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ABSTRACT 

Parallel mechanisms are found as positioning platforms in several applications in robotics 

and production engineering. Today there are various types of these mechanisms based on the 

strcture, type of joints and degree of freedom. An important and basic planar mechanism 

providing three degree of freedom at the end-effector (movable platform) is a 3-RPR linkage. 

Here the underscore below P indicates the presence of actuated prismatic joints and 3 indicates 

the number of legs used to carry the mobile platform. A lot of work has been done on this 

mechanism since 1988. In the present work, the kinematics of 3-RPR linkage is specifically 

studied to understand the synthesis procedure. The forward kinematics in parallel mechanisms is 

a multi-solution problem and involves cumbersome calculations compared to inverse kinematics. 

In inverse kinematics, we design the actuator input kinematic parameters for a known table 

center coordinates. In other words it is a transformation of platform pose vector to the actuator 

degrees of freedom. In 3-RPR mechanism considered in present task, the actuators are sliders 

and hence the slider displacements reflect the input degrees of freedom. On the other hand, for a 

known posture (available slider displacement status), the table center coordinates are predicted in 

forward kinematics. In present work, forward kinematics solutions are obtained by defining error 

function and optimizing it using genetic algorithms programs. Also, the workspace and Jacobian 

matrices are computed at corresponding solution and singularity analysis is briefly highlighted. 

Main objective is to fabricate a scaled model of this planar manipulation mechanism with 

calculated dimensions and observe the practical workspace obtained. An attempt is made in this 

line to some extent. 

  



6 | P a g e  
 

CONTENTS 

Chapter 1     Introduction               7 

1.1  Types of  planar parallel mechanism           7 

1.1.1 3-RPR planar parallel mechanism          7 

1.1.2 2-RPR planar parallel mechanism                                               8 

1.1.3 3-RRR planar parallel mechanism         9 

1.2 Workspace              10 

1.3 Singularities                                                                                             10 

1.4 Jacobian matrix                                                                                        11 

1.5 Literature review             11 

1.6 Objective of present work            12 

 

Chapter 2  Forward kinematic equation and optimized function        14 

 

2.1 Forward kinematics of 3-RPR mechanism          14                                                                            

2.2 Distance error as objective function           15   

   

Chapter 3 Genetic algorithm             16 

        3.1 Basic Method             16 

        3.2 Application to Present Problem           18 

Chapter 4 Workspace and Jacobian matrix for 3-RPR mechanism        19   

4.1 Workspace              19                                                                                                                               

4.2 Jacobian matrix             19 

Chater 5 Results and discussion               21 

5.1 Methodology                            21                                                                                                                          

5.2 Kinematic analysis                           22                                                                                              

5.3Jacobain matrix              24                                                                                                                      

5.4 workspace diagram             25 

Chapter 6 Conclusion                         29 

References               30 

Appendix: COMPUTER PROGRAMS           31 



7 | P a g e  
 

CHAPTER-1 

 

INTRODUCTION 
 

Mechanism is defined as Rigid bodies connected by joints in order to accomplish a desired force 

and  motion .  Parallel mechanism are closed-loop mechanisms  where all of the   links are 

connected to the ground  and the moving platform at the same time. They have high rigidity, load  

capacity, precision and especially structural stiffness, since the end- effector is linked to   the 

movable plate at several points. The spatial parallel mechanism that have three to six degrees of 

freedom (DOFs) can translate and rotate in the three dimensional space. One of the most popular 

spatial manipulators is the Gough–Stewart platform which is extensively used in flight 

simulation. The second group  is planar parallel mechanism (PPMs) which translate along the x- 

and y-axes, and rotate around the z-axis, only. Synthesis of mechanism refers to design a linkage 

for a prescribed motion or path or velocity of tracing joint or link. 

