pattern recognition or the areas of

statistics known as discriminate analysis and decision analysis, which seek to find rules

for classifying objects from a given set of pre-classified objects.
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Figure 2.2: Gene Expression Matrix/Intensity Matrix

Figure 2.3: Complete Overview of Gene Expression Analysis
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2.2.1 Formal Definition of Clustering

The clustering problem is defined as the problem of classifying ‘n’ objects into ‘C’

clusters without any apriori knowledge [17]. Let the set of ‘n’ points be represented by

the set ‘S’ and the ‘C’ clusters be represented by V1,V2, . . . ,VC. Then

Vi 6= /0 for i = 1,2, . . . ,C,

Vi
⋂

V j = /0 for i = 1,2, . . . ,C and i 6= j

and ∪C
i=1Vi = S

2.2.2 Categories of Gene Expression Data Clustering

Typically, microarray experiment contains 103 to 104 genes, and this number is expected

to reach the order of 106. However, the number of samples involved in microarray ex-

periment is generally in the order of 102. One of the characteristics of gene expression

data is that it is meaningful to cluster both genes and samples. Clustering gene expres-

sion data can be categorized into three groups [13].

1. Gene based clustering : In this type of clustering genes are treated as the objects,

while samples as the features. The purpose of gene-based clustering is to group

together co-expressed genes which indicate co-function and co-regulation. Ex-

ample of gene-based clustering which have been used in literature are K-means

[18], SOM [19], CLICK [20], DHC [21], CAST [22], agglomerative hierarchical

[23], model-based clustering [24] etc.

2. Sample based clustering: In this type of clustering samples are the objects and

genes are features. Within a gene expression matrix, there are usually particular

macroscopic phenotype of samples related to some diseases or drug effects, such

as diseased samples, normal samples or drug treated samples. The goal of sample

based clustering is to find the phenotype structures or sub-structures of the sam-

ple. Example of sample-based clustering which have been used in literature are

Xing et. al. [25], Ding. et. al. [26], Hastie et.al. [27], Tang et. al. [28], [29] etc.

3. Subspace Clustering: In this type of clustering, job is to find subsets of objects

such that the objects appear as a cluster in a subspace formed by a subset of the
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features. In subspace clustering, the subsets of features for various subspace clus-

ters can be different. Two subspace clusters can share some common objects and

features, and some objects may not belong to any subspace cluster. Example of

subspace clustering which have been used in literature are CTWC [30], Biclus-

tering [31], δ − cluster [32], plaid model [33] etc. .

2.2.3 Proximity measurement for Gene Expression Data

Proximity measurement [13] measures the similarity (or, dissimilarity) between two

data objects. Gene expression data objects, no matter genes or samples, can be for-

malized as numerical vectors Ei = {Ei, j | 1≤ j ≤ N}, where Ei, j is the value of the jth

feature for the ith data object and N is the number of features. The proximity between

two objects Ei and E j is measured by a proximity function of corresponding vectors.

There are several proximity measures available in literature like Euclidean Distance,

Pearson correlation coefficient, Jackknife correlation, spearman’s rank-order correla-

tion coefficient etc. A useful review on proximity measurement can be found reference

[7], [8], [9], [10], [11], [13]. Among these all proximity measures, Euclidean Distance

is the simplest one and easy to implement.

2.2.4 Euclidean Distance

Euclidean Distance is one of the most commonly used methods to measure the distance

between two data objects. The distance between objects Ei and E j in N-dimensional

space is defined as:

Euclidean(Ei,E j) =
√

∑N
k=1

(
Eik−E jk

)2

Euclidean distance does not score well for shifting or scaled patterns (or profiles). To

address this problem, each object vector is standardized with zero mean and variance

one before calculating the distance [7], [8].

In next chapter, discussion has been made on literature work carried out on microarray

data and clustering techniques.
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Chapter 3

Review of Related Work

This chapter provides overview of research carried out on clustering algorithm and their

application to several microarray data reported in literature. This chapter is broadly

divided into two section. First section deals with research work carried out on several

microarray data and section two deals with research carried out on different clustering

algorithm

3.1 Review work carried out on Microarray data

DNA microarrays are high-throughput methods for analyzing complex nucleic acid

samples. It makes possible to measure rapidly, efficiently and accurately the levels of

expression of all genes present in a biological sample. The application of such methods

in diverse experimental conditions generates lots of data. However, the main problem

with these data occurs while analyzing it. Derivation of meaningful biological infor-

mation from raw microarray data is impeded by the complexity and vastness of the

data [34]. To overcome the problem associated with gene expression microarray data

many statistical methods has been proposed in recent past. Some important has been

explained below:

• Eisen, Spellman, Brown and Botstein (1998) [23]: The paper deals with study on

Hierarchical clustering of gene expression data of budding yeast Saccharomyces

cerevisiae and human gene data. The paper claims that clustering of budding

yeast Saccharomyces cerevisiae gene expression data groups together efficiently

genes of known similar function, and similar tendency were also obtained in hu-

man data. Thus patterns seen in genome-wide expression experiments can be
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3.1 Review work carried out on Microarray data

interpreted as indications of the status of cellular processes. Also, co-expression

of genes of known function with poorly characterized or novel genes may pro-

vide a simple means of gaining leads to the functions of many genes for which

information is not available currently.

• Tamayo, Slonim, Mesirov, Zhu, Kitaeewan and Dmitrovsky (1999) [19]: This

paper describes the application of self-organizing maps, a type of mathematical

cluster analysis that is particularly well suited for recognizing and classifying fea-

tures in complex, multidimensional data. The method has been implemented in

a publicly available computer package, GENECLUSTER, that performs the an-

alytical calculations and provides easy data visualization. To illustrate the value

of such analysis, the approach is applied to hematopoietic differentiation in four

well studied models (HL-60, U937, Jurkat, and NB4 cells). Expression patterns

of some 6,000 human genes were assayed, and an online database was created.

GENECLUSTER was used to organize the genes into biologically relevant clus-

ters that suggest novel hypotheses about hematopoietic differentiation. For exam-

ple, highlighting certain genes and pathways involved in ‘differentiation therapy’

used in the treatment of acute promyelocytic leukemia.

• Iyer, Eisen, Ross, Schuler, Moore, Lee, Trent, Hudson, Boguski, Lashkari, Bost-

tein, and Brown (1999) [35]: The paper deals with temporal program of gene

expression during a model physiological response of human cells, the response

of fibroblasts to serum, was explored with a complementary DNA microarray

representing about 8600 different human genes. Genes could be clustered into

groups on the basis of their temporal patterns of expression in this program. Many

features of the transcriptional program appeared to be related to the physiology

of wound repair, suggesting that fibroblasts play a larger and richer role in this

complex multicellular response than had previously been appreciated.

• Chu, Eisen, Mulholland, Botstein, Brown and Herskowitz (1998) [36]: The pa-

per deals with developmental program of sporulation of budding yeast. Diploid

cells of budding yeast produce haploid cells through the developmental program
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3.1 Review work carried out on Microarray data

of sporulation, which consists of meiosis and spore morphogenesis. DNA mi-

croarrays containing nearly every yeast gene were used to assay changes in gene

expression during sporulation. At least seven distinct temporal patterns of induc-

tion were observed. The transcription factor Ndt80 appeared to be important for

induction of a large group of genes at the end of meiotic prophase. Consensus

sequences known or proposed to be responsible for temporal regulation could be

identified solely from analysis of sequences of coordinately expressed genes. The

temporal expression pattern provided clues to potential functions of hundreds of

previously uncharacterized genes, some of which have vertebrate homologs that

may function during gametogenesis.

• Spellman, Sherlock, Iyer, Zhang, Anders, Eisen, Brown and Bostein (1998) [37] :

This paper creates a comprehensive catalog of yeast genes whose transcript levels

vary periodically within the cell cycle. To this end, DNA microarrays have been

used and samples from yeast cultures synchronized by three independent meth-

ods: alpha factor arrest, elutriation, and arrest of a cdc15 temperature-sensitive

mutant. Using periodicity and correlation algorithms, 800 genes were identified

that meet an objective minimum criterion for cell cycle regulation. In separate ex-

periments, designed to examine the effects of inducing either the G1 cyclin Cln3p

or the B-type cyclin Clb2p, It was found that the mRNA levels of more than half

of these 800 genes respond to one or both of these cyclins. Furthermore, anal-

ysis was done on set of cell cycle-regulated genes for known and new promoter

elements and show that several known elements (or variations thereof) contain

information predictive of cell cycle regulation.

• Roth, Estep, and Church (1998) [38] :In this paper Whole-genome mRNA quan-

titation was used to identify the genes that are most responsive to environmental

or genotypic change. By searching for mutually similar DNA elements among

the upstream non-coding DNA sequences of these genes, identification of can-

didate regulatory motifs and corresponding candidate sets of co-regulated genes

can be made. This strategy was tested by applying it to three extensively studied

regulatory systems in the yeast Saccharomyces cerevisiae: galactose response,
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heat shock, and mating type. Galactose-response data yielded the known binding

site of Gal4, and six of nine genes known to be induced by galactose. Heat shock

data yielded the cell-cycle activation motif, which is known to mediate cell-cycle

dependent activation, and a set of genes coding for all four nucleosomal proteins.

Mating type alpha and a data yielded all of the four relevant DNA motifs and

most of the known a and alpha-specific genes.

• Cho R. J., Campbell M. J., Winzeler E. A., Steinmetz L., Conway A., Wodicka

L., Wolfsberg T. G., Gabrielian A. E., Landsman D., Lockhart D. J., Davis R.W.

(1998) [39]: The paper deals with the genome-wide characterization of mRNA

transcript levels during the cell cycle of the budding yeast S. cerevisiae. Cell

cycle-dependent periodicity was found for 416 of the 6220 monitored transcripts.

More than 25 % of the 416 genes were found directly adjacent to other genes

in the genome that displayed induction in the same cell cycle phase, suggesting

a mechanism for local chromosomal organization in global mRNA regulation.

More than 60 % of the characterized genes that displayed mRNA fluctuation have

already been implicated in cell cycle period-specific biological roles. Because

more than 20 % of human proteins display significant homology to yeast pro-

teins, these results also link a range of human genes to cell cycle period-specific

biological functions.

• Bhattacharjee A., Richards WG, Staunton J, Li C, Monti S, Vasa P, Ladd C, Be-

heshti J,Bueno R, Gillette M, Loda M, Weber G, Mark EJ, Lander ES, Wong W,

Johnson BE, Golub TR, Sugarbaker DJ, Meyerson M.(2001) [40]: In this paper

a molecular taxonomy of lung carcinoma has been generated. Using oligonu-

cleotide microarrays, analysis was made on mRNA expression levels correspond-

ing to 12,600 transcript sequences in 186 lung tumor samples, including 139 ade-

nocarcinomas resected from the lung. Hierarchical and probabilistic clustering

of expression data defined distinct subclasses of lung adenocarcinoma. Among

these were tumors with high relative expression of neuroendocrine genes and of

type II pneumocyte genes, respectively. Retrospective analysis revealed a less fa-

vorable outcome for the adenocarcinomas with neuroendocrine gene expression.

19



3.1 Review work carried out on Microarray data

The diagnostic potential of expression profiling is emphasized by its ability to

discriminate primary lung adenocarcinomas from metastases of extra-pulmonary

origin. The results shown in paper suggest that integration of expression profile

data with clinical parameters could aid in diagnosis of lung cancer patients.

• Golub T. R., Slonim D. K. , Tamayo P., Huard C., Gaasenbeek M., Mesirov J.

P., Coller H., Loh M. L. , Downing J. R., Caligiuri M. A., Bloomfield C. D.,

Lander E. S. (1999) [41]: In this paper, a generic approach to cancer classifica-

tion based on gene expression monitoring by DNA microarrays was described

and applied to human acute leukemias as a test case. A class discovery proce-

dure automatically discovered the distinction between acute myeloid leukemia

(AML) and acute lymphoblastic leukemia (ALL) without previous knowledge of

these classes. An automatically derived class predictor was able to determine the

class of new leukemia cases. The results demonstrate the feasibility of cancer

classification based solely on gene expression monitoring and suggest a general

strategy for discovering and predicting cancer classes for other types of cancer,

independent of previous biological knowledge.

• Laura J., Van ’t veer [42]: The paper deals with Breast cancer microarray data.

Breast cancer patients with the same stage of disease can have markedly different

treatment responses and overall outcome. The strongest predictors for metastases

(for example, lymph node status and histological grade) fail to classify accurately

breast tumours according to their clinical behaviour. Chemotherapy or hormonal

therapy reduces the risk of distant metastases by approximately one-third; how-

ever, 70-80 % of patients receiving this treatment would have survived without

it. None of the signatures of breast cancer gene expression reported to date al-

low for patient-tailored therapy strategies. In the paper, DNA microarray analysis

on primary breast tumours of 117 young patients has been carried out, and ap-

plied supervised classification to identify a gene expression signature strongly

predictive of a short interval to distant metastases (‘poor prognosis’ signature) in

patients without tumour cells in local lymph nodes at diagnosis (lymph node neg-

ative). In addition, a signature that identifies tumours of BRCA1 carriers has been
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established. The poor prognosis signature consists of genes regulating cell cycle,

invasion, metastasis and angiogenesis. This gene expression profile outperforms

all currently used clinical parameters in predicting disease outcome.

• West M., Blanchette C., Dressman H., Huang E., Ishida S., Spang R., Zuzan H.,

Olson J. A. Jr., Marks J. R., Nevins J. R. (2001) [43]: In this paper, Bayesian

regression models has been developed that provide predictive capability based

on gene expression data derived from DNA microarray analysis of a series of

primary breast cancer samples. These patterns have the capacity to discriminate

breast tumors on the basis of estrogen receptor status and also on the categorized

lymph node status. Importantly, in the paper assessment was done on the utility

and validity of such models in predicting the status of tumors in cross-validation

determinations. The practical value of such approaches relies on the ability not

only to assess relative probabilities of clinical outcomes for future samples but

also to provide an honest assessment of the uncertainties associated with such

predictive classifications on the basis of the selection of gene subsets for each

validation analysis. This latter point is of critical importance in the ability to

apply these methodologies to clinical assessment of tumor phenotype.

• Shipp M. A., Ross K. N., Tamayo P., Weng A.P., Kutok J. L., Aguiar R. C.,

Gaasenbeek M., Angelo M., Reich M., Pinkus G. S., Ray T. S., Koval M. A.,

Last K. W., Norton A., Lister T. A., Mesirov J.,Neuberg D. S., Lander E. S.,

Aster J. C., Golub T. R. (2002) [44]: Diffuse large B-cell lymphoma (DLBCL),

the most common lymphoid malignancy in adults, is curable in less than 50 %

of patients. Prognostic models based on pre-treatment characteristics, such as the

International Prognostic Index (IPI), are currently used to predict outcome in DL-

BCL. However, clinical outcome models identify neither the molecular basis of

clinical heterogeneity, nor specific therapeutic targets. In this paper analysis has

been done on the expression of 6,817 genes in diagnostic tumor specimens from

DLBCL patients who received cyclophosphamide, adriamycin, vincristine and

prednisone (CHOP)-based chemotherapy, and applied a supervised learning pre-

diction method to identify cured versus fatal or refractory disease. The algorithm
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classified two categories of patients with very different five-year overall survival

rates (70% versus 12%). The model also effectively delineated patients within

specific IPI risk categories who were likely to be cured or to die of their disease.

Genes implicated in DLBCL outcome included some that regulate responses to

B-cell-receptor signaling, critical serine/threonine phosphorylation pathways and

apoptosis. Result shown in paper indicates that supervised learning classifica-

tion techniques can predict outcome in DLBCL and identify rational targets for

intervention.

3.2 Review on Clustering algorithm

Lots of work has been done in clustering in recent past. A useful review on clustering

can be found out from the following referenced paper [7], [8], [9], [10], [13], [34], [45],

[46]. In this section, discussion has been made on various work done in literature on

HCM, SCM and GA based clustering.

3.2.1 Review on Hard C-means Clustering Algorithm

The Hard C-means clustering (HCM) algorithm is one of the best-known squared error-

based clustering algorithm [7], [8], [9], [10]. It is very simple and can be easily im-

plemented in solving many practical problems. It can work very well for compact and

hyper-spherical clusters. The time complexity of Hard C-means is ‘O(n×C×N)’ and

space complexity is ‘O(n +C)’, where ‘n’ is number of data points, ‘N’ is number of

feature and ‘C’ is number of cluster in consideration. Since ‘C’ and ‘N’ are usually

much less than ‘n’, Hard C-means can be used to cluster large data sets in least time.

The HCM algorithm has been extensively applied in several areas [7], [8], [9], [10].

HCM algorithm has been extensively studied in the past for its applicability to pattern

recognition and machine learning data. Application of HCM to Iris data has been re-

ported in paper [47], [48], [49], [46]. The number of wrongly clustered instances in

case of Iris may vary from 14 to 17 [47]. HCM has also been used in recent past in case

of WBCD [46]. Application of HCM clustering algorithm to microarray gene expres-

sion analysis has been also reported in literature [18], [50]. Herwig et. al. developed

a variant of HCM algorithm and applied to cluster a set of 2029 human cDNA clones
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and adopted mutual information as the similarity measure [50]. Tavazoie et al. par-

titioned 3 000 genes into 30 clusters with the HCM algorithm [18]. For each cluster,

600 base pairs upstream sequences of the genes were searched for potential motifs. 18

motifs were found from 12 clusters in their experiments and 7 of them can be veri-

fied according to previous empirical results in the literature. A more comprehensive

investigation can be found in [18]. Application of HCM algorithm to DNA or protein

sequences clustering has been reported in paper [51]. In paper [51], protein or DNA se-

quences were transformed into a new feature space based on the detected sub-patterns

and subsequently clustered with the HCM algorithm [51].

The drawbacks of HCM are also well studied in literature. Some of the major dis-

advantages are as follows:

1. There is no efficient and universal method for identifying the initial partitions in

Hard C-means clustering algorithm. The convergence centroids vary with dif-

ferent initial points and that may results in suboptimal solution. This particular

limitation of Hard C-means clustering algorithm has been extensively studied in

literature such as [11], [52], [53], [54], [55], [56], [57], [58], [59], [60], [61], [62],

[63], [64]. This problem is still an open issue of research.

2. The iteratively optimal procedure of Hard C-means cannot guarantee convergence

to a global optimum. This particular problem was addressed in following pa-

per: [65], [66], [67], [64], [12] The stochastic optimal techniques, like simulated

annealing (SA), tabu search and genetic algorithms can be clubbed with Hard

C-means to find the global optimum [9], [10].

3. Hard C-means algorithm is also sensitive to outliers and noise. Even if an object

is quite far away from the cluster centroid, it is still forced into a cluster and, thus,

distorts the cluster shapes [55], [11], [68].

4. The Hard C-means algorithm is limited to numerical variables [55], [68], [69],

[70].

5. Determining the optimal number of clusters in a set of data is prerequisite to Hard
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C-means clustering algorithm [55], [71], [72], [73], [74], [75], [76], [77], [78],

[79], [80], [81], [82]

3.2.2 Review on Soft C-means based Clustering Algorithm

Soft C-means is a generalization of Hard C-means clustering algorithm. SCM is a

method of clustering which allows a data point to belong to two or more clusters at a

time. This method was developed by Dunn in 1973 [83] and improved by Bezdek in

1981 [84]. It is based on minimization of an objective function called, Mean square

Error (MSE). SCM was frequently used in pattern recognition.

A detailed work on SCM can be found out from the paper [85], [86], [87], [88], [89],

[90], [91], [91], [92], [93].

Several work has been also done on gene expression analysis using SCM [94],[95],

[96], [97], [98], [99], [100], [101].

3.2.3 Review on Genetic Algorithm based Clustering

Clustering can be formally formulated as a NP-hard grouping problem in optimization

perspective [102]. This research finding has stimulated the search for efficient approxi-

mation algorithms, including not only the use of ad-hoc heuristics for particular classes

or instances of problems, but also the use of general-purpose metaheuristics [103]. Par-

ticularly, evolutionary algorithms are metaheuristics widely believed to be effective on

NP-hard problems, being able to provide near-optimal solutions to such problems in

reasonable time. Under this assumption, a large number of evolutionary algorithms

for solving clustering problems have been proposed in the literature [34]. These al-

gorithms are based on the optimization of some objective function (i.e., the so-called

f itness f unction) that guides the evolutionary search. In evolutionary algorithm, Ge-

netic algorithm (GA) becomes natural choice for cluster formation algorithm due to

its wide applicability in wide range of areas. Problem representation is one of the key

decision to be made when applying a GA to a problem. Problem representation in a

GA individual determines the shape of the solution space that a GA must search. As a

result, different encodings of the same problem are essentially different problems for a

GA [104]. The application of GAs for solving problems of pattern recognition appears
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to be appropriate and natural. Research articles in this area have reported in literature

[105], [106], [107], [108], [109], [110], [111], [112], [113], [114]. An application of

GAs has been also reported in the area of (supervised) pattern classification for design-

ing a GA-classifier [107], [115]. GA based Clustering algorithm for machine learning

data was reported in the literature [116], [17], [117], [118].

The paper [17] is specific to pattern recognition data. There are no extensive work

reported in literature for bioinformatics data specially for microarray cancer data using

GA.

3.3 Conclusion

Due to advancement of DNA microarray technology, researchers now have the ability to

collect expression data on every gene in a cell simultaneously. The vast datasets created

with this technology are providing valuable information that can be used to accurately

diagnose, prevent, or cure a wide range of genetic and infectious diseases. Thus, an area

of active research is the development of tools to accurately collect, analyze, and inter-

pret massive quantities of data on gene expression levels in the cell. There are several

examples in the literature where computational tools have been applied to analyze gene

expression data. The summary of these microarray data and tools are given in Table 3.1

( [45]).
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Table 3.1: Summary of work done in Literature on Microarray using classifica-
tion(supervised/unsupervised) Source: [45]
Data Set Description Method

Cho’s Data [39] 6,200 ORFs in S cerevisiae with 15 time points K-Means [18], SOM
[19], CLICK [20], DHC
[21], Biclustering [31],
δ -Cluster [32]

Iyer’s Data [35] 9.800 cDNAs with 12 time points agglomerative hierarchi-
cal [23], [20], DHC [21]

Wen’s Data
[119]

112 rat genes during 9 time points CAST [22]

Combined
yeast Data [36],
[120], [37]

6,178 ORFs in S cerevisiae with 4 time courses agglomerative hierarchi-
cal [23], model-based
[121], Plaidmodel [33]

Colon cancer
data [122]

6,500 human genes in 40 tumor and 22normal
colon tissue samples

divisive hierarchical
[122], model-based [24]

C.elegans data 1,246 genes in 146 experiments CAST [22]

human
hematopoi-
etic data

(1)6,000 genes in HL-60 cell lines with 4 time
points (2)6,000 genes in 4 cell lines (HL-60, U937
and jurkat with 4 time points and NB4 with 5 time
points)

SOM [19]

Leukemia Data
[41]

7,129 genes, 72 Samples (25 AML, 47 All) Some supervised meth-
ods Xing et. al. [25] and
Ding et. al. [26], CTWC
[30]

Lymphoma
Data [123]

4,096 genes, 96 Samples(46 DLBCL, 50 Normal) Some supervised meth-
ods Ding et. al. [26],
Hastie et al. [27], Bi-
clustering [31]

Colon cancer
Data [122]

2,000 genes, 62 Samples Some supervised meth-
ods, CTWC [30]

Hereditary
Breast cancer
Data

3,226 genes, 22 Samples(7
BRCA1,8BRCA2,7Sporadic)

Some supervised meth-
ods

Multiple Sclero-
sis data [124]

4,132 genes, 44 Samples (15 MS, 14 IFN, 15 Con-
trol)

Tang et al. [28], [29]
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Chapter 4

Comparative Study On Hard C-means
and Soft C-means Clustering
Algorithm

Clustering techniques can be broadly divided into two types: Hard and Soft clustering

algorithm. A Hard clustering algorithm allocates each pattern (or, data point) to a single

cluster during its operation and in its output whereas a soft clustering method assigns

degrees of membership in several clusters to each input pattern. A soft clustering can be

converted to a hard clustering by assigning each pattern to the cluster with the largest

measure of membership [10]. In this chapter, study has been carried out on Hard C-

means (HCM) clustering and Soft C-means (SCM) clustering algorithm.

This chapter is broadly divided into four section:

• Experimental Setup to simulate Hard C-means and Soft C-means clustering algo-

rithm

• Hard C-means Clustering Algorithm ([7], [8], [9], [10])

• Soft C-means Clustering Algorithm ([83], [84])

• Comparative studies on HCM Clustering Algorithm and SCM Clustering Algo-

rithm

4.1 Experimental Setup

In this section, details about various datasets used for simulating cluster formation algo-

rithm to solve “gene expression analysis problem” has been given. Two pattern recog-

nition data and thirteen bioinformatics data were taken for simulation study. Study has
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4.1 Experimental Setup

been made on almost all benchmark bioinformatics data reported in last decade in lit-

erature. In order to identify common subtypes (cluster within clusters) in independent

disease data: four different types of breast data (Golub et. al) and four DLBCL (Dif-

fused Large B-cell Lymphoma) data are considered for our study on both gene/sample

data as well as time series microarray data. The short description of the datasets along

with their size, no. of clusters and source of the data has been given in Table 4.1. These

datasets are having both overlapping and non-overlapping class boundaries, where the

number of features/genes ranges from 4 to 7129 and number of sample ranges from 32

to 683. The number of cluster ranges from 2 to 11. Details about these data can be

found out from respective referenced paper. All the data have been pre-processed in

such a way that all the data point which belongs to class 1 in original datasets is kept

together, then all the data points which belong to class 2 is kept together and so on. The

reference vector (class information) of resultant data are given in appendix B. The snap

shots of a dataset (e.g., iris data) is given in appendix A. The details of all the fifteen

datasets are given in subsection below.

4.1.1 Datasets

This section deals with dataset used to simulate proposed clustering algorithm. ‘Two’

machine learning and ‘thirteen’ bioinformatics data have been taken to simulate clus-

tering algorithm to solve “gene expression analysis problem”. Brief introduction about

the data is given below:

Machine Learning Data (Pattern Recognition Data)

1. Iris Data

The Iris data set [125] is a well known and well used benchmark data set used

in the machine learning community. The dataset consists of three varieties of

Iris; Setosa, Virginica and Versicolor. There are ‘150’ instances of plants that

make up the three classes. The data consists of four independent variables. These

variables are measurement of the flowers of the plants such as sepal and petal

lengths. Since the data are labeled, it has been extensively used for classifica-

tion purpose in previous work. For clustering, the labeled information avail-

able to Iris data was not used while forming clusters. The size of the data is
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[150x4].The characteristic of this data is it’s having some overlap between classes

2 and 3. The minimum and maximum feature values in Iris are 0.1 and 7.7. Since

the number of classes in this data is three therefore the value of the ‘C’ cho-

sen to be 3. The original data can be obtained from UCI repository websites:

http://archive.ics.uci.edu/ml/datasets/Iris). The snap shots of iris data is given in

appendix A.

2. Wisconsin Breast Cancer Data (WBCD)

Breast cancer is one of the most common cancers in women and a frequent

cause of death in the 35-55 year age group. The presence of a breast mass is

an alert sign, but it does not always indicate a malignant cancer. Non-invasive

diagnostic test (e.g., Fine needle aspiration of breast masses), that obtains in-

formation needed to evaluate malignancy. The Wisconsin Breast Cancer dataset

was initially created to conduct experiments that were to prove the usefulness

of automation of fine needle aspiration cytological diagnosis. It contains 699

instances of cytological analysis of fine needle aspiration from breast tumors.

Each case comprises 11 attributes: a case ID, cytology data (normalized, with

values in the range ‘1-10’) and a benign/malignant attribute. The number of be-

nign instances is ‘458’ (65.52%) and the number of malignant instances is ‘241’

(34.48%). Sixteen instances of cases (‘14’ benign, ‘2’ malignant) with miss-

ing values has been removed from the dataset for simulation study. The origi-

nal WBCD data [126], [127] can be downloaded from UCI repository websites

(http://archive.ics.uci.edu).

Gene Expression Microarray Data (Bioinformatics Data)

The gene expression datasets and a very short description of their characteristics

are given in Table 4.1. Further biological details about these data sets can be

found in the referenced papers. Most data were processed on the Human Genome

U95 Affymetrix “c” microarrays. The Leukemia dataset is from the previous-

generation Human Genome HU6800 Affymetrix ‘c’ microarray.

3. Iyer data (serum data)

This data set is previously described and has been used in paper [35]. It can
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4.1 Experimental Setup

be downloaded from: http: //www.sciencemag.org/feature/data/984559.shl. It

corresponds to the selection of ‘517’ genes whose expression varies in response

to serum concentration in human fibroblasts and is classified into ‘11’ groups.

4. Cho data (Yeast data)

In this data set [39], [18] the expression pro-files of 6200 yeast genes were mea-

sured every 10 minute during two cell cycles in 17 hybridization experiments.

Tavazoie et. al. [18] used the Yeast data of 2945 genes. He selected the data

after excluding time points 90 and 100 minute from Yeast data. In this thesis,

386 genes from Cho data has been considered for analysis of experimental work

[128]. Total no. of classes for this data is 5.

5. Leukemia (Golub experiment)

The Leukemia dataset belongs to two types of Leukemia cancers [41], [129]:

Acute Myeloid Leukemia (AML) and Acute Lymphoblastic Leukemia (ALL). It

consists of ‘72’ samples of ‘7129’ gene expressions each. The data has ‘47’ sam-

ples belong to ALL cancer class and ‘25’ samples belong to AML cancer class.

Breast data

The microarray breast data used in this paper can be downloaded from

http://www.broad.mit.edu/cgi-bin/cancer/datasets.cgi.

6. Breast data A [42]

This data is of dimension [98x1213] and total number of classes for this data is

three.

7. Breast data B [43]

This data is of dimension [49x1024] and total number of classes for this data is

three.

8. Breast Multi data A [130]

This data is of dimension [103x5565] and total number of classes for this data is

four.
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9. Breast Multi data B [131]

This data is of dimension [32x5565] and total number of classes for this data is

four.

Lymphoma data (Alizadeh et al. Experiment)

This datsets describes systematic characterization of gene expression patterns in

the most prevalent adult Lymphoid malignancies: Diffused Large B Cell Lym-

phoma (DLBCL) [123]. In addition, non-lymphoma (normal) samples are also

involved because of the suspected correlation between them and the three malig-

nances. Within DLBCL class, there are two molecularly distinct forms of DL-

BCL which have gene expression patterns indicative of different stages of B-cell

differentiation (1. Germinal centre B cells (‘GC B-like DLBCL’); 2.‘Activated B-

like DLBCL’). These two subtypes of DLBCL have clinically distinct meanings:

patients with germinal centre B-like DLBCL have a significantly better overall

survival than those with activated B-like DLBCL. The molecular classification of

tumors on the basis of gene expression can thus identify previously undetected

and clinically significant subtypes of cancer. Four subtypes of DLBCL (DLBCL

A, DLBCL B, DLBCL C, DLBCL D) has been used to analyze experimental

work. All these Data can be downloaded from http://www.broad.mit.edu/cgi-

bin/cancer/datasets.cgi.

10. DLBCL A [132]

The size of DLBCL A data is [141 X 661] and number of cluster is three.

11. DLBCL B [133]

The size of DLBCL B data is [180 X 661] and number of cluster is three.

12. DLBCL C [44]

The size of DLBCL C data is [58 X 1772] and number of cluster is four.

13. DLBCL D [132]

The size of DLBCL D data is [129 X 3795] and number of cluster is four.
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14. Lung Cancer [40]

This microarray datasets [40] is of dimension [197x581]. It includes 4 known

classes: 139 adenocarcinomas (AD), 21 squamous cell carcinomas (SQ), 20 car-

cinoids (COID), and 17 normal lung (NL). The AD class is highly heterogeneous,

and substructure is known to exist, although not well understood. The source of

data is: http://www.broad.mit.edu/cgi-bin/cancer/datasets.cgi .

15. St. Jude Leukemia data [134]

This datasets [134] is of diagnostic bone marrow samples from pediatric acute

Leukemia patients corresponding to 6 prognostically important Leukemia sub-

types: 43 T-lineage ALL; 27 E2A-PBX1, 15 BCR-ABL, 79 TEL-AML1, and 20

MLL rearrangements; and 64 ”hyperdiploid ≥ 50” chromosomes. The source of

data is: http://www.broad.mit.edu/cgi-bin/cancer/datasets.cgi .

Table 4.1: Datasets with known ground truth value (i.e. class label information are
known)

Sl.
No.

