
MOBILE PLATFORM CONTROL USING FUZZY -

LOGIC AND WEBOTS

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE

REQUIREMENTS FOR THE DEGREE FOR THE DEGREE OF

Bachelor of Technology

In

Mechanical Engineering

By

SURAJ.N.J

(ROLL.NUMBER: 10503039)

Department of Mechanical Engineering

National Institute of Technology

Rourkela

2008-09

2

National Institute of Technology

Rourkela

CERTIFICATE

 This is to certify that the project entitled, ñMobile Platform Control Using Fuzzy-

Logic and WEBOTSò submitted by Sri Suraj.N.J in partial fulfilment of the requirements for

the award of Bachelor of Technology, Rourkela (Deemed University) is an authentic work

carried out by him under my supervision and guidance.

 To the best of my knowledge, the matter embodied in the project has not been

submitted to any other University / Institute for the award of any Degree or Diploma.

Date:

 Dr.D.R.K.Parhi

Dept. of Mechanical Engineering

National Institute of Technology

Rourkela ï 769008

 India

3

National Institute of Technology

Rourkela

ACKNOWLEDGEMENT

 I would like to articulate my deep gratitude to my project guide Dr.D.R.K.Parhi who

has always been my motivation for carrying out the project.

 It is my pleasure to refer Microsoft Word 2007 of which the compilation of this project

would have been impossible.

 An assemblage of this nature could never have been attempted without reference to and

inspiration from the works of others whose details are mentioned in reference section. I

acknowledge my indebtedness to all of them.

 Last but not the least to all of my friends, who patiently extended all sorts of help for

accomplishing this undertaking.

Date:

 Suraj.N.J

Dept. of Mechanical Engineering

National Institute of Technology

Rourkela ï 769008

 India

4

CONTENTS

Sl.No Topic Page

1. Certificate 2

2. Acknowledgement 3

3. Contents 4

4. Abstract 5

5. Chapter 1: INTRODUCTION

 Objective

 Roots and Strategy

 WEBOTS

6-8

6. Chapter 2: LITERATURE SURVEY

9 ï 13

7. Chapter 3: WORK ANALYSIS

 My first bot

 Environment

 Simple Controller

 Implementing Fuzzy-Logic(Webots)

14 ï 35

8. Chapter 4: RESULTS

 Output

36 ï 46

9. Chapter 5: CONCLUSION 47 ï 48

10. Chapter 6: DISCUSSION 49 ï 50

10. REFERENCES 51 ï 52

5

ABSTRACT

 In this project, we study about the designing, controlling and successful working of

robots under different environmental conditions and topography using WEBOTS simulator

and try to optimise its functioning using Fuzzy-Logic. A robot carrying out a particular

needed task has promising applications for the betterment of human society.

 A well written code in WEBOTS simulator helps us to utilise the sensor information

and integrate it with the robotôs motor control to achieve the desired goal effectively. In order

to synthesize the robotôs controller, we rely on Fuzzy-Logic, which we show to be a powerful

tool for the production of simple and effective solutions for our problem.

 At the end, the performance of BOT performance with/without Fuzzy-Logic can be

compared and used for further improvement.

6

Chapter 1

 INTRODUCTION

1. Objective

2. Roots and Strategy

7

INTRODUCTION

 We describe robot working under varied conditions and successfully carrying out its

assigned task using the help of WEBOTS simulator and optimising its function using Fuzzy-

Logic.

OBJECTIVE :

 The main scientific objective of the project is the study of the novel ways of

designing and effective execution of the task, based on Fuzzy-Logic.

ROOTS and STRATEGY:

 Mobile Robotics is an emerging field of robotics that studies the behaviour of robots

under dynamic and challenging conditions to achieve its goal.

 Mobile Robotics successfully incorporates all the constraints that the robot

experiences in its due course of operation and induces behaviour of self-thinking to the robot

by harnessing the power of optimisation and intelligent techniques like Fuzzy-Logic, etc.

 Fuzzy-Logic is used in system control and analysis design, because it shortens the

time for engineering development and sometimes, in case of highly complex systems, is the

only way to solve the problem. Fuzzy-Logic is based on the theory of fuzzy-sets, where an

objectôs membership of a set is gradual rather than just member or not-a-member. It uses the

whole interval of real numbers between zero (0 or False) and (1 or True) to develop logic as a

basis for rules of inference.

