MOBILE PLATFORM CONTROL USING FUZZY
LOGIC AND WEBOTS

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE
REQUIREMENTS FOR THE DEGREE FOR THE DEGREE OF

Bachelor of Technology
In

Mechanical Engineering

By
SURAJ.N.J
(ROLL.NUMBER: 10503039)

L

ROURKELA

Department of Mechanical Engineering
National Institute of Technology
Rourkela

200809

ROURKELA

National Institute of Technology

Rourkela

CERTIFICATE

This iIis to certify that the project enti
Logic and WEBOT S 8uragNuJannpartial fugfitinent of theSequirements for
the award of Bachelor of Technology, Rourkela (Deemed University) is an authentic work
carried out by him under my supervision and guidance.

To the best of my knowledge, the matter embadhethe projechas not been
submitted to any other University / Institute for the award of any Degree or Diploma.

Date:
Dr.D.R.K.Parhi
Dept. of Mechanical Engineering
Nationd Institute of Technology
Rourkelai 769008

India

ROURKELA

National Institute of Technology

Rourkela

ACKNOWLEDGEMENT

I would like to articulate my deep gratituteemy project guide Dr.D.R.K.Parhi who
has always been my motivation for carrying out the project.

It is my pleasure to refer Microsoft Word 2007 of which the compilation of this project
would have been impossible.

An assemblage of thisature could never have been attempted without reference to and
inspiration from the works of others whose details are mentioned in reference section. |
acknowledge my indebtedness to all of them.

Last but not the least to all of my friends, whaigratly extended all sorts of help for
accomplishing this undertaking.

Date:
Suraj.N.J
Dept. of Mechanical Engineering
National Institute of Technology
Rourkelal 769008

India

CONTENTS

SI.No

Topic

Page

Certificate

Acknowledgement

Contents

Abstract

Chapter 1INTRODUCTION
Objective
Roots and Strategy
WEBOTS

Chapter 2LITERATURE SURVEY

971 13

Chapter 3WORK ANALYSIS
My first bot
Environment
Simple Mntroller

Implementing Fuzzy ogic(Webots)

147 35

Chapter 4RESULTS

Output

361 46

Chapter 5CONCLUSION

4771 48

10.

Chapter 6: ISCUSSION

4971 50

10.

REFERENCES

5171 52

ABSTRACT

In this project, we study about the designing, controlling and successful working of
robots under different environmental conditions and topography using WEBOTS simulator
and try to optimise its functioning using Fuzizggic. A robot carring out a particular
needed task has promising applications for the betterment of human society.

A well written coden WEBOTS simulatohelps us to utilise the sensor information
and integrate it with t heaesiredfoaleffectiveljnintordar con't
to synthesize t he r ob cliogicswhichowe shovwotd He @ powerfwe r el
tool for the production odimple and effective solutions for our problem.

At the end, the performance of B@&rformancewith/without FuzzylLogic can be
compared and used for further improvement.

Chapter 1

INTRODUCTION

1. Objective

2. Roots and Strategy

INTRODUCTION

We describe robot working under varied conditions and suctlssarrying out its
assigned task using the help of WEBOTS simulator and optimising its function using Fuzzy
Logic.

OBJECTIVE :

The main scientific objective of the project is the study of the novel ways of
designing ad effective executioof the task, based on Fuzkggic.

ROOTS and STRATEGY:

Mobile Robotics is an emerging field of robotics that studies the behaviour of robots
under dynamic and challenging conditions to achieve its goal.

Mobile Robotics succefully incorporates all the constraints that the robot
experiences in its due course of operation and induces behaviourtbiirgdlig to the robot
by harnessing the power of optimisation and intelligent techniques like fozzy, etc.

FuzzyLogic is used in system control and analysis design, because it shortens the
time for engineering development and sometimes, in case of highly complex systems, is the
only way to solve the problerkuzzyLogic is based on the theory of fuzggts, wiere an
objectds membership of a set -aimembgrritasktsithel rath
whole interval of real numbers between zero (0 or False) and (1 or True) to develop logic as a
basis for rules of inference.

FuzzyLogic is inspired by and is an approximation to human reasoning. It is
governed by fALaw of Excluded Middl eodo, which
must be either true or false, but not both, uses avslueed logic. As a consequence, what is
nottrueisfalseandvieeer sa. o This calls for the introdu
Grade/Functiofi assigning a real number in the closed interval [0ndtpad of {0} or {1}0,
which allows finer detail, such that the transition from Membership teMembership is
gradual rather than abrupt.

WEBOTS:

| did the simulation with help AVEBOTS version 5.10.@vhich a 3D mobile
robot simulator is allowing the users to simulate different types of mobile robots, including
wheeled robots, legged rots and flying robots.

WEBOTS:is professional mobile robot simulation software. It contains a rapid
prototyping toolallowing the user to create 3D virtual worlds with physics properties, such as
massrepartition, joints, friction coeffi@nts, etc. The user can add simple inert objects or

7

activeobjects called mobile robots. Users can create complex virtual worlds and simulate
theirrobots within these environments.cAmplete programming library is provided to allow
usersto program theabots (usually using the C, C++ or Java languages). From the controller
programs, it is possible to read sensor values and send motor commands to robots. Resulting
robot controllers can be transferred to real robots (Khepera robot with C controllers,

Hemisson robot with BotStudio controllers, Aibo, LEGO Mindstorms, etc.).