1.1 Types of planar parallel mechanism        

Planar parallel mechanism are classified on the basis of following                                                   

1.  Structure . 

2. Degree of freedom. 

1.1.1  3-RPR Mechanism 

Figure 1 shows a 3-RPR mechanism designates that the end effector is connected to the base by 

three serial kinematic chains consisting of a passive revolute (R) joint connected to the base, 

followed by an actuated and (thus underlined  prismatic) P joint, and followed by a passive 

revolute (R) joint connected to the end-effector.  
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Figure 1 :Planar 3-RPR parallel mechanism 

1.1.2.  2-RPR Mechanism.  

A general two-degrees-of-freedom planar parallel mechanism actuated with prismatic joints (2-

RPR ) mechanism is shown in Fig. 2. 

 

                                      Figure 2. Planar 2-RPR parallel mechanism.   

 

The lengths of the segments OiD  in this section( i=1, 2) are denoted by  ρi.  The end effector (C) 

can be positioned in a plane by modifying the lengths of these segments within the permissible 

ranges of the prismatic actuators (       ≤   ≤       ). A fixed reference frame (OXY) is defined. 

The output of the mechanism, corresponding to the position of the end effector, can thus be 

expressed as  

                                                    x =                                                                       ( 1) 
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The mechanism’s input corresponds to the lengths of the prismatic actuator 

                                                          
                                                      (2) 

1.1.3.    3-RRR Mechanism. 

A general three-degrees-of-freedom planar parallel mechanism actuated with revolute joints         

( 3-RRR mechanism) is illustrated in Fig. 3. The length of all proximal links (    ) ) is   , while 

that of all distal links (    )  is   . A fixed reference frame (OXY) is defined as being attached to 

the mechanism’s base. Furthermore, a mobile reference frame (Cx’y’)  is defined as being 

attached to the end effector. As was the case for the 3-RPR mechanism, quantities expressed in 

the mobile frame will henceforth accompanied by the ’ symbol. Vectors along lines O  ,       

,       , and C     are represented by    ,    ,   , and     respectively. Unit vectors     are also 

defined as being directed  from points     to   . The output mechanism is 

                                                          x =                                                                         (3) 

while its input is expressed as the angular positions of the revolute actuators measured  from the 

X axis to each of the serial kinematic chain’s proximal links 

                                                                            
                                               

 
 Figure 3. Planar 3-RRR parallel mechanism 
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1.2  Workspace 

Workspace is defined as regions which can be reached by a reference point C located on the 

mobile platform.There are several definitions for the workspace of parallel mechanisms . 

Constant orientation workspace corresponds to the set of positions  reachable by the end 

effectors as it translates at a fixed orientation. Maximal workspace is defined as the region which 

can be reached by point C with at least one  orientations . The maximal workspace is also 

referred to as a reachable workspace . Inclusive workspace is defined as the region which can be 

obtained by point C with at least one orientation in a given range . The total orientation 

workspace corresponds to the region which can be reached by point C with every   orientation of 

a platform in a given range. Dextrous workspace is given as a region which can be reached by 

point C with any orientation of the platform.   For all three mechanisms (3-RPR, 2-RPR, 3RRR), 

it can be shown that the  locus of points attainable by the end-effector C will have concentric  

circles centered at (  ,   ) as boundaries. 

 

                                                
        

   
 
                                                       (4) 

where i=1, 2 for the 2-RPR mechanism, and i=1, 2, 3 for the 3-RPR and the 3-RRR mechanisms. 

Note that for the 3-RPR and the 3-RRR mechanisms, Eq. (9) holds only for a constant orientation 

of their platforms. For the mechanisms with prismatic joints, two circles are obtained when the 

actuator lengths are set to its boundary values (      ,       ). For the 3-RRR mechanism, the 

minimum and maximum radii correspond to the configurations where the proximal and distal 

links are aligned, i.e.,            = │         

1.3 Singularities 

In parallel mechanism, the singularity is an inherent geometric state that corresponds to an 

uncertainty configuration at which the system exhibits uncontrollable transitory degree of 

freedom(s). This happens when all the force are coincident at a point. 