Datasets Source Dimension Number of
cluster

1 Iris [125] [150x4] 3
2 WBCD [126], [127] [683x9] 2
3 Iyer data/Serum data [35] [517x12] 11
4 Cho data (yeast data) [39] [18] [386x16] 5
5 Leukemia (Golub xperiment) [41], [129] [72x7129] 2
6 Breast data A [42] [98x1213] 3
7 Breast data B [43] [49x1024] 4
8 Breast Multi data A [130] [103x5565] 4
9 Breast Multi data B [131] [32x5565] 4
10 DLBCL A [132] [141x661] 3
11 DLBCL B [133] [180x661] 3
12 DLBCL C [44] [58x1772] 4
13 DLBCL D [132] [129x3795] 4
14 Lung Cancer [40] [197x581] 4
15 St. Jude Leukemia data [134] [248x985] 6

In next section (section 4.2 ), First discussion has been made on basic steps involved

in HCM Clustering Algorithm and then how it can be used for Gene/Sample clustering.

4.2 Hard C-means (HCM) Clustering Algorithm

This section describes HCM clustering algorithm and their application to machine in-

telligence data as well as to bioinformatics data. First, basic steps involved in HCM
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Table 4.2: Hard C-means Clustering Algorithm
Notations:
X: Datasets;
Xi: ith Data point of X;
x: any data point in X;
n : Total Number of data point in X;
N : Dimension of each data;
Vj= jth Cluster;
C : Number of Cluster
v j = jth Cluster Center;
v∗j = jth Cluster Center after updation;
i, j, and p : index variable
Input:
Given datasets X; total number of data is ‘n’; each data is of dimension ‘N’. Therefore dataset
X = {X1,X2, . . . ,Xn} .
Total Number of Cluster is: C.
Output:
V1, V2,...VC.
Objective Function:
J = ∑C

j=1 ∑xi∈V j ‖ xi− v j ‖2 j ∈ 1,2, . . .,C and i = {1,2, . . .,n}.
Hard C-means Clustering Algorithm:
Step 1: Chose “C” initial cluster centers(i.e. Prototype vector) v1,v2, . . .vC either randomly or using
any intelligent techniques from the given ’n’ data points X1,X2, . . . ,Xn.
Step 2: Now compute ‖ Xi− v j ‖ and ‖ Xi− vp ‖ f or p ∈ 1,2, . . .C, but p 6= j.
if ‖ Xi− v j ‖< ‖ Xi− vp ‖ f or p ∈ 1,2, . . .C, but p 6= j where Xi, i = 1,2, ,n;
Then put data X in cluster Vj.
If any ties occurred, then resolved it arbitrarily.
Step 3: Compute new cluster centers {v∗1,v

∗
2, ...,v

∗
c} as follows:

v∗j = 1
|V j | ∑xi∈V j xi , j = 1,2, . . .,C, Where |Vj | = is the number of elements belonging to

cluster Vj.
Step 4: If v∗j = v j ; j = 1,2, . . . ,C ; then terminate. Otherwise repeat from step 2.
Step 5: If the process does not terminate at Step 4 normally, then it is executed for a maximum
“fixed number of iterations”.

clustering algorithm has been explained in details and then experiment are carried out

to assess the performance of HCM clustering algorithm.

The HCM clustering algorithm ([7], [8], [9], [10] ), one of the most widely used

clustering techniques, attempts to solve the clustering problem by optimizing a objec-

tive function J, which is Mean Square Error (MSE) of formed cluster. The objective

function J is given as follows: Minimize(J) = ∑C
j=1 ∑xi∈V j ‖ xi− v j ‖2 j ∈ 1,2, . . .,C

and i = {1,2, . . .,n}.

The basic steps involved in HCM clustering algorithm are briefly described in Table

4.2.
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4.2.1 Result And Discussions

To validate the feasibility and performance of the HCM clustering algorithm, HCM

clustering has been implemented in MATLAB 7.0 (Intel C2D processor, 2.0 GHz,

2 GB RAM) and applied it to Machine learning data as well as to bioinformatics

data. Since the datasets used for simulation studies possess class label information,

clustering accuracy has been used as cluster validation metric to judge quality of the

cluster formation algorithm. Clustering Accuracy is defined as follows:

Clustering Accuracy = (
Number o f Correct Count

Total number o f instances genes/samples
) ∗ 100

. Complete result of Hard C-means clustering for machine learning and bioinformatics

data has been given in appendix C and appendix E. Appendix C contains the details

of data distribution after simulation of HCM clustering algorithm and Appendix E con-

tains the details of data point wrongly clustered in each cluster after simulation of HCM

clustering algorithm. Here in this section, result obtained for HCM clustering algorithm

has been discussed in brief.

Table 4.3 represents summary of result using HCM clustering algorithm for fifteen

datasets. It also consists of some important relevant characteristics, such as number

of classes, number of features/genes and the number of item samples. Out of fifteen

datasets maximum accuracy was reported for WBCD data while least accuracy data

was reported for DLBCL D (Table 4.3). As far as gene expression data is concerned

maximum accuracy was achieved in case of St. Jude Leukemia data (Table 4.3).

Table 4.4 represents the result of Iris data. Overall accuracy has been achieved upto

88.67%. The total count error in this case is 17. It may be noted that 100% accuracy

has been obtained for cluster 1. Similar sort of result for Iris data has been also reported

in literature [47], [48], [49].

Table 4.6 represents the result of Serum data (Iyer data). Accuracy upto 51.84% has

been obtained in this case.

Table 4.5 represents the result of WBCD data. 95.75% accuracy has been achieved in

this case.

Table 4.7 represents the result of Yeast data (Cho data). Overall Accuracy upto 60.88

% has been obtained for this data. It may be noted that cluster 4 is having lowest ac-
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curacy of 12%. The reason for this is that data belonging to this cluster are very much

overlapping in nature with other clusters.

Table 4.8 represents the result of Leukemia data. Over all accuracy upto 59.72% has

been obtained. The Golub et. al.’s microarray data [41], [129] is very challenging be-

cause the appearance of the two types of acute Lseukemia features are highly similar

in nature. This was the reason, accuracy was low in this case. One probable solution

of this problem could be the use of dimensionality reduction techniques to reduce the

number of features and then use HCM clustering algorithm.

Table 4.9 to Table 4.12 represents the result of subtypes of Breast data. Maximum ac-

curacy was obtained for Breast Multi data A (79.61%) whereas the least accuracy for

Breast data B was (53.06%). The reason of the less accuracy could be probably Breast

data B is more overlapping in nature and is having nonlinear structure.

Table 4.13 to Table 4.16 represents the result of subtypes of DLBCL data (Diffused

Large B-cell Lymphoma). DLBCL D is of highly overlapping in nature and that’s why

least accuracy of 42.64% has been obtained in this case. The data of DLBCL B is of

highly distinctively separated in nature compared to other data such as DLBCL (A, C,

D) and that is the reason higher accuracy was obtained in case of DLBCL B.

Table 4.17 represents the result of Lung Cancer. Accuracy upto 72.08% has been ob-

tained. In this, cluster 2 and cluster 4 are highly separable in nature compared to cluster

1 and cluster 3. 95% accuracy was obtained for cluster 2 and cluster 4, whereas least

accuracy was obtained for cluster 3 i.e., 47%.

Table 4.18 represents the result of St. Jude Leukemia data. For this data accuracy upto

85.08% was obtained. The data in this case is of highly separable in nature. 100%

accuracy has been obtained for cluster 2 and least one was obtained for cluster 5.
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Table 4.3: Summary of Results for Hard C-means using all fifteen datasets
Sl.
No.

Datasets Dimension # of
cluster

Hard C-means

# Error Error (%) # correct Accuracy
(%)

1 Iris [150x4] 3 17 11.33 133 88.67
2 WBCD [683x9] 2 29 4.25 654 95.75
3 Iyer data/Serum

data
[517x12] 11 249 48.1624 268 51.84

4 Cho data (yeast
data)

[386x16] 5 151 39.1191 235 60.88

5 Leukemia(Golub
Experiment)

[72x7129] 2 29 40.28 43 59.72

6 Breast data A [98x1213] 3 27 27.55 71 72.44
7 Breast data B [49x1024] 4 23 46.93 26 53.0612
8 Breast Multi data

A
[103x5565] 4 21 20.39 82 79.61

9 Breast Multi data
B

[32x5565] 4 15 48.88 17 53.125

10 DLBCL A [141x661] 3 66 46.8085 75 53.191
11 DLBCL B [180x661] 3 40 22.22 140 77.78
12 DLBCL C [58x1772] 4 28 48.28 30 51.7241
13 DLBCL D [129x3795] 4 74 57.36 55 42.64
14 Lung Cancer [197x581] 4 55 27.92 142 72.0812
15 St. Jude

Leukemia data
[248x985] 6 37 14.91 211 85.08

Table 4.4: Result of Iris Data (Hard C-means)
Cluster 1 Cluster 2 Cluster 3 Total

The right number of data point 50 50 50 150
The number of data point wrongly clustered 0 4 13 17
The number of data point correctly clustered 50 46 37 133
Accuracy (%) 100 92 74 88.67

Table 4.5: Result of WBCD Data (Hard C-means)
Cluster 1 Cluster 2 Total

The right number of data point 444 239 683
The number of data point wrongly clustered 9 20 29
The number of data point correctly clustered 435 219 654
Accuracy (%) 97.97 91.63 95.75

Table 4.6: Result of Serum data (Hard C-means)
Clus
ter1

Clus
ter2

Clus
ter3

Clus
ter4

Clus
ter5

Clus
ter6

Clus
ter7

Clus
ter8

Clus
ter9

Clus
ter10

Clus
ter11

Tot
al

The right
number of
data point

33 100 145 34 43 7 34 14 63 19 25 517

number of
data point
wrongly
clustered

17 84 7 34 31 6 17 1 28 12 12 249

number of
data point
correctly
clustered

16 16 138 0 12 1 17 13 35 7 13 268

Accuracy 48.48 16 95.17 0 27.91 14.29 50 92.86 55.56 36.84 52 51.84
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Figure 4.1: Clustering accuracy of HCM using all fifteen data.

Table 4.7: Result of Cho Data (Hard C-means)
Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5 Total

The right number of data point 67 135 75 54 55 386
The number of data point
wrongly clustered

30 25 28 47 21 151

The number of data point cor-
rectly clustered

37 110 47 7 34 235

Accuracy % 55.22 81.48 62.67 12.96 61.82 60.88

Table 4.8: Result of Leukemia Data/Golub Experiment (Hard C-means)
Cluster 1 Cluster 2 Total

The right number of data point 47 25 72
The number of data point wrongly clustered 15 14 29
The number of data point correctly clustered 32 11 43
Accuracy (%) 68.09 44 59.72

Table 4.9: Result of Breast data A (Hard C-means)
Cluster 1 Cluster 2 Cluster 3 Total

The right number of data point 11 51 36 98
number of data point wrongly clustered 1 22 4 27
number of data point correctly clustered 10 29 32 71
Accuracy(%) 90.91 56.86 88.89 72.44
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Table 4.10: Result of Breast data B (Hard C-means)
Cluster 1 Cluster 2 Cluster 3 Cluster 4 Total

The right number of data point 12 11 7 19 49
Number of data point wrongly
clustered

0 5 5 13 23

Number of data point correctly
clustered

12 6 2 6 26

Accuracy(%) 100 54.54 28.57 31.58 53.06

Table 4.11: Result of Breast Multi data A (Hard C-means)
Cluster 1 Cluster 2 Cluster 3 Cluster 4 Total

The right number of data point 26 26 28 23 103
The number of data point wrongly clus-
tered

2 1 18 0 21

The number of data point correctly clus-
tered

24 25 10 23 82

Accuracy (%) 92.31 96.15 35.71 100 79.61

Table 4.12: Result of Breast Multi data B (Hard C-means)
Cluster 1 Cluster 2 Cluster 3 Cluster 4 Total

The right number of data point 5 9 7 11 32
The number of data point wrongly
clustered

3 2 3 7 15

The number of data point correctly
clustered

2 7 4 4 17

Accuracy (%) 40 77.78 57.14 36.36 53.13

Table 4.13: Result of DLBCL A (Hard C-means)
Cluster 1 Cluster 2 Cluster 3 Total

The right number of data point 49 50 42 141
The number of data point wrongly clus-
tered

26 22 18 66

The number of data point correctly clus-
tered

23 28 24 75

Accuracy (%) 46.94 56 57.14 53.19

Table 4.14: Result of DLBCL B (Hard C-means)
Cluster 1 Cluster 2 Cluster 3 Total

The right number of data point 42 51 87 180
The number of data point wrongly clus-
tered

18 7 15 40

The number of data point correctly clus-
tered

24 44 72 140

Accuracy (%) 57.14 86.27 82.76 77.78
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Table 4.15: Result of DLBCL C (Hard C-means)
Cluster 1 Cluster 2 Cluster 3 Cluster 4 Total

The right number of data point 17 16 13 12 58
The number of data point wrongly
clustered

1 9 12 6 28

The number of data point correctly
clustered

16 7 1 6 30

Accuracy (%) 94.11 43.75 7.69 50 51.72

Table 4.16: Result of DLBCL D (Hard C-means)
Cluster 1 Cluster 2 Cluster 3 Cluster 4 Total

The right number of data point 19 37 24 49 129
The number of data point wrongly
clustered

13 28 13 20 74

The number of data point correctly
clustered

6 9 11 29 55

Accuracy (%) 31.58 24.32 45.83 59.18 42.64

Table 4.17: Result of Lung Cancer (Hard C-means)
Cluster 1 Cluster 2 Cluster 3 Cluster 4 Total

The right number of data point 139 17 21 20 197
The number of data point wrongly
clustered

42 1 11 1 55

The number of data point correctly
clustered

97 16 10 19 142

Accuracy (%) 69.78 94.11 47.62 95 72.08

Table 4.18: Result of St. Jude Leukemia data (Hard C-means)
Clus
ter1

Clus
ter2

Clus
ter3

Clus
ter4

Clus
ter5

Clus
ter6

Total

The right number of data point 15 27 64 20 43 79 248
The number of data point wrongly
clustered

15 0 3 4 14 1 37

The number of data point correctly
clustered

0 27 61 16 29 78 211

Accuracy (%) 0 100 95.31 80 67.44 98.73 85.08

In next section (section 4.3 ), First discussion has been made on basic steps involved

in Soft C-means Algorithm and then how it can be used for Gene/Sample clustering.

4.3 Soft C-means (SCM) Clustering Algorithm

The Soft C-means Algorithm (SCM), which is also known as Fuzzy C-Means algorithm

(FCM) [83], [84], [135], generalizes the Hard C-means algorithm, to allow data points

to partially belonging to multiple clusters at same time. Therefore, it produces a soft
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partition for a given data set. In fact, it generates a constrained soft partition. To achieve

this, the objective function of HCM clustering algorithm has to be extended in two ways:

1. Incorporation of degree of fuzzy membership in clusters {V1,V2, . . . ,VC} and

2. An introduction of fuzziness parameter ‘m’, a weight exponent in the fuzzy mem-

bership.

The extended objective function J (MSE, Mean square error) is defined as follows:

Minimize (J) = ∑C
j=1 ∑xi∈V j(µVj(xi))m‖ xi− v j ‖2 f or j ∈ 1,2,. . .,C and

i = {1,2, . . .,n}.

Where V is a fuzzy partition of the data set X formed by clusters {V1,V2, . . . ,VC}. The

parameter ‘m’ is a weight that determines the degree to which partial members of a

cluster affect the clustering result.

Like HCM clustering algorithm, the SCM clustering algorithm tries to find a good parti-

tion by searching prototypes (i.e., cluster center) v j that minimize the objective function

‘J’. Unlike HCM, however, the SCM algorithm also needs to search for membership

functions µV j that minimizes ‘J’ . To accomplish these two objective, SCM Theorem

has been proposed by Bezdek in 1981 ([84], [135] ), which is given below:

Theorem 1: Soft C-Means Theorem A constrained soft partition {V1,V2, . . . ,VC}
is a local minimum of the objective function ‘J’ only if the following conditions are

satisfied:

µV j(x) =
1[

∑i=C
i=1

(
‖ x− v j ‖2/‖ x− vi ‖2

)(1/m−1)
] for 1≤ i≤C, x ∈ X

v j =
[∑x µV j(x)

(m)(x)]

[ ∑x µV j(x)
(m)]

f or 1≤ j ≤C .

The SCM clustering algorithm can be specified as follows:
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Table 4.19: Soft C-means clustering algorithm

Notations:
X : Datasets ;

Xi: ith Data point

n : Total Number of Data point

N : Dimension of each data
C : Number of Cluster;

Vj= jth Cluster

v j= jth Cluster center

v∗j= jth Cluster center after updation

m : Fuzziness parameter (i.e. weighted exponent of the objective function).

µVj(x): membership of data point x in Cluster Vj.

Ui j : membership of data point i in cluster j.

ε: Threshold value (usually very small) for the convergence criteria.
i, j, and p : index variable

Input:

1. given datasets X; total number of data is n; each data is of dimension ’N’. Therefore dataset
X = {X1,X2, . . .,Xn}.
Toatl Number of Cluster is: C.

Output:

V1,V2, . . .,VC.

Objective Function: Mean Square Error:

Minimize (J) = ∑C
j=1 ∑xi∈V j(µVj(xi))m‖ xi− v j ‖2 f or j ∈ 1,2,. . .,C and i = {1,2, . . .,n}.

SCM clustering Algorithm:

Step 1: Select “C” initial cluster centers randomly V = {v1,v2, ...,vc} and membership matix U.
Step 2: Make U(old)�U.
Step 3: Calculate membership functions as follows:
µVj(x) = 1[

∑i (‖x−v j‖2/‖x−vi‖2)(1/m−1)
] f or 1≤ j ≤C, x ∈ X

Step 4: Update the cluster v j in V .

v∗j = [∑x µV j(x)
(m)(x)]

[ ∑x µV j(x)
(m)]

f or 1≤ j ≤C.

Step 5: Calculate E = ∑‖Uold −U ‖
Step 6: If E > ε ; then go to Step 2.
Step 7: If E ≤ ε; then output the final result.

41



4.3 Soft C-means (SCM) Clustering Algorithm

In the previous algorithm, ‘C’ is the number of clusters to form, ‘m’ is the parameter

of the objective function, and ε is a threshold value (usually very small) for the con-

vergence criteria. The SCM algorithm is guaranteed to converge for m > 1. This

important convergence theorem was established by Bezdek in 1981 [84], [135] . SCM

finds a local minimum of the objective function ‘J’. This is because the SCM theorem

is derived from the condition that the gradient of ‘J’ should be zero for a SCM solu-

tion, which is satisfied by all the local minimums. Finally, it can be concluded that the

result of applying SCM to a given data set depends not only on the choice of the pa-

rameters ‘m’ and ‘C’, but also on the choice of the initial prototypes i.e., initial cluster

distribution.

4.3.1 Discussion on parameter selection in SCM

The proper selection of fuzziness parameter ‘m’ is an important and tough task in SCM

clustering algorithm, which directly affects the performance of algorithm and the va-

lidity of soft cluster analysis. Lots of work on study of the soft exponent ‘m’ has been

reported in literature. The value of ‘m’ should be always greater than 1 for SCM to

be converging for optimal solution [84], [135]. In the literature about SCM, m is com-

monly fixed to 2 [136]. ‘2’ is not an appropriate fuzziness parameter for microarray

data [95]. For ‘m = 2’, for the microarray datasets, it was found that in many of

the cases, SCM failed to extract any clustering structure underlying within data, since

all the membership values became similar. It was shown in paper [95] that when ‘m’

goes to infinity, values of Ui j tends to 1/C. Thus, for a given data set, there is an upper

bound value for ‘m’, above which the membership values resulting from SCM are equal

to 1/C. When higher ‘m’ values are used, the Ui j distribution becomes more spread out.

With a lower value of ‘m’ all genes become strongly associated to only one cluster, and

the clustering is similar to that obtained with HCM. Thus, the selected value for ‘m’

appears to be a good compromise between the need to assign most genes to a given

cluster, and the need to discriminate genes that classify poorly [95].
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4.3.2 Result and Discussions

Parameter used in SCM is given in Table 4.20.

Complete result of Soft C-means clustering for machine learning and bioinformatics

data has been given in appendix D and appendix E. Appendix D contains the details

of data distribution after simulation of SCM clustering algorithm and Appendix E con-

tains the details of data point wrongly clustered in each cluster after simulation of SCM

clustering algorithm. Here in this section, result obtained for SCM clustering algorithm

has been stated in brief.

Table 4.21 represents summary of result of SCM clustering algorithm result for fifteen

datasets (fig. 4.2). It consists some of the relevant characteristics, such as number of

classes, number of features/genes and the number of item samples. These datasets are

having both overlapping and non-overlapping class boundaries, where the number of

features/genes ranges from 4 to 7129 and number of sample ranges from 32 to 683. The

number of cluster ranges from 2 to 11.

Table 4.22 represents the result of Iris data. Overall accuracy was achieved upto 90.67

%. The total count error in this case is 14. It may be noted that 100 % of accuracy was

achieved for cluster 1.

Table 4.23 represents the result of WBCD data. 96.05% accuracy was achieved in this

case.

Table 4.24 represents the result of Serum data (Iyer data). Overall accuracy was achieved

upto 48.74%.

Table 4.25 represents the result of Yeast data (Cho data). Overall accuracy was achieved

upto 63.73%. Note that cluster 3 is having accuracy approx. 36%. The reason for this

is the data belonging to this cluster are very overlapping in nature with other clusters.

Table 4.26 represents the result of Leukemia data. Overall accuracy was achieved upto

55.56%. The Golub et. al.’s microarray data set is very challenging because the appear-

ance of the two types of acute Leukemia features are highly similar in nature. This was

the reason less accuracy was achieved in this case. One probable solution this problem

could be use of dimensionality reduction techniques to reduce the number of features.

Table 4.27 to Table 4.30 represents the result of subtypes of Breast data. Maximum ac-
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curacy was achieved for Breast multi data A (90.29%) whereas the least accuracy was

achieved for Breast multi data B (50%). The reason of this could be probably Breast

data B is more overlapping in nature and is having nonlinear structure.

Table 4.31 to Table 4.34 represents the result of subtypes of DLBCL data (Diffused

Large B-cell Lymphoma). DLBCL D is of highly overlapping nature and that’s why

least accuracy 50.38% was achieved in this case. The data of DLBCL C is of highly

distinctively separated in nature compared to other DLBCL (A, B, D) and that is the

reason higher accuracy was achieved in case of DLBCL C.

Table 4.35 represents the result of Lung Cancer. Overall accuracy was achieved upto

76.14%. In this, cluster 2 and cluster 4 are highly separable in nature compared to

cluster 1 and cluster 3. Highest accuracy was achieved for cluster 4 (95 %) and least

accuracy for cluster 3 (61%).

Table 4.36 represents the result of St. Jude Leukemia data. Overall accuracy was

achieved upto 88.31%. The data in this case is of highly separable in nature. It may be

noted that 100% accuracy was achieved for cluster 6 and least one was for cluster 1.

Fig. 4.3 to fig. 4.17 shows convergence graph of Soft C-means clustering algorithm

for all fifteen datasets. Here the X-axis represents number of iteration carried out while

Y-axis represents threshold value E.

Table 4.20: Parameters used in SCM
Sl.
No.

Datasets mfuz (m) Maximum Iteration no. taken for
convergence

1 Iris 4.2 1000
2 WBCD 1.58 20
3 Iyer data/Serum data 1.92 336
4 Cho data (yeast data) 2.15 241
5 Leukemia (Golub Experiment) 1.28 1000
6 Breast data A 1.6 311
7 Breast data B 1.15 194
8 Breast Multi data A 1.3 71
9 Breast Multi data B 1.795 576
10 DLBCL A 1.40 138
11 DLBCL B 1.285 419
12 DLBCL C 1.345 114
13 DLBCL D 1.25 423
14 Lung Cancer 1.07 65
15 St. Jude Leukemia data 1.26 165
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Figure 4.2: Clustering accuracy of SCM for pattern recognition as well as microarray
data.

Table 4.21: Summary of Results for Soft C-means using all fifteen datasets
Datasets Dimen sion # clus-

ter
SCM

mfuz
(m)

Iterat
ion no
.

#
Error

Error
(%)

# cor-
rect

Accur
acy(%)

Iris [150x4] 3 4.2 1000 14 9.33 136 90.67
WBCD [683x9] 2 1.58 20 29 3.95 656 96.05
Iyer data/Serum
data

[517x12] 11 1.92 336 265 51.26 252 48.74

Cho data (yeast
data)

[386x16] 5 2.15 241 140 36.27 246 63.73

Leukemia (Golub
Experiment)

[72x7129] 2 1.28 1000 32 44.44 40 55.56

Breast data A [98x1213] 3 1.6 311 12 12.25 86 87.75
Breast data B [49x1024] 4 1.15 194 17 34.7 32 65.30
Breast Multi data
A

[103x5565] 4 1.3 71 10 9.71 93 90.29

Breast Multi data
B

[32x5565] 4 1.795 576 16 50 16 50

DLBCL A [141x661] 3 1.40 138 58 41.14 83 58.86
DLBCL B [180x661] 3 1.285 419 44 24.44 136 75.56
DLBCL C [58x1772] 4 1.345 114 14 24.14 44 75.86
DLBCL D [129x3795] 4 1.25 423 64 49.62 65 50.38
Lung Cancer [197x581] 4 1.07 65 47 23.86 150 76.14
St. Jude Leukemia
data

[248x985] 6 1.26 165 29 11.69 219 88.31
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Table 4.22: Result of Iris Data (Soft C-means)
mfuz= 4.2; it=1000

Cluster 1 Cluster 2 Cluster 3 Total
The right number of data point 50 50 50 150
number of data point wrongly clustered 0 3 11 14
number of data point correctly clustered 50 47 39 136
Accuracy(%) 100 94 88 90.67

Table 4.23: Result of WBCD Data (Soft C-means)
mfuz= 1.58; it=20

Cluster 1 Cluster 2 Total

The right number of data point 444 239 683
number of data point wrongly clustered 09 20 29
number of data point correctly clustered 435 219 654
Accuracy(%) 97.97 91.63 95.75

Table 4.24: Result of Serum data /Iyer data (Soft C-means)
mfuz= 1.92; it=336

Clus
ter1

Clus
ter2

Clus
ter3

Clus
ter4

Clus
ter5

Clus
ter6

Clus
ter7

Clus
ter8

Clus
ter9

Clus
ter10

Clus
ter11

Total

The right
number of
data point

33 100 145 34 43 7 34 14 63 19 25 517

number of
data point
wrongly
clustered

28 6 69 33 24 7 17 14 41 17 17 265

number
of data
point
correctly
clustered

5 94 84 1 19 0 17 0 22 2 8 252

Accur acy
(%)

15.15 94 57.93 2.94 44.19 0 50 0 34.92 10.53 32 48.74

Table 4.25: Result of Cho Data (Soft C-means)
mfuz= 2.15; it=241

Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5 Total

The right number of data
point

67 135 75 54 55 386

number of data point
wrongly clustered

15 55 48 15 8 141

number of data point
correctly clustered

52 80 27 39 47 245

Accuracy
(%)

77.62 59.3 36 72.22 85.45 63.47

Table 4.26: Result of Leukemia Data/Golub Experiment (Soft C-means)
mfuz= 1.28; it=1000

Cluster 1 Cluster 2 Total

The right number of data point 47 25 72
Number of data point wrongly clustered 18 14 32
Number of data point correctly clustered 29 11 40
Accuracy(%) 61.702 44 55.56
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Table 4.27: Result of Breast data A (Soft C-means)
mfuz= 1.6; it=311

Cluster 1 Cluster 2 Cluster 3 Total

The right number of data point 11 51 36 98
number of data point wrongly clustered 11 0 1 12
number of data point correctly clustered 0 51 35 86

Accuracy(%) 0 100 97.22 87.76

Table 4.28: Result of Breast data B (Soft C-means)
mfuz= 1.15; it=1.15

Cluster 1 Cluster 2 Cluster 3 Cluster 4 Total

The right number of data point 12 11 7 19 49
number of data point wrongly clus-
tered

0 5 0 12 17

number of data point correctly clus-
tered

12 6 7 7 32

Accuracy
(%)

100 54.54 100 36.84 65.31

Table 4.29: Result of Breast Multi data A (Soft C-means)
mfuz= 1.3; it=71

Cluster 1 Cluster 2 Cluster 3 Cluster 4 Total

The right number of data point 26 26 28 23 103
number of data point wrongly clus-
tered

5 1 2 2 10

number of data point correctly clus-
tered

21 25 26 21 93

Accuracy
(%)

80.77 96.15 92.85 91.3 90.291

Table 4.30: Result of Breast Multi data B (Soft C-means)
mfuz=
1.795; it=576

Cluster 1 Cluster 2 Cluster 3 Cluster 4 Total

The right number of data point 5 9 7 11 32
number of data point wrongly clus-
tered

3 3 4 6 16

number of data point correctly clus-
tered

2 6 3 5 16

Accuracy (%) 40 66.67 42.86 45.45 50

Table 4.31: Result of DLBCL A (Soft C-means)
mfuz= 1.405; it=138

Cluster 1 Cluster 2 Cluster 3 Total
The right number of data point 49 50 42 141
number of data point wrongly
clustered

18 23 17 58

number of data point correctly
clustered

31 27 25 83

Accuracy (%) 63.27 54 59.52 58.87
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Table 4.32: Result of DLBCL B (Soft C-means)
mfuz= 1.285; it=419

Cluster 1 Cluster 2 Cluster 3 Total

The right number of data point 42 51 87 180
number of data point wrongly clus-
tered

13 16 15 44

number of data point correctly clus-
tered

29 35 72 136

Accuracy
(%)

69.05 68.63 89.66 75.56

Table 4.33: Result of DLBCL C (Soft C-means)
mfuz= 1.345; it=116

Cluster 1 Cluster 2 Cluster 3 Cluster 4 Total
The right number of data point 17 16 13 12 58
number of data point wrongly
clustered

4 6 7 9 26

number of data point correctly
clustered

13 10 6 3 32

Accuracy(%) 76.47 62.5 46.15 25 55.17

Table 4.34: Result of DLBCL D (Soft C-means)
mfuz= 1.33; it=423

Cluster 1 Cluster 2 Cluster 3 Cluster 4 Total

The right number of data point 19 37 24 49 129
number of data point wrongly clus-
tered

8 19 10 27 64

number of data point correctly clus-
tered

11 18 14 22 65

Accuracy (%) 57.9 48.65 58.33 44.89 50.39

Table 4.35: Result of Lung Cancer (Soft C-means)
mfuz= 1.07; it=65

Cluster 1 Cluster 2 Cluster 3 Cluster 4 Total

The right number of data
point

139 17 21 20 197

number of data point wrongly
clustered

36 2 8 1 47

number of data point cor-
rectly clustered

103 15 13 19 150

Accuracy (%) 74.1 88.24 61.9 95 76.14

Table 4.36: Result of St. Jude Leukemia data (Soft C-means)
mfuz= 1.26; it=165

Clus ter1 Clus ter2 Clus ter3 Clus ter4 Clus ter5 Clus ter6 Total

The right number of data
point

15 27 64 20 43 79 248

number of data point wrongly
clustered

15 0 3 4 7 0 29

number of data point cor-
rectly clustered

0 27 61 16 36 79 219

Accuracy
(%)

0 100 95.31 80 83.72 100 88.31
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Figure 4.3: SCM Convergence graph for Iris data. X-axis: Number of iteration and
Y-axis: Threshold value E

Figure 4.4: SCM Convergence graph for WBCD data. X-axis: Number of iteration and
Y-axis: Threshold value E

Figure 4.5: Convergence graph for Iyer data. X-axis: Number of iteration and Y-axis:
Threshold value E
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Figure 4.6: Convergence graph for Cho data. X-axis: Number of iteration and Y-axis:
Threshold value E

Figure 4.7: Convergence graph for Leukemia data. X-axis: Number of iteration and
Y-axis: Threshold value E

Figure 4.8: Convergence graph for Breast data A. X-axis: Number of iteration and
Y-axis: Threshold value E
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Figure 4.9: Convergence graph for Breast data B. X-axis: Number of iteration and
Y-axis: Threshold value E

Figure 4.10: Convergence graph for Breast Multi data A. X-axis: Number of iteration
and Y-axis: Threshold value E

Figure 4.11: Convergence graph for Breast Multi data B. X-axis: Number of iteration
and Y-axis: Threshold value E
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Figure 4.12: Convergence graph for DLBCL A. X-axis: Number of iteration and Y-axis:
Threshold value E

Figure 4.13: Convergence graph for DLBCL B. X-axis: Number of iteration and Y-axis:
Threshold value E

Figure 4.14: Convergence graph for DLBCL C. X-axis: Number of iteration and Y-axis:
Threshold value E
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Figure 4.15: Convergence graph for DLBCL D. X-axis: Number of iteration and Y-axis:
Threshold value E

Figure 4.16: Convergence graph for Lung Cancer data. X-axis: Number of iteration
and Y-axis: Threshold value E

Figure 4.17: Convergence graph for St.Jude Leukemia data. X-axis: Number of itera-
tion and Y-axis: Threshold value E
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4.4 Comparative studies on Hard C-means and Soft C-
means clustering Algorithm

This section deals with comparative studies on Hard C-means and Soft C-means Clus-

tering algorithm. All the fifteen datasets described in section 4.1.1 has been considered

to compare performances of Hard C-means and Soft C-means clustering algorithm.