WEBOTS:is well suited for research and education projects related to mobile
robotics. Manymobile robotics pr@cts have been relying on WEBOTS years in the
following areas:

A Mobile robot prototyping (acadewvaguom resear c
cleaner industry, toy industry, lobbyism, etc.)

A Maadent research (swarm intelligence, collaborative mobile robots groups, etc.)

A Adapt iuresalcte(Benetic avolution, neural networks, adaptive learning, Al,

etc.).

A Mobile robotics t each ipmgamfmingdstoréspbotiss | ect ur e
contest, etc.)

Chapter 2

LITERATURE SURVEY

LITERATURE SURVEY

The authorsl.iu, et.al.[1] have attempted in this paper ,a fuzzy ldgased reatime
navigation controller is described.This controller combines the path planning and
trajectory following as an integrated and coordddainit so that it executes
maneuvers such as docking and obstacle avoidadaeo®nly a little

information, which is easily obtained through a {owst sonar system, is necessary

and is always available. Tight coupling between sensor dataoatlcactions

provides the autonomous mobile robot with the adaptability necessary for coping with
a dynamically changing world. There is no separate path planning to-derpsed.

Driving mechanism reacts immediately to perceive Sensor data as tHe nbbi
navigates through the world.

In other paperSimon, et.al [2]havedescribed Mobile robots are mechanical devices
capable of moving in an environment with a certain degree of autonomy. Autonomous
navigation is associated with the availability gfeznal sensors that capture

information from the environment through visual images, or through distance or
proximity measurements. The most common sensors are distance sensors (ultrasonic,
laser, etc.) capable of detecting obstacles and of measuringtiuece to walls close

to the robot path. When advanced autonomous robots navigate within indoor
environments (industrial or civil buildings), they have to be endowed with the ability

to move through corridors, to follow walls, to turn corners and to epem areas of

the rooms.

As regards the corridor and widdlllowing navigation problem, some control

algorithms based on artificial vision have been proposed. In one, image processing is
used to detect perspective lines to guide the robot along the agistef the corridor.

In other, two lateral cameras mounted on the robot are used, and the optical flow is
computed to compare the apparent image velocity on both cameras in order to control
robot motion. In other, one camera is used to drive the rddrag ghe corridor axis or

to follow a wall, by using optic flow computation and its temporal derivatives. In

other, a globally stable control algorithm for wadllowing based on incremental
encoders and one sonar sensor is developed. In other, a teoretdel of a fuzzy

based reactive controller for a rinlonomic mobile robot is developed. In other, an
ultrasonic sensor is used to steer an autonomous robot along a concrete path using its
edged as a continuous landmark. In other, a mobile robotwtdanir for corridor

navigation and wall following based on sensor and odometric sensorial information is
proposed.

Kumar, et.al [3] have gone to explain that the mobile robot is a smalkiheeled
mobile platform, which was controlled by a miarontroller. The robot could sense
its surroundings with the aid of various electronic sensors while mechanical actuators

10

were used to move it around. Robot behaviour was determined by the program, which

was loaded to the microcontroller. In that way, it could $eduas a general robotics
experimental platform. The autonomous mobile robot was designed and built in order

to perform various navigation algorithms. The design consisted of two main sections:
Electronic analysis of the various robot sensors and Progragrtechniques used to
interface the sensors with the robotds mi
path-guiding robot with IR sensors and obstacle detection is using IR proximity

sensors. The predefined path is having varied turns, the feaggming take care of

speed to keep mobile robot in the defined path. The results are proved experimentally

and the surface viewer graph is obtained from the Mat Lab.

This paper cauthored byCastillo, et.al [4] addresses the problem of trajectory

tracking control in an autonomous, wheeled, mobile robot of unicycle type using

Fuzzy Logic. The Fuzzy Logic Control (FLC) is based on a backstepping approach to
ensure asymptotic stabilization of the ro
desired trajectorytaking into account the kinematics and dynamics of the vehicle. We

use the Mamdani inference system to construct a controller, with rifid BN rules
andthecentroid f ar ea met hod as our deffuziycati
and velocities are considered as linguistic variables. The performance of this FLC is
illustrated in a simulation study.

The TagakiSugeno approach is the most commonly used fuzzy togael in the
tracking control problem of autonomous vehicles.

One of the long standing challenging aspect in mobile robotics, which has been
addressed here Iatmi, et.al [5] is the ability to navigate autonomously, avoiding
modeled and unmodeled obstacéspecially in crowded and unpredictably changing
environment. A successful way of structuring the navigation task in order to deal with
the problem is within behavior based navigation approaches. In this study, Issues of
individual behavior design andtamn coordination of the behaviors will be addressed
using fuzzy logic. A layered approach is employed in this work in which a
supervision layer based on the context makes a decision as to which behavior(s) to
process (activate) rather than processingettlavior(s) and then blending the
appropriate ones, as a result time and computational resources are saved.