 Fuzzy-Logic is inspired by and is an approximation to human reasoning. It is

governed by ñLaw of Excluded Middleò, which states that ñA system, in which propositions

must be either true or false, but not both, uses a two-valued logic. As a consequence, what is

not true is false and vice-versa.ò This calls for the introduction of ñMembership

Grade/Function ï assigning a real number in the closed interval [0, 1] instead of {0} or {1}ò,

which allows finer detail, such that the transition from Membership to Non-Membership is

gradual rather than abrupt.

WEBOTS:

 I did the simulation with help of WEBOTS version 5.10.0 which a 3D mobile

robot simulator is allowing the users to simulate different types of mobile robots, including

wheeled robots, legged robots and flying robots.

 WEBOTS is professional mobile robot simulation software. It contains a rapid

prototyping tool allowing the user to create 3D virtual worlds with physics properties, such as

mass repartition, joints, friction coefficients, etc. The user can add simple inert objects or

8

active objects called mobile robots. Users can create complex virtual worlds and simulate

their robots within these environments. A complete programming library is provided to allow

users to program the robots (usually using the C, C++ or Java languages). From the controller

programs, it is possible to read sensor values and send motor commands to robots. Resulting

robot controllers can be transferred to real robots (Khepera robot with C controllers,

Hemisson robot with BotStudio controllers, Aibo, LEGO Mindstorms, etc.).

 WEBOTS is well suited for research and education projects related to mobile

robotics. Many mobile robotics projects have been relying on WEBOTS for years in the

following areas:

Å Mobile robot prototyping (academic research, automotive industry, aeronautics, vacuum

cleaner industry, toy industry, lobbyism, etc.)

Å Multi-agent research (swarm intelligence, collaborative mobile robots groups, etc.)

Å Adaptive behaviour research (Genetic evolution, neural networks, adaptive learning, AI,

etc.).

Å Mobile robotics teaching (robotics lectures, C/C++/Java programming lectures, robotics

contest, etc.)

9

Chapter 2

LITERATURE SURVEY

10

LITERATURE SURVEY

The authors, Liu, et.al.[1] have attempted in this paper ,a fuzzy logic-based real-time

navigation controller is described.This controller combines the path planning and

trajectory following as an integrated and coordinated unit so that it executes

maneuvers such as docking and obstacle avoidance on-line. Only a little

information, which is easily obtained through a low-cost sonar system, is necessary

and is always available. Tight coupling between sensor data and control actions

provides the autonomous mobile robot with the adaptability necessary for coping with

a dynamically changing world. There is no separate path planning to be per- formed.

Driving mechanism reacts immediately to perceive Sensor data as the mobile robot

navigates through the world.

In other paper, Simon, et.al [2] have described Mobile robots are mechanical devices

capable of moving in an environment with a certain degree of autonomy. Autonomous

navigation is associated with the availability of external sensors that capture

information from the environment through visual images, or through distance or

proximity measurements. The most common sensors are distance sensors (ultrasonic,

laser, etc.) capable of detecting obstacles and of measuring the distance to walls close

to the robot path. When advanced autonomous robots navigate within indoor

environments (industrial or civil buildings), they have to be endowed with the ability

to move through corridors, to follow walls, to turn corners and to enter open areas of

the rooms.

As regards the corridor and wall-following navigation problem, some control

algorithms based on artificial vision have been proposed. In one, image processing is

used to detect perspective lines to guide the robot along the center axis of the corridor.

In other, two lateral cameras mounted on the robot are used, and the optical flow is

computed to compare the apparent image velocity on both cameras in order to control

robot motion. In other, one camera is used to drive the robot along the corridor axis or

to follow a wall, by using optic flow computation and its temporal derivatives. In

other, a globally stable control algorithm for wall-following based on incremental

encoders and one sonar sensor is developed. In other, a theoretical model of a fuzzy

based reactive controller for a non-holonomic mobile robot is developed. In other, an

ultrasonic sensor is used to steer an autonomous robot along a concrete path using its

edged as a continuous landmark. In other, a mobile robot control law for corridor

navigation and wall following based on sensor and odometric sensorial information is

proposed.

Kumar , et.al [3] have gone to explain that the mobile robot is a small four-wheeled

mobile platform, which was controlled by a micro-controller. The robot could sense

its surroundings with the aid of various electronic sensors while mechanical actuators

11

were used to move it around. Robot behaviour was determined by the program, which

was loaded to the microcontroller. In that way, it could be used as a general robotics

experimental platform. The autonomous mobile robot was designed and built in order

to perform various navigation algorithms. The design consisted of two main sections:

Electronic analysis of the various robot sensors and Programming techniques used to

interface the sensors with the robotôs microcontroller. In this paper itôs shown that the

path-guiding robot with IR sensors and obstacle detection is using IR proximity

sensors. The predefined path is having varied turns, the fuzzy reasoning take care of

speed to keep mobile robot in the defined path. The results are proved experimentally

and the surface viewer graph is obtained from the Mat Lab.