Table 4.38 shows the result obtained by HCM and SCM clustering algorithm for Iris

data. The total count error in case of HCM clustering algorithm was 17 whereas in case

of SCM, it was 14. The similar result was also reported in literature [46]. Percentage

increase in accuracy for SCM is by 2 %. It may be noted that accuracy of 100 % was

achieved for cluster 1 in HCM as well as in case of SCM. Percentage accuracy is in-

crease by 14 % for cluster 3 in case of SCM.

Table 4.39 shows the result for WBCD data. Percentage increase in accuracy for SCM

is by 0.30% for WBCD. Total count error in case of HCM is 29, whereas in case of

SCM, it is reduced to 27.

Table 4.40 shows the result obtained by HCM and SCM for Serum data (Iyer data). The

data point of one clusters are overlapping with other clusters. This is the reason very

less accuracy was achieved for this datasets. Number of data point correctly clustered

for this datasets is 268 for HCM and 252 for SCM. The optimal value of m was chosen

as 1.92.

Table 4.41 contains the result for Cho data. Percentage accuracy in case of HCM is

60.88 % whereas in case of SCM, it is 63.47 %. Note that percentage accuracy for clus-

ter 4 is increased by 59.26% (i.e., 72.22 - 12.96), whereas for cluster 3 it is decreased

by 26.67%(i.e., 62.67 - 36).

Table 4.42 consists the result for Leukemia data (Golub’s data). Accuracy of 59.72 %

was achieved in case of HCM and 55.56% in case of SCM. It may be noted that cluster

2 is having equal accuracy (44%) in case of HCM as well as in case of SCM. The Golub

et. al.’s microarray datasets is very challenging because the appearance of the two types

of acute Leukemia is highly similar in nature. This was the reason much better accuracy

was not achieved in this case. One probable solution to deal with this problem could

be use dimensionality reduction techniques to reduce the number of features and then
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subsequently use of SCM clustering algorithm.

Table 4.43 to Table 4.46 consists the result for subtypes of Breast data. As far as Breast

data A is concerned, Number of correctly clustered data point has been raised to 86

(SCM) from 71 (HCM) and therefore percentage accuracy increased by 15.31 %. It may

be noted that in case of SCM, accuracy of 100 % was achieved for cluster 2 whereas

for cluster 1 number of correctly classified data point is zero. In case of Breast data B,

percentage accuracy has been increased by 15.32 (i.e., 87.76-72.44)%. It may be noted

that 100% of accuracy was achieved for cluster 1 and cluster 3 in case of SCM (Breast

data B). In case of Breast multi data A, percentage accuracy is increased by 10.68. It is

important to note that cluster 3 achieve 35.71% accuracy in case of Breast multi data B

whereas in case of SCM it achieved accuracy upto 92.85%.

Table 4.47 to Table 4.50 consists of the result for subtypes of DLBCL Data. As far as

DLBCL A is concerned, increase in accuracy in case of SCM is by 5.67 %. Note that

HCM performs better in case of DLBCL B data. Number of data point correctly clus-

tered in case of HCM is 140 whereas 136 in case of SCM. SCM gives optimal accuracy

when m is 1.285. As far as DLBCL C and DLBCL D are concerned SCM performs

better compared to HCM algorithm on the basis of accuracy parameter. The data of

DLBCL B is of highly distinctively separated in nature compared to other DLBCL (A,

C, D) and that is the reason higher accuracy was achieved in case of DLBCL B. The

reason for inferior performance of SCM compared to HCM for DLBCL B could be

solved by finding a better m value.

Table 4.51 shows the result obtained by HCM and SCM for Lung Cancer data. Overall

accuracy has been raised by 4 % in case of SCM compared to HCM clustering algo-

rithm. It may be observed that accuracy of cluster 3 is 47.62% whereas in case of SCM

it has been raised upto 61.9 %.

Table 4.52 shows the result obtained by HCM and SCM for St. Jude Leukemia data.

The data in this case is of highly separable in nature. As far as HCM is concerned 100

percent accuracy was achieved for cluster 2 whereas in case of SCM 100 % accuracy

was achieved for cluster 2 as well as cluster 6. It may be noted that the least accuracy

was achieved for cluster 5 in HCM as well as in SCM. SCM obtained 16.28 (i,e., 83.72-
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67.44) % more accuracy compared to HCM algorithm for Cluster 5.

Table 4.37: Comparative study of HCM and SCM using all fifteen data
Sl.
No.

Datasets #
clus-
ter

Hard C-means SCM

#
Er-
ror

Error(%) #
cor-
rect

Accuracy
(%)

mfuz #
Er-
ror

Error
(%)

#
cor-
rect

Accuracy
(%)

% In-
crease
In accu-
racy

1 Iris 3 17 11.33 133 88.67 4.2 14 9.33 136 90.67 2
2 WBCD 2 29 4.25 654 97.75 1.58 27 3.95 656 96.04 .3
3 Iyer data/Serum

data
11 249 48.1624 268 51.84 1.92 265 51.26 252 48.74 -3.1

4 Cho data (yeast
data)

5 151 39.1191 235 60.88 2.15 140 36.27 246 63.73 2.85

5 Leukemia
(Golub Experi-
ment)

2 29 40.28 43 59.72 1.28 32 44.44 40 55.56 -4.16

6 Breast data A 3 27 27.55 71 72.44 1.6 12 12.25 86 87.75 15.31
7 Breast data B 4 23 46.93 26 53.06 1.15 17 34.7 32 65.30 12.24
8 Breast Multi

data A
4 21 20.39 82 79.61 1.3 10 9.71 93 90.29 10.68

9 Breast Multi
data B

4 15 48.88 17 53.125 1.795 16 50 16 50 -3.125

10 DLBCL A 3 66 46.8085 75 53.191 1.40 58 41.14 83 58.86 5.669
11 DLBCL B 3 40 22.22 140 77.78 1.285 44 24.44 136 75.56 -2.22
12 DLBCL C 4 28 48.28 30 51.7241 1.345 14 24.14 44 75.86 24.14
13 DLBCL D 4 74 57.36 55 42.64 1.25 64 49.62 65 50.38 7.74
14 Lung Cancer 4 55 27.92 142 72.0812 1.07 47 23.86 150 76.14 4.06
15 St. Jude

Leukemia data
6 37 14.91 211 85.08 1.26 29 11.69 219 88.31 3.23

Table 4.38: Comparative study on HCM and SCM for Iris
# data
point

# data point
wrongly clus-
tered

# data point
correctly clus-
tered

Accuracy(%)

HCM Cluster1 50 0 50 100
Cluster2 50 4 46 92
Cluster3 50 13 37 74
Total 150 17 133 88.67

SCM Cluster1 50 0 50 100
Cluster2 50 3 47 94
Cluster3 50 11 39 88
Total 150 14 136 90.67

Table 4.39: Comparative study on HCM and SCM for WBCD
# data
point

# data point
wrongly clus-
tered

# data point
correctly clus-
tered

Accuracy(%)

HCM Cluster1 444 142 302 68.01
Cluster2 239 112 127 53.14
Total 683 254 429 62.81

SCM Cluster1 444 09 435 97.97
Cluster2 239 20 219 91.63
Total 683 29 654 95.75
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Table 4.40: Comparative study of HCM and SCM using Serum Data (Iyer Data)
# data
point

# data point
wrongly clus-
tered

# data point cor-
rectly clustered

Accuracy(%)

HCM Cluster1 33 17 16 48.48
Cluster2 100 84 16 16
Cluster3 145 7 138 95.17
Cluster4 34 34 0 0
Cluster5 43 31 12 27.91
Cluster6 7 6 1 14.29
Cluster7 34 17 17 50
Cluster8 14 1 13 92.86
Cluster9 63 28 35 55.56
Cluster10 19 12 7 36.84
Cluster11 25 12 13 52
Total 517 249 268 51.84

SCM Cluster1 33 28 5 15.15

Cluster2 100 6 94 94
Cluster3 145 69 84 57.93
Cluster4 34 33 1 2.94
Cluster5 43 24 19 44.19
Cluster6 7 7 0 0
Cluster7 34 17 17 50
Cluster8 14 14 0 0
Cluster9 63 41 22 34.92
Cluster10 19 17 2 10.53
Cluster11 25 17 8 32
Total 517 265 252 48.74

Table 4.41: Comparative study on HCM and SCM for Cho Data)
# data
point

# data point
wrongly clus-
tered

# data point
correctly clus-
tered

Accuracy(%)

HCM Cluster1 67 30 37 55.22
Cluster2 135 25 110 81.48
Cluster3 75 28 47 62.67
Cluster4 54 47 7 12.96
Cluster5 55 21 34 61.82
Total 386 151 235 60.88

SCM Cluster1 67 15 52 77.62
Cluster2 135 55 80 59.3
Cluster3 75 48 27 36
Cluster4 54 15 39 72.22
Cluster5 55 8 47 85.45
Total 386 141 245 63.47

Table 4.42: Comparative study on HCM and SCM for Leukemia Data (Golub Expei-
ment)

# data
point

# data point
wrongly clus-
tered

# data point
correctly clus-
tered

Accuracy(%)

HCM Cluster1 47 15 32 68.09

Cluster2 25 14 11 44

Total 72 29 43 59.72

SCM Cluster1 47 18 29 61.702

Cluster2 25 14 11 44

Total 72 32 40 55.56

57



4.4 Comparative studies on Hard C-means and Soft C-means clustering Algorithm

Table 4.43: Comparative study on HCM and SCM for Breast Data A
# data
point

# data point
wrongly clus-
tered

# data point
correctly clus-
tered

Accuracy(%)

HCM Cluster1 11 1 10 90.91

Cluster2 51 22 29 56.86

Cluster3 36 4 32 88.89

Total 98 27 71 72.44

SCM Cluster1 11 11 0 0

Cluster2 51 0 51 100

Cluster3 36 1 35 97.22

Total 98 12 86 87.76

Table 4.44: Comparative study on HCM and SCM for Breast Data B
# data
point

# data point
wrongly clus-
tered

# data point
correctly clus-
tered

Accuracy(%)

HCM Cluster1 12 0 12 100

Cluster2 11 5 6 54.54

Cluster3 7 5 2 28.57

Cluster4 19 13 6 31.58

Total 49 23 26 53.06

SCM Cluster1 12 0 12 100

Cluster2 11 5 6 54.54

Cluster3 7 0 7 100

Cluster4 19 12 7 36.84

Total 49 17 32 65.31

Table 4.45: Comparative study on HCM and SCM for Breast multi data A
# data
point

# data point
wrongly clus-
tered

# data point
correctly clus-
tered

Accuracy(%)

HCM Cluster1 26 2 24 92.31

Cluster2 26 1 25 96.15

Cluster3 28 18 10 35.71

Cluster4 23 0 23 100

Total 103 21 82 79.61

SCM Cluster1 26 5 21 80.77

Cluster2 26 1 25 96.15

Cluster3 28 2 26 92.85

Cluster4 23 2 21 91.3

Total 103 10 93 90.291
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4.4 Comparative studies on Hard C-means and Soft C-means clustering Algorithm

Table 4.46: Comparative study on HCM and SCM for Breast multi data B
# data
point

# data point
wrongly clus-
tered

# data point
correctly clus-
tered

Accuracy(%)

HCM Cluster1 5 3 2 40

Cluster2 9 2 7 77.78

Cluster3 7 3 4 57.14

Cluster4 11 7 4 36.36

Total 32 15 17 53.13

SCM Cluster1 5 3 2 40

Cluster2 9 3 6 66.67

Cluster3 7 4 3 42.86

Cluster4 11 6 5 45.45

Total 32 16 16 50

Table 4.47: Comparative study on HCM and SCM for DLBCL A
# data
point

# data point
wrongly clus-
tered

# data point cor-
rectly clustered

Accuracy(%)

HCM Cluster1 49 26 23 46.94
Cluster2 50 22 28 56
Cluster3 42 18 24 57.14
Total 141 66 75 53.19

SCM Cluster1 49 18 31 63.27
Cluster2 50 23 27 54
Cluster3 42 17 25 59.52
Total 141 58 83 58.87

Table 4.48: Comparative study on HCM and SCM for DLBCL B
# data
point

# data point
wrongly clus-
tered

# data point
correctly clus-
tered

Accuracy(%)

HCM Cluster1 42 18 24 57.14
Cluster2 51 7 44 86.27
Cluster3 87 15 72 82.76
Total 180 40 140 77.78

SCM Cluster1 42 13 29 69.05
Cluster2 51 16 35 68.63
Cluster3 87 15 72 89.66
Total 180 44 136 75.56
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Table 4.49: Comparative study on HCM and SCM for DLBCL C
# data
point

# data point
wrongly clus-
tered

# data point
correctly clus-
tered

Accuracy(%)

HCM Cluster1 17 1 16 94.11
Cluster2 16 9 7 43.75
Cluster3 13 12 1 7.69
Cluster4 12 6 6 50
Total 58 28 30 51.72

SCM Cluster1 17 4 13 76.47

Cluster2 16 6 10 62.5
Cluster3 13 7 6 46.15
Cluster4 12 9 3 25
Total 58 26 32 55.17

Table 4.50: Comparative study on HCM and SCM for DLBCL D
# data
point

# data point
wrongly clus-
tered

# data point
correctly clus-
tered

Accuracy(%)

HCM Cluster1 19 13 6 31.58
Cluster2 37 28 9 24.32
Cluster3 24 13 11 45.83
Cluster4 49 20 29 59.18
Total 129 74 55 42.64

SCM Cluster1 19 8 11 57.9

Cluster2 37 19 18 48.65
Cluster3 24 10 14 58.33
Cluster4 49 27 22 44.89
Total 129 64 65 50.39

Table 4.51: Comparative study on HCM and SCM for Lung Cancer
# data
point

# data point
wrongly clus-
tered

# data point cor-
rectly clustered

Accuracy(%)

HCM Cluster1 139 42 97 69.78
Cluster2 17 1 16 94.11
Cluster3 21 11 10 47.62
Cluster4 20 1 19 95
Total 197 55 142 72.08

SCM Cluster1 139 36 103 74.1

Cluster2 17 2 15 88.24
Cluster3 21 8 13 61.9
Cluster4 20 1 19 95
Total 197 47 150 76.14
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4.5 Conclusion

Table 4.52: Comparative study on HCM and SCM for St. Jude Leukemia Data
# data
point

# data point
wrongly clus-
tered

# data point
correctly clus-
tered

Accuracy(%)

HCM Cluster1 15 15 0 0
Cluster2 27 0 27 100
Cluster3 64 3 61 95.31
Cluster4 20 4 16 80
Cluster5 43 14 29 67.44
Cluster6 79 1 78 98.73
Total 248 37 211 85.08

SCM Cluster1 15 15 0 0

Cluster2 27 0 27 100
Cluster3 64 3 61 95.31
Cluster4 20 4 16 80
Cluster5 43 7 36 83.72
Cluster6 79 0 79 100
Total 248 29 219 88.31

4.5 Conclusion

The SCM based clustering algorithm is a distinct improvement from the conventional

HCM clustering algorithm. Its ability to cluster independent of the data sequence pro-

vides a more stable clustering result. Computer simulation shows that Soft C-means

performs superior compared to Hard C-means algorithm in eleven cases out of fifteen

cases. Datasets belonging to these cases are Iris, WBCD, Yeast (Cho) data, Breast Data

(A, B), Breast multi data A, DLBCL (A,C,D), Lung Cancer and St. Jude leukemia.

Whereas Hard C-means shows superior performance in four cases. Datasets belonging

to these cases are serum data, leukemia data, Breast multi data B and DLBCL B. As

seen from the experiments, the SCM based clustering algorithm was able to provide the

highest accuracy and generalization results.

61



Chapter 5

Genetic Algorithm based Clustreing
Algorithm

Clustering can be formally formulated as a NP-hard grouping problem from optimiza-

tion perspective [102]. This research finding has stimulated the search for efficient

approximation algorithms, including not only the use of ad-hoc heuristics for particu-

lar classes or instances of problems, but also the use of general-purpose metaheuristics

[103]. Particularly, evolutionary algorithms are metaheuristics widely believed to be

effective on NP-hard problems, being able to provide near-optimal solutions to such

problems in reasonable time. Under this assumption, a large number of evolutionary al-

gorithms for solving clustering problems have been proposed in the literature . A useful

review on this can be found from review paper [34]. These algorithms are based on the

optimization of some objective function (i.e., the so-called, fitness function) that guides

the evolutionary search. In evolutionary algorithm, Genetic Algorithm (GA) becomes

natural choice for cluster formation algorithm due to its wide applicability in wide range

of areas.

GA is inspired by Darwin’s theory of evolution. A GA works with a population of in-

dividuals each of which represents a potential solution to the problem to be solved. A

typical individual is a binary string on which the problem solution is encoded. Problem

representation is one of the key decision to be made when applying a GA to a prob-

lem. Problem representation in a GA individual determines the shape of the solution

space, that a GA must search. As a result, “different encodings of the same problem

are essentially different problems for a GA” [104]. The application of GAs for solving

problems of pattern recognition appears to be appropriate and natural. A number of
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research articles in this area have started to come out [105], [106], [107], [108], [109],

[110], [111], [112], [113], [114]. An application of GAs has been reported in the area of

(supervised) pattern classification for designing a GA-classifier [107], [115]. GA based

Clustering algorithm for machine learning data has been also reported in literature [17],

[116], [117], [118]. The paper [17] was the referenced which motivated us to work on

GA based clustering algorithm.

In the paper [17], extensive studies has been done on wide variety of artificial and

real-life data. These datasets having both overlapping and non-overlapping class bound-

aries. Paper [17] discusses binary as well as multi-class classifier problem (unsuper-

vised). The paper [17] is specific to pattern recognition data. Mean square error (MSE)

has been used as fitness function in paper [17]. In paper [17], chromosome representa-

tion is based on cluster center which is made up of features of the data point (i.e., gene).

When no. of features considered are large e.g., microarray data, length of the chromo-

some becomes very large if chromosome representation was followed based on paper

[17]. In such cases it is advisable to go for some alternative means of chromosome

representation e.g., based on instances i.e., data point itself instead of going for fea-

ture based representation. The paper [17] is specific to pattern recognition data. There

are no work reported in literature for bioinformatics data specially for microarray data

using GA. In this chapter of the thesis, study has been made on Family of GA based

clustering algorithm to bioinformatics data. Bioinformatics data possess some charac-

teristics feature which machine learning data do not possess. Microarray data possesses

a number of features (generally, in range of 103 − 104) very large compared to pattern

recognition data.

In this thesis, along with paper [17], three different representation schemes for GA

based clustering was studied. This chapter of the thesis deals with machine learning

data as well as bioinformatics data having overlapping and non-overlapping clusters.

The data belongs to binary as well as multi class problem. It also deals with problem

like clusters within a clusters (i.e., subtypes of a cluster). Binary representation (SGA-

simple Genetic Algorithm) as well as floating-point representation (RGA-Real coded

Genetic Algorithm) has been considered for GA. It is important to note that efficiency
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5.2 Basic Steps involved in GA based Clustering

of a GA based algorithm mainly depends on two factors; first representation scheme

and fitness function computation [137], [138]. Depending upon chromosome represen-

tation schemes crossover and mutation operator was modified. The way chromosome

was represented and novel fitness function was used in this thesis makes it different

from previous approaches and results in an efficient clustering algorithm.

5.1 Basic principle

The searching capability of GAs [139] has been used in this chapter of the thesis for

cluster formation of ‘n’ data points where labeled information are not available at

the time of cluster formation. This has been achieved using either determining 1):

Data point belonging to each cluster i.e., {V1,V2. . . . ,VC} or 2): Cluster center i.e.,

{v1,v2. . . . ,vC} in problem solution space RN ; where ‘C’ is a fixed number of clus-

ter given by user. The fitness function that has been adopted is the HS Ratio of the

cluster. HS Ratio has been discussed in detail in section 5.2.3.

The objective of the GA is to search for the appropriate 1:) Cluster i.e., {V1,V2. . . . ,VC}
or 2): Cluster center i.e, {v1,v2. . . . ,vC}; such that fitness function ‘ f ’ is minimized.

5.2 Basic Steps involved in GA based Clustering

The basic steps of GAs (shown in fig. 5.1); which are also followed in the GA-clustering

algorithm, are now described in details in this section.

Initially, a random population is created, which represents different data point in a clus-

ter or cluster center in the problem search space. Then fitness value of each chromosome

is computed. Based on the principle of survival of the fittest, a few of the chromosome

are selected and each is assigned a number of copies that go into the mating pool. Then

crossover operator are applied on these string and that results in set of crossover chil-

dren. Next, mutation was applied on the crossover children that results set of mutated

children. parent chromosome, crossover children and mutated children yields set of

chromosome for the new generation. The process of selection, crossover and mutation

continues for a fixed number of generation or till a termination condition is satisfied.

In this section; discussion has been made on four different representation schemes for
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5.2 Basic Steps involved in GA based Clustering

Figure 5.1: Flow chart of simple GA
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5.2 Basic Steps involved in GA based Clustering

encoding of a chromosome.

5.2.1 Encoding of Chromosome

1. Representation 1 (GA-R1):

This representation is based on number of data points. In this representation; each

chromosome is represented by a sequence of binary numbers representing the

clusters. For ‘n’ data-point of N-dimensional space and ‘C’ number of clusters,

the length of a Chromosome will be ‘n×C’ word length, where the first ‘n’ word

length represents the first cluster, the next ‘n’ word length represents those of the

second cluster, and so on. It may be noted that in a cluster if a word position is

‘1’ (It is said to be in ON state), it means that the data point is present and ‘0’ (it

is said to be in OFF state) means data point is absent. As an illustration for the

above representation, let us consider the following example.

Example 1.

Let us consider Iris data [150 x 4], where n=150, N=4 and C=3, i.e., the space

is four dimensional and the number of clusters being considered is three. There-

fore, the size of the Chromosome will be 450 (i.e., n×C). Then the Chromo-

some/String representation will be as follows:

Encoding of chromosome using representation 1

First Cluster Second Cluster Third Cluster

1 0 0 0 0 1 . . . upto 150 bits 0 1 1 0 0 0 . . . upto 150 bits 0 0 0 1 1 0 . . . upto 150 bits

According to above chromosome representations: since in first cluster index 1

and 6 are one. Therefore, Data point ‘1’ and Data point ‘6’ are present in First

Cluster. Similarly, Second Cluster contains Data point ‘2’ and Data point ‘3’,

Third Cluster contains Data point ‘4’ and Data point ‘5’, and so on.

2. Representation 2 (GA-R2):

This representation is based on cluster center (i.e., number of features). In this

representation; each Chromosome is represented by a sequence of real numbers

representing the centers of ‘C’ clusters. For ‘n’ data-point of N-dimensional
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5.2 Basic Steps involved in GA based Clustering

space, the length of a Chromosome will be ‘N×C’ word length, where the first

‘N’ positions (or, features) represent the ‘center o f f irst cluster‘, next ‘N’ po-

sitions represent those of the ‘center o f second cluster‘, and so on. It may be

noted that cluster center is of N-dimensional space. This representation is similar

to paper [17]. As an illustration for the above representation, let us consider the

following example.

Example 2.

Consider the same Iris data again. The size of the Chromosome in this case will

be twelve (i.e., N×C = 12). Then the Chromosome/String representation will

be:

Encoding of chromosome using representation 2

Center of First Cluster Center of Second Cluster Center of Third Cluster

5.2 4.1 1.5 0.1 5.3 3.7 1.5 0.2 5.7 2.9 4.2 1.3

3. Representation 3 (GA-R3):

This representation is extension of ‘Representation 2’. This involves two step:

In first step, a chromosome is represented as stated in Representation 2 and in

second step; each word of first step representation is represented by a sequence

of binary length of specified length (say, ‘nw’). The minimum value of ‘nw’ is

equal to size of binary number required to represent the maximum value of a

feature in original data.

Example 3: Consider the same Iris data again. In first step, a chromosome will be

size of 12 word length (according to Representation 2). Here each word (feature)

is represented by a real number. In the second step, each word of representa-

tion 2 is represented by a sequence of binary number of specified word length.

Let us take 10 word length to represent one word (i.e., one feature) of first step

representation. Therefore the resultant length of a Chromosome after second rep-

resentation will be of ‘120’ word length (i.e., 3× 4× 10 = 120). Then the

Chromosome/String representation will be :

Consider the Center of First Cluster
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5.2 Basic Steps involved in GA based Clustering

Encoding of chromosome using representation 3

Center of First Cluster Center of Second Cluster Center of Third Cluster

1 0 0 0 0 1 . . . Upto 40 bits 0 1 1 0 0 0 . . . Upto 40 bits 0 0 0 1 1 0 . . . Upto 40 bits

Complete view of first cluster of chromosome using representation 3

1 1 1 1 0 0 0 0 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 0 0 1 1 0 0 1 1

First block of the first cluster (i.e. first 10 bits of the first cluster) represents one

gene i.e., the feature number one i.e. first dimension of center of first cluster.

4. Representation 4 (GA-R4):

This representation is combination of Representation 1 and Representation 3. In

first step, chromosome is represented as stated in representation 1. Hence for

Iris data, the size of chromosome in first step will be 450 (i.e., 3× 150). It’s a

binary representation. Here if a bit is found to be ‘1‘, it means a data point is

present in the cluster otherwise the data point is absent in the cluster. Now for

each cluster, center (or, mean) was computed. Since center’s of each cluster is of

dimension four. So now the size of chromosome will be of size 12 (i.e., 3× 4).

In the next step, each feature of cluster’s center is represented by binary sequence

of specified length (say, 10) as stated in Representation 3. So the size of resultant

chromosome will be 120 (i.e., 3×4×10 = 120) word (or, bit) length. Then the

Chromosome/String representation will be:

Encoding of chromosome using representation 4

First Cluster Second Cluster Third Cluster

1 0 0 0 0 1 . . . Upto 40 bits 0 1 1 0 0 0 . . . Upto 40 bits 0 0 0 1 1 0 . . . Upto 40 bits

It is important to note that Representation 4 is equivalent to ‘representation 3’;

but the way it is derived i.e., the meaning is different. Hence the simulation result

obtained for this two representation will be same if the randomly initial popula-

tion (i.e., cluster) generated are same. For this reason the discussion has been

made on the simulation result obtained by representation 3 only in this chapter.
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5.2.2 Population initialization

The ‘C’ number of clusters encoded in each chromosome are initialized as stated in

Encoding of chromosome (Section 5.2.1). The chromosome initialization can be done

either randomly or by using any greedy or intelligent method. This process is repeated

for each of the ‘P’ chromosome in the population, where ‘P’ is the size of the popula-

tion.

5.2.3 Fitness Evaluation of Chromosome

This is the one of the most important part of proposed approach. The fitness function

evaluation is based on Homogeneity and separation value. It is based on the principle

“objects within one cluster are assumed to be similar to each other, while objects in

different clusters are dissimilar”. Fitness computation process consists of two steps:

in first step, Homogeneity value and Separation value is calculated. In second step,

HS Ratio is defined as ratio of homogeneity to separation.

The homogeneity of a cluster V is defined as follows ([20], [45]):

H1(V ) =
∑Ei, E j∈V, Ei 6=E j Similarity

(
Ei , E j

)

‖V ‖.(‖V ‖ −1)

This definition represents the homogeneity of cluster V by the average pair-wise object

similarity within V.

Cluster separation is analogously defined from various perspectives to measure the dis-

similarity between two clusters V1,V2 ([20], [45]). For example:

S1(V1,V2) =
∑Ei∈V1, E j∈V2 Similarity

(
Ei , E j

)

‖V1 ‖.(‖V2 ‖)
Since these definitions of homogeneity and separation are based on the similarity be-

tween objects, the quality of V increases with higher homogeneity values within V and

lower separation values between V and other clusters. Once homogeneity of a cluster

and the separation between a pair of clusters has been defined, for a given clustering

result {V1,V2, . . . ,VC}, Then average homogeneity and the average separation of V can

be defined. For example, Shamir et al. [20] used definitions of

Haverage =
∑Vi∈V ‖Vi ‖ .H1(Vi)

N

69



5.2 Basic Steps involved in GA based Clustering

and

Saverage =
1

∑Vi 6=V j ‖Vi ‖ . ‖V j ‖ ∑
Vi 6=V j

‖Vi ‖ . ‖V j ‖.S1(V1,V2)

to measure the average homogeneity and separation for the set of clustering results V.

The HS Ratio is defined as : HS Ratio = Haverage
Saverage

. The fitness function J for a chromo-

some is defined as: J = 1/HS Ratio. Here objective is to minimize fitness function

J.

5.2.4 Selection

The selection step in GA, selects chromosome from the mating pool and follows “the

survival of the fittest” concept of Darwin’s natural genetic system. In this chapter,

a proportional selection strategy has been adopted. Roulette Wheel selection is one

common technique that implements the proportional selection strategy. According to

this, a chromosome is being assigned with a number of copies, which is proportional to

its fitness in the population that goes into the mating pool for further genetic operations

[139].

5.2.5 Crossover

It is a type of genetic operations, which is used to create new child chromosome from

parent chromosome after exchanging information between them. It is based on proba-

bilistic model. Several variants of Cross-over has been discussed in past [139]. In this

thesis, a single-point crossover with a fixed crossover probability ‘Pc’ is used. For chro-

mosome of length ‘cs’, a random integer ‘cp’, called the crossover point, is generated in

the range [2, cs-1]. The portions of the chromosome lying to the right of the crossover

point are exchanged to produce two offspring. It is important to note that depending

upon the representation schemes of chromosome in GA crossover operation changes.

GA-R2 and GA-R3 follows crossover as stated above whereas in case of GA-R1, after

doing the crossover as stated above, a post processing is required. Details about this

post processing is explained below:

1. Crossover in GA-R1

Let us consider a dataset having ten data points of two dimension and number
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of cluster is two. According to GA-R1, chromosome representation will be as

follows:

Chromosome 1 1 0 1 0 1 0 0 0 1 1 0 1 0 1 0 1 1 1 0 0
Chromosome 2 0 0 1 1 1 0 1 1 0 0 1 1 0 0 0 1 0 0 1 1

crossover point ‘cp’ is 10. Then chromosome after crossover will look like as

follows:

Crossover children 1 (Chromosome) 1 0 1 0 1 0 0 0 1 1 1 1 0 0 0 1 0 0 1 1

Crossover children 2 (Chromosome) 0 0 1 1 1 0 1 1 0 0 0 1 0 1 0 1 1 1 0 0

Now let us consider crossover children 1; cluster 1 contains data point {1 3 5 9

10} and cluster 2 contains data point {1 2 6 9 10}. It may be noted that crossover

children’s ’1’ do not follow definition of clustering defined in section 2.2.1. data

points {1 9 10} appear in both the cluster and data points {4, 7, 8} is missing

in chromosome (crossover children 1) i.e., these data point do not belong to any

cluster. To sort out this problem, post processing is required for each and every

crossover children and it is done as follows:

Select any cluster in a chromosome randomly and fix that as a true cluster and

make changes to other cluster such that it follows definition of clustering.

For illustration, consider crossover children 1 as an example. select any cluster

randomly out of available two clusters. say cluster 1 has been chosen. Make

this as true cluster and do processing in cluster 2 in such a way that it follows

definition of clusters. After processing, crossover children 1 look like as follows:

Crossover children 1 (Chromosome) 1 0 1 0 1 0 0 0 1 1 0 1 0 1 0 1 1 1 0 0

After post processing, cluster 1 contains data point {1 3 5 9 10} and cluster 2

contains data point {2 4 6 7 8} which follows definition of clustering.

5.2.6 Mutation

It is a type of genetic operator that alters one ore more gene values in a chromosome

from its initial state. This can result in entirely new gene values being added to the gene
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pool. With these new gene values, the genetic algorithm may be able to arrive at better

solution than was previously possible. Mutation is an important part of the genetic

search as help helps to prevent the population from stagnating at any local optima.

Each chromosome in a population undergoes mutation with a fixed probability, ‘Pm’.

For binary representation of a chromosome (GA-R1 and GA-R3), mutation is done by

flipping its bit position (or gene) value i.e. if a bit position is 1 it is made 0 and vice

versa. A bit position in GA-R1 represents weather a data point is present in a cluster

or not whereas in a GA-R3 it represents a position of cluster center. It is important to

note that GA-R1 requires post processing as similar to how it has been done in case of

crossover, whereas GA-R3 does not require any processing after mutation. For floating-

point representation in GA-R2, mutation was done as follows [17] : A random number

η in the range [0, 1] is generated with uniform distribution. If the value at a gene

position is ‘ν’, after mutation, it becomes ν×(1+ 2×η). One may note in this context,

that similar sort of mutation operators for real coding have been used mostly in the realm

of evolutionary strategies [17].

5.2.7 Termination criterion

In this chapter the processes of fitness computation, genetic operation is executed for a

maximum number of iterations.