This paper presented bjalhotra, et.al [6] presents the design of a mobile robot for
obstacle avoidance in an environment about which-pigcai information is available

and which consists of static as well as moving obstacles. The paper concerns itself
with the design of a fuzzy brain for the mobile robot, its integration into the control
system and the sensor system used for the detection oflebstaits workspace. The
obstacle avoidance strategy of the robot is based on the artificial potential field
method. A fuzzy logic based system is used to implement this strategy since it reduces
the computational effort required in the implementatiothefartificial potential field
method. An algorithm (intelligent obstacle avoidance algorithm) is proposed to

11

integrate the fuzzy system into the main control system for the mobile robot. The
system described above is being tested by simulation and sebdgagvill also be
tested on an actual mobile robot being developed.

The paper cauthored bysingh, et.al [7]follows an approach to robot control where
desirable traits are expressed as quantitative preferences defined over the set of all
possible contl actions from the perspective of the goal associated with that behavior.
For example, a behavior for avoiding obstacles could map configurations of sonar
readings that correspond to the presence of an obstacle on the left of the robot into a
function tha prefers actions that steer the robot to the right. The paper calculates the
desirability of a control by using only 1 level of estimation where the results of the
control are used to calculate its desirability. We can extend it to include a sequence of
controls so that we can look at more future conditions to take present action. This is
much like the game tree techniques used by Al based computer programs.The other
extension we suggest is to model the inputs from sensors as fuzzy variables which
would tale into account the practical noisy, time dependent nature of most sensors.

This paper introduced dyamos,et.al [8] talks about a fuzzy decisiemaking

algorithm for robot behavior coordination. The algorithm belongs to the arbitration
class of behavioraordination mechanisms, under which only one behavior is running
at a time.However, it is possible to use a hierarchical decision mechanism for
hierarchical behaviors without interference between hierarchical levels.With this

fuzzy decision method itisgos i bl e t o represent a speciyc

the robot evolves. This algorithm consi
states, a cost function for behaviors, a set of goals, and a set of constraints. For each
behavior and actual widl state pair, a cost function is computed. The cost of each

pair is evaluated by the overall goals. Goals and constraints are aggregated using a
fuzzy operator and the optimal choice is the behavior with the maximum resulting
value. This algorithm wasgted with success in realistic simulations of a goalkeeper
soccer robot.

This work done byBusquets, et.al [9fxplores the use of bidding mechanisms to
coordinate the actions requested by a group of agents in charge of achieving the task
of guiding a rootowards a specified target in an unknown environment. This
approach is based on a fuzzy approach to landiveskd navigation.

Outdoor navigation in unknown environments is still a difficult open problem in the
field of robotics. Existing approaches assutimat an appropriately detailed and
accurate metric map can be got through sensing the environment. However, most of
these approaches rely on odometry sensors which can be very imprecise and lead to
many errors.Our approach considers using only visuatnmtion. The robot must be
equipped with a visual system capable of recognising visual salient obejcts, and use
them for mapping and navigation tasks.

12

st

The agents' theory offers flexibility for solution of problems whose environment is
dynamic and impreces The use of the computational intelligence together with the
agents' theory seems to be a natural way of providing an agent with intelligence. In
this paper wekigueiredo, et.al [10]describe the use of intelligent agents, whose
intelligence is based amfuzzy logic system, applied to the control of a robot,
simulated by the Khepera simulator. Fuzzy Logic Systems have demonstrated,
through the numerous applications in the area, to be an effective procedure for control
problems. The attitude to be takatneach moment by an agent is defined by a set of
fuzzy rules based upon the robot position, its sensor values, distance and angle
relative to the target. To prevent the robot from getting stuck by some obstacles, a
path memory system was created, fordimgrobot to seek new alternatives when it
gets trapped. The results obtained demonstrate a successful combination of
Computational Intelligence and the Theory of Agents in a control system with ability
to avoid deadlock situations.

This paper written biichel [12] presents Webots: a realistic mobile robot simulator
allowing a straightforward transfer to real robots. The simulator currently supports the
Khepera mobile robot and a number of extension turrets. Both real and simulated
robots can be programmedC language using the same Khepera API, making the
source code of a robot controller compatible between the simulator and the real robot.
Sensor modelling for 1D and 2D cameras as well as visualisation and environment
modelling are based upon the Open8i rendering library. A file format based on

an extension of VRML97, used to model the environments and the robots, allows
virtual robots to move autonomously on the Internet and enter the real world. Current
applications include robot vision, artificifle games, robot learning, etc.

This paper presents a new method for behavior fusion control of a mobile robot in
uncertain environments. Using behavior fusion by fuzzy logic, a mobile robot is able
to directly execute its motion according to range infation about environments,
acquired by ultrasonic sensors, without the need for trajectory planning. Based on
low-level behavior controMWei, et.al. [13]constructan efficient strategy for

integrating higHevel global planning for robot motion can berfadated, since, in

most applications, some information on environments is prior knowledge. A global
planner, therefore, only needs to generate some subgoal positions rather than exact
geometric paths. Because such subgoals can be easily removed froracimaolthe
planner, this strategy reduces computational time for global planning and is flexible
for replanning in dynamic environments. Simulation results demonstrate that the
proposed strategy can be applied to robot motion in complex and dynamic
environments.