                                                 =                                                                                      (5)    

Condition for singularity                       

                                                                     J     =0                                                                   (6) 

   Where ,                                          [J] is known as jacobian matrix. 

                                                              

Types of singularities. 
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(A) Direct kinematic singularity. 

(B) Inverse kinematic singularity. 

 Direct kinematic singularity occurs inside the Cartesian workspace of the parallel manipulator. 

At  this configuration, the end-effector can make infinitesimal motion even if the actuators are 

locked. Inverse kinematic singularity occur whenever any chain is in a completely stretched out 

or folded back. The corresponding configurations are located at the boundaries of the 

manipulator’s workspace. At this configuration, infinitesimal rotations  of the input links cannot 

produce motion in the  end-effector. At this configuration, infinitesimal rotations of the input 

links cannot produce motion in the end-effector. 

1.4 Jacobain matrix  

A Jacobian matrix can be obtained for a parallel manipulator as follows. Let the actuated joint 

variables and the location of the moving platform be denoted by the vectors q and x, 

respectively. Then the kinematic relations can be written in the general form as f(x,q)=0 where f 

is the function of            and q=          
  and 0 is an n-dimensional zero vector. The 

variables x, y and Ø are the coordinates of the end-effector point P with respect to the base and 

orientation of the platform, respectively. Moreover,   ,    and    denote actuated joints. 

Differentiating the f with respect to the time,            is obtained. Here    and    are the 

time derivatives of x and q, respectively. Here A and B are two separate Jacobian matrices. The 

overall Jacobian matrix for a parallel manipulator can be obtained as 

                                                                            

1.5  Literature review 

Following works are related to the present thesis.  

Arsenault & Boudreau [1] presented a reliable synthesis method capable of optimally selecting 

the geometrical parameters of planar parallel mechanisms. Three different architectures are 

considered and a genetic algorithm is used to perform the optimization. The performance of each 

mechanism is evaluated according to four different criteria: workspace, singular configurations, 

dexterity, and stiffness. In order to make the synthesis method as realistic as possible, 

mechanical constraints affecting the angular rotation of the 2-RPR and 3-RPR mechanisms’ 

passive revolute joints are considered. Moreover, since the conventional methods for computing 

the dexterity and the stiffness index are not valid for the 3-RPR and 3-RRR mechanisms, an 

alternative computation method is used.  
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Huang & thebert [2] considered a kinematic structure with three in parallel actuated,   R-

R-R, and  R-P-R  serial chain geometries.  

Jiang & Gosselin [3] analyzed the effects of the orientation angle, the minimal leg length 

as well as the base shape on the singularity-free workspace using the Gauss divergence theorem.  

Caro et al.[4] found the variations geometric parameters of parallel kinematics machine 

(PKMs) can be either compensated or amplified.   

Sefrioui & Gosselin [5] obtained a graphical representation of singularity loci of general 

three degree of freedom in the maniplulator’s  workspace.  

Gallant & Boudreau [6] synthesized the  three-degree-of-freedom planar parallel 

manipulators  using a genetic algorithm. The architecture of a manipulator and its position and 

orientation with respect to a prescribed workspace are determined.  

Chandra  & Rolland [7] applied hybrid metaheuristics for solving the forward kinematics 

of the 3RPR parallel manipulator.  

Kucuk [8] developed a novel interactive simulation and design tool based on a MATLAB 

graphical user interface (GUI) for the performance analysis of planar parallel manipulators 

(PPMs), which are a special group among the other parallel robot manipulators.   

Wenger & Chablat [9] analyzed a class of analytic planar 3-RPR manipulators. These 

manipulators have congruent base and moving platforms and the moving platform is rotated of 

180 deg about an axis in the plane. The forward kinematics  is reduced to the solution of a 3rd-

degree polynomial and a quadratic equation in sequence. The singularities are calculated and 

plotted in the joint space. The second-order singularities (cups points), which play an important 

role in non-singular change of assembly-mode motions, are also analyzed. 