This paper co-authored by Castillo, et.al [4] addresses the problem of trajectory

tracking control in an autonomous, wheeled, mobile robot of unicycle type using

Fuzzy Logic. The Fuzzy Logic Control (FLC) is based on a backstepping approach to

ensure asymptotic stabilization of the robotôs position and orientation around the

desired trajectory, taking into account the kinematics and dynamics of the vehicle. We

use the Mamdani inference system to construct a controller, with nine IF-THEN rules

and the centroid of area method as our deffuziýcation strategy where the input torques

and velocities are considered as linguistic variables. The performance of this FLC is

illustrated in a simulation study.

The Tagaki-Sugeno approach is the most commonly used fuzzy logic model in the

tracking control problem of autonomous vehicles.

One of the long standing challenging aspect in mobile robotics, which has been

addressed here by Fatmi, et.al [5] is the ability to navigate autonomously, avoiding

modeled and unmodeled obstacles especially in crowded and unpredictably changing

environment. A successful way of structuring the navigation task in order to deal with

the problem is within behavior based navigation approaches. In this study, Issues of

individual behavior design and action coordination of the behaviors will be addressed

using fuzzy logic. A layered approach is employed in this work in which a

supervision layer based on the context makes a decision as to which behavior(s) to

process (activate) rather than processing all behavior(s) and then blending the

appropriate ones, as a result time and computational resources are saved.

This paper presented by Malhotra, et.al [6] presents the design of a mobile robot for

obstacle avoidance in an environment about which no a-priori information is available

and which consists of static as well as moving obstacles. The paper concerns itself

with the design of a fuzzy brain for the mobile robot, its integration into the control

system and the sensor system used for the detection of obstacles in its workspace. The

obstacle avoidance strategy of the robot is based on the artificial potential field

method. A fuzzy logic based system is used to implement this strategy since it reduces

the computational effort required in the implementation of the artificial potential field

method. An algorithm (intelligent obstacle avoidance algorithm) is proposed to

12

integrate the fuzzy system into the main control system for the mobile robot. The

system described above is being tested by simulation and subsequently will also be

tested on an actual mobile robot being developed.

The paper co-authored by Singh, et.al [7] follows an approach to robot control where

desirable traits are expressed as quantitative preferences defined over the set of all

possible control actions from the perspective of the goal associated with that behavior.

For example, a behavior for avoiding obstacles could map configurations of sonar

readings that correspond to the presence of an obstacle on the left of the robot into a

function that prefers actions that steer the robot to the right.The paper calculates the

desirability of a control by using only 1 level of estimation where the results of the

control are used to calculate its desirability. We can extend it to include a sequence of

controls so that we can look at more future conditions to take present action. This is

much like the game tree techniques used by AI based computer programs.The other

extension we suggest is to model the inputs from sensors as fuzzy variables which

would take into account the practical noisy, time dependent nature of most sensors.

This paper introduced by Ramos, et.al [8] talks about a fuzzy decision-making

algorithm for robot behavior coordination. The algorithm belongs to the arbitration

class of behavior coordination mechanisms, under which only one behavior is running

at a time.However, it is possible to use a hierarchical decision mechanism for

hierarchical behaviors without interference between hierarchical levels.With this

fuzzy decision method it is possible to represent a speciýc model of the world where

the robot evolves. This algorithm consists of deýning a set of behaviors, a set of world

states, a cost function for behaviors, a set of goals, and a set of constraints. For each

behavior and actual world state pair, a cost function is computed. The cost of each

pair is evaluated by the overall goals. Goals and constraints are aggregated using a

fuzzy operator and the optimal choice is the behavior with the maximum resulting

value. This algorithm was tested with success in realistic simulations of a goalkeeper

soccer robot.

This work done by Busquets, et.al [9] explores the use of bidding mechanisms to

coordinate the actions requested by a group of agents in charge of achieving the task

of guiding a root towards a specified target in an unknown environment. This

approach is based on a fuzzy approach to landmark-based navigation.