13

Chapter 3

WORK ANALYSIS

1. My first bot
2. Environment
3. A simple controller

4. Implementation of Fuzzy-Logic in Webots

WORK ANALYSIS

14

3.1 My first BOT:

As a first introduction, we are going to simulate a very simple robot made up of a cylinder,
two wheels and two infrared sensors. A program performing obstacle avoidance inspired
fromBr ai t e nb er godrdrolsate gobot. it évdlves in a simple environment
surrounded by a wall, which contains some obstacles to avoid.

ok

elaadw

:

i

\'J) ~ pr0eiar Al
>

Figure 3.1 My First-Bot

3.2 Environment:

This very first simulated world is as simple as possible. It includes a floor, 4 obstacles and a
surrounding wall to avoid that tltebot escapes. This wall is modelled using an Extrusion
node.

First, launch WEBOTS and stop the current running simulation by pressiSgajmbutton.

Go to theFile menu,newitem to create a new world. This can also be achieved through the
New button,or the keyboard shortcut indicated in tike menu. Then open the scene tree
window from theScene Tree..item in theEdit menu. This can also be achieved by double
clicking in the 3D world. Let us start by changing the lighting of the scene:

1. SelecthePoint Light node, and click on the + just in front of it. You can now see the
different fields of théoint Light node. Selecambient Intensity and enter 0.6 as a value,
then select intensity and enter 0.6, then, select location and enter [0.75] @$\lues.
Press return.

2. Select théoint Light node, copy and paste it. Open this rfgeint Light node and type
[-0.5 0.50.35]in the location field.

3. Repeat this paste operation twice again with [0.450053 in the location field of théhird
Point Light node, and{.5 0.5-0.35] in the location field of the fourth and I&stint Light
node.

4. The scene is now better lit. Open Breferences..from theEdit menu, select the
Renderingtab and check thBisplay lights option. Click on he OK button toleave the
preferences and check that the light sources are now visible in the scetine different
mouse buttons, including the mouse wheel if any, and drag the mouse in

the scene to navigate and observe the location of the light source

Secondly, let us create the wall:
15

1. Select the lastransform node in the scene tree window (which is the floor) and dick
theinsert after button.

2. Choose &olid node.
3. Open this newly creategblid node from the + sign and typedll” in its name field.
4. Select the children field aridsert after a Shapenode.

5. Open this Shape, select its ap@ce field and create an Appearance node froridve
nodebutton. Use the same technique to create a Material nodenmatieeal field ofthe
Appearancenode. Select thdiffuseColor field of theMaterial node and choose a calao
define the colar of the wall. Let us make it lightrown. In order to make your object change
its colaur depending on its illuminatioselect thespecularColaur field of theMaterial

node and choose a cafao define thecolour of the illuminated wall. Let us use an even
lighter brown to reflect the effect die light.

6. Similarly it also is possible to easily modify the eotoof the ground. To do so yauill
have to modify the two colw fields of the lastransform node, the oneorresponding to
the ground, which are locatedtime children / Shape / geometry Colour node. In our
examples we have changed it to a black and white grid.

7. Now create aixtrusion node in thegeometryfield of theShape

8. Set the convex field to FALSE. Then, set the wall corner coordinatesarogSection
field as shown in. You will have to+enter the first point (0) at the last position (10) to
complete the last & of the extrusion.

9. In the spine field, write that the wall ranges between 0 and 0.1 along the Y axis (instead of
the 0 and 1 default values).

10. As we want to prevent our robot to pass through the walls like a ghost, we have to define
theboundingObject field of the wall. Bounding objects cannot use complex geometry
objects. They are limited to box, cylinder and spheres primitives. Hence, we will have to
create four boxes (representing the four walls) to definbeahadingobject of the
surroundingvall. Select thdoundingObject field of the wall and create@roup node that

will contain the four walls. In thi&roup, insert alransform node aghildren. Create a

Shape as the unique children of the Transform. Create a

Material in the nodeAppearanceand set both of itdiffuseColor andspecularColourto

white. This will be useful later, when the robot will have to detect the obstacles because the
detection of the sensors is based on these colours. Now cigaxeaageometryfor this
Shapenode. Sethe size of the Box to [0.01 0.1 1], so

that it matches the size of a wall. Set the translation field of tiwesform node to [0.495

0.05 0], so that it matches the position of a wall.

11. Now, close thiFransform, copy and paste it as the second ¢kihtdof the list.

16

Instead of creating a neBhapefor this object, reuse thghapeyou created for the first
bounding object. To do so, go back to Transform node of the previous objedpen the
children node, click on th&hapenode and you will seenathe right handide of the
window that you can enterREF name. WriteVALL_SHAPE as aDEF name and return
to the children of the second bounding object. fEkedetethe Shapecontained in it and
create &New nodeinside it. However, in th€reate new nodedialog, you will now be able
to use th&VALL_SHAPE you just definedSelect this item and clicdkK. Set the
translationfield of the new node t6(.4950.05 @, so that it matches the opposite wall.
Repeat this operation with the two

remaining walls ad set their rotatiofields to [0 1 0 1.5Fso that they match thaientation
of the corresponding walls. You also have to edit their translationdteldell, so that they
match the position of theorresponding walls.