 

1.6 Objective of present work 

Evolutionary algorithms such as genetic algorithm have obtained solutions of high accuracy in 

optimization problems, therefore, it is reasonable to apply genetic algorithm in solving problems 

that involve non-linear equation systems which are still an open problem. Genetic algorithms 

have been applied for solving the forward kinematics of 3RPR parallel mechanism (FKP). 

Parallel mechanism problems are mostly associated with solving a system of non-linear 

equations and are rarely treated as a direct optimization problem. Therefore, the problem of 

solving a system of non-linear equation has to be converted into an optimization problem where 
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the objective function describes the entire parallel mechanism kinematics. Each optimization 

approach has as own advantages and disadvantages in term of convergence accuracy, reliability, 

complexity and speed. Initially the forward kinematic solutions of 3-RPR mechanism are 

obtained as an optimization solution. The objective here is the distance between the connecting 

points of the limbs with platform as calculated from the moving coordinate frame and fixed 

reference frame, which is minimized so as to obtain the required pose of the platform 

corresponding to a known actuated lengths. When this distance ( error ) is zero for all the limbs, 

the manipulators achieve a possible configuration for desired position and orientation of mobile 

platform. Workspace is determined while the coordinates of base with respect to fixed reference 

frame, platform with respect to mobile reference frame and minimum and maximum  leg lengths 

of prismatic joints are  known for 3-RPR. Jacobian matrix has been found out for given 

orientation of 3RPR. 

The remainder thesis has been organized as follows 

Chapter 2 - Explains the forward kinematic equation and  objective function to be minimized.   

Chapter 3 - Describes the genetic algorithm  optimization method adopted in present work. 

Chapter 4 – Formulae for calculation Jacobian matrix and workspace.  

Chapter 5 – Results and discussion. 

Chapter 6 – Conclusion  
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CHAPTER 2 

FORWARD KINEMATIC EQUATION AND 

OPTIMIZED  FUNCTION 

2.1 Forward kinematics of 3-RPR mechanism 

Figure 4 shows a general 3-RPR manipulator, constructed by connecting a triangular moving 

platform to a base with three RPR legs. The actuated joint variables are the three link lengths 

ρ1, ρ  and ρ3.  The output variables are the position coordinates (x, y) of the operation point P 

chosen as the attachment point of link 1 to the platform, and the orientation φ of the platform. A 

reference frame is centred at A1 with the x-axis passing through A2. Notation used to define the 

geometric parameters of the manipulator is shown in Fig 4. The inverse kinematics constraint 

equations are as follows: 

 

  
                                                                                                                         (7) 

   
            φ     

            φ                                                              (8) 

   
            φ        

           φ        
                                     (9) 

 

Figure 4 .Planar 3-RPR parallel mechanism 
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2.2 Distance error as objective function     

Optimization is carried by genetic algorithms for minimizing the  fitness function . Therefore, we 

need to effectively convert the problem which solves a system of equations into an optimization 

problem. The fitness function represents the total error on each leg length as shown in Fig.5. Let 

Lgi be the leg length of kinematics chain i which is given as input of the problem.  

 

 

 

 

 

 

 

 

 

 

 

                                      Fig.5 Calculation of errors in 3-RPR mechanism 

Therefore, the fitness function is given in Eq. (10) 

                                                               

                                                        F(x)=          
  

                                              (10) 

 

If we set   =  
 ,the fitness function change to   

      

                                                         F(x)=                
  

                                  (11)        

                             

                                   

 

 

 

 

 

 

                                                     

 

er2 

er3 

er1 

Mobile frame 

Fixed frame 

Lg1 Lg2 

Lg3 
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CHAPTER 3 

GENETIC ALGORITHMS 

3.1 Basic Method 

A genetic algorithm (GA) is a search heuristic that mimics the process of natural 

evolution. This heuristic is routinely used to generate useful solutions to optimization and search 

problems. Genetic algorithms belong to the larger class of evolutionary algorithms (EA), which 

generate solutions to optimization problems using techniques inspired by natural evolution, such 

as inheritance, mutation, selection, and crossover.  