Outdoor navigation in unknown environments is still a difficult open problem in the

field of robotics. Existing approaches assume that an appropriately detailed and

accurate metric map can be got through sensing the environment. However, most of

these approaches rely on odometry sensors which can be very imprecise and lead to

many errors.Our approach considers using only visual information. The robot must be

equipped with a visual system capable of recognising visual salient obejcts, and use

them for mapping and navigation tasks.

13

The agents' theory offers flexibility for solution of problems whose environment is

dynamic and imprecise. The use of the computational intelligence together with the

agents' theory seems to be a natural way of providing an agent with intelligence. In

this paper we, Figueiredo, et.al [10] describe the use of intelligent agents, whose

intelligence is based on a fuzzy logic system, applied to the control of a robot,

simulated by the Khepera simulator. Fuzzy Logic Systems have demonstrated,

through the numerous applications in the area, to be an effective procedure for control

problems. The attitude to be taken at each moment by an agent is defined by a set of

fuzzy rules based upon the robot position, its sensor values, distance and angle

relative to the target. To prevent the robot from getting stuck by some obstacles, a

path memory system was created, forcing the robot to seek new alternatives when it

gets trapped. The results obtained demonstrate a successful combination of

Computational Intelligence and the Theory of Agents in a control system with ability

to avoid deadlock situations.

This paper written by Michel [12] presents Webots: a realistic mobile robot simulator

allowing a straightforward transfer to real robots. The simulator currently supports the

Khepera mobile robot and a number of extension turrets. Both real and simulated

robots can be programmed in C language using the same Khepera API, making the

source code of a robot controller compatible between the simulator and the real robot.

Sensor modelling for 1D and 2D cameras as well as visualisation and environment

modelling are based upon the OpenGL 3D rendering library. A file format based on

an extension of VRML97, used to model the environments and the robots, allows

virtual robots to move autonomously on the Internet and enter the real world. Current

applications include robot vision, artificial life games, robot learning, etc.

This paper presents a new method for behavior fusion control of a mobile robot in

uncertain environments. Using behavior fusion by fuzzy logic, a mobile robot is able

to directly execute its motion according to range information about environments,

acquired by ultrasonic sensors, without the need for trajectory planning. Based on

low-level behavior control, Wei, et.al. [13] construct an efficient strategy for

integrating high-level global planning for robot motion can be formulated, since, in

most applications, some information on environments is prior knowledge. A global

planner, therefore, only needs to generate some subgoal positions rather than exact

geometric paths. Because such subgoals can be easily removed from or added into the

planner, this strategy reduces computational time for global planning and is flexible

for replanning in dynamic environments. Simulation results demonstrate that the

proposed strategy can be applied to robot motion in complex and dynamic

environments.

14

Chapter 3

WORK ANALYSIS

1. My first bot

2. Environment

3. A simple controller

4. Implementation of Fuzzy-Logic in Webots

WORK ANALYSIS

15

3.1 My first BOT:

As a first introduction, we are going to simulate a very simple robot made up of a cylinder,

two wheels and two infrared sensors. A program performing obstacle avoidance inspired

from Braitenbergôs algorithm controls the robot. It evolves in a simple environment

surrounded by a wall, which contains some obstacles to avoid.

 Figure 3.1: My First -Bot

3.2 Environment:

This very first simulated world is as simple as possible. It includes a floor, 4 obstacles and a

surrounding wall to avoid that the robot escapes. This wall is modelled using an Extrusion

node.

First, launch WEBOTS and stop the current running simulation by pressing the Stop button.

Go to the File menu, new item to create a new world. This can also be achieved through the

New button, or the keyboard shortcut indicated in the File menu. Then open the scene tree

window from the Scene Tree... item in the Edit menu. This can also be achieved by double-

clicking in the 3D world. Let us start by changing the lighting of the scene:

1. Select the Point Light node, and click on the + just in front of it. You can now see the

different fields of the Point Light node. Select ambient Intensity and enter 0.6 as a value,

then select intensity and enter 0.6, then, select location and enter [0.75 0.5 0.5] as values.

Press return.

2. Select the Point Light node, copy and paste it. Open this new Point Light node and type

[-0.5 0.5 0.35] in the location field.

3. Repeat this paste operation twice again with [0.45 0.5 -0.5] in the location field of the third

Point Light node, and [-0.5 0.5 -0.35] in the location field of the fourth and last Point Light

node.

4. The scene is now better lit. Open the Preferences... from the Edit menu, select the

Rendering tab and check the Display lights option. Click on the OK button to leave the

preferences and check that the light sources are now visible in the scene. Try the different

mouse buttons, including the mouse wheel if any, and drag the mouse in

the scene to navigate and observe the location of the light sources.