12. Close the tree editor, sayaur file as fny_mybot.wbt" and look at the result.

17

my_mybot.wbt - Webots PRO 5.10.0 FEX -
Fle Smulation View Wizard Tools Help

Scene Tree - Webots PRO 5.10.0 [~ [B]Xx]

CaBds b

5@ WorldInfo Solid
@ Viewpoint
@ Background
@ Pointlight
=@ PointLight
@ PointLight
@ Pointlight
=@ DEF GROUND Solid
=@ DEF WALL Solid
@ translation 000
@ rotation0100
@scalet1l
= @ children
= @ Shape
@ @ appearance Appearance
© @ geometry DEF WALL Extrusion
@ name "wall"
@ model ™
@ author ™
@ constructor ™
@ descrpton™ oEF
& @ boundingObject Group
= @ children
@ @ Transform
@ @ Transform
® @ Transform
@ @ Transform
@ physics NULL
@ locked FALSE

20:33:26:464 15.8x

| ! I3 13
simensions: 1280 x 1171 Type: JPEG Image Size: 123 KB 123K8 3 My Computer
50

5:05 PM

Figure 3.2 My WEBOT world (illuminated by 4 lights)

Thirdly, let us create the obstacles:

1. Select the lasolid node in the scene tree window (which is the walt) elick on the
insert afteutton.

18

my_mybot_obstacle.wbt - Webots PRO 5.10.0
Fle Smulation View Wizard Tools Help Scene Tree - Webots PRO 5.10.0 (=

Caunds b ey smEBE X+ Ffhbaa?

= @ WorldInfo Solid
& @ Viewpaint

@ Background

© @ PointLight

@ PaintLight

@ @ Pointlight

=@ PointLight

©-@ Solid

& @ DEF WALL Solid
@ DEF GREEN Solid
@ @ DEF BLUE Solid

= @ DEF YELLOW Solid

DEF | RED

5:09:43:744 12.7x

Figure 3.3 My WEBOT world with Obstacles

2. Choose &olid node.
3. Open this newly create®blid node from the + sign and typgréen boXx in its name field.

4. Using the same technigas for the wall add first Shape, then akppearanceand a
Material . For the colar, let us make it green with a lighter green for the illumingizds.

5. Now create Box node in the geometry field of the Shape and set it4Gife230.1 0.1.
Set theDEF name of this geontiey to BOXO.

6. To create thboundingObject of this object, create @hapenode and reuse the previous
DEF for the geometry. As for the wall, create alsoAgpearanceand aMaterial node and
set the two colours to white.

7. Finally set théranslation field to [-0.05 0.050.25] but let itgotation field to the
standard values.

19

8. Now repeat these steps to create the three remaining obstacles. First create the one called
"blue boxX' which has a geometry call&DX1 of [0.1 0.1 0.1], dranslation of [0.2 0.05

0.27] and aotation of [0 1 0 0.31]. Then create the one callgdllow box' which has a
geometrycalledBOX2 of [0.05 0.1 0.3], a translation of0.2 0.05 0.15] and tation of [0

1 0 0.4]. Finally create the one calleeéd box"' which has ageometry calledBOX3 of [0.15

0.1 0.08], dranslation of [0.42 0.05-0.1] and a standamdtation. For all these objects, set

their colours accordingly with their names.

Robot

This subsection describes how to modelNtyd@ot robot as differentialWheels node
containing several children:Taansform node for the body, tw8olid nodes for the wheels,
two DistanceSensonodes for the infraied sensors and$hapenode with a texture. The
origin and the axis of the coordinate system of the robot and itsdioms are shown.

FRONT WIE® LEFT SI0E WwEW
x 2]
A)
1 i
_ 1
. Fa E i
- - L i
[E@L
ol = ___JI-___ — - — = = = g
i
) & ﬂ[l'f j:" & 00
g| 4
Ll [.::___::.] LEn ':-"-'I:’\}
'I' ook G EOLS
:I ‘-_Fiﬂ_ | a,45

Figure 3.4 Dimensions of My First Bot
To model the body of the robot:
1. Open the scene tree window.
2. Select the lastolid node.
3. Insert after aDifferential Wheels node, set its name td/fyyBot".
4. In the children field, first introduce a Transform node that will contain a shape with a
cylinder. In the new children fieldinsert after a Shape node. Choose a colour, as described
previously. In the geometry fielthsert a Cylinder node. S¢he height field of the cylinder
to 0.08 and the radius one to 0.045. Sei&B& name of the

geometryto BODY, so that we will be able to reuse it later. Now setitieslation.
20

To model the left wheel of the robot:

1. Select the Transform node capending to the body of the robot andert after a Solid
node in order to model the left wheel. Typeft'wheel" in the name field, so that th&olid
node is recognized as the left wheel of the robot and will rotate according to the motor
command.

2. The axis of rotation of the wheelxsThe wheel will be made of a Cylinder rotate¢pu®
radians around theaxis. To obtain proper movement of the wheel, you must pay attention
not to confuse these two rotations. Consequently, you must Bdehsform node to the
children of theSolid node.

3. After adding thigransform node, introduce inside it@hapewith a Cylinder in its
geometryfield. Don't forget to set an appearance as explained previously. The dimensions of
the cylinder should be 0.01 fdre height and 0.025 for the radius.

Set therotation to [0 0 1 1.57]. Pay attention to the sign of the rotation; if it is wrong, the
wheel will turn in the wrong direction.

4. In theSolid node, set th&anslation to [-0.045 0.025 0] to position the tefheel, and set

the rotation of the wheel around thexis:

[1000].