In the next section, GA based clustering algorithm has been discussed for machine

learning data as well as bioinformatics data.

5.3 Experimental Setup

To validate the feasibility and performance of the GA based clustering algorithm, clus-

tering accuracy was used as cluster validation metric. Since the data possess class label

information. Clustering accuracy is defined as follows:

Clustering Accuracy = ( Number o f Correct Count
Total number o f instances genes/samples) × 100.

Simulation studies has been carried out in MATLAB 7.0 (Intel C2D processor, 2.0

GHz, 2 GB RAM) and applied it to machine learning data as well as to bioinformatics

data. For simplicity, this section is divided into two subsection. First section contains

the details result obtained on machine learning data using GA clustering algorithm and
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second section contains detailed result obtained for bioinformatics data using the same

algorithm.

5.3.1 Experiment 1: Machine Learning Data

In this section, discussion has been made on Family of GA based Clustering algorithm to

two machine learning data i.e., Iris and WBCD. The details of these two data have been

already explained in section 4.1.1. Comparison has been done on proposed GA based

clustering algorithm with following five standard conventional Clustering algorithm [9]

for Iris data:

1. Hierarchical Clustering

2. Self Organizing Map based (SOM) Clustering

3. Hard C-means Clustering

4. Generalized Linear Vector Quantization (GLVQ) Clustering

5. Soft C-means (SCM) Clustering

5.3.2 Results and Discussion

The parameters used for Iris and WBCD data in GA based clustering algorithm is shown

in Table 5.1.

Complete result of GA based clustering algorithm for machine learning and bioinfor-

matics data has been given in appendix F. Appendix F contains the details of data point

wrongly clustered in GA clustering algorithm. From this, It can be deduce about details

of data point correctly clustered in each cluster and subsequently distribution of data

point after simulation of cluster formation algorithm. Here in this section, result ob-

tained for GA based clustering algorithm for machine learning data has been presented

in brief.

Table 5.2 summarizes result of nine clustering algorithm (5 conventional and 4 GA

based clustering) for Iris data. Here best case analysis has been considered for four

representation schemes used for GA based clustering algorithm. It may be noted that

“for Iris data a clustering algorithm which gives less than 18 count errors considered
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to be a good clustering algorithm” [46], [47], [49], [48]. Count error was achieved in

the range {0 – 10} for GA-clustering Algorithm. It can be easily infer from Table 5.2

that GA based clustering algorithm performs better than all other algorithm for Iris data.

GA-R1 achieves accuracy upto 93.33 % and GA-R2 achieves accuracy upto 96%. It is

important to note that GA-R3 clustering algorithm can achieve 100 percent accuracy in

its best case analysis. It can be easily infers from the Table 5.2 that GA based clustering

algorithm performs better than other non-GA based clustering algorithm for Iris data.

Table 5.3 describes the result obtained by GA-R1. It shows the initial cluster distribu-

tion (randomly taken from initial population) as well as final cluster distributions after

simulation. Total count error was achieved as 10 and therefore percentage accuracy as

93.33%.

Table 5.4 describes the details of result obtained by GA clustering algorithm. It contains

following information:

the total number of data points in each cluster in a data, number of data point wrongly

clustered, number of data point correctly clustered, details of data point wrongly clus-

tered, individual accuracy of each cluster as well as over all accuracy for GA-R1 for Iris

data. Here clustering accuracy result for Iris-setosa is 100 percent, whereas in case of

Iris-versicolor and Iris-virginica data, number of data points wrongly clustered is 1 and

9 respectively. Datapoint {78} which should be in Iris-versicolor is wrongly clustered

into Iris-virginica and data-point {102, 107, 114, 120, 122, 134, 139, 143, 147} which

should be in Iris-virginica is wrongly classified into Iris-versicolor.

Table 5.5 show the details of the cluster obtained before and after GA run. Table 5.6

describes the result obtained by GA-R2 based genetic algorithms. Count error has

been obtained as 6. Accuracy of 100 % was achieved for cluster Iris-setosa and Iris-

versicolor, whereas for Iris-virginica 88% accuracy was achieved. The wrongly clus-

tered data points are {101, 102, 103, 104, 105, and 107}. In actual practice, all these

data points belong to Iris-virginica, but they have wrongly clustered into Iris-versicolor.

Another very important point to be noted is that data point {102, 107} is wrongly clus-

tered by both representation R1 and R2. These data point are highly non-separable.

Data point 102 is having feature value {5.8, 2.7, 5.1, 1.9} and Data point 107 is having
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feature value {4.9, 2.5, 4.5, 1.7}; these data points which are in Iris-virginica are hav-

ing value similar to data point belonging to Iris-versicolor. This is the reason these data

points are wrongly classified/clustered by many algorithm in the literature [47], [49].

Table 5.7 describes the result obtained by representation 3 based genetic algorithms. It

shows the details of the generated cluster before as well as after GA run. In this 100%

accuracy was achieved.

GA based clustering algorithm (i.e., GA-R1, GA-R2 and GA-R3) was simulated 20

times. Summary of results obtained after simulation has been shown in Table 5.8.

Table 5.1: Parameter used in GA based clustering Algorithm for Pattern recognition
data

Parameter Value
Population Size 10 - 100
Maximum No. Of Iteration 15 - 50
Crossover Probability 0.6 - 0.8
Mutation Probability 0.001 - 0.01

Table 5.2: Comparison of Results for nine clustering algorithm using Iris Data
Algorithm Count Error Percentage error Percentage

Accuracy
Hierarchical 48 32 68
SOM 22 14.67 85.33
HCM 17 11.33 88.67
GLVQ 16 10.76 89.33
SCM 14 9.33 90.67
GA(Representation 1) 10 6.67 93.33
GA(Representation 2) 6 4 96
GA(Representation 3) 0 0 100
GA(Representation 4) 0 0 100

Table 5.3: Initial and final cluster distribution for GA-R1 for Iris Data
Initial cluster

Cluster 1 Cluster 2 Cluster 3
1 2 3 4 5 6 7 8 9 10 11 12 13 14
15 16 17 18 19 20 21 22 23 24 25
26 27 28 29 30 31 32 33 34 35 36
37 38 39 40 41 42 43 44 45

53 78 101 103 104 105 106 108
109 110 111 112 113 116 117 118
119 121 123 125 126 129 130 131
132 133 135 136 137 138 140 141
142 144 145 146 148 149

51 52 54 55 56 57 58 59 60 61 62 63 64
65 66 67 68 69 70 71 72 73 74 75 76 77
79 80 81 82 83 84 85 86 87 88 89 90 91
92 93 94 95 96 97 98 99 100 102 107
114 115 120 122 124 127 128 134 139
143 147 150

Final Cluster
Cluster 1 Cluster 2 Cluster 3
1 2 3 4 5 6 7 8 9 10 11 12 13 14
15 16 17 18 19 20 21 22 23 24 25
26 27 28 29 30 31 32 33 34 35 36
37 38 39 40 41 42 43 44 45 46 47
48 49 50

51 52 53 54 55 56 57 58 59 60 61
62 63 64 65 66 67 68 69 70 71 72
73 74 75 76 77 79 80 81 82 83 84
85 86 87 88 89 90 91 92 93 94 95
96 97 98 99 100

101 103 104 105 106 108 109 110 111
112 113 115 116 117 118 119 121 123
124 125 126 127 128 129 130 131 132
133 135 136 137 138 140 141 142 144
145 146 148 149 150

Count error= 10
Accuracy = 93.33 %
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Table 5.4: Result of GA-R1 using Iris Data
Iris-
setosa

Iris-
versicolor

Iris-virginica Total

The right number of data point 50 50 50 150
Details of Data points wrongly
clustered

NIL 78 102 107 114 120 122
134 139 143 147

78 102 107 114 120 122
134 139 143 147

number of data point wrongly
clustered

0 1 9 10

number of data point correctly
clustered

50 49 41 140

Accuracy (%) 100 98 82 93.33

Table 5.5: Initial and final cluster distribution for GA-R2 for Iris Data
Initial cluster

Cluster1 Cluster2 Cluster3
1 2 5 11 13 17 21 22 25 29 32 35 39 44
45 50 59 60 61 71 72 73 74 75 76 77
78 79 86 90 98 99 46 49 121 122 123
124 125 126 127 128 129 130 131 132
133 134 140 141 142 143

3 4 6 7 15 16 18 24 26 30 33 34 36 40
42 51 52 53 54 55 56 57 58 80 81 82
87 88 89 92 93 95 96 97 100 101 102
103 104 105 106 107 144 145 146 147
148 149 150

8 9 10 12 14 19 20 23 27 28 31 37 38
41 43 47 48 62 63 64 65 66 67 68 69
70 83 84 85 91 94 108 109 110 111
112 113 114 115 116 117 118 119 120
135 136 137 138 139

Final Cluster
Cluster1 Cluster2 Cluster3
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
17 18 19 20 21 22 23 24 25 26 27 28
29 30 31 32 33 34 35 36 37 38 39 40
41 42 43 44 45 46 47 48 49 50

51 52 53 54 55 56 57 58 59 60 61 62
63 64 65 66 67 68 69 70 71 72 73 74
75 76 77 78 79 80 81 82 83 84 85 86
87 88 89 90 91 92 93 94 95 96 97 98
99 100 101 102 103 104 105 107

106 108 109 110 111 112 113 114 115
116 117 118 119 120 121 122 123 124
125 126 127 128 129 130 131 132 133
134 135 136 137 138 139 140 141 142
143 144 145 146 147 148 149 150

Count error=6
Accuracy = = 96 %

Table 5.6: Result of GA-R2 using Iris Data
Iris-setosa Iris-

versicolor
Iris-virginica Total

The right number of data point 50 50 50 150
Details of Data points wrongly
clustered

NIL NIL 101 102 103 104
105 107

101 102 103 104 105
107

number of data point wrongly
clustered

0 0 6 6

The number of data point cor-
rectly clustered

50 50 44 144

Accuracy (%) 100 100 88 96
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Table 5.7: Initial and final cluster distribution for GA-R3 for Iris Data.
Initial cluster

Cluster1 Cluster2 Cluster3
11 12 13 14 15 16 17 18 19 20 21
22 24 27 30 32 33 34 35 39 43 44
45 46 47 48 59 60 61 62 63 64 65
66 67 68 69 70 129 130 131 132
133 134 135 136 137 138 139

1 2 3 4 5 6 7 8 9 10 23 25 26 28
29 31 36 37 38 40 41 42 49 50 51
52 53 54 55 56 57 58 108 109 110
111 112 113 114 115 116 117 118
119 120 144 145 146 147 148 149
150

71 72 73 74 75 76 77 78 79 80 81
82 83 84 85 86 87 88 89 90 91 92
93 94 95 96 97 98 99 100 101 102
103 104 105 106 107 121 122 123
124 125 126 127 128 140 141 142
143

Final Cluster
Cluster 1 Cluster 2 Cluster 3
101 102 103 104 105 106 107 108
109 110 111 112 113 114 115 116
117 118 119 120 121 122 123 124
125 126 127 128 129 130 131 132
133 134 135 136 137 138 139 140
141 142 143 144 145 146 147 148
149 150

1 2 3 4 5 6 7 8 9 10 11 12 13 14
15 16 17 18 19 20 21 22 23 24 25
26 27 28 29 30 31 32 33 34 35 36
37 38 39 40 41 42 43 44 45 46 47
48 49 50

51 52 53 54 55 56 57 58 59 60 61
62 63 64 65 66 67 68 69 70 71 72
73 74 75 76 77 78 79 80 81 82 83
84 85 86 87 88 89 90 91 92 93 94
95 96 97 98 99 100

Count error= 0
Accuracy = 100 %

Table 5.8: Analysis of Best case, Average case, worst case for GA using Iris
Representation R1

Best case Average Case Worst case
Count error 10 12 14
Accuracy (%) 93.33 92 90.67
Representation R2

Best case Average Case Worst case
Count error 6 6 6
Accuracy (%) 96 96 96
Representation R3

Best case Average Case Worst case
Count error 0 8 23
Accuracy (%) 100 94.67 84.67

Table 5.9 summarizes the result of GA clustering algorithm for WBCD. It can be easily

infer from Table 5.9 that GA-based clustering algorithm performs better compared to

Non-GA based clustering algorithm for WBCD.

Table 5.10 shows the result obtained by GA-R1 based clustering algorithm for WBCD.

Table 5.11 shows the result obtained by GA-R2 based clustering algorithm for WBCD.

Table 5.12 shows the result obtained by GA-R3 based clustering algorithm for WBCD.

It may be noted that previous work related to WBCD in literature deals only with clas-

sification accuracy [140], [127]. Taking SCM into account, it can be say that any clus-

tering algorithm which gives count error less than 70 (i.e. accuracy of approx 90%) can

be treated as good clustering algorithm.

GA-R1 achieves accuracy upto 96.1933% and count error as 26 in case of WBCD. Data

point { 446 448 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591
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592 593 594 600} which are Benign, are wrongly clustered into Malignant, whereas

data points {2 4 139 244} are malignant in nature, but are wrongly clustered into Be-

nign.

GA-R2 achieves accuracy upto 96.7789% and count error in this case obtained to be

37. Data point { 2 4 139 244} which are Benign, are wrongly clustered into Malignant

whereas data points {446 448 576 577 578 579 580 581 582 583 584 585 586 587 588

589 590 591 592 593 594} which are malignant in nature are wrongly clustered into

Benign.

Final fitness value of GA based clustering algorithm for five run has been tabulated in

Table 5.13 and Table 5.14 for Iris and WBCD respectively.

Table 5.15 consists of the optimal fitness value for Iris and WBCD data for GA-R1,

GA-R2 and GA-R3 based clustering algorithms.

Table 5.9: Comparison of clustering algorithm for WBCD
Algorithm Count Error Percentage error Percentage

Accuracy
HCM 29 4.2460 95.7540
SCM 27 3.9531 96.0469
GA(Representation 1) 26 657 96.1933
GA(Representation 2) 22 661 96.7789
GA(Representation 3) 18 665; 97.3646

Table 5.10: Result of GA-R1 using WBCD
Benign Malignant Total

The right number of
data point

444 239 683

Details of Data points
wrongly clustered

2 4 139 244 446 448 576 577 578 579 580
581 582 583 584 585 586 587
588 589 590 591 592 593 594
600

2 4 139 244 446 448 576 577
578 579 580 581 582 583 584
585 586 587 588 589 590 591
592 593 594 600

number of data point
wrongly clustered

4 22 26

The number of data
point correctly clus-
tered

441 217 657

Accuracy (%) 99.324 90. 8 98.83
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Table 5.11: Result of GA-R2 using WBCD

Benign Malignant Total

The right number of data
point

444 239 683

Details of Data points
wrongly clustered

NIL 446 448 576 577 578 579 580
581 582 583 584 585 586 587
588 589 590 591 592 593 594
600

446 448 576 577 578 579 580
581 582 583 584 585 586 587
588 589 590 591 592 593 594
600

number of data point
wrongly clustered

0 22 22

The number of data point
correctly clustered

444 217 661

Accuracy (%) 100 88.93 96.78

Table 5.12: Result of GA-R3 using WBCD

Benign Malignant Total

The right number of
data point

444 239 683

Details of Data points
wrongly clustered

NIL 446 448 580 581 582 583 584
585 586 587 588 589 590 591
592 593 594 600

446 448 580 581 582 583 584
585 586 587 588 589 590 591
592 593 594 600

number of data point
wrongly clustered

0 18 18

The number of data
point correctly clus-
tered

444 221 665

Accuracy (%) 100 92.5 97.36

Table 5.13: Fitness Function values for different Run for Iris data.

Trial No. Iris Data

GA-R1 GA-R2 GA-R3

1 0.0099 0.0109 0.0103

2 0.0099 0.0109 0.0103

3 0.0097 0.0109 0.0099

4 0.0099 0.0103 0.0101

5 0.0099 0.0109 0.0103
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Table 5.14: Fitness Function values for different Run for WBCD data.

Trial No. WBCD Data

GA-R1 GA-R2 GA-R3

1 0.00171 0.00173 0.00170

2 0.00171 0.00173 0.00170

3 0.00167 0.00173 0.00158

4 0.00167 0.00173 0.00158

5 0.00158 0.00173 0.00158

Table 5.15: Final Fitness Function value for machine learning Data
Dataset
Sl.
No.

Datasets GA-R1 GA-R2 GA-R3

1 Iris 0.0097 0.0103 0.0101

2 WBCD 0.00158 0.00173 0.00158

5.3.3 Experiment 2: Bioinformatics Data

In this section, discussion has been made on Family of GA based Clustering algorithm

to all the bioinformatics data stated in section 4.1.1. Thirteen microarray data has been

considered for simulation studies. These data are: Iyer data/Serum data, Cho data (yeast

data), Leukemia (Golub Experiment), Breast data A, Breast data B, Breast Multi data

A, Breast Multi data B, DLBCL A, DLBCL B, DLBCL C, DLBCL D, Lung Cancer,

St. Jude Leukemia data. The details of these data has been already explained in section

4.1.1. Complete result of GA Clustering result for each individual bioinformatics data

is given in appendix F.

5.3.4 Results and Discussion

The parameters used for GA based clustering algorithm for Bioinformatics data is

shown in Table 5.16

Table 5.17 to Table 5.29 shows the result obtained by GA-R1 for bioinformatics data.

All these data contains the following information of GA-R1 for bioinformatics data:
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the right number of data point in each cluster, details of data points wrongly clustered

in each cluster, number of data points in each cluster, number of data point correctly

clustered in each cluster and individual accuracy of each cluster of a data as well as

overall accuracy for each bioinformatics data.

Table 5.17 contains the result obtained by GA-R1 for Breast Data A. Number of data

point wrongly clustered in cluster 1 is one, in cluster 2 is six and in cluster 3 is three.

The total number of data points wrongly clustered is ten. Details of the data point

wrongly clustered are {11 20 31 38 39 46 56 66 80 81}. The overall accuracy obtained

for Breast Data A using GA-R1 was 89.8 % .

Table 5.18 contains the result obtained by GA-R1 for Breast Data B. Details of the data

point wrongly clustered are {31 35 36 41 42 43 44 47 48 49}. It may be noted that

cluster 1 and cluster 2 achieves 100 % accuracy . The overall accuracy obtained for

Breast Data B using GA-R1 was 77.57 % .

Table 5.19 contains the result obtained by GA-R1 for Breast Multi Data A. Details of

the data point wrongly clustered are {2 15 19}. Notably cluster 2, cluster 3 and cluster

4 achieves accuracy of 100 %. The overall accuracy obtained for Breast Multi Data A

using GA-R1 was 97.08 % .

Table 5.20 contains the result obtained by GA-R1 for Breast Multi Data B. The total

number of data points wrongly clustered is twelve. The overall accuracy obtained for

Breast Multi Data B using GA-R1 was 62.5 % .

Table 5.21 contains the result obtained by GA-R1 for DLBCL A. The total number of

data points wrongly clustered is 43. The overall accuracy obtained for DLBCL A using

GA-R1 was 69.5 %.

Table 5.22 contains the result obtained by GA-R1 for DLBCL B. The total number of

data points wrongly clustered is 28. The overall accuracy obtained for DLBCL B using

GA-R1 was 84.45 % .

Table 5.23 contains the result obtained by GA-R1 for DLBCL C. The total number of

data points wrongly clustered is 12. Note that cluster 2 achieves 100% accuracy. The

overall accuracy obtained for DLBCL C using GA-R1 was 84.45 %.

Table 5.24 contains the result obtained by GA-R1 for DLBCL D The total number of
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data points wrongly clustered is 44. The overall accuracy obtained for DLBCL D using

GA-R1 was 65.89 %.

Table 5.25 contains the result obtained by GA-R1 for Lung Cancer. The total number

of data points wrongly clustered is 42. The overall accuracy obtained for Lung Cancer

using GA-R1 was 78.68%.

Table 5.26 contains the result obtained by GA-R1 for Leukemia Cancer. The total num-

ber of data points wrongly clustered is 32. The overall accuracy obtained for Leukemia

Cancer using GA-R1 was 55.56%.

Table 5.27 contains the result obtained by GA-R1 for St. Jude Leukemia Cancer. The

total number of data points wrongly clustered is 15. Notably cluster 2 and cluster 6

achieves accuracy 100%. The overall accuracy obtained for St. jude Leukemia Cancer

using GA-R1 was 93.95 %.

Table 5.28 contains the result obtained by GA-R1 for Cho data. The total number of

data points wrongly clustered is 127. The overall accuracy obtained for Cho data using

GA-R1 was 67.1 %.

Table 5.29 contains the result obtained by GA-R1 for Iyer data. The total number of

data points wrongly clustered is 248. The overall accuracy obtained for Iyer data using

GA-R1 was 52.03 %.

Table 5.16: Parameter used in GA based clustering Algorithm for Bioinformatics data

Parameter Value

Population Size 20 - 150

Maximum No. Of Iteration 10 - 50

Crossover Probability 0.6 - 0.8

Mutation Probability 0.001 - 0.01
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Table 5.17: Result of Breast data A (GA-R1)

Breast data A

Cluster 1 Cluster 2 Cluster 3 Total

The right number of data point 11 51 36 98

Details of Data points wrongly
clustered

11 20 31 38 39 46 56 66 80 81 11 20 31 38 39 46 56
66 80 81

number of data point wrongly
clustered

1 6 3 10

The number of data point cor-
rectly clustered

10 45 33 88

Accuracy (%) 90.91 88.26 91.67 89.8

Table 5.18: Result of Breast data B (GA-R1)

Breast data B

Cluster 1 Cluster 2 Cluster 3 Cluster 4 Total

The right number of data
point

12 11 7 19 49

Details of Data points
wrongly clustered

NIL NIL 29 31 35 36 41 42 43 44
47 48 49

31 35 36 41 42 43 44
47 48 49

number of data point
wrongly clustered

0 0 1 10 11

The number of data point
correctly clustered

12 11 6 9 38

Accuracy (%) 100 100 85.71 47.37 77.57

Table 5.19: Result of Breast Multi data A (GA-R1)

Multi Breast data A

Cluster 1 Cluster 2 Cluster 3 Cluster 4 Total

The right number of data
point

26 26 28 23 103

Details of Data points
wrongly clustered

2 15 19 NIL NIL NIL 2 15 19

number of data point
wrongly clustered

3 0 0 0 3

The number of data point
correctly clustered

23 26 28 23 100

Accuracy (%) 88.46 100 100 100 97.08
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Table 5.20: Result of Breast Multi Data B (GA-R1)

Multi Breast data B

Cluster 1 Cluster 2 Cluster 3 Cluster 4 Total

The right number of data
point

5 9 7 11 32

Details of Data points
wrongly clustered

1 4 5 12 13 15 16 19 23 28 29 30 1 4 5 12 13 15 16 19
23 28 29 30

number of data point
wrongly clustered

3 2 3 4 12

The number of data point
correctly clustered

2 7 4 7 20

Accuracy (%) 40 77.78 57.14 63.63 62.5

Table 5.21: Result of DLBCL A (GA-R1)

DLBCL A

Cluster 1 Cluster 2 Cluster 3 Total

The right number of
data point

49 50 42 141

Details of Data points
wrongly clustered

3 4 9 15 16
21 22 24 29
43 44 45 46
48

51 59 61 62 65 67
70 76 78 92 93 95
97 98

109 113 115 118
120 128 130 133
134 135 136 137
138 140 141

3 4 9 15 16 21 22 24 29 43 44 45 46
48 51 59 61 62 65 67 70 76 78 92 93
95 97 98 109 113 115 118 120 128
130 133 134 135 136 137 138 140
141

number of data point
wrongly clustered

14 14 15 43

The number of data
point correctly clus-
tered

35 36 27 98

Accuracy (%) 71.43 72 64.3 69.5

Table 5.22: Result of DLBCL B (GA-R1)
DLBCL B

Cluster 1 Cluster 2 Cluster 3 Total

The right number of
data point

42 51 87 180

Details of Data points
wrongly clustered

2 14 15 16 32 34
35 36 37 39 40 41

46 47 49 51 58 65
92

97 103 119 121
122 124 164 167
179

2 14 15 16 32 34 35 36 37 39 40 41
46 47 49 51 58 65 92 97 103 119
121 122 124 164 167 179

number of data point
wrongly clustered

12 7 9 28

The number of data
point correctly clus-
tered

30 44 78 152

Accuracy (%) 71.43 86.27 89.66 84.45
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Table 5.23: Result of DLBCL C (GA-R1)
DLBCL C

Cluster 1 Cluster 2 Cluster 3 Cluster 4 Total

The right number of
data point

17 16 13 12 58

Details of Data points
wrongly clustered

12 NIL 35 38 40 41 42 43 45 52 53 57 58 12 35 38 40 41 42 43 45 52
53 57 58

number of data point
wrongly clustered

1 0 7 4 12

The number of data
point correctly clus-
tered

5 16 6 8 35

Accuracy (%) 29.41 100 46.15 66.67 60.35

Table 5.24: Result of DLBCL D (GA-R1)
DLBCL D

Cluster 1 Cluster 2 Cluster 3 Cluster 4 Total

The right number of
data point

19 37 24 49 129

Details of Data points
wrongly clustered

1 7 9 13 17
19

20 28 30 32 40
41 42 43 45 48
51 56

63 81 82 83 84 85 86 87
88 89 90 91 92 93 94
95 96 97 98 100 104
105 108 112 114 117

1 7 9 13 17 19 20 28 30
32 40 41 42 43 45 48
51 56 63 81 82 83 84
85 86 87 88 89 90 91
92 93 94 95 96 97 98
100 104 105 108 112
114 117

number of data point
wrongly clustered

6 12 1 25 44

The number of data
point correctly clus-
tered

13 25 23 24 85

Accuracy (%) 68.42 67.57 95.83 48.98 65.89

Table 5.25: Result of Lung Cancer (GA-R1)
Lung Cancer

Cluster 1 Cluster 2 Cluster 3 Cluster4 Total

The right number of
data point

139 17 21 20 197

Details of Data points
wrongly clustered

15 18 19 20 21 24 26 33
42 50 68 69 71 76 78 79
86 89 90 92 93 97 104
105 109 111 112 114
117 126 135 137 139

144 157 162
167 168
169 174

196 15 18 19 20 21 24 26
33 42 50 68 69 71 76
78 79 86 89 90 92 93
97 104 105 109 111 112
114 117 126 135 137
139 144 157 162 167
168 169 174 196

number of data point
wrongly clustered

34 1 6 1 42

The number of data
point correctly clus-
tered

105 16 15 19 155

Accuracy (%) 75.54 94.12 71.43 95 78.68
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Table 5.26: Result of Leukemia (GA-R1)
Leukemia

Cluster 1 Cluster 2 Total

The right number of data point 47 25 72

Details of Data points wrongly clus-
tered

6 7 8 22 23 28 31 32
33 34 35 36 39 40 41
42 45

48 50 51 52 53 54
55 56 57 58 59 61
62 69 71

6 7 8 22 23 28 31 32 33 34 35 36
39 40 41 42 45 48 50 51 52 53 54
55 56 57 58 59 61 62 69 71

number of data point wrongly clus-
tered

17 15 32

The number of data point correctly
clustered

30 10 40

Accuracy (%) 63.83 40 55.56

Table 5.27: Result of St. Jude Leukemia (GA-R1)
St. Jude Leukemia

Cluster 1 Cluster 2 Cluster 3 Cluster4 Cluster5 Cluster6 Total
The right num-
ber of data
point

15 27 64 20 43 79 248

Details of Data
points wrongly
clustered

2 NIL 61 69 71
99

109 110
111 112

131 133
143 144
157 168

NIL 2 61 69 71 99
109 110 111
112 131 133
143 144 157
168

number of data
point wrongly
clustered

1 0 4 4 6 0 15

The number of
data point cor-
rectly clustered

14 27 60 16 37 79 233

Accuracy (%) 93.33 100 93.75 80 86.04 100 93.95

Table 5.28: Result of Cho Data (GA-R1)
Cho Data

Cluster
1

Cluster 2 Cluster 3 Cluster 4 Cluster
5

Total

The right
number of
data point

67 135 75 54 55 386

Details of
Data points
wrongly
clustered

2 6 25
26 28
32 43
45 56
64 65
66

79 82 86 89 90 96
97 100 101 105 110
112 115 119 125
127 128 129 130
131 132 133 134
136 137 138 143
144 145 146 147
162 168 173 174
176 178 180 181
183 184 185 186
187 188 189 190
191 194 196 198
199 200 201 202

215 217 218
220 221 222
225 226 227
228 229 231
236 237 238
239 241 243
246 247 248
249 250 251
254 255 256
257 258 259
268 269 270
272 273 276
277

280 283
284 291
293 294
296 297
299 313
319 320
321 322
324

332
342
347
354
359
361
366
370

2 6 25 26 28 32 43 45 56 64 65 66
79 82 86 89 90 96 97 100 101 105
110 112 115 119 125 127 128 129
130 131 132 133 134 136 137 138
143 144 145 146 147 162 168 173
174 176 178 180 181 183 184 185
186 187 188 189 190 191 194 196
198 199 200 201 202 215 217 218
220 221 222 225 226 227 228 229
231 236 237 238 239 241 243 246
247 248 249 250 251 254 255 256
257 258 259 268 269 270 272 273
276 277 280 283 284 291 293 294
296 297 299 313 319 320 321 322
324 332 342 347 354 359 361 366
370

number of
data point
wrongly
clustered

12 55 37 15 8 127

The number
of data point
correctly
clustered

55 80 38 39 47 259

Accuracy
(%)

82.1 59.26 50.67 72.22 85.45 67.1

86



5.3 Experimental Setup

Table 5.29: Iyer Data(GA-R1)
Iyer Data

The
right
number
of data
point

Details of Data points wrongly clustered Number
of data
point
wrongly
clus-
tered

Thenum-
ber of
data
point
cor-
rectly
clus-
tered

Accuracy
(%)

Cluster1 33 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 21 22 23 28
29 30 31

26 7 78.79

Cluster2 100 NIL 0 100 100

Cluster3 145 143 146 157 161 162 163 164 166 167 168 169 170 171 172
173 174 175 176 177 178 179 180 181 186 187 188 190 191
192 193 194 197 198 199 200 201 202 203 204 206 210 211
213 224 225 226 231 243 244 245 248 249 255 265 267 270
271 273 274 275 278

61 84 57.93

Cluster4 34 280 283 284 285 286 287 294 295 296 297 298 299 300 301
303

15 19 55.88

Cluster5 43 313 314 315 316 317 318 319 320 321 322 324 325 326 327
328 329 330 331 332 333 334 335 342 343 348 349 352 355

28 15 34.89

Cluster6 7 359 1 6 85.71

Cluster7 34 365 366 367 370 373 378 379 381 383 384 387 388 389 390
391 392 393

17 17 50

Cluster8 14 399 401 2 12 85.71

Cluster9 63 411 412 413 414 415 416 417 418 419 420 421 422 423 424
426 427 428 429 430 431 432 433 434 436 437 438 439 440
442 443 444 445 447 448 449 450 451 452 453 454 455 456
457 458 459 460 461 462 463 464 465 466 467 468 469 473

56 7 11.11

Cluster10 19 474 475 476 477 478 479 480 481 482 483 484 485 486 487
488 489 490 492

18 1 5.26

Cluster11 25 493 494 495 496 497 498 499 500 502 503 504 505 506 507
508 509 510 511 512 513 514 515 516 517

24 1 4

Total 517 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 21 22 23 28
29 30 31 143 146 157 161 162 163 164 166 167 168 169 170
171 172 173 174 175 176 177 178 179 180 181 186 187 188
190 191 192 193 194 197 198 199 200 201 202 203 204 206
210 211 213 224 225 226 231 243 244 245 248 249 255 265
267 270 271 273 274 275 278 280 283 284 285 286 287 294
295 296 297 298 299 300 301 303 313 314 315 316 317 318
319 320 321 322 324 325 326 327 328 329 330 331 332 333
334 335 342 343 348 349 352 355 359 365 366 367 370 373
378 379 381 383 384 387 388 389 390 391 392 393 399 401
411 412 413 414 415 416 417 418 419 420 421 422 423 424
426 427 428 429 430 431 432 433 434 436 437 438 439 440
442 443 444 445 447 448 449 450 451 452 453 454 455 456
457 458 459 460 461 462 463 464 465 466 467 468 469 473
474 475 476 477 478 479 480 481 482 483 484 485 486 487
488 489 490 492 493 494 495 496 497 498 499 500 502 503
504 505 506 507 508 509 510 511 512 513 514 515 516 517

248 269 52.03

Table 5.30 to Table 5.42 shows the result obtained by GA-R2 for bioinformatics data.

All these table contains the following information of GA-R2 for bioinformatics data:

the right number of data point in each cluster, details of data points wrongly clustered

in each cluster, number of data points in each cluster, number of data point correctly

clustered in each cluster and individual accuracy of each cluster as well as overall ac-

curacy for each bioinformatics data.

Table 5.30 contains the result obtained by GA-R2 for Breast Data A. Number of data
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point wrongly clustered in cluster 1 is one, in cluster 2 is five and in cluster 3 is one.