Secondly, let us create the wall:

16

1. Select the last Transform node in the scene tree window (which is the floor) and click on

the insert after button.

2. Choose a Solid node.

3. Open this newly created Solid node from the + sign and type "wall" in its name field.

4. Select the children field and Insert after a Shape node.

5. Open this Shape, select its appearance field and create an Appearance node from the New

node button. Use the same technique to create a Material node in the material field of the

Appearance node. Select the diffuseColor field of the Material node and choose a colour to

define the colour of the wall. Let us make it light brown. In order to make your object change

its colour depending on its illumination, select the specularColour field of the Material

node and choose a colour to define the colour of the illuminated wall. Let us use an even

lighter brown to reflect the effect of the light.

6. Similarly it also is possible to easily modify the colours of the ground. To do so you will

have to modify the two colour fields of the last Transform node, the one corresponding to

the ground, which are located in the children / Shape / geometry / Colour node. In our

examples we have changed it to a black and white grid.

7. Now create an Extrusion node in the geometry field of the Shape.

8. Set the convex field to FALSE. Then, set the wall corner coordinates in the crossSection

field as shown in. You will have to re-enter the first point (0) at the last position (10) to

complete the last face of the extrusion.

9. In the spine field, write that the wall ranges between 0 and 0.1 along the Y axis (instead of

the 0 and 1 default values).

10. As we want to prevent our robot to pass through the walls like a ghost, we have to define

the boundingObject field of the wall. Bounding objects cannot use complex geometry

objects. They are limited to box, cylinder and spheres primitives. Hence, we will have to

create four boxes (representing the four walls) to define the boundingobject of the

surrounding wall. Select the boundingObject field of the wall and create a Group node that

will contain the four walls. In this Group, insert a Transform node as children. Create a

Shape as the unique children of the Transform. Create a

Material in the node Appearance and set both of its diffuseColor and specularColour to

white. This will be useful later, when the robot will have to detect the obstacles because the

detection of the sensors is based on these colours. Now create a Box as geometry for this

Shape node. Set the size of the Box to [0.01 0.1 1], so

that it matches the size of a wall. Set the translation field of the Transform node to [0.495

0.05 0], so that it matches the position of a wall.

11. Now, close this Transform , copy and paste it as the second children of the list.

17

Instead of creating a new Shape for this object, reuse the Shape you created for the first

bounding object. To do so, go back to the Transform node of the previous object, open the

children node, click on the Shape node and you will see on the right hand side of the

window that you can enter a DEF name. Write WALL_SHAPE as a DEF name and return

to the children of the second bounding object. First Delete the Shape contained in it and

create a New node inside it. However, in the Create new node dialog, you will now be able

to use the WALL_SHAPE you just defined. Select this item and click OK . Set the

translation field of the new node to [-0.495 0.05 0], so that it matches the opposite wall.

Repeat this operation with the two

remaining walls and set their rotation fields to [0 1 0 1.57] so that they match the orientation

of the corresponding walls. You also have to edit their translation field as well, so that they

match the position of the corresponding walls.

12. Close the tree editor, save your file as "my_mybot.wbt" and look at the result.

18

 Figure 3.2: My WEBOT world (illuminated by 4 lights)

Thirdly, let us create the obstacles:

1. Select the last Solid node in the scene tree window (which is the wall) and click on the

insert after button.

19

Figure 3.3: My WEBOT world with Obstacles

2. Choose a Solid node.

3. Open this newly created Solid node from the + sign and type "green box" in its name field.

4. Using the same technique as for the wall add first a Shape, then an Appearance and a

Material . For the colour, let us make it green with a lighter green for the illuminated parts.

5. Now create a Box node in the geometry field of the Shape and set its size to [0.23 0.1 0.1].

Set the DEF name of this geometry to BOX0.

6. To create the boundingObject of this object, create a Shape node and reuse the previous

DEF for the geometry. As for the wall, create also an Appearance and a Material node and

set the two colours to white.

7. Finally set the translation field to [-0.05 0.05 -0.25] but let its rotation field to the

standard values.

20

8. Now repeat these steps to create the three remaining obstacles. First create the one called

"blue box" which has a geometry called BOX1 of [0.1 0.1 0.1], a translation of [0.2 0.05

0.27] and a rotation of [0 1 0 0.31]. Then create the one called "yellow box" which has a

geometry called BOX2 of [0.05 0.1 0.3], a translation of [-0.2 0.05 0.15] and a rotation of [0

1 0 0.4]. Finally create the one called "red box" which has a geometry called BOX3 of [0.15

0.1 0.08], a translation of [0.42 0.05 -0.1] and a standard rotation . For all these objects, set

their colours accordingly with their names.