6. Close the tree window, look at the world and save it. Use the navigation buttons to change
the point of view.

To model the right wheel of the robot:

1. Select the left wheeloBd node andnsert after another Solid node. Typeight wheel"
in the name field. Set the translation to [0.045 0.025 0] and the rotation to [1 0 0 0].

2. In the childreninsert after USE WHEEL. PresReturn, close the tree window and save
the file. You can examine your robot in the world editor, move it and zoom on it.

The two infrared sensors are defined as two cylinders on the front of the robot body. Their
diameter is 0.016 m and their height is 0.004 m. You must position these sensors peooperly s
that the sensor rays point in the right direction, toward the front of the robot.

1. In the children of th®ifferentialWheels node,insert after a DistanceSensonode.

2. Type the name "irQ". It will be used by the controller program.

3. Let us attae a cylinder shape to this sensor: In the children list oDisnceSensor

node,Insert after aTransform node. Give HEF name to itINFRARED , which you will
use for the second IR sensor.

21

4. In the children of th@ransform node,insert after a Shapenode. Define amappearance
andinsert a Cylinder in thegeometryfield. Type 0.004 for the height and 0.008 for the
radius.

5. Set the rotation for thEransform node to [0 0 1 1.57] to adjust the orientation of the
cylinder.

6. In theDistanceSensonaode, set the translation to position the sensor and its-fa92[
0.063-0.042]. In theFile menu,Preferences Rendering, check theéDisplay sensor rays
box. In order to have the ray directed toward the front of the robot, you

must set the rotation to [DO 2.07].

7. In theDistanceSensonode, you must introduce some values of distaneasurements of
the sensors to tHeokupTable field, according to and these values are:

Lookup Table [0 1024 O,

0.05 1024 0,
0.15 0 0]
Measured
value

Loz24

0.05 0.15 Distance to

the wall

Figure 3.5 Distance measurements of tkigBotsensors.

22

Scene Tree - Webots PRO 5.10.0

BEX+Fbowaa?

@ Solid
@ DEF WALL Solid
@ DEF GREEN Solid
@ DEF BLUE Solid
=@ DEF YELLOW Solid
@ DEF RED Solid
=@ Differentialwheels
@ translation 000
@ rotation 0100
@scle11t
= @ children
& @ DistanceSensor
=@ DistanceSensor
@ translation 0,02 0.063 -0.042
@ rotation 01 01,07
Dscalet 1t
= @ chidren
@ USE INFRARED
@ name "irt"
@ model ™

@ descriptior
@ boundingObject NULL
@ physics NULL
@ locked FALSE
=@ lookupTable
@ 010240
@0.0510240
@o.1500
@ type "infra-red”
@ numberOfRays 2
@ aperture 1
@ gaussianWidth 1
=@ Transform
@ translation 00,0415 0
@ rotation 0100
@scale111
@ @ chidren

24:14:36:032 13.1x

~

&3

name

m

T >

|4

Figure 3.6 My First Bot with 2 IR Sensors

23

4 My Computer

my_mybot_obstacles_bot_IR_sensors1.wbt * - Webots PRO 5.10.0 [- [B]X] " scene Tree - Webots PRO 5.10.0

Simulation View zard Tou Help s
. ~ D:Wwebots\Webots\my_webotsicontrollers\my._controller\Untitled_1 - Webots PRO 5.10.0 EEX : d
o a "G D>» File Edt Buld 8 boundingobiect

FasndscB R eaeda &
my_controlle.c | United_1 |

I 3

&

“or Help, click Help Topics on the Help Menu.

Figure 3.7. Controller Program Space

24

3.3CONTROLLER :

Synchronous Controllers

They are recommended for robust control.

Asynchronous Controllers

They are recommended for running robot competitions where computer resources
are limited or networked simulations involving several robots distributed over a computer
network with an unpredictable delay, (like Internet) (also, if computationally expensive
controller).

The above 2 controllers can be used selectivelgymchronous and
Asynchronous Robots.

25

SIMPLE CONTROLLER PROGRAM

This controller is very simple. The controller program simply reads the sensor values and sets
the two motors' speeds, in such a way MgBot avoids the obstacles.

Below is the source code for theybot_simple.ccontroller:

#include <device/robot.h>
#include <device/differential_wheels.h>
#include <device/distance_sensor.h>

#define SPEED 60
#define TIME_STEP 64

static void reset(void);
static int run(int);

static DeviceTag ir0, irl;

static void reset(void)

{

ir0 = robot_get_device("ir0");

irl =robot_get_device("irl");
distance_sensor_enable(irO, TIME_STEP);
distance_sensor_enable(irl, TIME_STEP);
return;

}

static int run(int ms)

{

short left_speed, right_speed;
unsigned short irO_value, irl_value;

ir0_value = distance_sensor_get_value(ir0);
irl value = distance_sensor_get value(irl);

if (irl_value > 500) {
if (ir0_value > 500) {

left speed =SPEED;

right_speed =SPEED / 2;

} else {

left_speed =irl_value / 10;
right_speed = (ir0_value / 10) + 5;

} else if (ir0_value > 500) {
left_speed = (irl_value / 10) + 5;
right_speed =ir0_value / 10;

} else {

26

left_speed = SPEED,;
right_speed = SPEED;
}

differential_wheels_set_speed(lefbegd, right_speed);
return TIME_STEP;

}

int main()

{

robot_live(reset);

robot_run(run);

return O;

}

27

3.4 APPLICATION OF FUZZY -LOGIC USING MATLAB:

For efficient avoidance of b2desiredoutpaetss, | et 6

3 Chosen Inputs (got from distanceneasuring sensors)

a

b.