The total number of data points wrongly clustered is seven. Details of the data points

wrongly clustered are {11 20 31 38 39 46 56 66 80 }. The overall accuracy obtained

for Breast Data A using GA-R2 was 92.86 % .

Table 5.31 contains the result obtained by GA-R2 for Breast Data B. Details of the data

point wrongly clustered are {29 31 35 36 41 42 43 44 47 48 49 }. Notably cluster 1 and

cluster 2 achieves accuracy of 100 %. The overall accuracy obtained for Breast Data B

using GA-R2 was 77.55% .

Table 5.32 contains the result obtained by GA-R1 for Breast Multi Data A. Details of

the data point wrongly clustered are {2 15 19}. Notably cluster 2, cluster 3 and cluster 4

achieves accuracy 100 %. The overall accuracy obtained for Breast Multi Data A using

GA-R2 was 97.09 % .

Table 5.33 contains the result obtained by GA-R2 for Breast Multi Data B. The total

number of data points wrongly clustered is nine. The overall accuracy obtained for

Breast Multi Data B using GA-R2 was 71.88 % .

Table 5.34 contains the result obtained by GA-R2 for DLBCL A. The total number of

data points wrongly clustered is 49. The overall accuracy obtained for DLBCL A using

GA-R2 was 65.3 %.

Table 5.35 contains the result obtained by GA-R2 for DLBCL B. The total number of

data points wrongly clustered is 33. The overall accuracy obtained for DLBCL B using

GA-R2 was 81.67 % .

Table 5.36 contains the result obtained by GA-R2 for DLBCL C. The total number of

data points wrongly clustered is 18. Note that cluster 2 achieves 100% accuracy. The

overall accuracy obtained for DLBCL C using GA-R2 was 68.97 % .

Table 5.37 contains the result obtained by GA-R2 for DLBCL D The total number of

data points wrongly clustered is 36. The overall accuracy obtained for DLBCL D using

GA-R2 was 72.09 %.

Table 5.38 contains the result obtained by GA-R2 for Lung Cancer. The total number

of data points wrongly clustered is 32. The overall accuracy obtained for Lung Cancer

using GA-R2 was 83.76 %.
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Table 5.39 contains the result obtained by GA-R2 for Leukemia Cancer. The total num-

ber of data points wrongly clustered is 22. The overall accuracy obtained for Leukemia

Cancer using GA-R2 was 69.44%.

Table 5.40 contains the result obtained by GA-R2 for St. Jude Leukemia Cancer. The

total number of data points wrongly clustered is 13. Notably cluster 2 and cluster 6

achieves accuracy 100%. The overall accuracy obtained for St. jude Leukemia Cancer

using GA-R2 was 94.35 %.

Table 5.41 contains the result obtained by GA-R2 for Cho data. The total number of

data points wrongly clustered is 99. The overall accuracy obtained for Cho data using

GA-R2 was 74.35 %.

Table 5.42 contains the result obtained by GA-R2 for Iyer data. The total number of

data points wrongly clustered is 251. The overall accuracy obtained for Iyer data using

GA-R2 was 51.45%.

Table 5.30: Breast data A(GA-R2)

Breast data A

Cluster 1 Cluster 2 Cluster 3 Total

The right number of data point 11 51 36 98

Details of Data points wrongly clustered 11 20 31 38 46 56 80 11 20 31 38 46 56 80

number of data point wrongly clustered 1 5 1 7

The number of data point correctly clus-
tered

10 46 35 91

Accuracy (%) 90.91 90.2 97.22 92.86
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Table 5.31: Result of Breast data B (GA-R2)
Breast data B

Cluster 1 Cluster 2 Cluster 3 Cluster 4 Total

The right number of data point 12 11 7 19 49

Details of Data points wrongly clus-
tered

NIL NIL 29 31 35 36 41 42 43
44 47 48 49

29 31 35 36 41 42
43 44 47 48 49

number of data point wrongly clus-
tered

0 0 1 10 11

The number of data point correctly
clustered

12 11 6 9 38

Accuracy (%) 100 100 85.71 47.37 77.55

Table 5.32: Result of Breast Multi data A (GA-R2)
Breast Multi data A

Cluster 1 Cluster 2 Cluster 3 Cluster 4 Total

The right number of data point 26 26 28 23 103

Details of Data points wrongly clus-
tered

2 15 19 NIL NIL NIL 2 15 19

number of data point wrongly clus-
tered

3 0 0 0 3

The number of data point correctly
clustered

23 26 28 23 100

Accuracy (%) 88.46 100 100 100 97.09

Table 5.33: Result of Breast Multi data B (GA-R2)
Breast Multi data B

Cluster 1 Cluster 2 Cluster 3 Cluster 4 Total

The right number of data point 5 9 7 11 32

Details of Data points wrongly clus-
tered

1 4 5 12 13 15 16 19 30 1 4 5 12 13 15 16
19 30

number of data point wrongly clus-
tered

3 2 3 1 9

The number of data point correctly
clustered

2 7 4 10 23

Accuracy (%) 40 77.78 57.14 90.91 71.88

Table 5.34: Result of DLBCL A (GA-R2)
DLBCL A

Cluster 1 Cluster 2 Cluster 3 Total
The right number of
data point

49 50 42 141

Details of Data points
wrongly clustered

3 4 9 15 16
21 22 23 24
26 29 43 44
45 46 48

51 52 56 59 61 62
65 67 68 70 76 78
85 92 93 95 97 98

109 113 115 118
120 128 130 133
134 135 136 137
138 140 141

3 4 9 15 16 21 22 23 24 26 29 43 44
45 46 48 51 52 56 59 61 62 65 67 68
70 76 78 85 92 93 95 97 98 109 113
115 118 120 128 130 133 134 135
136 137 138 140 141

number of data point
wrongly clustered

16 18 15 49

The number of data
point correctly clus-
tered

33 32 27 92

Accuracy (%) 67.35 64 64.3 65.3
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Table 5.35: Result of DLBCL B (GA-R2)
DLBCL B

Cluster 1 Cluster 2 Cluster 3 Total
The right number of
data point

42 51 87 180

Details of Data points
wrongly clustered

2 3 5 14 15 16 32
34 35 36 37 39 40
41

46 47 49 51 58 65
77 79 92

96 97 103 119
121 122 124 164
167 179

2 3 5 14 15 16 32 34 35 36 37
39 40 41 46 47 49 51 58 65 77
79 92 96 97 103 119 121 122
124 164 167 179

number of data point
wrongly clustered

14 9 10 33

The number of data
point correctly clus-
tered

28 42 77 147

Accuracy (%) 66.67 82.35 88.51 81.67

Table 5.36: Result of DLBCL C (GA-R2)
DLBCL C

Cluster 1 Cluster 2 Cluster 3 Cluster 4 Total
The right number of
data point

17 16 13 12 58

Details of Data points
wrongly clustered

1 9 12 NIL 35 38 40 41
42 43 45

48 52 53 54 55 56 57
58

1 9 12 35 38 40 41 42
43 45 48 52 53 54 55
56 57 58

number of data point
wrongly clustered

3 0 7 8 18

The number of data
point correctly clus-
tered

14 16 6 4 40

Accuracy (%) 82.35 100 46.15 33.33 68.97

Table 5.37: Result of DLBCL D (GA-R2)
DLBCL D

Cluster 1 Cluster 2 Cluster 3 Cluster4 Total
The right number of
data point

19 37 24 49 129

Details of Data points
wrongly clustered

1 17 20 28 32 43 45
48 51 56

63 81 82 83 84 85 86 87
88 89 90 91 92 93 94
95 96 97 98 100 104
105 108 112 114 117

1 17 20 28 32 43 45 48
51 56 63 81 82 83 84 85
86 87 88 89 90 91 92 93
94 95 96 97 98 100 104
105 108 112 114 117

number of data point
wrongly clustered

2 8 1 25 36

The number of data
point correctly clus-
tered

17 29 23 24 93

Accuracy (%) 89.47 78.38 95.83 48.98 72.09

Table 5.38: Result of Lung Cancer (GA-R2)
Lung Cancer

Cluster 1 Cluster 2 Cluster 3 Cluster4 Total

The right number of
data point

139 17 21 20 197

Details of Data points
wrongly clustered

15 24 26 68 71 78 79 86
89 90 92 93 97 104 105
109 111 112 114 117
126 135 137 139

144 157 162
167 168
169 174

196 15 24 26 68 71 78 79 86
89 90 92 93 97 104 105
109 111 112 114 117
126 135 137 139 144
157 162 167 168 169
174 196

number of data point
wrongly clustered

24 1 6 1 32

The number of data
point correctly clus-
tered

115 16 15 19 165

Accuracy (%) 82.73 94.12 71.43 95 83.76
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Table 5.39: Result of Leukemia (GA-R2)
Leukemia

Cluster 1 Cluster 2 Total
The right number of data point 47 25 72
Details of Data points wrongly
clustered

6 7 8 22 23 28 31 32 33 34 35
36 39 40 41 42 45

48 52 53 54 69 6 7 8 22 23 28 31 32 33 34 35
36 39 40 41 42 45 48 52 53 54
69

number of data point wrongly
clustered

17 5 22

The number of data point cor-
rectly clustered

30 20 50

Accuracy (%) 63.83 80 69.44

Table 5.40: Result of St. Jude Leukemia (GA-R2)
St. Jude Leukemia

Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5 Cluster 6 Total
The right number
of data point

15 27 64 20 43 79 248

Details of Data
points wrongly
clustered

2 NIL 61 69 71
99

109 110
111 112

131 144
157 168

NIL 2 61 69 71 99 109
110 111 112 131
144 157 168

number of data
point wrongly
clustered

1 0 4 4 4 0 13

The number of
data point cor-
rectly clustered

13 27 60 16 39 79 234

Accuracy (%) 86.67 100 93.75 80 90.7 100 94.35

Table 5.41: Result of Cho Data (GA-R2)
Cho Data

Cluster 1 Cluster 2 Cluster 3 Cluster4 Cluster5 Total
The
right
number
of data
point

67 135 75 54 55 386

Details
of Data
points
wrongly
clustered

2 6 25 26
28 32 43
45 56 64
66

82 90 96
110 112
125 127
128 129
130 133
134 137
146 173
176 178
180 181
187 188
189 190
191 199

203 205 207 210 212
215 217 218 220 221
222 225 226 227 228
229 231 236 237 238
239 241 243 246 247
248 249 250 251 254
255 256 257 258 259
260 261 262 263 268
269 270 272 273 276
277

291
293
294
296
297
299
321
322
324

332
342
347
354
359
361
366
370

2 6 25 26 28 32 43 45 56 64 66 82 90
96 110 112 125 127 128 129 130 133
134 137 146 173 176 178 180 181 187
188 189 190 191 199 203 205 207 210
212 215 217 218 220 221 222 225 226
227 228 229 231 236 237 238 239 241
243 246 247 248 249 250 251 254 255
256 257 258 259 260 261 262 263 268
269 270 272 273 276 277 291 293 294
296 297 299 321 322 324 332 342 347
354 359 361 366 370

number
of data
point
wrongly
clustered

11 25 46 9 8 99

The
number
of data
point
correctly
clustered

56 110 29 45 47 287

Accuracy
(%)

83.58 81.48 38.67 83.33 85.45 74.35
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Table 5.42: Result of Iyer Data (GA-R2)
Iyer
Data

The
right
num-
ber of
data
point

Details of Data points wrongly clustered number
of data
point
wrongly
clus-
tered

Thenum-
ber of
data
point
cor-
rectly
clus-
tered

Accuracy
(%)

Cluster 1 33 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 21 22 23 28 29 30 31 26 7 21.21
Cluster 2 100 NIL 0 100 100
Cluster 3 145 143 146 157 161 162 163 164 166 167 168 169 170 171 172 173 174

175 176 177 178 179 180 181 186 187 188 190 191 192 193 194 197
198 199 200 201 202 203 204 206 210 211 213 224 225 226 231 243
244 245 248 249 255 265 267 270 271 273 274 275 278

61 84 57.93

Cluster 4 34 280 283 284 285 286 287 294 295 296 297 298 299 300 301 303 15 19 55.82
Cluster 5 43 313 314 315 316 317 318 319 320 321 322 324 325 326 327 328 329

330 331 332 333 334 335 342 343 348 349 352 355
28 15 34.89

Cluster 6 7 359 1 6 85.71
Cluster 7 34 365 366 367 370 373 378 379 381 383 384 387 388 389 390 391 392

393
17 17 50

Cluster 8 14 399 401 2 12 85.71
Cluster 9 63 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426

427 428 429 430 431 432 433 434 436 437 438 439 440 442 443 444
445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460
461 462 463 464 465 466 467 468 469 470 473

59 4 6.35

Cluster
10

19 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489
490 492

18 1 5.26

Cluster
11

25 493 494 495 496 497 498 499 500 502 503 504 505 506 507 508 509
510 511 512 513 514 515 516 517

24 1 4

Total 517 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 21 22 23 28 29 30 31 143
146 157 161 162 163 164 166 167 168 169 170 171 172 173 174 175
176 177 178 179 180 181 186 187 188 190 191 192 193 194 197 198
199 200 201 202 203 204 206 210 211 213 224 225 226 231 243 244
245 248 249 255 265 267 270 271 273 274 275 278 280 283 284 285
286 287 294 295 296 297 298 299 300 301 303 313 314 315 316 317
318 319 320 321 322 324 325 326 327 328 329 330 331 332 333 334
335 342 343 348 349 352 355 359 365 366 367 370 373 378 379 381
383 384 387 388 389 390 391 392 393 399 401 411 412 413 414 415
416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431
432 433 434 436 437 438 439 440 442 443 444 445 446 447 448 449
450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465
466 467 468 469 470 473 474 475 476 477 478 479 480 481 482 483
484 485 486 487 488 489 490 492 493 494 495 496 497 498 499 500
502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517

251 266 51.45

Table 5.43 to Table 5.55 shows the result obtained by GA-R3 for bioinformatics data.

All these table contains the following information of GA-R3 for bioinformatics data:

The right number of data point in each cluster, details of data point wrongly clustered

in each cluster, number of data points in each cluster, number of data point correctly

clustered in each cluster and individual accuracy of each cluster in a data as well as

overall accuracy for each bioinformatics data.

Table 5.43 contains the result obtained by GA-R3 for Breast Data A. Number of data

point wrongly clustered in cluster 1 is five, in cluster 2 is six and in cluster 3 is three. The

total number of data points wrongly clustered is 14. Details of the data point wrongly

clustered are {5 6 7 8 11 20 31 38 39 46 56 66 80 81}. The overall accuracy obtained

for Breast Data A using GA-R3 was 85.71 % .

Table 5.44 contains the result obtained by GA-R3 for Breast Data B. Details of the data

point wrongly clustered are {17 28 31 35 36 41 42 47 48 49}. Notably cluster 1 achieves
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accuracy 100 %. The overall accuracy obtained for Breast Data B using GA-R3 was

79.59 % .

Table 5.45 contains the result obtained by GA-R3 for Breast Multi Data A. Details of

the data point wrongly clustered are {2 15 19 25 26 38 60 70}. The overall accuracy

obtained for Breast Multi Data A using GA-R3 was 92.23 % .

Table 5.46 contains the result obtained by GA-R3 for Breast Multi Data B. The total

number of data points wrongly clustered is 17. The overall accuracy obtained for Breast

Multi Data B using GA-R3 was 53.125 % .

Table 5.47 contains the result obtained by GA-R3 for DLBCL A. The total number of

data points wrongly clustered is 33. The overall accuracy obtained for DLBCL A using

GA-R3 was 76.6 %.

Table 5.48 contains the result obtained by GA-R3 for DLBCL B. The total number of

data points wrongly clustered is 38. The overall accuracy obtained for DLBCL B using

GA-R3 was 78.89 % .

Table 5.49 contains the result obtained by GA-R3 for DLBCL C. The total number of

data points wrongly clustered is 9. The overall accuracy obtained for DLBCL C using

GA-R3 was 84.48 % .

Table 5.50 contains the result obtained by GA-R3 for DLBCL D The total number of

data points wrongly clustered is 49. The overall accuracy obtained for DLBCL D using

GA-R3 was 62.01 % .

Table 5.51 contains the result obtained by GA-R3 for Lung Cancer. The total number

of data points wrongly clustered is 41. The overall accuracy obtained for Lung Cancer

using GA-R3 was 79.2 %.

Table 5.52 contains the result obtained by GA-R3 for Leukemia Cancer. The total num-

ber of data points wrongly clustered is 32. The overall accuracy obtained for Leukemia

Cancer using GA-R3 was 55.56%.

Table 5.53 contains the result obtained by GA-R3 for St. Jude Leukemia Cancer. The

total number of data points wrongly clustered is 29. Notably cluster 2 and cluster 6

achieves accuracy 100%. The overall accuracy obtained for St. jude Leukemia Cancer

using GA-R3 was 88.31 %.
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Table 5.54 contains the result obtained by GA-R3 for Cho data. The total number of

data points wrongly clustered is 133. The overall accuracy obtained for Cho data using

GA-R3 was 65.54 %.

Table 5.55 contains the result obtained by GA-R3 for Iyer data. The total number of

data points wrongly clustered is 248. The overall accuracy obtained for Iyer data using

GA-R3 was 52.03 %.

Table 5.43: Result of Breast data A (GA-R3)
Breast data A

Cluster 1 Cluster 2 Cluster 3 Total

The right number of data point 11 51 36 98

Details of Data points wrongly clustered 5 6 7 8 11 20 31 38 39 46 56 66 80 81 5 6 7 8 11 20 31 38 39
46 56 66 80 81

number of data point wrongly clustered 5 6 3 14

The number of data point correctly clus-
tered

6 45 33 84

Accuracy (%) 54.55 88.24 91.67 85.71

Table 5.44: Result of Breast data B (GA-R3)
Breast data B

Cluster 1 Cluster 2 Cluster 3 Cluster 4 Total

The right number of data
point

12 11 7 19 49

Details of Data points
wrongly clustered

NIL 17 28 31 35 36 41 42 47 48
49

17 28 31 35 36 41 42
47 48 49

number of data point wrongly
clustered

0 1 1 8 10

The number of data point cor-
rectly clustered

12 10 6 11 39

Accuracy (%) 100 90.91 85.71 57.89 79.59
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Table 5.45: Result of Breast Multi data A (GA-R3)
Multi Breast data A

Cluster 1 Cluster 2 Cluster 3 Cluster 4 Total

The right number of data
point

26 26 28 23 103

Details of Data points
wrongly clustered

2 15 19 25
26

38 60 70 NIL 2 15 19 25 26 38 60 70

number of data point wrongly
clustered

5 1 2 0 8

The number of data point cor-
rectly clustered

21 25 26 23 95

Accuracy (%) 80.76 96.15 92.86 100 92.23

Table 5.46: Result of Breast Multi data B (GA-R3)
Multi Breast data B

Cluster 1 Cluster 2 Cluster 3 Cluster 4 Total

The right number of data
point

5 9 7 11 32

Details of Data points
wrongly clustered

1 4 5 12 13 16 19 22 23 26 28 29 30 31
32

1 4 5 12 13 16 19 22
23 26 28 29 30 31 32

number of data point wrongly
clustered

3 2 2 8 15

The number of data point cor-
rectly clustered

2 7 5 3 17

Accuracy (%) 40 77.78 71.43 27.27 53.125

Table 5.47: Result of DLBCL A (GA-R3)
DLBCL A

Cluster 1 Cluster 2 Cluster 3 Total

The right number of
data point

49 50 42 141

Details of Data points
wrongly clustered

3 4 9 15 16
22 24 29 43
44 45 46 48

51 62 76 78
93 95 97 98

113 115 118 120 128 130
134 136 137 138 140 141 3
4 9 15 16 22 24 29 43 44
45 46 48 51 62 76 78 9

3 95 97 98 113 115 118 120 128
130 134 136 137 138 140 141

number of data point
wrongly clustered

13 8 12 33

The number of data
point correctly clus-
tered

36 42 30 108

Accuracy (%) 73.47 84 71.43 76.6
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Table 5.48: Result of DLBCL B (GA-R3)
DLBCL B

Cluster 1 Cluster 2 Cluster 3 Total

The right number
of data point

42 51 87 180

Details of Data
points wrongly
clustered

2 3 5 14 15 16 32
34 35 36 37 39 40
41

43 46 47 49 51
53 58 60 62 64
65 77 79 92

96 97 103 119
121 122 124
164 167 179

2 3 5 14 15 16 32 34 35 36 37 39 40 41 43 46
47 49 51 53 58 60 62 64 65 77 79 92 96 97
103 119 121 122 124 164 167 179

number of data
point wrongly
clustered

14 14 10 38

The number of
data point cor-
rectly clustered

28 37 77 142

Accuracy (%) 66.67 72.55 88.51 78.89

Table 5.49: Result of DLBCL C (GA-R3)
DLBCL C

Cluster 1 Cluster 2 Cluster 3 Cluster4 Total

The right number of data
point

17 16 13 12 58

Details of Data points
wrongly clustered

12 NIL 35 38 40 41 42 43 45 47 12 35 38 40 41 42 43
45 47

number of data point
wrongly clustered

1 0 7 1 9

The number of data point
correctly clustered

16 16 6 11 49

Accuracy (%) 94.11 100 46.15 91.67 84.48

Table 5.50: Result of DLBCL D (GA-R3)
DLBCL D

Cluster 1 Cluster 2 Cluster 3 Cluster4 Total
The right number
of data point

19 37 24 49 129

Details of Data
points wrongly
clustered

1 7 9 13 14
17 19

20 28 30
32 40 41
42 43 45
48 51 56

63 64 65
66 68

81 82 83 84 85 86 87
88 89 90 91 92 93 94
95 96 97 98 100 104
105 108 112 114 117

1 7 9 13 14 17 19 20 28 30 32 40
41 42 43 45 48 51 56 63 64 65
66 68 81 82 83 84 85 86 87 88
89 90 91 92 93 94 95 96 97 98
100 104 105 108 112 114 117

number of data
point wrongly
clustered

7 12 5 25 49

The number of
data point cor-
rectly clustered

12 25 19 24 80

Accuracy (%) 63.16 67.57 79.17 48.98 62.01
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Table 5.51: Result of Lung Cancer (GA-R3)
Lung Cancer

Cluster 1 Cluster 2 Cluster 3 Cluster4 Total
The right number of
data point

139 17 21 20 197

Details of Data
points wrongly
clustered

15 18 19 20 21 24 26
33 42 50 68 69 71 76
78 79 86 89 90 92 93
97 104 105 109 111
112 114 117 126 135
137 139

144 157 162
167 168
169 174

196 15 18 19 20 21 24 26 33 42
50 68 69 71 76 78 79 86 89
90 92 93 97 104 105 109 111
112 114 117 126 135 137 139
144 157 162 167 168 169 174
196

number of data
point wrongly
clustered

33 1 6 1 41

The number of data
point correctly clus-
tered

106 16 15 19 156

Accuracy (%) 76.26 94.11 71.43 95 79.2

Table 5.52: Result of Leukemia (GA-R3)
Leukemia

Cluster 1 Cluster 2 Total
The right number of data point 47 25 72
Details of Data points wrongly clus-
tered

6 7 8 19 22 23 28 31
32 33 34 35 36 39 40
41 42 45

48 50 51 52 53 54
55 56 57 58 59 61
69 71

6 7 8 19 22 23 28 31 32 33 34 35 36
39 40 41 42 45 48 50 51 52 53 54 55
56 57 58 59 61 69 71

number of data point wrongly clus-
tered

18 14 32

The number of data point correctly
clustered

29 11 40

Accuracy (%) 61.70 44 55.56

Table 5.53: Result of St. Jude Leukemia (GA-R3)
St. Jude Leukemia

Cluster 1 Cluster 2 Cluster 3 Cluster4 Cluster5 Cluster6 Total
The right num-
ber of data
point

15 27 64 20 43 79 248

Details of Data
points wrongly
clustered

2 NIL 43 48 49
50 58 61
62 69 71
72 74 76
86 91 93
96 97 99
102 103

109 110
111 112

127 131
157 168

NIL 2 43 48 49 50
58 61 62 69 71
72 74 76 86 91
93 96 97 99
102 103 109
110 111 112
127 131 157
168

number of data
point wrongly
clustered

1 0 20 4 4 0 29

The number of
data point cor-
rectly clustered

14 27 44 16 39 79 219

Accuracy (%) 93.33 100 68.75 80 90.7 100 88.31

98



5.3 Experimental Setup

Table 5.54: Result of Cho Data (GA-R3)
Cho Data

Cluster
1

Cluster 2 Cluster 3 Cluster4 Cluster5 Total

The right
number of
data point

67 135 75 54 55 386

Details
of Data
points
wrongly
clustered

2 6 25
26 28
29 32
43 45
56 64
66

82 90 96
110 112
125 127
128 129
130 133
134 137
146 173
176 178
180 181
187 188
189 190
191 199

203 205 206
207 210 212
213 214 215
217 218 219
220 221 222
225 226 227
228 229 231
236 237 238
239 241 243
246 247 248
249 250 251
254 255 256
257 258 259
260 261 262
263 268 269
270 272 273
276 277

278 279 281
282 285 286
287 289 290
291 292 293
294 295 296
297 298 299
300 301 302
303 304 305
306 307 308
309 310 311
312 314 315
316 317 318
321 322 324
325 326

332
342
347
354
359
361
366
370

2 6 25 26 28 29 32 43 45 56 64 66 82 90 96
110 112 125 127 128 129 130 133 134 137
146 173 176 178 180 181 187 188 189 190
191 199 203 205 206 207 210 212 213 214
215 217 218 219 220 221 222 225 226 227
228 229 231 236 237 238 239 241 243 246
247 248 249 250 251 254 255 256 257 258
259 260 261 262 263 268 269 270 272 273
276 277 278 279 281 282 285 286 287 289
290 291 292 293 294 295 296 297 298 299
300 301 302 303 304 305 306 307 308 309
310 311 312 314 315 316 317 318 321 322
324 325 326 332 342 347 354 359 361 366
370

number of
data point
wrongly
clustered

9 25 50 41 8 133

The num-
ber of data
point cor-
rectly clus-
tered

58 110 25 13 47 253

Accuracy
(%)

86.57 81.481 33.33 31.71 87.04 65.544

Table 5.55: Result of Iyer Data (GA-R3)
Iyer Data

The
right
number
of data
point

Details of Data points wrongly clustered Number of
data point
wrongly
clustered

The
number
of data
point
correctly
clustered

Accuracy
(%)

Cluster1 33 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 21 22 23 28 29 30
31

26 7 78.79

Cluster2 100 NIL 0 100 100
Cluster3 145 143 146 157 161 162 163 164 166 167 168 169 170 171 172 173

174 175 176 177 178 179 180 181 186 187 188 190 191 192 193
194 197 198 199 200 201 202 203 204 206 210 211 213 224 225
226 231 243 244 245 248 249 255 265 267 270 271 273 274 275
278

61 84 57.93

Cluster4 34 280 283 284 285 286 287 294 295 296 297 298 299 300 301 303 15 19 55.88
Cluster5 43 313 314 315 316 317 318 319 320 321 322 324 325 326 327 328

329 330 331 332 333 334 335 342 343 348 349 352 355
28 15 34.89

Cluster6 7 359 1 6 85.71
Cluster7 34 365 366 367 370 373 378 379 381 383 384 387 388 389 390 391

392 393
17 17 50

Cluster8 14 399 401 2 12 85.71
Cluster9 63 411 412 413 414 415 416 417 418 419 420 421 422 423 424 426

427 428 429 430 431 432 433 434 436 437 438 439 440 442 443
444 445 447 448 449 450 451 452 453 454 455 456 457 458 459
460 461 462 463 464 465 466 467 468 469 473

56 7 11.11

Cluster10 19 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488
489 490 492

18 1 5.26

Cluster11 25 493 494 495 496 497 498 499 500 502 503 504 505 506 507 508
509 510 511 512 513 514 515 516 517

24 1 4

Total 517 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 21 22 23 28 29 30
31 143 146 157 161 162 163 164 166 167 168 169 170 171 172
173 174 175 176 177 178 179 180 181 186 187 188 190 191 192
193 194 197 198 199 200 201 202 203 204 206 210 211 213 224
225 226 231 243 244 245 248 249 255 265 267 270 271 273 274
275 278 280 283 284 285 286 287 294 295 296 297 298 299 300
301 303 313 314 315 316 317 318 319 320 321 322 324 325 326
327 328 329 330 331 332 333 334 335 342 343 348 349 352 355
359 365 366 367 370 373 378 379 381 383 384 387 388 389 390
391 392 393 399 401 411 412 413 414 415 416 417 418 419 420
421 422 423 424 426 427 428 429 430 431 432 433 434 436 437
438 439 440 442 443 444 445 447 448 449 450 451 452 453 454
455 456 457 458 459 460 461 462 463 464 465 466 467 468 469
473 474 475 476 477 478 479 480 481 482 483 484 485 486 487
488 489 490 492 493 494 495 496 497 498 499 500 502 503 504
505 506 507 508 509 510 511 512 513 514 515 516 517

248 269 52.03
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5.3 Experimental Setup

Final fitness value after convergence of GA-R1, GA-R2 and GA-R3 based clustering

algorithms has been tabulated in Table 5.56. GA-R1 attains minimum fitness value in

case of Iyer, Breast data B and Breast Multi data A. GA-R2 attains minimum fitness

value in case of Leukemia, Breast Multi Data B, DLBCL C, DLBCL D and Lung Can-

cer. GA-R3 attains minimum fitness value in case of Cho Data, Breast Data A, DLBCL

A, DLBCL B and St. jude Leukemia data. It may be noted that GA-R2 and GA-R3

attains same fitness value for Iyer data (i.e., 48.3397) but minimum fitness value was

attained by GA-R1 (i.e., 47.6926). GA-R1 and GA-R2 attains minimum fitness value

for Breast Data B and it is optimal compared to GA-R3. Also, GA-R1 and GA-R2

attains same minimum fitness value for Breast Multi Data A and it is optimal compared

to GA-R3.

Table 5.56: Final Fitness Function value for Bioinformatics Data
Dataset
Sl.
No.

Datasets GA-R1 GA-R2 GA-R3

3 Iyer data/Serum data 0.02096 0.02068 0.02068

4 Cho data (yeast data) 0.02146 0.02157 0.02397

5 Leukemia (Golub Exper-
iment)

0.10374 0.12475 0.10965

6 Breast data A 0.11518 0.10594 0.11548

7 Breast data B 0.33563 0.33563 0.33242

8 Breast Multi data A 0.09014 0.09014 0.0895

9 Breast Multi data B 0.18350 0.23075 0.2247

10 DLBCL A 0.06406 0.06410 0.06841

11 DLBCL B 0.06150 0.06207 0.06311

12 DLBCL C 0.18437 0.19119 0.18194

13 DLBCL D 0.14457 0.15479 0.1426

14 Lung Cancer 0.03538 0.03675 0.03538

15 St. Jude Leukemia data 0.04475 0.04454 0.04512

Table 5.57 summarizes the accuracy of GA based clustering algorithm for bioinformat-

ics data. Average, best and worst case analysis has been carried out on bioinformatics

data for GA-R1, GA-R2 and GA-R3. As far as best case analysis is concerned, GA-R1

performs better in case of Iyer data, Breast multi data A, DLBCL B data ; GA-R3 per-

forms better in case of Iris, Breast data B, DLBCL A, DLBCL C and in rest of cases

GA-R2 performs better compared to GA-R1 and GA-R3 (Table 5.57 ).
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5.4 Comparative Studies on HCM, SCM and GA based Clustering Algorithm

Table 5.57: Comparison of GA based clustering algorithm for Bioinformatics data using
Accuracy

Dataset
Sl.
No.

Datasets # Sam-
ples/genes

GA-R1 GA-R2 GA-R3

#cor-
rect

Accuracy(%) #cor-
rect

Accuracy(%) #cor-
rect

Accuracy(%)

3 Iyer data/Serum data 517 269 52.0309 266 51.4507 266 51.4507
4 Cho data (yeast data) 386 259 67.0984 287 74.3523 250 64.7668
5 Leukemia (Golub Experi-

ment)
72 40 55.566 50 69.4444 40 55.566

6 Breast data A 98 88 89.7959 91 92.8571 84 85.7143
7 Breast data B 49 38 77.5510 38 77.5510 39 79.5918
8 Breast Multi data A 103 100 97.0874 100 97.0874 95 92.2330
9 Breast Multi data B 32 20 62.5000 23 71.8750 17 53.1250
10 DLBCL A 141 98 69.5035 92 65.2482 108 76.5957
11 DLBCL B 180 152 84.4444 147 81.6667 142 78.8889
12 DLBCL C 58 46 79.3103 40 68.9655 50 86.2069
13 DLBCL D 129 85 65.8915 93 72.0930 80 62.0155
14 Lung Cancer 197 156 79.1878 165 83.7563 156 79.1878
15 St. Jude Leukemia data 248 233 93.9516 235 94.7581 219 88.3065

5.4 Comparative Studies on HCM, SCM and GA based
Clustering Algorithm

To evaluate performance of HCM, SCM and GA based clustering algorithm; Clustering

Accuracy was used as cluster validation metric. Extensive computer simulation ( Table

5.57) shows that GA based clustering algorithm was able to provide the highest accu-

racy and generalization results compared to Non-GA based clustering Algorithm in all

cases. Average, best and worst case analysis have been also carried out on machine

learning data as well as bioinformatics data. Soft C-means shows superior performance

in 11 cases (Iris, WBCD, Cho/yeast data, Breast data A, Breast data B, Breast Multi

data A, DLBCL A, , DLBCL C, DLBCL D, Lung Cancer, St. Jude Leukemia data)

over Hard C-means algorithm; while Hard C-mean shows superior performance in 4

cases (Iyer/serum, Leukemia, Breast Multi data B, DLBCL B) over Soft C-means (Ta-

ble 5.58).