Robot

This subsection describes how to model the MyBot robot as a DifferentialWheels node

containing several children: a Transform node for the body, two Solid nodes for the wheels,

two DistanceSensor nodes for the infra-red sensors and a Shape node with a texture. The

origin and the axis of the coordinate system of the robot and its dimensions are shown.

 Figure 3.4: Dimensions of My First Bot

To model the body of the robot:

1. Open the scene tree window.

2. Select the last Solid node.

3. Insert after a DifferentialWheels node, set its name to "MyBot ".

4. In the children field, first introduce a Transform node that will contain a shape with a

cylinder. In the new children field, Insert after a Shape node. Choose a colour, as described

previously. In the geometry field, insert a Cylinder node. Set the height field of the cylinder

to 0.08 and the radius one to 0.045. Set the DEF name of the

geometry to BODY, so that we will be able to reuse it later. Now set the translation.

21

To model the left wheel of the robot:

1. Select the Transform node corresponding to the body of the robot and Insert after a Solid

node in order to model the left wheel. Type "left wheel" in the name field, so that this Solid

node is recognized as the left wheel of the robot and will rotate according to the motor

command.

2. The axis of rotation of the wheel is x. The wheel will be made of a Cylinder rotated of pi/2

radians around the z axis. To obtain proper movement of the wheel, you must pay attention

not to confuse these two rotations. Consequently, you must add a Transform node to the

children of the Solid node.

3. After adding this Transform node, introduce inside it a Shape with a Cylinder in its

geometry field. Don't forget to set an appearance as explained previously. The dimensions of

the cylinder should be 0.01 for the height and 0.025 for the radius.

Set the rotation to [0 0 1 1.57]. Pay attention to the sign of the rotation; if it is wrong, the

wheel will turn in the wrong direction.

4. In the Solid node, set the translation to [-0.045 0.025 0] to position the left wheel, and set

the rotation of the wheel around the x axis:

 [1 0 0 0].

6. Close the tree window, look at the world and save it. Use the navigation buttons to change

the point of view.

To model the right wheel of the robot:

1. Select the left wheel Solid node and insert after another Solid node. Type "right wheel"

in the name field. Set the translation to [0.045 0.025 0] and the rotation to [1 0 0 0].

2. In the children, Insert after USE WHEEL. Press Return, close the tree window and save

the file. You can examine your robot in the world editor, move it and zoom on it.

The two infra-red sensors are defined as two cylinders on the front of the robot body. Their

diameter is 0.016 m and their height is 0.004 m. You must position these sensors properly so

that the sensor rays point in the right direction, toward the front of the robot.

1. In the children of the DifferentialWheels node, insert after a DistanceSensor node.

2. Type the name "ir0". It will be used by the controller program.

3. Let us attach a cylinder shape to this sensor: In the children list of the DistanceSensor

node, Insert after a Transform node. Give a DEF name to it: INFRARED , which you will

use for the second IR sensor.

22

4. In the children of the Transform node, insert after a Shape node. Define an appearance

and insert a Cylinder in the geometry field. Type 0.004 for the height and 0.008 for the

radius.

5. Set the rotation for the Transform node to [0 0 1 1.57] to adjust the orientation of the

cylinder.

6. In the DistanceSensor node, set the translation to position the sensor and its ray: [-0.02

0.063 -0.042]. In the File menu, Preferences, Rendering, check the Display sensor rays

box. In order to have the ray directed toward the front of the robot, you

must set the rotation to [0 1 0 2.07].

7. In the DistanceSensor node, you must introduce some values of distance measurements of

the sensors to the lookupTable field, according to and these values are:

Lookup Table [0 1024 0,

 0.05 1024 0,

 0.15 0 0]

 Figure 3.5: Distance measurements of the MyBot sensors.

23

Figure 3.6: My First Bot with 2 IR Sensors

24

Figure 3.7: Controller Program Space

25

3.3 CONTROLLER :

Synchronous Controllers:

 They are recommended for robust control.

Asynchronous Controllers:

 They are recommended for running robot competitions where computer resources

are limited, or networked simulations involving several robots distributed over a computer

network with an unpredictable delay, (like Internet) (also, if computationally expensive

controller).