C.

Front Obstacle Distance (FOD)
Left Obstacle Distance (LOD)
Right Obstacle Distance (ROD)

2 Desired Ouputs

a

b.

Left Wheel Velocity (LWV)
Right Wheel Velocity (RWV)

IMPLEMENTATIO N OF FUZZY-SYSTEM:

This job is initially carried out by MATLAB FUZZYLOGIC TOOLBOX and later by
MATLAB written program.

Steps

PoooTw

—h

Type fanfisedito in command window of MAT
Click AFiledo , ANew FI S0, Mamdani

The above FIS Editor is used to define syputs and outputs.

Click AEdito, AAdd Variableso, Al nput [/ C
Membership function is chosen according to our need, viz. trapezoidal, triangular,

gaussian, sigma, etc.

Defuzzification is done by Centroid Method.

DEFINITION OF INPUTS & OUTPUTS :

1.
2.

INPUTS : FOD, LOD, ROD can be Far (F) or Near (N)
OUTPUTS: LWV, RWYV can be Fast (f) or Slow (s).

RULES FOR OPERATION:

SI.No FOD LOD ROD LWV RwWV

1 F F F F f

2 F F N S f
3 F N F F S
4 F N N F f
5 N F F S f
6 N F N S f
7 N N F F S
8 N N N S S

The above logic is fed into FuzaController via RULE -EDITOR.

28

INCORPORATION OF FUZZY -LOGIC INTO WEBOTS SIMULATOR :

The following MATLAB written Code incorporates Fuzkpgic into Main
Controller Program.

There are 2 ways to incaspate Fuzzytogic into Webots and test:
1. Include the Fuzzy.ogic Code into Webots controller Code.
2. Get the values (Distana®ensor) values from Webots and include into Felegyjc
Code and plot it in Mamdani Matlab controller FIS Editor.
The Strategy adaed here in this thesis is the SECOND Way.

MATLAB FUZZY -LOGIC CODE::

PROGRAM TO INCORPORATE FUZZY -LOGIC INTO WEBOTS :

%[System]
Name='fuzzylogic’;
Type='mamdani’,
Version=2.0;
Numlinputs=3;
NumOutputs=2,;
NumRules=8;
AndMethod="min’,
OrMethod="max’,;
ImpMethod="min’,
AggMethod="max’;
DefuzzMethod='centroid’;

X =0:0.1:6;

%Rules

if (FOD =='F' & LOD =='F'& ROD == 'F))

29

LWV ='f
RWV ='f

end

if (FOD =="F' & LOD =="'F'& ROD =='N)

LWV ='s";
RWV ='f"
end

if (FOD =="F' & LOD =='N'& ROD =="F')

LWV =1
RWV ='s,

end

if (FOD =="F' & LOD =='N'& ROD =='N")

LWV = °f;
RWV = f;

end

if (FOD =='N'& LOD =="'F'& ROD =="F')

LWV ='s’
RWV = f;

end

if (FOD =='N"'& LOD =='N'& ROD =="'N’)

LWV ='s’;

30

RWV ='s,

end

if (FOD =='N'& LOD =="'F& ROD =="N")

LWV ='s";
RWV ='f;
end

if (FOD =='N"'& LOD == 'N'& ROD =="F')

LWV ='f"
RWV ='s"

end

%[Inputl]

Name='"FOD'

Range=[0 6];
NumMFs=2;

if (FOD =="F")
MF1=trimf (x, [2 4 6]);
end

if (FOD =="'N")
MF2=trimf (x, [0 2 4]);
end

plot(MF1,MF2), title('FOD"),

xlabel('FOD values'),

31

ylabel('Membership function value'),grid
outl = defuzz(x,MF1,'centroid’)
outll = defuzz(x,MF2,'centroid’)

out_1 = min(outl, outll)

%[Input2]

Name='LOD'

Range=[0 6];

NumMFs=2;

if (LOD =="F")

MF1= trimf (X, [3.5 4.5 5.5]);
end

if (LOD =="'N')

MF2= trimf (x, [0.5 2.5 4.5]);
end

plot(MF1,MF2), title('LOD"),
xlabel('LOD values'),
ylabel('Membership function value'),grid
out2 = defuzz(x,MF1,'centroid’)
out22 = defuzz(x,MF2,'centroid’)

out_2 = min(out2put22)

%[Input3]
Name='"ROD'
Range=[0 6];

NumMFs=2;

32

if (ROD =="F")

MF1=trimf (X, [0.6 3.2 4.4]);
end

if (ROD =='N")

MF2= trimf (x, [3.6 5 6]);

end

plot(MF1,MF2), title('ROD"),
xlabel('ROD values'),
ylabel("Membership function value'),grid
out3 = defuzz(x,MF1,'centroid’)
out33 = defuzz(x,MF2,'centroid’)

out_3 = min(out3, out33)

out_final = min (out_1, out 2, out_3)

%[Outputl]

Name="LWV'

Range=[0 4];
NumMFs=2;

if (LWV =="f")
MF1=trimf (x, [2 3.5 4]);
end

if (LWV =="s")
MF2=trimf (x, [0 1 2]);
end

plot(MF1,MF2), title(LWV"),

33

xlabel('LWV values'),
ylabel('Membership function value'),grid
outfl = defuzz(x,MF1,'centroid’)

outfll = defuzz(x,MF2,'centroid’)
outf_1 = min(outfl, outfll)

outf_1net = outf_1./out_final

%[Output?]