GA based clustering algorithm always shows superior performance compared to Non-

GA based clustering algorithm. As far as best case analysis is concerned, GA-R1 per-

forms better in case of Iyer data, Breast multi data A, DLBCL B data ; GA-R3 performs

better in case of Iris, Breast data B, DLBCL A, DLBCL C and in rest of cases GA-R2

performs better compared to GA-R1 and GA-R3 (Table 5.58 ).
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5.5 Conclusion

Table 5.58: Comparison of HCM, SCM and GA based clustering algorithm for all
fifteen data using Accuracy

Sl.
No.

Datasets #
Sam-
ples

Hard C-means Soft C-means GA-R1 GA-R2 GA-R3

#cor-
rect

Accur
acy(%)

#cor-
rect

Accur
acy(%)

#cor-
rect

Accur
acy(%)

#cor-
rect

Accur
acy(%)

#cor-
rect

Accur
acy(%)

1 Iris 150 133 88.67 136 90.67 140 93.33 144 96 150 100
2 WBCD 683 654 95.75 656 96.05 657 96.1933 661 96.7789 665 97.3646
3 Iyer

data/Serum
data

517 268 51.84 252 48.74 269 52.0309 266 51.4507 266 51.4507

4 Cho data
(yeast data)

386 235 60.88 246 63.73 259 67.0984 287 74.3523 250 64.7668

5 Leukemia
(Golub
Experiment)

72 43 59.72 40 55.56 40 55.566 50 69.4444 40 55.566

6 Breast data A 98 71 72.44 86 87.75 88 89.7959 91 92.8571 84 85.7143
7 Breast data B 49 26 53.06 32 65.30 38 77.5510 38 77.5510 39 79.5918
8 Breast Multi

data A
103 82 79.61 93 90.29 100 97.0874 100 97.0874 95 92.2330

9 Breast Multi
data B

32 17 53.125 16 50 20 62.5000 23 71.8750 17 53.1250

10 DLBCL A 141 75 53.191 83 58.86 98 69.5035 92 65.2482 108 76.5957
11 DLBCL B 180 140 77.78 136 75.56 152 84.4444 147 81.6667 142 78.8889
12 DLBCL C 58 30 51.7241 44 75.86 46 79.3103 40 68.9655 50 86.2069
13 DLBCL D 129 55 42.64 65 50.38 85 65.8915 93 72.0930 80 62.0155
14 Lung Cancer 197 142 72.0812 150 76.14 156 79.1878 165 83.7563 156 79.1878
15 St. Jude

Leukemia
data

248 211 85.08 219 88.31 233 93.9516 235 94.7581 219 88.3065

5.5 Conclusion

In this chapter, four different types of encoding schemes for chromosome have been

studied for clustering. GA based clustering algorithm overcomes the limitation of HCM

and SCM clustering algorithm (i.e., to get trapped in local optimum solution). Extensive

computer simulation shows that GA based clustering algorithm was able to provide

the highest accuracy and generalization results compared to Non-GA based clustering

algorithm (HCM and SCM) in all fifteen cases.

As far as best case analysis is concerned, GA-R1 performs better in case of Iyer data,

Breast multi data A, DLBCL B data; GA-R3 performs better in case of Iris, Breast data

B, DLBCL A, DLBCL C and in rest of cases GA-R2 performs better compared to GA-

R1 and GA-R3.

As far as memory utilization is concerned, it is advisable to go for GA-R2 clustering

algorithm when number of features are less in number in a dataset otherwise to go for

GA-R1 clustering algorithm.
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Chapter 6

Brute Force based Clustering And
Simulated Annealing based
Preprocessing of Data

This chapter is broadly divided into two section:

• An incremental Brute-Force approach for Clustering and

• Preprocessing (diversification) of data using Simulated Annealing (SA).

6.1 An Incremental Brute-Force Approach for Cluster-
ing

The Brute-Force approach for clustering was intended for three specific purposes. These

are as follows:

• It should not require information like no. of clusters from user i.e it should help

in automatic evolution of clusters.

• It should be computationally faster so that it may be useful for high dimensional

data.

• It should be efficient in nature in terms of cluster formation.

The main steps involved in the proposed approach are shown in fig. 6.1.

Algorithmic Steps of An incremental Brute-Force Approach for Clustering:

Given a piece of gene expression data: the first step is Data preprocessing. In general,

it can be done by simple transformation or normalization performed on single variables,

filters and calculation of new variables from existing ones. In proposed work, only the
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6.1 An Incremental Brute-Force Approach for Clustering

Figure 6.1: Flow-Chart of Brute-Force Approach based Clustering Algorithm

first of these is implemented. Scaling of variables is of special importance, say for

example, Euclidean metric has been used to measure distances between vectors. If

one variable has values in the range of 0,...,1000 and another in the range of 0,...,1

the former will almost completely dominate the cluster formation because of its greater

impact on the distances measured. Typically, one would want the variables to be equally

important. The standard way to achieve this is to linearly scale all variables so that their

variances are equal to one [93].

Second step, is to compute Distance matrix ‘D’ from processed data obtained in step

first. ‘Di j’ represents the distance between the expression patterns for genes ‘i’ and ‘ j’.

Although a number of alternative measures could be used to calculate the similarity

between gene expressions, Euclidean distance metric [7], [8], [9], [10] has been used

due to its wide application range.

In the Third step, a threshold value, called ‘θ ’, is computed as follows:

‘θ = z × Average distance between genes’, where ’z’ is a positive constant. The value

of ‘z’ is chosen in such a way that number of clusters lies between 2 to
√

n. Lesser the

value of ‘z’, more the number of clusters. ‘θ ’ is calculated based on distance matrix,

that generates no. of cluster automatically. This threshold value is computed dynam-
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6.1 An Incremental Brute-Force Approach for Clustering

ically and changes after each cluster formation. This depends on two factor, first, the

average similarity of whole gene and secondly, how many genes are left for next cluster

formation.

Fourth step is an iterative step. If distance between two genes are less than threshold

value ‘θ ’, it forms a first cluster otherwise it falls under second cluster . This step is

repeated iteratively unless all the genes fall under some particular clusters.

In the final step, a validation test is performed to evaluate the quality of the clustering

result produced in step fourth.

6.1.1 Experimental Evaluation

This section describes about the experimental setup and datasets used for carrying the

simulation performance of an incremental Brute-Force approach for clustering.

1. Experimental Setup

To validate the feasibility and performance of the proposed approach, implemen-

tation has been done in MATLAB 7.0 (C2D, 2.0 GHz, 2 GB RAM) and applied

it to both of real gene expression data and synthetic data.

2. Datasets

To evaluate the performance of proposed approach, two real and one synthetic

gene expression data has been considered for study. These datasets do not possess

referenced (class-labeled) information available to the data.

• Datasets I is a synthetic data of [10x3] matrix.

• Datasets II represents Wisconsin breast cancer dataset and is obtained from

the University Medical Centre, Institute of Oncology, Ljubljana, Yugoslavia

(http://mlearn.ics.uci.edu or

ftp://ftp.ics.uci.edu/pub/machine-learning-databases/breast- cancer-wisconsin).

The dataset contains 699 instances and each instances are having 9 features.

There are 16 datapoints with missing values. Missing values have been re-

placed by mean of the feature of column in which missing value was found.
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6.1 An Incremental Brute-Force Approach for Clustering

• Datasets III is a real biological microarray data of [118x60] matrix that

represents growth inhibition factors when 118 drugs with putatively under-

stood methods of action were applied to the NCI60 cell lines. The original

data can be downloaded from

http://discover.nci.nih.gov/nature2000/data/selected data/a matrix118.txt.

6.1.2 Cluster Validation Metrics

Since all the datasets (Datasets I, II and III) considered in this chapter for simulation

study do not possess class-labeled information, clustering accuracy can not be used

as a cluster validation metric. In this chapter of the thesis, HS Ratio [45], [20], [13]

is used as cluster validation metric to validate the quality of clusters. Details of the

HS Ratio has been already discussed in section 5.2.3. It may be noted that “the quality

of cluster V increases with higher homogeneity values within C and lower separation

values between V and other clusters”.

6.1.3 Results and Discussion

Brute-Force based clustering approach has been simulated for different value of ‘z’ and

result obtained were tabulated in Table 6.1. The value of parameter ‘z’ has been taken

in range {0.3,1.8} for simulation studies. The algorithm generates number of cluster

automatically. The quality of the clusters formed were assessed using HS Ratio.

The simulation results shown in Table 6.2 show that the proposed Brute-Force based

clustering approach may perform better compared to HCM clustering algorithm when

the no. of cluster is high.

Table 6.3 shows the proposed Brute Force based Clustering approach is computationally

quite faster than conventional HCM clustering algorithm(fig. 6.2) and thus it may be

very useful while dealing with high dimensional microarray data.

Another important feature of the proposed Brute-Force based clustering approach

in opposite to HCM clustering algorithm is that, unlike HCM Clustering algorithm it

does not require the value of number of cluster i.e., ‘C’ from user.
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6.1 An Incremental Brute-Force Approach for Clustering

Table 6.1: HS Ratio value for Brute-Force approach based clustering
Brute-Force Approach based Clustering Algorithm

- Trial
No

z θ No of
cluster

Haverage Saverage HS Ratio

Sample data [10 X 3]

1 0.3000 2.383434e+000 5 0.1425 0.3047 0.4676

2 .7 7.944781e+000 3 0.2877 0.1119 2.5706

3 0.7000 5.561347e+000 4 0.2189 0.3073 0.7122

4 1.2000 9.533738e+000 2 0.5233 0.1569 3.3343

5 1.3 1.032822e+001 2 0.4649 0.8592 0.5411

6 1.4000 1.112269e+001 2 0.4649 0.8592 0.5411

Breast Cancer [699 X 9]

1 .9500 9.551604e+000 24 0.4889 0.5077 0.9630

2 1 1.005432e+001 20 0.5946 0.5644 1.0535

3 1.05 1.055704e+001 15 0.8097 0.5338 1.5168

4 1.1000 1.105975e+001 12 1.0299 0.6057 1.7003

5 1.2000 1.206518e+001 8 1.5935 0.6174 2.5808

6 1.4 1.407605e+001 4 3.2558 0.5732 5.6799

7 1.6000 1.608691e+001 3 4.5015 0.5290 7.9747

8 1.8000 1.809778e+001 2 6.8196 0.2794 24.4060

Cancer Data [118 X 60]

1 0.7000 1.146838e+001 9 0.5360 0.8097 0.6620

2 0.7300 1.195988e+001 8 0.6351 0.7892 0.8047

3 1 1.638340e+001 5 1.1719 0.8240 1.4221

4 1.1000 1.802174e+001 4 1.5445 0.5712 1.5592

5 1.6000 2.621344e+001 3 2.3853 0.4399 2.1310

Table 6.2: Comparative study on HCM and Brute Force approach based clustering
No. Of Cluster HCM clustering algorithm Brute Force Approach

Sample data [10 X 3]

3 2.7195 2.5706

2 3.3343 0.5411

Breast Cancer [699 X 9]

20 0.4899 1.0535

15 0.5881 1.5168

12 1.0293 1.7003

8 1.9899 2.5808

4 6.3689 5.6799

3 8.5102 7.9747

2 38.1630 24.4060

Cancer Data [118 X 60]

9 0.5595 0.6620

8 0.5522 0.8047

5 1.0069 1.1043

4 2.7040 1.5592

3 5.4224 2.1310
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6.1 An Incremental Brute-Force Approach for Clustering

Table 6.3: Computational time for HCM and Brute-Force based clustering Algorithm
Datasets Data Size HCM clustering Algo-

rithm
Brute-Force based clus-
tering

Sample data [10x3] Matrix 0.0203 Second 0.0008 Second

Breast Cancer [699x9] Matrix 0.5 Second 0.344 Second

Cancer Data [118x60] Matrix 0.047 Second 0.0310 Second

Figure 6.2: Comparison of Computational time for HCM and Brute-Force apraoach
based clustering

6.1.4 Conclusion

In this section of the thesis, a Brute-Force approach based clustering has been proposed.

Performance evaluation of proposed approach has been compared with conventional

HCM clustering Algorithm using artificial/synthetic and real datasets (machine learning

as well as bioinformatics data). Simulation results obtained shows that the proposed ap-

proach can achieve a high degree of automation and efficiency. The proposed approach

does not require the value of number of cluster ‘C’ from user. The proposed approach

is also quite faster than HCM clustering algorithm and thus it could be useful for high

dimensional microarray data. As far as efficiency is concerned, proposed Brute-Force

based clustering approach may perform better compared to HCM clustering algorithm

when the no. of clusters are higher in value.
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6.2 Preprocessing of Data using Simulated Annealing

6.2 Preprocessing of Data using Simulated Annealing

Simulated Annealing (SA) exploits an analogy between the way in which a metal cools

and freezes into a minimum energy crystalline structure (the annealing process) and the

search for a minimum in a more general system. Kirkpatrick et. al. [12] was first, who

proposed that SA form the basis of an optimization technique for combinatorial and op-

timization problems. It has been proved that by carefully controlling the rate of cooling

of the temperature, SA [12] can find the global optimum. SA’s major advantage over

other methods is its ability to avoid becoming trapped in local minima. The algorithm

employs a random search which not only accepts changes that decreases the objective

function ’ f ’ (assuming a minimization problem), but also some changes that increase it.

The latter are accepted with a probability p = exp(−d f /T ), where ‘d f ’ is the increase

in ‘ f ’ and ‘T ’ is a control parameter, which by analogy with the original application is

known as the system ‘Temperature’ irrespective of the objective function involved.

6.2.1 Purpose of the Proposed algorithm

The proposed method was meant for the specific purpose, to show how diversification

(preprocessing) of the data may improve efficiency of the clustering algorithm. The

method gives emphasis on clustering efficiency. Since SA (a meatheuristic) has been

used in proposed approach, clustering efficiency has been achieved at the cost of com-

putational time.

6.2.2 Basic steps involved in SA based clustering

The main steps of the proposed approach are as follows: Given a piece of gene expres-

sion data, the first step is Data preprocessing.

Second step is to diversify the data using Simulated Annealing method. The imple-

mentation of the basic SA algorithm is shown in fig. 6.3.

In third step, any clustering technique e.g., HCM clustering algorithm) may be used

for cluster formation.

In the final step, a validation test is performed to evaluate the quality of the clustering

result produced in third step.
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6.2 Preprocessing of Data using Simulated Annealing

Figure 6.3: Flow-Chart for diversification of Dataset using SA

6.2.3 Experimental Evaluation

To evaluate the performance of proposed approach, the same experimental condition

and same datasets which are used for Brute-Force approach based clustering (section

6.1.1), two real and one synthetic gene expression data has been used for study.

Parameters used for SA are shown in Table 6.4.

Table 6.4: Parameters used in Simulated Annealing
Parameter Value

No. of iteration 1000 × No. Of Genes/samples

Stopping criterion 99.9

Geometrical cooling (α) .9

Learning rate (l) 1
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6.2 Preprocessing of Data using Simulated Annealing

Figure 6.4: Initial Unit Directions for Datasets I

Figure 6.5: Final Unit Directions for Datasets I
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6.2 Preprocessing of Data using Simulated Annealing

Figure 6.6: Energy evolution for Datasets I

Figure 6.7: Initial Unit Directions for Datasets II
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6.2 Preprocessing of Data using Simulated Annealing

Figure 6.8: Final Unit Directions for Datasets II

Figure 6.9: Energy evolution for Datasets II
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6.2 Preprocessing of Data using Simulated Annealing

Figure 6.10: Initial Unit Directions for Datasets III

Figure 6.11: Final Unit Directions for Datasets III
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6.2 Preprocessing of Data using Simulated Annealing

Figure 6.12: Energy evolution for Datasets III

6.2.4 Results and Discussion

Simulation of SA processed based HCM clustering algorithm and HCM clustering al-

gorithm was carried out and result obtained were compared. The quality of the clusters

formed were assessed using HS Ratio.

Fig. 6.4, 6.5, 6.6 shows result of SA on Datasets I.

Fig. 6.7, 6.8, 6.9 shows result of SA on Datasets II.

Fig. 6.10, 6.11, 6.12 shows result of SA on Datasets III.

Fig. 6.4, 6.7, 6.10 represents the unit direction of genes before implementing SA on

Datasets I, Datasets II and Datasets III.

Fig. 6.5, 6.8, 6.11 represents the unit direction of genes after implementing SA on

Datasets I, Datasets II and Datasets III. These diagrams show that gene were diversified

and henceforth results in good cluster formation.

Fig. 6.6, 6.9, 6.12 represents the Energy Evolution of genes Datasets I, Datasets II

and Datasets III. These figures show that after 1,000 iteration change in Energy almost

becomes constant and this depicts that gene were completely diversified.

The experimental results for Datasets I, II and III have been shown in Table 6.5.
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6.2 Preprocessing of Data using Simulated Annealing

It is evident from Table 6.5 that SA processed based HCM clustering algorithm perform

better than HCM clustering.

Table 6.5: Comparative studies on HCM and and SA based HCM Clustering Algorithm
Datasets # cluster SA-HCM HCM Algo-

rithm
H S HS Ratio H S HS Ratio

Sample data 3 .2374 .0711 3.33 .319 .1173 2.72

Breast Cancer data

15 .3020 .3518 .8584 .4659 .5478 .8504
20 .2033 .3131 .6493 .2908 .6272 .4636
30 .1156 .316 .3658 .1526 .5524 .2762
40 .0765 .3403 .225 .0931 .5901 .1578

cancer data

8 .2696 .2768 .97 .463 .894 .52
10 .2043 .3771 .5505 .3582 .8749 .4094
15 .1185 .3086 .3839 .2034 .7829 .2598
20 .0766 .2930 .2614 .1372 .6326 .21688

6.2.5 Conclusion

In this section of the thesis, Simulated Annealing based method for diversification of

the data has been proposed. Performance evaluation of SA based Hard C-means and

conventional Hard C-means clustering algorithm has been compared using artificial /

synthetic and real datasets (machine learning as well as bioinformatics data). Results

obtained show that the SA based Hard C-means can achieve a high degree of accuracy

compared to Hard C-means clustering algorithm.
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Chapter 7

Performance Evaluation of Clustering
Algorithm using Cluster Validation
Metrics

In the previous chapters, extensive studies have been done on several clustering al-

gorithms which partition the dataset based on different clustering criteria. For gene

expression data, clustering results in groups of co-expressed genes. However, differ-

ent clustering algorithms, using different parameters, generally result in different sets

of clusters. Therefore, it is important to compare various clustering results and select

the one that best fits the ‘true’ data distribution. Cluster validation is the process of

assessing the quality and reliability of the cluster sets derived from various clustering

processes. In this chapter, first, summary of several cluster validation metrics available

in literature has been presented and next, comprehensive studies have been performed

on three cluster validation metrics namely, HS Ratio, Figure of Merit (FOM) and clus-

tering Accuracy.

7.1 Summary of Cluster Validation Metrics

Table 7.1 summarizes the several cluster validation metrics for clustering algorithm

available in literature.

Generally, cluster validity has three aspects. First, the quality of clusters can be mea-

sured in terms of homogeneity and separation on the basis of the definition of a cluster:

“objects within one cluster are similar to each other, while objects in different clusters

are dissimilar with each other”. For this, HS Ratio has been used as cluster valida-

tion metric. The second aspect relies on a given ‘ground truth’ of the clusters. The
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7.1 Summary of Cluster Validation Metrics

Table 7.1: Cluster Validation
Sl. no. Validity Index Source

1 Homogeneity and separation [13], [45], [20]

2 Rand Index [13], [45], [141], [142] , [143],
[144]

3 Jaccard coefficient [13], [45], [141], [142], [145]

4 Minkowski measure [13], [45], [141], [142]

5 Adjusted rand index [144]

6 Wighted rand index [146]

7 C index [147]

8 Goodman-Kruskal index [148]

9 Isolation index [149]

10 Davies-Bouldin Index [150], [151]

11 Dunn Index [150], [83]

12 Generalized Dunn Index [150], [152]

13 Calinski Harabasz(CH) Index [150], [153]

14 I index [150], [154]

15 XB index [150]

16 Biological Homogeneity Index [155]

17 Biological stability index [155]

18 p-Value [13], [45]

19 Prediction strength [41]

20 Figure Of merit [13], [45], [156]

21 Silhouette width [157]

22 Redundant Separation Scores(RSS) [157]

23 Weighted average discrepant pairs (WADP) [157]

24 PS [158], [159]

25 Cluster Accuracy [160]

‘ground truth’ or ‘class− labeled in f ormation’ could come from domain knowledge,

such as known function families of genes, or from other sources such as the clinical

diagnosis of normal or cancerous tissues. Cluster validation is based on the agreement

between clustering results and the “ground truth. For this, Cluster Accuracy was used

as cluster validation metric. The third aspect of cluster validity focuses on the reliabil-

ity of the clusters, or the likelihood that the cluster structure is not formed by chance.

For this, Figure of Merit (FOM) was used as cluster validation metric. In the next

subsection, discussion has been made on three aspects of cluster validation metrics in

details.
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7.1 Summary of Cluster Validation Metrics

7.1.1 Homogeneity and Separation

This measure is based on the principle “objects within one cluster are assumed to be

similar to each other, while objects in different clusters are dissimilar”. This cluster

validation metric HS Ratio is already discussed in details in section 5.2.3 ([20], [45]).

7.1.2 Figure of Merit

Yeung et. al. [45], [156] proposed an approach to cluster validation of gene clus-

ters. Intuitively, if a cluster of genes has possible biological significance, then the ex-

pression levels of the genes within that cluster should also be similar to each other

in ‘test’ samples that were not used to form the cluster. Yeung et. al. [45], [156]

proposed a specific figure of Merit (FOM), to estimate the predictive power of a clus-

tering algorithm. Suppose {V1,V2, . . .,VC} are the resulting clusters based on samples

{1, . . .,(e−1) ,(e+1) , . . .,n} and sample ‘e’ is left out to test the prediction strength.

Let R(g,e) be the expression level of gene ‘g’ under sample ‘e’ in the raw data matrix.

Let µVi (e) be the average expression level in sample ‘e’ of the genes in cluster Vi. The

figure of merit with respect to ‘e’ and the number of cluster ‘C’ is defined as

FOM (e, C) =
√

1
n×∑C

i=1 ∑x∈Vi (R(x,e)−µVi (e) )2

Each of the n samples can be left out in turn, and the aggregate figure of merit is de-

fined as FOM (C) = ∑n
e=1 FOM (e, C). The FOM measures the mean deviation of the

expression levels of genes in e relative to their corresponding to cluster means. Thus,

“a small value of FOM indicates a strong prediction strength, and therefore a high level

reliability of the resulting clusters”.

7.1.3 Clustering Accuracy

A simple approximation of accuracy for un-supervised learning that employs external

class information was described by Topchy et al. (2003). By finding the optimal cor-

respondence between a dataset’s annotated class labels and the clusters in a given par-

tition, a performance measure may be derived that reflects the proportion of instances

that were correctly assigned. “A high value for this measure generally indicates a high

level of agreement between a clustering and the annotated natural classes”. It may be

noted that this measure is only applicable when the number of clusters ‘C’ is the same
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7.3 Performance Evaluation Of Clustering Algorithm using Cluster Validation Metrics

as the number of natural classes. Clustering Accuracy is defined as:

ClusteringAccuracy = (
Number o f Correct Count

Total number o f instances genes/samples
) ∗ 100

.

7.2 Dataset used For Simulation studies

In this chapter of the thesis, fifteen datasets has been taken for simulation studies. De-

tails about these datasets has been already discussed in section 4.1.1.

7.3 Performance Evaluation Of Clustering Algorithm
using Cluster Validation Metrics

In this section, performance evaluation of Hard C-means, Soft C-means and family of

GA based clustering algorithm has been studied using three standard cluster validation

metrics. These cluster validation metrics are: HS Ratio, Figure of Merit (FOM) and

Clustering accuracy. Table 7.2 contains the result obtained by HS Ratio for all fifteen

datasets.

Table 7.2: Comparison of HCM, SCM and GA based clustering algorithm using
HS Ratio

Sl.
No.

Datasets Original HCM SCM GA-R1 GA-R2 GA-R3

1 IRIS 96.8226 104.4341 102.3522 100.8436 91.1395 96.8226
2 WBCD 613.2184 629.6011 632.8762 582.6400 577.7448 585.7532
3 Iyer data/Serum data 46.5158 55.9262 44.6866 47.6926 48.3397 48.3397
4 Cho data (yeast data) 40.2317 52.8210 47.9512 46.5921 46.3559 41.7082
5 Leukemia (Golub Exper-

iment)
8.2935 9.6394 9.1198 9.6394 8.0156 9.1198

6 Breast data A 10.5446 9.8435 8.7272 8.6815 9.4387 8.6591
7 Breast data B 3.0897 3.6018 3.2802 2.9794 2.9794 3.0082
8 Breast Multi data A 10.8731 11.7411 11.1699 11.0932 11.0932 11.1699
9 Breast Multi data B 3.2005 5.5203 5.3186 5.4495 4.3336 4.4502
10 DLBCL A 13.6649 13.0831 16.3963 15.6081 15.6001 14.6159
11 DLBCL B 15.3407 16.7588 16.0616 16.2582 16.1106 15.8453
12 DLBCL C 4.9864 5.9293 5.5618 5.4237 5.2302 5.4963
13 DLBCL D 6.6913 8.1304 7.9158 6.9168 6.4602 7.0126
14 Lung Cancer 25.9172 31.3441 29.9749 28.2616 27.2038 28.2616
15 St. Jude Leukemia data 22.1020 19.0021 22.0266 22.3435 22.4469 22.1592

Table 7.2 contains the result obtained by cluster validation metric based on HS Ratio.

HCM attains minimum value of HS Ratio in case of DLBCL A and St. Jude leukemia

data. SCM attains minimum value of HS Ratio in case of Iyer data. GA-R1 attains
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7.3 Performance Evaluation Of Clustering Algorithm using Cluster Validation Metrics

minimum value of HS Ratio in case of Breast data B and Breast multi data A. GA-R2

attains minimum value of HS Ratio in case of Iris, WBCD, leukemia, Breast data B,

Breast multi data A, Breast multi data B, DLBCL C, DLBCL D and Lung cancer. GA-

R3 attains minimum value of HS Ratio in case of yeast data (Cho data), Breast data A,

and DLBCL B. It is important to note that GA-R2 and GA-R3 attains same value of

HS Ratio 48.3397 in case of Iyer data. GA-R1 and GA-R2 attains minimum value of

HS Ratio 2.9794 and 11.0932 for Breast data B and Breast multi data A respectively.

GA-R1 and GA-R3 attains same value of HS Ratio 28.2616 for Lung Cancer.

Table 7.3 contains the result obtained by FOM. HCM attains minimum value of FOM in

case of Breast Multi Data A, Breast Multi Data B, DLBCL A, DLBCL D, Lung cancer

and st. Jude Leukemia data. SCM attains minimum value in case of WBCD, yeast,

Leukemia and Breast data B. GA-R1 attains minimum value in case of Iyer, Leukemia,

DLBCL B and DLBCL C. GA-R2 attains minimum value in case of Breast data A. GA-

R3 attains minimum value in case of Iris. SCM and GA-R1 attains minimum value of

FOM i.e.8.7079e+006 for Leukemia data. GA-R1 and GA-R2 attains same FOM value

5.2983e+004 and 5.6860e+006 for Breast Data B and Breast multi Data A respectively.

SCM and GA-R3 attains value i.e. 5.6834e+006 for Breast multi Data A.

Table 7.4 contains the result obtained by Clustering Accuracy for all fifteen datasets.

Soft C-means shows superior performance in 11 cases (Iris, WBCD, Cho/yeast data,

Breast data A, Breast data B, Breast Multi data A, DLBCL A, , DLBCL C, DLBCL

D, Lung Cancer, St. Jude Leukemia data) over Hard C-means algorithm; while Hard

C-mean shows superior performance in 4 cases (Iyer/serum, Leukemia, Breast Multi

data B, DLBCL B) data over Soft C-means (Table 7.4).

GA based clustering algorithm always shows superior performance compared to Non-

GA based clustering algorithm. As far as Best case analysis is concerned, GA-R3

performs better in case of Iris, WBCD, Breast data B, DLBCL A, DLBCL C; GA-

R1 performs better in case of Iyer data, Breast multi data A and DLBCL B data and in

rest of cases GA-R2 performs better compared to GA-R1 and GA-R3 (Table 7.4).
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7.3 Performance Evaluation Of Clustering Algorithm using Cluster Validation Metrics

Table 7.3: Comparison of HCM, SCM and GA clustering algorithm using FOM (Figure
Of Merit)

Sl.
No.

Datasets Original HCM SCM GA-R1 GA-R2 GA-R3

1 IRIS 573.7335 587.4279 580.4595 586.1591 589.9501 573.7335
2 WBCD 5.4201e+003 5.3590e+003 5.3577e+003 5.4030e+003 5.4684e+003 5.4604e+003
3 Iyer

data/Serum
data

1.3989e+004 1.4891e+004 1.5149e+004 1.4748e+004 1.4763e+004 1.4763e+004

4 Cho data
(yeast data)

8.7432e+003 8.0981e+003 7.6874e+003 7.9278e+003 8.0404e+003 8.3454e+003

5 Leukemia
(Golub
Experiment)

8.7050e+006 8.7085e+006 8.7079e+006 8.7079e+006 8.7140e+006 8.7085e+006

6 Breast data
A

1.0786e+005 1.1412e+005 1.1136e+005 1.0963e+005 1.0778e+005 1.0970e+005

7 Breast data
B

4.9059e+004 5.3330e+004 5.2055e+004
5.2983e+004 5.2983e+004

5.2091e+004

8 Breast Multi
data A

5.6793e+006 5.6334e+006 5.6834e+006 5.6860e+006 5.6860e+006 5.6834e+006

9 Breast Multi
data B

6.2678e+006 6.2455e+006 6.2629e+006 6.2529e+006 6.2579e+006 6.2464e+006

10 DLBCL A 5.4272e+005 5.3587e+005 5.4015e+005 5.3995e+005 5.3989e+005 5.3957e+005
11 DLBCL B 1.0210e+005 1.0657e+005 1.0684e+005 1.0355e+005 1.0445e+005 1.0476e+005
12 DLBCL C 3.8485e+006 3.8447e+006 3.8485e+006 3.8406e+006 3.8443e+006 3.8435e+006
13 DLBCL D 1.3557e+006 1.2731e+006 1.2852e+006 1.3000e+006 1.3005e+006 1.2907e+006
14 Lung Can-

cer
3.7602e+005 3.6974e+005 3.7198e+005 3.7010e+005 3.7217e+005 3.7010e+005

15 St. Jude
Leukemia
data

3.6193e+007 3.6146e+007 3.6178e+007 3.6188e+007 3.6189e+007 3.6179e+007

Table 7.4: Comparison of HCM, SCM and GA clustering algorithm using Accuracy
Sl.
No.