 The above 2 controllers can be used selectively for Synchronous and

Asynchronous Robots.

26

SIMPLE CONTROLLER PROGRAM

This controller is very simple. The controller program simply reads the sensor values and sets

the two motors' speeds, in such a way that MyBot avoids the obstacles.

Below is the source code for the mybot_simple.c controller:

#include <device/robot.h>

#include <device/differential_wheels.h>

#include <device/distance_sensor.h>

#define SPEED 60

#define TIME_STEP 64

static void reset(void);

static int run(int);

static DeviceTag ir0, ir1;

static void reset(void)

{

ir0 = robot_get_device("ir0");

ir1 = robot_get_device("ir1");

distance_sensor_enable(ir0, TIME_STEP);

distance_sensor_enable(ir1, TIME_STEP);

return;

}

static int run(int ms)

{

short left_speed, right_speed;

unsigned short ir0_value, ir1_value;

ir0_value = distance_sensor_get_value(ir0);

ir1_value = distance_sensor_get_value(ir1);

if (ir1_value > 500) {

if (ir0_value > 500) {

left_speed = -SPEED;

right_speed = -SPEED / 2;

} else {

left_speed = -ir1_value / 10;

right_speed = (ir0_value / 10) + 5;

} else if (ir0_value > 500) {

left_speed = (ir1_value / 10) + 5;

right_speed = -ir0_value / 10;

} else {

27

left_speed = SPEED;

right_speed = SPEED;

}

differential_wheels_set_speed(left_speed, right_speed);

return TIME_STEP;

}

int main()

{

robot_live(reset);

robot_run(run);

return 0;

}

28

3.4 APPLICATION OF FUZZY -LOGIC USING MATLAB:

 For efficient avoidance of obstacles, letôs define 3 inputs and expect 2 desired outputs.

3 Chosen Inputs: (got from distance-measuring sensors)

a. Front Obstacle Distance (FOD)

b. Left Obstacle Distance (LOD)

c. Right Obstacle Distance (ROD)

2 Desired Ouputs:

a. Left Wheel Velocity (LWV)

b. Right Wheel Velocity (RWV)

IMPLEMENTATIO N OF FUZZY-SYSTEM:

This job is initially carried out by MATLAB FUZZY-LOGIC TOOLBOX and later by

MATLAB written program.

Steps:

a. Type ñanfiseditò in command window of MATLAB.

b. Click ñFileò , ñNew FISò, Mamdani

c. The above FIS Editor is used to define our inputs and outputs.

d. Click ñEditò, ñAdd Variablesò, ñInput / Outputò.

e. Membership function is chosen according to our need, viz. trapezoidal, triangular,

gaussian, sigma, etc.

f. Defuzzification is done by Centroid Method.

DEFINITION OF INPUTS & OUTPUTS :

1. INPUTS : FOD, LOD, ROD can be Far (F) or Near (N)

2. OUTPUTS: LWV, RWV can be Fast (f) or Slow (s).

RULES FOR OPERATION :

Sl.No FOD LOD ROD LWV RWV

1 F F F F f

2 F F N S f

3 F N F F s

4 F N N F f

5 N F F S f

6 N F N S f

7 N N F F s

8 N N N S s

The above logic is fed into Fuzzy-Controller via RULE -EDITOR.

29

INCORPORATION OF FUZZY -LOGIC INTO WEBOTS SIMULATOR :

 The following MATLAB written Code incorporates Fuzzy-Logic into Main-

Controller Program.

There are 2 ways to incorporate Fuzzy-logic into Webots and test:

1. Include the Fuzzy-Logic Code into Webots controller Code.

2. Get the values (Distance-sensor) values from Webots and include into Fuzzy-logic

Code and plot it in Mamdani Matlab controller FIS Editor.

The Strategy adopted here in this thesis is the SECOND Way.

MATLAB FUZZY -LOGIC CODE :

PROGRAM TO INCORPORATE FUZZY -LOGIC INTO WEBOTS :

%[System]

Name='fuzzy-logic';

Type='mamdani';

Version=2.0;

NumInputs=3;

NumOutputs=2;

NumRules=8;

AndMethod='min';

OrMethod='max';

ImpMethod='min';

AggMethod='max';

DefuzzMethod='centroid';

x = 0:0.1:6;

%Rules

if (FOD == 'F' & LOD == 'F'& ROD == 'F')

30

LWV = 'f';

RWV = 'f';

end

if (FOD == 'F' & LOD == 'F'& ROD == 'N')

LWV = 's';