Name="RW/'

Range=[0 4];

NumMFs=2;

if (RWV =="f")

MF1= trimf (x, [1.25 2.5 3.6]);
end

if (RWV =='s")

MF2= trimf (x, [0 1.75 3]);

end

plot(MF1,MF2), title(RWV"),
xlabel(RWV values’),
ylabel('Membership function value'),grid
outf2 = defuzz(x,MF1,'centid)
outf22 = defuzz(x,MF2,'centroid’)
outf_2 = min(outf2, outf22)

outf_2net = outf_2./out_final

% [Rules]

%112,11(1):1
%111,21(1):1
%122,12(1):1
%121,11(1):1
%212,21(1):1
%211,21(1):1
%222,12(1):1

%221,22(1):1

% Defuzzification- Centroid

%out = defuzz(x,MF,'centroid’)

%%%%%%%%% %% %% %% %% %% %% %% % %% %% % %% %%

35

Chapter 4

RESULTS

Output with Figures from Simulation

36

PATH TRAVELLED BY BOT WITHOUT FUZ ZY LOGIC IMPLEMENTATION:

my_mybot_obstacles_bot_IR_sensors1.wbt - Webots PRO 5.10.0 =) Scene Tree - Webots PRO.5.10.0.

s BB BXESfhhbaa?

File Simulation View Wizard Tools Help [
= @ worldinfo Solid

Caudgs b ey
& @ Viewpoint

@ @ Background
@ @ PointLight
& @ PointLight
@ @ PointLight
|} = @ PointLight
= @ Solid
I & @ DEF WALL Solid
@ @ DEF GREEN Solid
@ @ DEF BLUE Solid
@ @ DEF YELLOW Solid
& @ DEF RED Solid
@ @ Diferentialheels

- [E]X]

DEF | WALL

Figure 4.1: My Bot before avoiding Obstacles (in its original initial position)

37

my_mybot_obstacles_bot_IR_sensors1

e Simulation Wi

Webots PRO 5
rd Tools Help

Cands

74 start

b u»

0:12:18:944

er Guider... untitled - Paint

Scene Tree - Webots PRO 5.10

% BB

X +

FHooaa?

@ WorldInfo
@ Viewpoint
@ Background
@ PaintLight
@@ Pointlight
@ @ Pointlight
@@ Pointlight
@ Solid
@ DEF WALL Solid
@ DEF GREEN Solid
@ DEF BLUE Solid
@@ DEF YELLOW Solid
@ DEF RED Solid
= @ DifferentialWheels
@ translation 000
@ rotation 0100
@scalet1t
i @ children
@ name "mybot"
@ model "™
@ author™
@ constructor
@ description ™
@ boundingObject NULL
@ physics NULL
@ locked FALSE
@ controller "mybot_simple"
@ controllerfrgs”
@ synchronization TRUE
@ battery
@ cpuConsumption 0
@ selfCollision FALSE
@ motorConsumption 0
@ axleLength 0.1
@ wheeRadius 0.01
@ maxSpeed 10
@ maxhcceleration 10
@ speedunit 0.1
@ sliphoise 0.1
@ encoderhioise -1
@ encoderResolution -1
@ maxForce 0.3

Figure 4.2: My Bot avoiding the First Obstacle (Green)

38

controller

&) H% YL 9

my_mybot_obstacles_bot_IR_se|

ar He

OCaBds b

Welcome to Webots!

ST T MM LT DT

nsors1.wbt * - Webots PRO 5.10.0
ip

»

0:02:05:760

10.8x

Scene Tree - Webots PRO 5.10.0
sBBEHE X+ fbbaa ?

& @ Background Al

@ @ Pointlight

@ @ Pointlight

@ @ Pointlight

@@ PointLight

@ @ Solid

@ Q) DEF WALL Solid

@ Q) DEF GREEN Solid

& @ DEF BLUE Solid

@ @) DEF YELLOW Solid

@ @ DEF RED Solid

= @ DifferentialWheels
@ translation 000
@ rotation 0100
@scale 111

= @ chidrer

@ model
@ author ™

@ constructor
@ description
@ boundingObject NULL
@ physics NULL
@ locked FALSE

@ controllerargs "

@ synchronization TRUE

@ battery

@ cpuConsumption 0

@ selfColision FALSE
motorConsumption 0

@ axleLength 0.1

@ wheelRadius 0.01

@ maxSpeed 10

@ maxacceleration 10

@ speedunit 0.1

@ sliphioise 0.1

@ encoderhoise -1

@ encoderResolution -1

@ maxForce 0.3

(]

controller

mybat_simple. [

‘or Help, dlick Help Topics on the Help Menu.

Figure 4.3: My Bot avoiding the Second Obstacle (Red)

39

Figure 4.4: My Bot avoiding Third Obstacle (Blue)

40