Datasets #
Sam-
ples

HCM SCM GA-R1 GA-R2 GA-R3

#cor-
rect

Accur
acy(%)

#cor-
rect

Accur
acy(%)

#cor-
rect

Accur
acy(%)

#cor-
rect

Accur
acy(%)

#cor-
rect

Accur
acy(%)

1 IRIS 150 133 88.67 136 90.67 140 93.33 144 96 150 100
2 WBCD 683 654 95.75 656 96.05 657 96.1933 661 96.7789 665 97.3646
3 Iyer

data/Serum
data

517 268 51.84 252 48.74 269 52.0309 266 51.4507 266 51.4507

4 Cho data
(yeast
data)

386 235 60.88 246 63.73 259 67.0984 287 74.3523 250 64.7668

5 Leukemia
(Golub Ex-
periment)

72 43 59.72 40 55.56 40 55.566 50 69.4444 40 55.566

6 Breast data
A

98 71 72.44 86 87.75 88 89.7959 91 92.8571 84 85.7143

7 Breast data
B

49 26 53.06 32 65.30 38 77.5510 38 77.5510 39 79.5918

8 Breast
Multi data
A

103 82 79.61 93 90.29 100 97.0874 100 97.0874 95 92.2330

9 Breast
Multi data
B

32 17 53.125 16 50 20 62.5000 23 71.8750 17 53.1250

10 DLBCL A 141 75 53.191 83 58.86 98 69.5035 92 65.2482 108 76.5957
11 DLBCL B 180 140 77.78 136 75.56 152 84.4444 147 81.6667 142 78.8889
12 DLBCL C 58 30 51.7241 44 75.86 46 79.3103 40 68.9655 50 86.2069
13 DLBCL D 129 55 42.64 65 50.38 85 65.8915 93 72.0930 80 62.0155
14 Lung Can-

cer
197 142 72.0812 150 76.14 156 79.1878 165 83.7563 156 79.1878

15 St. Jude
Leukemia
data

248 211 85.08 219 88.31 233 93.9516 235 94.7581 219 88.3065
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7.4 Conclusion

7.4 Conclusion

In this chapter of the thesis, comprehensive study has been done on three cluster vali-

dation metrics (HS Ratio, FOM and cluster Accuracy) for cluster formation algorithm

(Hard C-means, soft C-means and family of GA based clustering algorithm). Given

the variety of available clustering algorithms, one of the problems faced by biologists

is the selection of the cluster validation metrics, which is most appropriate to a given

gene expression data set. However, there is no single “best” clustering metrics which

is the “winner” in every aspect. The performance of different clustering algorithms and

different validation approaches is strongly dependent on both data distribution and ap-

plication requirements. When class-labeled information are known, it is advisable to

go for clustering accuracy as validation method and when class-labeled information are

not known, it is advisable to go for either FOM or HS Ratio or combination of FOM

and HS Ratio as cluster validation metrics. The choice of the clustering algorithm and

validity metric is often guided by a combination of evaluation criteria and the user’s

experience.
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Chapter 8

Conclusion

In this thesis extensive studies has been carried out on cluster formation algorithms

and their application to machine learning and gene expression microarray data. Mi-

croarray data analysis is a novel topic in current biological and medical research, es-

pecially when using this technology for cancer diagnosis. Microarray data possess

some important characteristic features which machine learning data do not possess.

Gene Expression Analysis problem can be formalized as a machine learning data classi-

fication (supervised / unsupervised) problem having high-dimension-low-sample data

set with lots of noisy/ missing data. Two set of datasets have been considered in this

thesis for the simulation study. The first set contains fifteen datasets with class-labeled

information and second set contains three datasets without class-labeled information.

The first set of data has been used to simulate HCM, SCM and GA based clustering

algorithm (chapter 4 and chapter 5). The second set of data has been used to simulate

Brute-Force method and SA-HCM based clustering (chapter 6). Since the work pre-

sented in this thesis was based on un-supervised classification (i.e., clustering); class-

labeled information was not used while forming clusters. In order to validate clustering

algorithm, for first set of data (data with class-labeled information), clustering accuracy

was used as cluster validation metric while for second set of data (data without class-

labeled information), HS Ratio was used as cluster validation metric.

The major contribution of this thesis were four-fold.

i) Comparative studies on Hard C-means and Soft C-means for machine learning

data as well as Microarray cancer data: Hard C-means restricts a gene to a fixed cluster

i.e., it doesn’t allow a gene to participate in a more than one cluster at a time whereas

a soft C-means algorithm allows soft partition of the data and allows a gene to be clus-
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tered into two or more clusters at a time with different degree of membership. Another

problem with Hard C-means algorithm is that it may fall into a sub-optimal solution.

A comprehensive and extensive study has been done on fifteen datasets (13 microar-

ray gene expression data and 2 machine learning data). Since these datasets possess

class-label information, clustering accuracy was used as cluster validation metric to

judge the quality of cluster formed. Computer simulation shows that Soft C-means

performs superior compared to Hard C-means algorithm in eleven cases out of fifteen

cases. Datasets belonging to these cases are Iris, WBCD, Yeast (Cho) data, Breast Data

(A, B), Multi Breast data A, DLBCL (A,C,D), Lung Cancer and St. Jude leukemia.

Whereas Hard C-means shows superior performance in four cases. Datasets belonging

to these cases are Serum data, Leukemia data, Breast multi data B and DLBCL B.

ii) Proposition of four different type of encoding schemes for supervised/unsupervised

classification. The novelty of the algorithm lies with two factors i.e., 1) new encoding

schemes and, 2) novel fitness function (HS Ratio). Since datasets taken for studies pos-

sess class-label information, clustering accuracy was used as cluster validation metric

to judge the quality of cluster formed. Extensive computer simulation shows that GA

based clustering algorithm was able to provide the highest accuracy and generalization

results compared to Non-GA based clustering algorithm in all cases. Average, best

and worst case analysis have been done for machine learning data. As far as best case

analysis is concerned, GA-R3 performs better in case of Iris, WBCD, Breast data B,

DLBCL A, DLBCL C; GA-R1 performs better in case of Iyer data, Breast multi data

A and DLBCL B data and in rest of cases GA-R2 performs better compared to GA-R1

and GA-R3.

iii) Proposition of Brute-Force method for cluster formation and preprocessing of

data using SA for diversification for datasets without having class-labeled information:

Since datasets taken for studies possess class-label information, HS Ratio was used

as cluster validation metric to judge the quality of cluster formed. The simulation re-

sults show that the proposed Brute-Force based Clustering approach may perform better

compared to Hard C-means clustering algorithm when the no. of clusters is higher in

values. Simulation result also shows that the proposed Brute-Force based Clustering
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approach is computationally quite faster than conventional Hard C-means clustering al-

gorithm and thus it may be very useful when somebody deals with high dimensional

microarray data. Another important feature of the proposed Brute-Force based Clus-

tering approach in opposite to Hard C-means clustering algorithm is that; unlike Hard

C-means Clustering algorithm it does not require the number of cluster i.e., the value of

’C’ from user.

Simulation result also shows that the proposed approach for diversification of data using

SA performs better compared to conventional Hard C-means algorithm.

iv) Comprehensive study on three cluster validation metrics ( HS Ratio, FOM and

cluster Accuracy) for cluster formation algorithm (Hard C-means, soft C-means and

family of GA based clustering algorithm): Given the variety of available clustering al-

gorithms, one of the problems faced by biologists is the selection of the cluster valida-

tion metrics, which is most appropriate for a given gene expression data set. However,

there is no single “best” clustering metrics which is the “winner” in every aspect. Re-

searchers typically select a few candidate algorithms and compare the clustering results.

Nevertheless, three aspects of cluster validation (i.e., quality, ground-truth and reliabil-

ity) has been discussed in this thesis and for each aspect, various approaches such as

HS Ratio, Accuracy and FOM are used to assess the performance of the cluster. In fact,

the performance of different clustering algorithms and different validation approaches

is strongly dependent on both data distribution and application requirements. Exten-

sive computer simulation shows that, when class-labeled information are known, it is

advisable to go for clustering accuracy as validation method. When class-labeled in-

formation are unknown, in that case it is advisable to go for either FOM or HS Ratio

or combination of FOM and HS Ratio as cluster validation metrics. The choice of the

clustering algorithm and validity metric is often guided by a combination of evaluation

criteria and the user’s experience.
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[118] P. Kudová, “Clustering genetic algorithm,” in DEXA Workshops, 2007, pp. 138–142.

[119] X. Wen, S. Fuhrman, G. S. Michaels, D. B. Carr, S. Smith, J. L. Barker, and R. Somogyi,
“Large-scale temporal gene expression mapping of central nervous system development,”
Proc. National Academic of Science, U. S. A, vol. 95, no. 1, pp. 334–339, January 1998.

[120] J. L. DeRisi, V. R. Iyer, and P. O. Brown, “Exploring the metabolic and genetic control of
gene expression on a genomic scale,” Science, vol. 278, no. 5338, pp. 680–686, October
1997.

[121] K. Y. Yeung, C. Fraley, A. Murua, A. E. Raftery, and W. L. Ruzzo, “Model-based cluster-
ing and data transformations for gene expression data,” Bioinformatics, vol. 17, no. 10,
pp. 977–987, 2001.

[122] U. Alon, N. Barkai, D. A. Notterman, K. Gish, S. Ybarra, D. Mack, and A. J. Levine,
“Broad patterns of gene expression revealed by clustering analysis of tumor and nor-
mal colon tissues probed by oligonucleotidearray,” Proc. National Academic of Science,
U. S. A, vol. 96, no. 12, pp. 6745–6750, June 1999.

133



[123] A. A. A. et. al., “Distinct types of diffuse large b-cell lymphoma identified by gene ex-
pression profiling,” Nature, vol. 43, pp. 503–511, 2000.

[124] L. T. Nguyen, M. Ramanathan, F. Munschauer, C. Brownscheidle, S. Krantz,
M. Umhauer, C. Miller, E. Denardin, and L. D. Jacobs, “Flow cytometric analysis of
in vitro proinflammatory cytokine secretion in peripheral blood from multiple sclerosis
patients,” Journal of Clinical Immunology, vol. 19, no. 3, pp. 179–185, 1999.

[125] E. Anderson, “The irises of the gaspe penisula, bulletin of the american iris society,”
Bulletin of the American IRIS society, vol. 59, pp. 2–5, 1939.

[126] O. L. Mangasarian and W. H. Wolberg, “Cancer diagnosis via linear programming,” SIAM
News, vol. 23, no. 5, pp. 1–18, September 1990.

[127] J. Fuentes-Uriarte, M. Garca, and O. Castillo, “Comparative study of fuzzy methods in
breast cancer diagnosis,” in IEEE International conference, 2008, ISSN: 978 - 1 - 4244 -
2352.

[128] “University at Buffalo, The State University of Newyork,”
http://www.cse.buffalo.edu/faculty/azhang/Teaching/index.html.

[129] Y. Hoshida, J. P. Brunet, P. Tamayo, T. R. Golub, and J. P. Mesirov, “Subclass map-
ping: identifying common subtypes in independent disease data sets,” PLoS ONE, vol. 2,
no. 11, 2007.

[130] A. I. Su, M. P. Cooke, K. A. Ching, Y. Hakak, and J. R. W. et. al., “Large-scale analysis
of the human and mouse transcriptomes,” PNAS, vol. 99, pp. 4465–4470, 2002.

[131] S. Ramaswamy, P. Tamayo, R. Rifkin, S. Mukherjee, and C. H. Y. et. al., “Multiclass
cancer diagnosis using tumor gene expression signatures,” PNAS, vol. 98, pp. 15 149–
15 154, 2001.

[132] S. Monti, K. J. Savage, J. L. Kutok, F. Feuerhake, and P. K. et. al., “Molecular profiling
of diffuse large b-cell lymphoma identifies robust subtypes including one characterized
by host inflammatory response,” blood:Journal of the American Society of Hematology,
vol. 105, no. 5, pp. 1851–1861, 2005.

[133] A. Rosenwald, G. Wright, W. C. Chan, J. M. Connors, and E. C. et. al., “The use of
molecular profiling to predict survival after chemotherapy for diffuse large-b-cell lym-
phoma,” New England Journal of Medicine, vol. 346, no. 25, pp. 1937–1947, 2002.

[134] E. j. Yeoh, M. E. Ross, S. A. Shurtleff, W. K. Williams, D. Patel, R. Mahfouz, F. G. Behm,
S. C. Raimondi, M. V. Relling, A. Patel, C. Cheng, D. Campana, D. Wilkins, X. Zhou,
J. Li, H. Liu, C. H. Pui, W. E. Evans, C. Naeve, L. Wong, and J. R. Downing, “Classi-
fication, subtype discovery, and prediction of outcome in pediatric acute lymphoblastic
leukemia by gene expression profiling,” Cancer Cell, vol. 1, no. 2, 2002.

[135] J. C. Bezdek, “A convergence theorem for the fuzzy isodata clustering algorithms,” IEEE
Transactions on Pattern Analysis and Machine Intelligence, vol. 2, no. 1, pp. 1–8, 1980.

[136] E. R. Dougherty, J. Barrera, M. Brun, S. Kim, R. M. C. Junior, Y. Chen, M. L. Bittner, and
J. M. Trent, “Inference from clustering with application to gene-expression microarrays,”
Journal of Computational Biology, vol. 9, no. 1, pp. 105–126, 2002.

[137] A. Clark and C. Thornton, “Trading spaces: Computation, representation, and the limits
of uninformed learning,” Behavioral and Brain Sciences, vol. 20, pp. 57–90, 1997.

[138] T. Jones and S. Forrest, “Fitness distance correlation as a measure of problem difficulty
for genetic algorithms,” in Proc. 6th Int. Conf. Genetic Algorithms, L. J. Eshelman, Ed.,
1995.

[139] D. E. Goldberg, Genetic Algorithms in Search, Optimization and Machine Learning.
New York: Addison-Wesley, 2005.

134



[140] T. Mu and A. K. Nandi, “Breast cancer detection from fna using svm with different
parameter tuning systems and som-rbf classifier,” Journal of the Franklin Institute, vol.
344, no. 3–4, pp. 285–311, 2007.

[141] M. Halkidi, Y. Batistakis, and M. Vazirgiannis, “On clustering validation techniques,”
Journal of Intelligent Information Systems, vol. 17, no. 2–3, pp. 107–145, December
2001.

[142] R. R. Sokal, Clustering and classification: Background and current directions, In Clas-
sifincation and clustering. Academic Press, 1977.

[143] W. M. Rand, “Objective criteria for the evaluation of clustering methods,” Journal of the
American Statistical Association, vol. 66, no. 336, pp. 846–850, 1971.

[144] L. Hubert and P. Arabie, “Comparing partitions,” Journal of Classification, vol. 2, no. 1,
pp. 193–218, Dec. 1985.

[145] P. Jaccard, “The distribution of flora in the alpine zone,” New Phytologist, vol. 11, pp.
37–50, 1912.

[146] A. Thalamuthu, I. Mukhopadhyay, X. Zheng, and G. C. Tseng, “Evaluation and compar-
ison of gene clustering methods in microarray analysis,” Bioinformatics, vol. 22, no. 19,
pp. 2405–2412, 2006.

[147] L. Hubert and J. Schultz, “Quadratic assignment as a general data-analysis strategy,”
British Journal of Mathematical and Statistical Psychologie, vol. 29, pp. 190–241, 1976.

[148] L. Goodman and W. Kruskal, “Measures of associations for cross-validations,” Journal
of the American Statistical Association, vol. 49, pp. 732–764, 1954.

[149] E. J. Pauwels and G. Frederix, “Finding salient regions in images: nonparametric cluster-
ing for image segmentation and grouping,” Computer Vision and Image Understanding,
vol. 75, no. 1–2, pp. 73–85, 1999.

[150] U. Maulik and S. Bandyopadhyay, “Performance evaluation of some clustering algo-
rithms and validity indices,” IEEE Transactions on Pattern Analysis and Machine Intel-
ligence, vol. 24, no. 12, pp. 1650–1654, Dec. 2002.

[151] D. L. Davies and D. W. Bouldin, “A cluster separation measure,” IEEE Transactions on
Pattern Analysis and Machine Intelligence, vol. 1, no. 2, pp. 224–227, 1979.

[152] J. C. Bezdek and N. R. Pal, “Cluster validation with generalized dunn’s indices,” in 2nd
New Zealand Two-Stream International Conference on Artificial Neural Networks and
Expert Systems (ANNES ’95), 1995.

[153] R. B. Calinski and J. Harabasz, “A dendrite method for cluster analysis,” Comm. in Statis-
tics, vol. 3, pp. 1–27, 1974.

[154] X. L. Xie and G. Beni, “A validity measure for fuzzy clustering,” IEEE Transactions on
Pattern Analysis and Machine Intelligence, vol. 13, no. 8, pp. 841–847, 1991.

[155] S. Datta and S. Datta, “Methods for evaluating clustering algorithms for gene expression
data using a reference set of functional classes,” BMC Bioinformatics, vol. 7, no. 1, pp.
397+, 2006.

[156] K. Y. Yeung, D. R. Haynor, and W. L. Ruzzo, “Validating clustering for gene expression
data,” Bioinformatics, vol. 17, no. 42001, pp. 309–318, 2001.

[157] G. Chen, S. A. Jaradat, N. Banerjee, T. S. Tanaka, M. S. H. Ko, and M. Q. Zhang,
“Evaluation and comparison of clustering algorithms in analyzing es cell gene expression
data,” Statistica Sinica, vol. 12, pp. 241–262, 2002.

[158] S. Saha and S. Bandyopadhyay, “Performance evaluation of some symmetry-based clus-
ter validity indexes,” IEEE Transactions on Systems, Man, and Cybernetics-part C: Ap-
plications and Reviews, vol. 39, no. 4, pp. 420–425, July 2009.

135



[159] C. H. Chou, M. C. Su, and E. Lai, “Symmetry as a new measure for cluster validity,” in
Proc. 2nd WSEAS Int. Conf. Sci. Comput. Softw. Comput., 2002, pp. 209–213.

[160] A. Topchy, A. Jain, and W. Punch, “Combining multiple weak clusterings,” in Proc. Third
IEEE International Conference on Data Mining (ICDM’03), 2003, pp. 331–338.

136



Dissemination of Work

• Dhiraj, Kumar and Rath, Santanu Kumar, “A Review on K-means clustering Al-
gorithm and its Application”, The International Journal of Engineering and
Technology, 2009, Singapore, ISSN: 1793 - 8198. (Accepted). [Chapter 3.2].

• Dhiraj, Kumar and Rath, Santanu Kumar, ”Gene Expression Analysis using Clus-
tering”, The International Journal of Computer and Electrical Engineering, vol. 1,
no. 2, pp. 160 – 169, 2009, Singapore. [Chapter 4.2].

• Dhiraj, Kumar and Rath, Santanu Kumar, ”Comparison of SGA and RGA based
Clustering Algorithm for Pattern Recognition”, International Journal of Re-
cent Trends in Engineering (Computer Science), vol. 1, no. 1, pp. 269 – 273,
May 2009, Academy Publisher, Finland, ISSN: 1797 - 9617. [Chapter 5.3.1].

• Dhiraj, Kumar and Rath, Santanu Kumar, ”Gene Expression Analysis using Clus-
tering”, Third IEEE International Conference on Bioinformatics and Biomed-
ical Engineering, 2009 in Beijing, China, ISBN: 978 - 1 - 4244 - 2902 - 8. (Ac-
cepted). [Chapter 4.2].

• Dhiraj, Kumar and Rath, Santanu Kumar, ”FCM for Gene Expression Bioinfor-
matics Data”, Second International Conference on Contemporary Comput-
ing, in proceeding of Communications in Computer and Information Science,
Springer Verlag, Heidelberg Germany, vol. 40, pp. 521 - 532, 2009, Noida, India.
[Chapter 4.3].

• Dhiraj, Kumar and Rath, Santanu Kumar, ”Family of Genetic Algorithm Based
Clustering Algorithm for Pattern Recognition”, in 1st IIMA International Con-
ference on Advanced Data Analysis, Business Analytics and Intelligence, June,
2009, IIM Ahmedabad, India. (Accepted), [Chapter 5.3.1].

• Dhiraj, Kumar and Rath, Santanu Kumar, ”SA-kmeans: A Novel Data Mining Ap-
proach to Identifying and Validating Gene Expression Data”, SPIT-IEEE In-
ternational conference and colloquium, vol. 4, pp. 107 – 112, 2008, Mumbai, In-
dia. [Chapter 6.2].

137



Appendix A

1. Datasets without Reference data

Table 1: Snap shots of datasets without reference data (Sample Data [10X3] )
Sl. No. feature 1 feature 2 feature 3
1 10 8 10
2 10 0 9
3 4 8.5 3
4 9.5 0.5 8.5
5 4.5 8.5 2.5
6 10.5 9 12
7 5 8.5 11
8 2.7 8.7 2
9 9.7 2 9
10 10.2 1 9.2

2. Datasets with Reference data(e.g.; Iris data)

Table 2: Snap Shots of Iris Data
Sl. No. feature 1 feature 2 feature 3 feature 4 Reference Data
1 5.1 3.5 1.4 0.2 1
2 4.9 3 1.4 0.2 1
3 4.7 3.2 1.3 0.2 1
4 4.6 3.1 1.5 0.2 1
5 5 3.6 1.4 0.2 1
6 5.4 3.9 1.7 0.4 1
7 4.6 3.4 1.4 0.3 1
8 5 3.4 1.5 0.2 1
9 4.4 2.9 1.4 0.2 1
10 4.9 3.1 1.5 0.1 1
11 7 3.2 4.7 1.4 2
12 6.4 3.2 4.5 1.5 2
13 6.9 3.1 4.9 1.5 2
14 5.5 2.3 4 1.3 2
15 6.5 2.8 4.6 1.5 2
16 5.7 2.8 4.5 1.3 2
17 6.3 3.3 4.7 1.6 2
18 4.9 2.4 3.3 1 2
19 6.6 2.9 4.6 1.3 2
20 5.2 2.7 3.9 1.4 2
21 6.3 3.3 6 2.5 3
22 5.8 2.7 5.1 1.9 3
23 7.1 3 5.9 2.1 3
24 6.3 2.9 5.6 1.8 3
25 6.5 3 5.8 2.2 3
26 7.6 3 6.6 2.1 3
27 4.9 2.5 4.5 1.7 3
28 7.3 2.9 6.3 1.8 3
29 6.7 2.5 5.8 1.8 3
30 7.2 3.6 6.1 2.5 3
31 5.4 3.7 1.5 0.2 1
32 4.8 3.4 1.6 0.2 1
33 4.8 3 1.4 0.1 1
34 5 2 3.5 1 2
35 5.9 3 4.2 1.5 2
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Appendix B

Reference Vector for datasets

Table 3: Iris Data
Cluster 1 Cluster 2 Cluster 3
1 to 50 51 to 100 101 to 150

Table 4: WBCD
Cluster 1 Cluster 2
1 to 444 445 to 683

Table 5: Breast A
Cluster 1 Cluster 2 Cluster 3
1 to 11 12 to 62 63 to 98

Table 6: Breast B
Cluster 1 Cluster 2 Cluster 3 Cluster 4
1 to 12 13 to 23 24 to 30 31 to 49

Table 7: Multi Breat A
Cluster 1 Cluster 2 Cluster 3 Cluster 4
1 to 26 27 to 52 53 to 80 81 to 103

Table 8: Multi Breat B
Cluster 1 Cluster 2 Cluster 3 Cluster 4
1 to 5 6 to 14 15 to 21 22 to 32

Table 9: DLBCL A
Cluster 1 Cluster 2 Cluster 3
1 to 49 50 to 99 100 to 141

Table 10: DLBCL B
Cluster 1 Cluster 2 Cluster 3
1 to 42 43 to 93 94 to 180

b



Table 11: DLBCL C
Cluster 1 Cluster 2 Cluster 3 Cluster 4
1 to 17 18 to 33 34 to 46 47 to 58

Table 12: DLBCL D
Cluster 1 Cluster 2 Cluster 3 Cluster 4
1 to 19 20 to 56 57 to 80 81 to 129

Table 13: Lung Cancer
Cluster 1 Cluster 2 Cluster 3 Cluster 4
1 to 139 140 to 156 157 to 177 178 to 197

Table 14: Leukemia
Cluster 1 Cluster 2
1 to 47 48 to 72

Table 15: Cho Data
Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5
1 to 67 68 to 202 203 to 277 278 to 331 332 to 386

Table 16: St.JudeLeukemiaTest
Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5 Cluster 5
1 to 15 16 to 42 43 to 106 107 to 126 127 to 169 170 to 248

Table 17: Iyer Data
Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5 Cluster 6 Cluster 7 Cluster 8 Cluster 9 Cluster

10
Cluster
11

1 to 33 34 to
133

134 to
278

279 to
312

313 to
355

356 to
362

363 to
396

397 to
410

411 to
473

474 to
492

493 to
517
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Appendix C

Result of Hard C-means Clustering Algorithm

Table 18: Iris Data
Cluster 1 Cluster 2 Cluster 3
1 to 50 51, 52, 54 to 77,79 to 100, 102

107 114 115 120 122 124 127 128
134 139 143 147 150

53, 78, 101, 104 to 106, 108 to
113, 116 to 119, 121, 123, 125,
126, 129 to 133, 135 to 138, 140
to 142, 144 to 146, 148, 149

Table 19: WBCD
Cluster 1 Cluster 2
1 3 5 to 107 109 to 134 136 to 138 140 to 151 153
to 163 165 to 181 183 to 243 245 to 444

445 447 449 to 451 453 to 462 465 to 469 471 473
474 477 to 488 491 493 to 538 540 to 567 569 to
597 601 602 604 to 625 627 to 636 638 to 683

Table 20: Breast A
Cluster 1 Cluster 2 Cluster 3
1 2 3 4 5 6 7 8 9 10 12 14 15 16
17 18 19 20 23 25 27 28 30 31 38
45 51 52 53 55 56 58 61 81

13 21 22 24 26 29 32 33 34 35 36
37 39 40 41 42 43 44 46 47 48 49
50 54 57 59 60 62 66 73 80

11 63 64 65 67 68 69 70 71 72
74 75 76 77 78 79 82 83 84 85
86 87 88 89 90 91 92 93 94 95
96 97 98

Table 21: Breast B
Cluster 1 Cluster 2 Cluster 3 Cluster 4
1 2 3 4 5 6 7 8 9 10 11 12
13 14 15 23 26 27 29 30
31 34 35 36 41 47 49

17 28 32 39 42 43 44
48

24 25 16 18 19 20 21 22 33 37
38 40 45 4616 18 19 20
21 22 33 37 38 40 45 46

Table 22: Multi Breat A
Cluster 1 Cluster 2 Cluster 3 Cluster 4
1 3 4 5 6 7 8 9 10 11 12
13 14 15 16 17 18 19 20
21 22 23 24 25 53 54 55
56 57 58 59 60 61 62 66
70 71 72 73 74 79 80

27 28 29 30 31 32 33
34 35 36 37 39 40 41
42 43 44 45 46 47 48
49 50 51 52

63 64 65 67 68 69 75
76 77 78

2 26 38 81 82 83 84 85
86 87 88 89 90 91 92 93
94 95 96 97 98 99 100
101 102 103

Table 23: Multi Breat B
Cluster 1 Cluster 2 Cluster 3 Cluster 4
2 3 15 16 19 1 4 6 7 8 9 10 11 14 26

31 32
5 12 13 17 18 20 21 23
28 29 30

22 24 25 27

d



Table 24: DLBCL A
Cluster 1 Cluster 2 Cluster 3
1 2 7 11 12 13 14 19 21 23 26 28
31 32 35 36 37 38 39 40 41 42 49
51 55 57 59 60 61 62 64 65 66 67
69 70 76 92 93 94 95 97 98 108
109 115 120 121 128 130 134 135

3 4 5 6 9 10 15 16 17 18 20 22 24
25 27 29 30 33 34 43 44 45 46 47
48 50 52 54 56 58 63 68 71 72 73
74 75 77 79 80 81 82 83 84 85 86
87 88 89 90 91 96 99 101 113 118
133 136 137 138 140 141

8 53 78 100 102 103 104 105 106
107 110 111 112 114 116 117 119
122 123 124 125 126 127 129 131
132 139

Table 25: DLBCL B
Cluster 1 Cluster 2 Cluster 3
1 4 6 7 10 11 12 13 17
18 19 20 21 22 24 25
26 27 28 29 30 31 33
42 46 47 49 51 58 65 92
98 103 119 120 121 122
124 136 138 167 179

2 3 5 8 9 14 15 16 23 32 34 35
36 37 38 39 40 41 43 44 45 48
50 52 53 54 55 56 57 59 60 61
62 63 64 66 67 68 69 70 71 72
73 74 75 76 77 78 79 80 81 82
83 84 85 86 87 88 89 90 91 93
96 97 116 164

94 95 99 100 101 102 104 105 106 107 108
109 110 111 112 113 114 115 117 118 123
125 126 127 128 129 130 131 132 133 134
135 137 139 140 141 142 143 144 145 146
147 148 149 150 151 152 153 154 155 156
157 158 159 160 161 162 163 165 166 168
169 170 171 172 173 174 175 176 177 178
180

Table 26: DLBCL C
Cluster 1 Cluster 2 Cluster 3 Cluster 4
1 2 3 4 5 6 7 8 9 10 11 13
14 15 16 17 35 36 38 40
41 42 44 45

21 23 24 25 27 31 32
34 37 39 46 52 53 54
55 56 57

29 30 43 47 49 12 18 19 20 22 26 28 33
48 50 51 58

Table 27: DLBCL D
Cluster 1 Cluster 2 Cluster 3 Cluster 4
8 10 11 12 14 15
28 32 40 41 42 43
45 51 72 77 107
109 112 120

1 2 3 4 5 21 22 23 25
26 27 29 30 49 59
61 81 83 84 85 86
87 88 89 90 96 104
105

17 20 56 57 58 60
62 67 70 71 75 78
79 80 91 97 103 124

6 7 9 13 16 18 19 24 31 33 34 35
36 37 38 39 44 46 47 48 50 52 53
54 55 63 64 65 66 68 69 73 74 76
82 92 93 94 95 98 99 100 101 102
106 108 110 111 113 114 115 116
117 118 119 121 122 123 125 126
127 128 129

Table 28: Lung Cancer
Cluster 1 Cluster 2 Cluster 3 Cluster 4
2 3 4 5 6 7 8 9 10 13 16 17 22 23 25
27 28 29 31 32 34 35 36 37 38 39 40
41 43 44 45 46 47 48 49 51 52 53 54
55 56 57 58 59 60 61 62 63 64 65 66
67 70 72 73 74 75 77 80 81 82 83 84
85 87 88 91 94 95 96 98 99 100 101
102 103 106 107 108 110 116 118
119 120 121 123 124 125 127 128
129 130 131 132 133 134 136 144
157 159 160 161 162 163 165 167
168 169 174 196

15 24 26 68 79 86
90 92 111 112 113
115 117 137 139
140 141 142 143
145 146 147 148
149 150 151 152
153 154 155 156

1 11 12 14 18 19
20 21 30 33 42 50
69 71 76 78 89 93
97 104 105 109 114
122 126 135 138
158 164 166 170
171 172 173 175
176 177

178 179 180
181 182 183
184 185 186
187 188 189
190 191 192
193 194 195
197

Table 29: Leukemia
Cluster 1 Cluster 2
1 2 3 4 5 9 10 11 12 13 14 15 16 17 18 19 20 21
24 25 26 27 29 30 37 38 43 44 46 47 48 50 51
52 53 54 55 56 57 58 59 61 62 69 71

6 7 8 22 23 28 31 32 33 34 35 36 39 40 41 42 45
49 60 63 64 65 66 67 68 70 72

Table 30: Cho Data
Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5
1 3 11 13
14 15 16 17
18 19 20 21
22 23 24 27
31 33 34 35
36 37 38 39
40 41 46 47
48 49 50 51
52 53 54 57
58 60 61 62
63 65 90 112
127 129 133
134 146 173
178 180 181
187 188 189
190 191 199
221 238

2 25 26 28 32 64 68 69 70 71 72
73 74 75 76 77 78 79 80 81 83 84
85 86 87 88 89 91 92 93 94 95 97
98 99 100 101 102 103 104 105
106 107 108 109 111 113 114 115
116 117 118 119 120 121 122 123
124 126 131 132 135 136 138 139
140 141 142 143 144 145 147 148
149 150 151 152 153 154 155 156
157 158 159 160 161 162 163 164
165 166 167 168 169 170 171 172
174 175 177 179 182 183 184 185
186 192 193 194 195 196 197 198
200 201 202 206 213 215 219 223
224 225 228 231 233 234 245 246
247 252 253 265 269 272 273 274
277

29 82 96 110 125 128 137 176 203
204 205 207 208 209 210 212 214
216 217 218 220 222 226 227 229
230 232 235 236 237 239 240 241
242 243 244 248 249 250 251 254
255 256 257 258 259 260 261 262
263 264 266 267 268 270 271 275
276 278 279 281 282 285 286 287
288 289 290 292 295 296 298 299
300 301 302 303 304 305 306 307
308 309 310 311 312 314 315 316
317 318 321 322 323 325 326 327
328 329 330 331 342 361

12 30 42 211
280 283 284
313 319 320
333 334 335
336 338 339
343 344 345
346 348 349
350 367 368
372 373 375
376 378 380
381 384 386

4 5 6 7 8 9 10
43 44 45 55
56 59 66 67
130 291 293
294 297 324
332 337 340
341 347 351
352 353 354
355 356 357
358 359 360
362 363 364
365 366 369
370 371 374
377 379 382
383 385
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Table 31: St.JudeLeukemiaTest

Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5 Cluster 6

8 12 44 45 56 69 70 75
82 88 92 170 177 178
179 184 186 188 190
191 194 196 202 210
211 213 214 217 219
220 221 224 225 229
232 233 235 239 240
241 242

16 17 18 19
20 21 22 23
24 25 26 27
28 29 30 31
32 33 34 35
36 37 38 39
40 41 42 109
110 111 112