RWV = 'f';

end

if (FOD == 'F' & LOD == 'N'& ROD == 'F')

LWV = 'f';

RWV = 's';

end

if (FOD == 'F' & LOD == 'N'& ROD == 'N')

LWV = 'f';

RWV = 'f';

end

if (FOD == 'N' & LOD == 'F'& ROD == 'F')

LWV = 's';

RWV = 'f';

end

if (FOD == 'N' & LOD == 'N'& ROD == 'N')

LWV = 's';

31

RWV = 's';

end

if (FOD == 'N' & LOD == 'F'& ROD == 'N')

LWV = 's';

RWV = 'f';

end

if (FOD == 'N' & LOD == 'N'& ROD == 'F')

LWV = 'f';

RWV = 's';

end

%[Input1]

Name='FOD'

Range=[0 6];

NumMFs=2;

if (FOD == 'F')

MF1= trimf (x, [2 4 6]);

end

if (FOD == 'N')

MF2= trimf (x, [0 2 4]);

end

plot(MF1,MF2), title('FOD'),

xlabel('FOD values'),

32

ylabel('Membership function value'),grid

out1 = defuzz(x,MF1,'centroid')

out11 = defuzz(x,MF2,'centroid')

out_1 = min(out1, out11)

%[Input2]

Name='LOD'

Range=[0 6];

NumMFs=2;

if (LOD == 'F')

MF1= trimf (x, [3.5 4.5 5.5]);

end

if (LOD == 'N')

MF2= trimf (x, [0.5 2.5 4.5]);

end

plot(MF1,MF2), title('LOD'),

xlabel('LOD values'),

ylabel('Membership function value'),grid

out2 = defuzz(x,MF1,'centroid')

out22 = defuzz(x,MF2,'centroid')

out_2 = min(out2, out22)

%[Input3]

Name='ROD'

Range=[0 6];

NumMFs=2;

33

if (ROD == 'F')

MF1= trimf (x, [0.6 3.2 4.4]);

end

if (ROD == 'N')

MF2= trimf (x, [3.6 5 6]);

end

plot(MF1,MF2), title('ROD'),

xlabel('ROD values'),

ylabel('Membership function value'),grid

out3 = defuzz(x,MF1,'centroid')

out33 = defuzz(x,MF2,'centroid')

out_3 = min(out3, out33)

out_final = min (out_1, out_2, out_3)

%[Output1]

Name='LWV'

Range=[0 4];

NumMFs=2;

if (LWV == 'f')

MF1= trimf (x, [2 3.5 4]);

end

if (LWV == 's')

MF2= trimf (x, [0 1 2]);

end

plot(MF1,MF2), title('LWV'),

34

xlabel('LWV values'),

ylabel('Membership function value'),grid

outf1 = defuzz(x,MF1,'centroid')

outf11 = defuzz(x,MF2,'centroid')

outf_1 = min(outf1, outf11)

outf_1net = outf_1./out_final

%[Output2]

Name='RWV'

Range=[0 4];

NumMFs=2;

if (RWV == 'f')

MF1= trimf (x, [1.25 2.5 3.6]);

end

if (RWV == 's')

MF2= trimf (x, [0 1.75 3]);

end

plot(MF1,MF2), title('RWV'),

xlabel('RWV values'),

ylabel('Membership function value'),grid

outf2 = defuzz(x,MF1,'centroid')

outf22 = defuzz(x,MF2,'centroid')

outf_2 = min(outf2, outf22)

outf_2net = outf_2./out_final

% [Rules]

35

% 1 1 2, 1 1 (1) : 1

% 1 1 1, 2 1 (1) : 1

% 1 2 2, 1 2 (1) : 1

% 1 2 1, 1 1 (1) : 1

% 2 1 2, 2 1 (1) : 1

% 2 1 1, 2 1 (1) : 1

% 2 2 2, 1 2 (1) : 1

% 2 2 1, 2 2 (1) : 1

% Defuzzification - Centroid

%out = defuzz(x,MF,'centroid')

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

36

Chapter 4

RESULTS

Output with Figures from Simulation

37

PATH TRAVELLED BY BOT WITHOUT FUZ ZY LOGIC IMPLEMENTATION:

Figure 4.1: My Bot before avoiding Obstacles (in its original initial position)

38

Figure 4.2: My Bot avoiding the First Obstacle (Green)

39

Figure 4.3: My Bot avoiding the Second Obstacle (Red)

40

Figure 4.4: My Bot avoiding Third Obstacle (Blue)

