Fuzzy Finite Element Method for One-dimensional Steady State Heat Conduction Problem

Majumdar, Sarangam (2012) Fuzzy Finite Element Method for One-dimensional Steady State Heat Conduction Problem. MSc thesis.



Traditional finite element method is a well-established method to solve various problems of science and engineering. Different authors have used various methods to solve governing differential equation of heat conduction problem. In this study, heat conduction in a circular rod has been considered which is made up of two different materials viz. aluminum and copper. In earlier studies parameters in the differential equation have been taken as fixed numbers which actually may not. Those parameters are found in general by some measurements or experiments. So the material properties are actually uncertain and may be considered to vary in an interval or as fuzzy and in that case complex interval arithmetic or fuzzy arithmetic has to be considered in the analysis. As such the problem is discretized into finite number of elements which depend on interval/fuzzy parameters. Representation of interval/fuzzy numbers may give the clear picture of uncertainty. Hence interval/fuzzy arithmetic is applied in the finite element method to solve a steady state heat conduction problem. Application of fuzzy finite element method in the said problem gives fuzzy system of linear equations in general. Here we have also proposed new methods to handle such type of fuzzy system of linear equations. Corresponding results are computed and has been reported here.

Item Type:Thesis ( MSc)
Uncontrolled Keywords:Finite Element Method (FEM) Fuzzy, Interval Finite Element Method (IFEM) Fuzzy Finite Element Method (FFEM) Triangular Fuzzy Number (TFN)
Subjects:Mathematics and Statistics > Applied Mathematics
Divisions: Sciences > Department of Mathematics
ID Code:3029
Deposited By:Sarangam Majumdar
Deposited On:04 May 2012 10:58
Last Modified:14 May 2012 11:31
Supervisor(s):Chakraverty, S

Repository Staff Only: item control page