1 3 4 5 6 7 9 10 11
13 14 15 43 46 47
48 49 50 51 52 53
54 55 57 58 59 60
62 63 64 65 66 67
68 72 73 74 76 77
78 79 80 81 83 84
85 86 87 89 90 91
93 94 95 96 97 98
100 101 102 103
104 105 106 222

2 61 71 99
107 108 113
114 115 116
117 118 119
120 121 122
123 124 125
126 131 157
168

127 128 129 130 132
133 134 135 136 137
138 139 140 141 142
143 144 145 146 147
148 149 150 151 152
153 154 155 156 158
159 160 161 162 163
164 165 166 167 169

171 172 173 174 175
176 180 181 182 183
185 187 189 192 193
195 197 198 199 200
201 203 204 205 206
207 208 209 212 215
216 218 223 226 227
228 230 231 234 236
237 238 243 244 245
246 247 248

Table 32: Iyer Data
Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster

5
Cluster
6

Cluster 7 Cluster 8 Clus
ter9

Clus
ter10

Clus
ter11

20 24 25
26 32 33
365 366
373 378
379 381
383 384
387 388
389 390
391 392
393 411
413 414
415 416
424 426
429 430
431 432
433 434
437 451
453 459
460 461
462 466
467 475
476 477
479 480
481 483
485 487
495

1 2 3 4 5 10
15 17 19 34
35 36 37 39
to 107 109 to
133 141 143
144 145 146
147 156 157
161 to 181
183 184 186
to 195 197 to
216 224 225
226 227 229
231 232 242
to 249 255
258 262 263
265 266 267
268 270 271
273 274 275
277 278 283
284 285 286
287 294 295
296 297 298
299 300 301
303 328 417
499

6 7 8 9 11 12 13
14 16 18 28 134
135 136 137 138
139 140 142 148
149 150 151 152
153 154 155 158
159 160 182 185
196 217 218 219
220 221 222 223
228 230 233 234
235 236 237 238
239 240 241 250
251 252 253 254
256 257 259 260
261 264 269 272
276 315 316 317
318 319 321 322
324 326 327 329
330 331 418 421
443 474

21 23 27
38 40
108 281
282 288
289 290
291 292
293 302
304 305
306 307
308 309
310 311
312 359
478 496
497 500
502 505
512

323
336
337
338
339
340
341
344
345
346
347
350
351
399
401

279
280
356
357
358
360
361
362
494
498
503
504
506
510
511
513
514
515
516
517

22 363
364 367
368 369
371 372
374 375
376 377
380 382
385 386
394 395
396 412
427 428
436 438
439 440
457 458
469 482
484 486
488 489
490 507
508

29 30 31
313 314
320 325
332 333
334 335
342 343
348 349
352 353
354 355
397 398
400 402
403 404
405 406
407 408
409 410
419 420
422 423
444 445
447 448
449 450
452 454
455 456
463 464
465 468
493

425
435
441
446
470
492
509

442
471
472
473
491

370
501

f



Appendix D

Result of SCM clustering Algorithm

Table 33: Iris Data
Cluster 1 Cluster 2 Cluster 3
1 2 3 4 5 6 7 8 9 10 11 12 13 14
15 16 17 34 18 19 20 21 22 23
24 25 26 27 28 29 30 31 32 33
34 50 35 36 37 38 39 40 41 42
43 44 45 46 47 48 49 50

52 54 55 56 57 58 59 60 61 62
63 64 65 66 67 68 69 70 71 72
73 74 75 76 77 79 80 81 82 83
84 85 86 87 88 89 90 91 92 93
94 95 96 97 98 99 100 102 107
114 120 122 124 127 128 139
143 150

51 53 78 101 103 104 105 106
108 109 110 111 112 113 115
116 117 118 119 121 123 125
126 129 130 131 132 133 134
135 136 137 138 140 141 142
144 145 146 147 148 149

Table 34: WBCD
Cluster 1 Cluster 2
1 3 5 to 107 109 to 134 136 to 138 140 to 151 153
to 163 165 to 181 183 to 243 245 to 444

445 447 449 to 451 453 to 462 465 to 469 471
473 474 477 to 488 490 to to 538 540 to 567
569 to 597 601 602 604 to 625 627 to 636 638
to 683

Table 35: Breast A
Cluster 1 Cluster 2 Cluster 3
2 9 10 20 31 38 39
46 56 66

1 3 4 5 6 7 8 12 13 14 15 16 17 18 19 21 22 23 24
25 26 27 28 29 30 32 33 34 35 36 37 40 41 42 43
44 45 47 48 49 50 51 52 53 54 55 57 58 59 60 61
62 80 81

11 63 64 65 67 68 69 70 71
72 73 74 75 76 77 78 79 82
83 84 85 86 87 88 89 90 91
92 93 94 95 96 97 98

Table 36: Breast B
Cluster 1 Cluster 2 Cluster 3 Cluster 4
1 2 3 4 5 6 7 8 9 10 11
12 49

16 18 19 20 21 22 33
37 38 40 45 46

13 14 15 24 25 26 27
28 29 30 31 35 36 41
47

17 23 32 34 39 42 43
44 48

Table 37: Multi Breat A
Cluster 1 Cluster 2 Cluster 3 Cluster 4
1 3 4 5 6 7 8 9 10 11
12 13 14 16 17 18 20
21 22 23 24 60 70

27 28 29 30 31 32 33
34 35 36 37 39 40 41
42 43 44 45 46 47 48
49 50 51 52

15 19 25 53 54 55 56
57 58 59 61 62 63 64
65 66 67 68 69 71 72
73 74 75 76 77 78 79
80

2 26 38 81 82 83 84 85
86 87 88 89 90 91 92
93 94 95 96 97 98 99
100 101 102 103

Table 38: Multi Breat B
Cluster 1 Cluster 2 Cluster 3 Cluster 4
2 3 16 19 22 6 7 8 10 11 5 12 13 14 18 20 21 23

28 29 30
1 4 9 15 17 24 25 26
27 31 32
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Table 39: DLBCL A
Cluster 1 Cluster 2 Cluster 3
1 2 5 6 7 8 10 11 12 13 14 17 18
19 20 25 27 28 30 31 32 33 34 36
38 39 40 41 42 47 49 51 52 62 76
85 93 115 120 128 130 134

3 4 9 15 16 21 22 23 24 26 29 35
37 43 44 45 46 48 50 53 54 55 57
58 60 63 64 66 69 71 72 73 74 77
80 81 82 83 84 86 88 89 91 94 99
102 104 107 109 113 118 123 133
135 136 137 138 140 141

56 59 61 65 67 68 70 75 78 79 87
90 92 95 96 97 98 100 101 103
105 106 108 110 111 112 114 116
117 119 121 122 124 125 126 127
129 131 132 139

Table 40: DLBCL B
Cluster 1 Cluster 2 Cluster 3
1 3 4 5 6 7 8 9 10 11 12 13 17 18
19 20 21 22 23 24 25 26 28 29 30
31 33 38 42 43 46 47 49 51 53 58
60 64 65 66 77 79 84 91 92 98 103
119 121 122 124 136 138 167 179

2 14 15 16 27 32 34 35 36 37 39
40 41 44 45 48 50 52 54 55 56 57
59 61 62 63 67 68 69 70 71 72 73
74 75 76 78 80 81 82 83 85 86 87
88 89 90 93 94 97 120 164 175

95 96 99 100 101 102 104 105 106
107 108 109 110 111 112 113 114
115 116 117 118 123 125 126 127
128 129 130 131 132 133 134 135
137 139 140 141 142 143 144 145
146 147 148 149 150 151 152 153
154 155 156 157 158 159 160 161
162 163 165 166 168 169 170 171
172 173 174 176 177 178 180

Table 41: DLBCL C
Cluster 1 Cluster 2 Cluster 3 Cluster 4
2 3 4 5 6 7 8 11 13 14 15
16 17 35 38 40 41 42 45

12 18 19 20 22 23 25
26 28 32 33 51

1 9 10 21 24 27 31 34 36
37 39 44 46 48 52 53 54
55 56 57 58

29 30 43 47 49 50

Table 42: DLBCL D
Cluster 1 Cluster 2 Cluster 3 Cluster 4
2 3 4 5 6 8 10 11 15 16 18
22 27 28 29 30 32 45 48 49
63 81 83 84 85 86 87 89 90
96 104 105

7 9 13 19 24 26 31
33 34 35 36 37 38 39
44 46 47 50 52 53 54
55 64 65 66 68 69 76
82 92 93 94 95 98 100
108 114 117 128 129

1 17 20 21 23 25 40 41
42 43 51 56 57 58 59
60 61 62 67 70 71 72
77 78 79 80 88 91 97
112

12 14 73 74 75 99 101
102 103 106 107 109
110 111 113 115 116
118 119 120 121 122
123 124 125 126 127

Table 43: Lung Cancer
Cluster 1 Cluster 2 Cluster 3 Cluster 4
1 2 3 4 5 6 7 8 9 10 11 12 13 16 17 22
23 25 27 28 29 31 32 34 35 36 37 38
39 40 41 43 44 45 46 47 48 49 51 52
53 54 55 56 57 58 59 60 61 62 63 64
65 66 67 70 72 73 74 75 77 80 81 82
83 84 85 87 88 91 94 95 96 98 99 100
101 102 103 106 107 108 110 113 115
116 118 119 120 121 122 123 124 125
127 128 129 130 131 132 133 134 136
141 144 157 162 167 168 169 174 196

14 15 18 19 20 21 24
26 30 33 42 50 68 69
76 79 86 89 90 92 93
97 104 109 111 112
114 117 135 137 138
139 140 142 143 145
146 147 148 149 150
151 152 153 154 155
156 170 176

71 78 105 126
158 159 160 161
163 164 165 166
171 172 173 175
177

178 179 180 181
182 183 184 185
186 187 188 189
190 191 192 193
194 195 197
178 to 197

Table 44: Leukemia
Cluster 1 Cluster 2
1 2 3 4 5 9 10 11 12 13 14 15 16 17 18 20 21 24 25
26 27 29 30 37 38 43 44 46 47 48 50 51 52 53 54 55
56 57 58 59 61 69 71

6 7 8 19 22 23 28 31 32 33 34 35 36 39 40 41 42 45
49 60 62 63 64 65 66 67 68 70 72

Table 45: Cho Data
Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5
1 3 4 5 7 8 9 10 11
13 14 15 16 17 18 19
20 21 22 23 24 27 29
31 33 34 35 36 37 38
39 40 41 44 46 47 48
49 50 51 52 53 54 55
57 58 59 60 61 62 63
67 90 112 127 129 130
133 134 146 181 187
188 189 190 191 199
221 238 241 293 294
299 332 347 354 359
366 370

28 68 69 70 71 72 73
74 75 76 77 78 80 81
83 84 85 87 88 91 92
93 94 95 98 99 102
103 104 106 107 108
109 111 113 114 116
117 118 120 121 122
123 124 126 135 139
140 141 142 148 149
150 151 152 153 154
155 156 157 158 159
160 161 163 164 165
166 167 169 170 171
172 175 177 179 182
192 193 195 197 215
225 228 231 246 247
269 272 273 277

2 25 26 32 64 65 79 82
86 89 96 97 100 101
105 110 115 119 125
128 131 132 136 137
138 143 144 145 147
162 168 173 174 176
178 180 183 184 185
186 194 196 198 200
201 202 204 206 208
209 213 216 219 223
224 230 232 233 234
235 240 242 244 245
252 253 264 265 266
267 271 274 275

203 205 207 210 212
214 217 218 220 222
226 227 229 236 237
239 243 248 249 250
251 254 255 256 257
258 259 260 261 262
263 268 270 276 278
279 281 282 285 286
287 288 289 290 292
295 298 300 301 302
303 304 305 306 307
308 309 310 311 312
314 315 316 317 318
323 325 326 327 328
329 330 331 342 361

6 12 30 42 43 45 56 66
211 280 283 284 291
296 297 313 319 320
321 322 324 333 334
335 336 337 338 339
340 341 343 344 345
346 348 349 350 351
352 353 355 356 357
358 360 362 363 364
365 367 368 369 371
372 373 374 375 376
377 378 379 380 381
382 383 384 385 386
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Table 46: St.JudeLeukemiaTest
Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5 Cluster 6
1 3 4 5 6 7
8 9 10 11
12 13 14
15 43 48
49 50 58
62 69 71
72 74 76
86 91 93
97 102 103

16 17 18
19 20 21
22 23 24
25 26 27
28 29 30
31 32 33
34 35 36
37 38 39
40 41 42
96 109 110
111 112

44 45 46 47 51
52 53 54 55
56 57 59 60
63 64 65 66 67
68 70 73 75 77
78 79 80 81 82
83 84 85 87 88
89 90 92 94 95
98 100 101 104
105 106

2 61 99 107
108 113 114
115 116 117
118 119 120
121 122 123
124 125 126
127 131 133
143 144 157
168

128 129 130
132 134 135
136 137 138
139 140 141
142 145 146
147 148 149
150 151 152
153 154 155
156 158 159
160 161 162
163 164 165
166 167 169

170 171 172 173 174 175 176 177
178 179 180 181 182 183 184 185
186 187 188 189 190 191 192 193
194 195 196 197 198 199 200 201
202 203 204 205 206 207 208 209
210 211 212 213 214 215 216 217
218 219 220 221 222 223 224 225
226 227 228 229 230 231 232 233
234 235 236 237 238 239 240 241
242 243 244 245 246 247 248

Table 47: Iyer Data
Cluster 1 Cluster 2 Cluster 3 Cluster 4 Clus

ter5
Clus
ter6

Clus
ter7

Cluster 8 Clus
ter9

Clus
ter10

Cluster
11

20 26 27
32 33
361 378
379 383
384 387
388 390
392 393
415 416
424 426
429 430
431 432
433 434
437 453
459 460
461 466
467 468
475 476
477 478
479 480
483 495
496 498
505 510
511 512

1 2 3 19 35
to 37 57 59
61 to 65 68 to
127 129 130
131 132 133
143 146 157
161 to 181
186 187 188
190 191 192
193 194 197
198 199 200
201 202 203
204 206 210
211 213 224
225 226 231
243 244 245
248 249 255
265 267 270
271 273 274
275 278 282
to 291 293 to
295 308 310
311 312 328
499

4 to 18 21 34 58
60 66 67 128 135
to 142 144 145
147 to 156 158
159 160 165 182
to 184 185 189
195 196 205 207
208 209 212 214
to 223 227 228
229 230 232 233
234 235 236 237
238 239 240 241
242 246 247 250
251 252 253 254
256 257 258 259
260 261 262 263
264 266 268 269
272 276 277 281
292 309 315 316
317 318 319 322
326 327 329 330
331 356 358 359
417 474 497 500
502

22 23 24
25 279
357 363
364 365
366 367
371 372
373 374
377 380
381 389
391 394
395 396
484 485
486 487
488 489
490 507
508

323
336
337
338
339
340
341
344
345
346
347
350
351
353
354
399
401
402

280
360
362
494
501
503
504
506
513
514
515
516
517

368
369
375
376
382
385
386
435
441
509

28 29 30
134 313
314 320
321 324
325 332
333 334
335 342
343 348
349 352
355 397
398 400
403 404
405 406
407 408
409 410
413 414
418 419
420 421
422 423
443 444
445 448
449 450
451 452
454 455
462 463
493

471
472

370
442
473
491

31 411
412 425
427 428
436 438
439 440
446 447
456 457
458 464
465 469
470 481
482 492

i



Appendix E

Data point wrongly clustered in HCM and SCM

Table 48: Data point wrongly clustered in HCM and Scm
IRIS

K-means FCM

53 78 102 107 114 115 120 122 124 127 128 134
139 143 147 150

53 78 102 107 114 115 120 122 124 127 128 134
139 143 147 150

WBCD

2 4 108 135 139 152 164 182 244 446 448 452 463
464 470 472 475 476 489 490 492 539 568 598 599
600 603 626 637

2 4 108 135 139 152 164 182 244 446 448 452 463
464 470 471 472 475 476 481 489 490 492 539 568
600 603 626 637

Breast A

11 12 14 15 16 17 18 19 20 23 25 27 28 30 31 38
45 51 52 53 55 56 58 61 66 73 80 81

13 14 15 17 23 33 37 38 40 45 46 49

Breast B

13 14 15 16 18 19 20 21 22 23 26 27 28 29 30 31
32 34 35 36 39 41 42 43 44 47 48 49

13 14 15 17 23 33 37 38 40 45 46 49

Multi Breast A

2 26 38 53 54 55 56 57 58 59 60 61 62 66 70 71 72
73 74 79 80

2 15 19 25 26 38 60 70 103

Multi Breast B

1 4 5 12 13 15 16 19 23 26 28 29 30 31 32 1 4 5 9 12 13 14 15 16 17 19 22

DLBCL A

3 4 5 6 8 9 10 15 16 17 18 20 22 24 25 27 29 30 33
34 43 44 45 46 47 48 51 53 55 57 59 60 61 62 64
65 66 67 69 70 76 78 92 93 94 95 97 98 101 108
109 113 115 118 120 121 128 130 133 134 135 136
137 138 140 141

3 4 9 15 16 21 22 23 24 26 29 35 37 43 44 45 46
48 51 52 56 59 61 62 65 67 68 70 75 76 78 79 85
87 90 92 93 95 96 97 98 102 104 107 109 113 115
118 120 123 128 130 133 134 135 136 137 138 140
141

DLBCL B

2 3 5 8 9 14 15 16 23 32 34 35 36 37 38 39 40 41
46 47 49 51 58 65 92 96 97 98 103 116 119 120
121 122 124 136 138 164 167 179

2 14 15 16 27 32 34 35 36 37 39 40 41 43 46 47 49
51 53 58 60 64 65 66 77 79 84 91 92 94 97 98 103
119 120 121 122 124 136 138 164 167 175 179

DLBCL C

12 18 19 20 22 26 28 29 30 33 35 36 38 40 41 42
43 44 45 47 49 57

1 9 10 12 21 24 27 29 30 31 35 38 40 41 42 43 45
48 51 52 53 54 55 56 57 58

DLBCL D

1 2 3 4 5 6 7 9 13 16 17 18 19 20 24 28 31 32 33
34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 50
51 52 53 54 55 56 59 61 63 64 65 66 68 69 72 73
74 76 77 81 83 84 85 86 87 88 89 90 91 96 97 103
104 105 107 109 112 120 124

1 7 9 12 13 14 17 19 20 21 22 23 25 27 28 29 30 32
40 41 42 43 45 48 49 51 56 63 64 65 66 68 69 73
74 75 76 81 82 83 84 85 86 87 88 89 90 91 92 93
94 95 96 97 98 100 104 105 108 112 114 117 128
129
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Data point wrongly clustered in HCM and SCM

Table 49: Data point wrongly clustered in HCM and SCM

LungCancer

1 11 12 14 15 18 19 20 21 24 26 30 33 42 50 68
69 71 76 78 79 86 89 90 92 93 97 104 105 109 111
112 113 114 115 117 122 126 135 137 138 139 144
157 159 160 161 162 163 165 167 168 169 174 196

1 11 12 14 15 18 19 20 21 24 26 30 33 42 50 68
69 71 76 78 79 86 89 90 92 93 97 104 105 109 111
112 113 114 115 117 122 126 135 137 138 139 144
157 159 160 161 162 163 165 167 168 169 174 196

Leukemia

6 7 8 22 23 28 31 32 33 34 35 36 39 40 41 42 45
48 50 51 52 53 54 55 56 57 58 59 61 62 69 71

48 50 51 52 53 54 55 56 57 58 59 61 69 71 6 7 8
19 22 23 28 31 32 33 34 35 36 39 40 41 42 45

Cho Data

2 4 to 10 12 25 26 28 29 30 32 42 43 44 45 55 56
59 64 66 67 82 90 96 110 112 125 127 128 129 130
133 134 137 146 173 176 178 180 181 187 188 189
190 191 199 206 211 213 215 219 221 223 224 225
228 231 233 234 238 245 246 247 252 253 265 269
272 273 274 277 278 279 281 282 285 to 312 314
to 318 321 to 331 333 334 335 336 338 339 342
to 346 348 349 350 361 367 368 372 373 375 376
378 380 381 384 386

6 12 26 28 30 32 42 43 45 56 64 65 66 79 82 86
89 90 96 97 100 101 105 110 112 115 119 125 127
128 129 130 131 132 133 134 136 137 138 143 144
145 146 147 162 168 173 174 176 178 180 181 183
184 185 186 187 188 189 190 191 194 196 198 199
200 201 202 203 205 207 210 211 212 214 215 217
218 220 221 222 225 226 227 229 231 236 237 238
239 241 243 246 247 248 249 250 251 254 255 256
257 258 259 260 261 262 263 268 269 270 272 273
276 277 280 283 284 291 293 294 296 297 299 313
319 320 321 322 324 332 347 354 359 366 370

St.JudeLeukemia Data

1 to 7 9 10 11 13 14 15 44 45 56 61 69 70 71 75 82
88 92 99 109 to 112 170 177 178 179 184 186 188
190 191 194 196 202 210 211 213 214 217 219 220
221 222 224 225 229 232 233 235 239 240 241 242

2 43 48 49 50 58 61 62 69 71 72 74 76 86 91 93 96
97 99 102 103 109 110 111 112 127 131 133 143
144 157 168

Iyer data

1 to 19 21 22 23 27 28 29 30 31 38 40 108 141 143
144 145 146 147 156 157 161 to 181 183 184 186
to 195 197 to 216 224 225 226 227 229 231 232
242 to 249 255 279 280 313 to 322 324 325 326
327 329 330 331 332 333 334 335 342 343 348
349 352 353 354 355 365 366 370 373 378 379
381 383 384 387 to 393 399 401 411 to 416 418 to
424 426 427 to 434 436 437 438 439 440 442 443
444 445 447 to 467 469 471 to 477 479 to 490 492
494 495 498 503 to 517

1 to 19 21 to 25 28 to 31 34 58 60 66 67 128 134
143 146 157 161 162 163 164 166 to 181 186 187
188 190 191 192 193 194 197 to 204 206 210 211
213 224 225 226 231 243 244 245 248 249 255 265
267 270 271 273 274 275 278 280 282 to 291 293
to 303 313 314 320 321 324 325 332 333 334 335
342 343 348 349 352 355 357 361 363 to 374 377
to 381 383 384 387 to 396 399 to 411 412 415 416
424 to 442 446 447 453 456 457 458 to 461 464 to
470 473 475 to 490 492 494 495 496 498 501 503
to 517
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Appendix F

Data point wrongly clustered in GA based Clustering

Table 50: Data point wrongly clustered in GA based Clustering
Dataset GA-R1 GA-R2 GA-R3

Iris 78 102 107 114 120 122 134 139
143 147

101 102 103 104 105 107 NIL

WBCD 2 4 139 244 446 448 576 577 578
579 580 581 582 583 584 585 586
587 588 589 590 591 592 593 594
600

446 448 576 577 578 579
580 581 582 583 584 585
586 587 588 589 590 591
592 593 594 600

446 448 580 581 582 583 584 585 586
587 588 589 590 591 592 593 594 600

Iyer
data/Serum
data

1 2 3 4 5 6 7 8 9 10 11 12 13 14
15 16 17 18 19 21 22 23 28 29 30
31 143 146 157 161 162 163 164
166 167 168 169 170 171 172 173
174 175 176 177 178 179 180 181
186 187 188 190 191 192 193 194
197 198 199 200 201 202 203 204
206 210 211 213 224 225 226 231
243 244 245 248 249 255 265 267
270 271 273 274 275 278 280 283
284 285 286 287 294 295 296 297
298 299 300 301 303 313 314 315
316 317 318 319 320 321 322 324
325 326 327 328 329 330 331 332
333 334 335 342 343 348 349 352
355 359 365 366 367 370 373 378
379 381 383 384 387 388 389 390
391 392 393 399 401 411 412 413
414 415 416 417 418 419 420 421
422 423 424 426 427 428 429 430
431 432 433 434 436 437 438 439
440 442 443 444 445 447 448 449
450 451 452 453 454 455 456 457
458 459 460 461 462 463 464 465
466 467 468 469 473 474 475 476
477 478 479 480 481 482 483 484
485 486 487 488 489 490 492 493
494 495 496 497 498 499 500 502
503 504 505 506 507 508 509 510
511 512 513 514 515 516 517

1 2 3 4 5 6 7 8 9 10 11 12 13
14 15 16 17 18 19 21 22 23
28 29 30 31 143 146 157
161 162 163 164 166 167
168 169 170 171 172 173
174 175 176 177 178 179
180 181 186 187 188 190
191 192 193 194 197 198
199 200 201 202 203 204
206 210 211 213 224 225
226 231 243 244 245 248
249 255 265 267 270 271
273 274 275 278 280 283
284 285 286 287 294 295
296 297 298 299 300 301
303 313 314 315 316 317
318 319 320 321 322 324
325 326 327 328 329 330
331 332 333 334 335 342
343 348 349 352 355 359
365 366 367 370 373 378
379 381 383 384 387 388
389 390 391 392 393 399
401 411 412 413 414 415
416 417 418 419 420 421
422 423 424 425 426 427
428 429 430 431 432 433
434 436 437 438 439 440
442 443 444 445 446 447
448 449 450 451 452 453
454 455 456 457 458 459
460 461 462 463 464 465
466 467 468 469 470 473
474 475 476 477 478 479
480 481 482 483 484 485
486 487 488 489 490 492
493 494 495 496 497 498
499 500 502 503 504 505
506 507 508 509 510 511
512 513 514 515 516 517

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
18 19 21 22 23 28 29 30 31 134 135 136
137 138 139 140 141 142 143 144 145
146 147 148 149 150 151 152 153 154
155 156 157 158 159 160 161 162 163
164 165 166 167 168 169 170 171 172
173 174 175 176 177 178 179 180 181
182 183 184 185 186 187 188 189 190
191 192 193 194 195 196 197 198 199
200 201 202 203 204 205 206 207 208
209 210 211 212 213 214 215 216 217
218 219 220 221 222 223 224 225 226
227 228 229 230 231 232 233 243 246
257 261 262 263 264 266 267 268 269
270 271 272 273 274 275 276 277 278
279 280 281 286 287 288 290 291 292
293 294 297 298 299 300 301 302 303
304 306 310 311 313 324 325 326 331
343 344 345 348 349 355 365 367 370
371 373 374 375 378 280 283 284 285
286 287 294 295 296 297 298 299 300
301 303 313 314 315 316 317 318 319
320 321 322 324 325 326 327 328 329
330 331 332 333 334 335 342 343 348
349 352 355 359 365 366 367 370 373
378 379 381 383 384 387 388 389 390
391 392 393 399 401 411 412 413 414
415 416 417 418 419 420 421 422 423
424 425 426 427 428 429 430 431 432
433 434 436 437 438 439 440 442 443
444 445 446 447 448 449 450 451 452
453 454 455 456 457 458 459 460 461
462 463 464 465 466 467 468 469 470
473 474 475 476 477 478 479 480 481
482 483 484 485 486 487 488 489 490
492 493 494 495 496 497 498 499 500
502 503 504 505 506 507 508 509 510
511 512 513 514 515 516 517

Cho data
(yeast
data)

2 6 25 26 28 32 43 45 56 64 65 66
79 82 86 89 90 96 97 100 101 105
110 112 115 119 125 127 128 129
130 131 132 133 134 136 137 138
143 144 145 146 147 162 168 173
174 176 178 180 181 183 184 185
186 187 188 189 190 191 194 196
198 199 200 201 202 215 217 218
220 221 222 225 226 227 228 229
231 236 237 238 239 241 243 246
247 248 249 250 251 254 255 256
257 258 259 268 269 270 272 273
276 277 280 283 284 291 293 294
296 297 299 313 319 320 321 322
324 332 342 347 354 359 361 366
370

2 6 25 26 28 32 43 45 56
64 66 203 205 207 210 212
215 217 218 220 221 222
225 226 227 228 229 231
236 237 238 239 241 243
246 247 248 249 250 251
254 255 256 257 258 259
260 261 262 263 268 269
270 272 273 276 277 291
293 294 296 297 299 321
322 324 332 342 347 354
359 361 366 370

2 6 25 26 28 29 32 43 45 56 64 66 82
90 96 110 112 125 127 128 129 130 133
134 137 146 173 176 178 180 181 187
188 189 190 191 199 203 205 206 207
210 212 213 214 215 217 218 219 220
221 222 225 226 227 228 229 231 236
237 238 239 241 243 246 247 248 249
250 251 254 255 256 257 258 259 260
261 262 263 268 269 270 272 273 276
277 278 279 281 282 285 286 287 289
290 291 292 293 294 295 296 297 298
299 300 301 302 303 304 305 306 307
308 309 310 311 312 314 315 316 317
318 321 322 324 325 326 332 342 347
354 359 361 366 370

l



Data point wrongly clustered in GA based Clustering

Table 51: Data point wrongly clustered in GA based Clustering
Dataset GA-R1 GA-R2 GA-R3

Leukemia
(Golub Ex-
periment)

6 7 8 22 23 28 31 32 33 34 35 36
39 40 41 42 45 48 50 51 52 53 54
55 56 57 58 59 61 62 69 71

6 7 8 22 23 28 31 32 33 34 35 36
39 40 41 42 45 48 52 53 54 69

6 7 8 19 22 23 28 31 32 33 34 35
36 39 40 41 42 45 48 50 51 52 53
54 55 56 57 58 59 61 69 71

Breast data
A

11 20 31 38 39 46 56 66 80 81 11 20 31 38 46 56 80 5 6 7 8 11 20 31 38 39 46 56 67
81 82

Breast data
B

29 31 35 36 41 42 43 44 47 48 49 29 31 35 36 41 42 43 44 47 48 49 17 28 31 35 36 41 42 47 48 49

Breast
Multi data
A

2 15 19 2 6 7 8 9 10 11 12 13 14 16 17 18
20 21 22 23 24 25 26 27 28 29 30
31 32 33 34 35 36 37 38 39 40 41
42 43 44 45 46 47 48 49 50 51 52
53 54 55 56 57 58 59 60 61 62 63
64 65 66 67 68 69 70 71 72 73 74
75 76 77 78 79 80

2 15 19 25 26 38 60 70

Breast
Multi data
B

1 4 5 12 13 15 16 19 17 22 23 24 1 4 5 12 13 15 16 19 30 1 4 5 12 13 16 19 23 24 27 29 30
31 32 33

DLBCL A 3 4 9 15 16 21 22 24 29 43 44 45
46 48 51 59 61 62 65 67 70 76 78
92 93 95 97 98 109 113 115 118
120 128 130 133 134 135 136 137
138 140 141

3 4 9 15 16 21 22 23 24 26 29 43
44 45 46 48 51 52 56 59 61 62 65
67 68 70 76 78 85 92 93 95 97 98
109 113 115 118 120 128 130 133
134 135 136 137 138 140 141

3 4 9 15 16 22 24 29 43 44 45 46
48 51 62 76 78 93 95 97 98 113
115 118 120 128 130 134 136 137
138 140 141

DLBCL B 2 14 15 16 32 34 35 36 37 39 40
41 46 47 49 51 58 65 92 97 103
119 121 122 124 164 167 179

2 3 5 14 15 16 32 34 35 36 37 39
40 41 46 47 49 51 58 65 77 79 92
96 97 103 119 121 122 124 164
167 179

2 3 5 14 15 16 32 34 35 36 37 39
40 41 43 46 47 49 51 53 58 60 62
64 65 77 79 92 96 97 103 119 121
122 124 164 167 179

DLBCL C 12 35 38 40 41 42 43 45 52 53 57
58

1 9 12 35 38 40 41 42 43 45 48 52
53 54 55 56 57 58

12 35 38 40 41 42 43 45

DLBCL D 20 28 30 32 40 41 42 43 45 48 51
56 63 137 138 139 140 141 142
143 144 145 146 147 148 149 150
151 152 153 154 156 160 161 164
168 170 173

1 17 20 28 32 43 45 48 51 56 63
81 82 83 84 85 86 87 88 89 90 91
92 93 94 95 96 97 98 100 104 105
108 112 114 117

1 7 9 13 14 17 19 20 28 30 32 40
41 42 43 45 48 51 56 63 64 65 66
68 81 82 83 84 85 86 87 88 89 90
91 92 93 94 95 96 97 98 100 104
105 108 112 114 117

Lung Can-
cer

15 18 19 20 21 24 26 33 42 50 68
69 71 76 78 79 86 89 90 92 93 97
104 105 109 111 112 114 117 126
135 137 139 144 157 162 167 168
169 174 196

15 24 26 68 71 78 79 86 89 90 92
93 97 104 105 109 111 112 114
117 126 135 137 139 144 147 152
157 158 159 164 196

15 18 19 20 21 24 26 33 42 50 68
69 71 76 78 79 86 89 90 92 93 97
104 105 109 111 112 114 117 126
144 157 162 167 168 169 174 196

St. Jude
Leukemia
data

2 61 69 71 99 109 110 111 112
131 133 143 144 157 168

2 61 69 71 99 109 110 111 112
131 144 157 168

2 43 48 49 50 58 61 62 69 71 72
74 76 86 91 93 96 97 99 102 103
109 110 111 112 127 131 157 168
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