The basic idea used in GA optimization is given in Table-3.1. Initially, a number of 

candidate solutions constitute a population. After each generation, the algorithm evaluates each 

individual according to its fitness and employs genetic operators to produce offspring from 

selected parents. The fitness function measures solution quality which is problem dependent. The 

offspring are added into the population while sometimes, least fit individuals are discarded. The 

process is repeated until the algorithm obtains a sufficiently good solution. 

Table-3.1 Basic steps in GA 

 

Algorithm of Genetic Algorithm 

Initialize Population (P) 

Evaluate fitness 

while Not Termination do 

for each Individual in P  

do 

1. Evaluate fitness 

2. Select Parents 

3. Apply Crossover and produce Offspring 

4. Mutate the Offspring 

end for 

Update P 

end while 

 

http://en.wikipedia.org/wiki/Search_algorithm
http://en.wikipedia.org/wiki/Heuristic
http://en.wikipedia.org/wiki/Optimization_%28mathematics%29
http://en.wikipedia.org/wiki/Search_algorithm
http://en.wikipedia.org/wiki/Problem
http://en.wikipedia.org/wiki/Evolutionary_algorithm
http://en.wikipedia.org/wiki/Heredity
http://en.wikipedia.org/wiki/Mutation_%28genetic_algorithm%29
http://en.wikipedia.org/wiki/Selection_%28genetic_algorithm%29
http://en.wikipedia.org/wiki/Crossover_%28genetic_algorithm%29
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The choice of the appropriate genetic operator is important as it directly influences the 

convergence of the genetic algorithm. However, different forms of the main genetic operators are 

needed according to the type of the genetic algorithm and the nature of the optimization problem. 

An overview of the main components of a genetic algorithm is discussed below. 

1. Initialization: At the initialization stage, candidate solutions or individuals are randomly 

generated. The number of individuals in the population is determined according to the 

problem, and in many cases, empirically evaluated in trial experiments. In some cases, 

the candidate solutions are seeded in the area of search space where the desired solution 

is likely to be found. 

2. Selection : During each successive generation, a proportion of the existing population is 

selected to breed a new generation. Individual solutions are selected through a fitness-

based process, where fitter solutions (as measured by a fitness function) are typically 

more likely to be selected. Certain selection methods rate the fitness of each solution and 

preferentially select the best solutions. Other methods rate only a random sample of the 

population, as the latter process may be very time-consuming. 

3. Reproduction using crossover: The main reproduction operators are crossover and 

mutation. The crossover operator exchanges genetic material from selected parents and 

forms either a single or multiple offspring. 

4. Reproduction using mutation: The mutation operator provides random diversity in the 

population. This is important when the algorithm gets trapped in a local minimum. 

5. Termination: This generational process is repeated until a termination condition has been 

reached. Common terminating conditions are (1). A solution is found that satisfies 

minimum criteria (2). Fixed number of generations has reached (3).The highest ranking 

solution's fitness is reaching or has reached a plateau such that successive iterations no 

longer produce better results. 

Genetic Algorithms are being used in several applications for arriving the optimum solutions. 

The objective may be either implicit or explicit function of the design variables. As the 

algorithms works on several individuals at time, there is a guaranteed optimum solution. There 

are several invariants such as micro GAs and real coded GAs, etc. 

http://en.wikipedia.org/wiki/Selection_%28genetic_algorithm%29
http://en.wikipedia.org/wiki/Fitness_%28biology%29
http://en.wikipedia.org/wiki/Fitness_function
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3.2 Application to Present Problem 

The objective function defined in chapter 2 that is the sum square error is to be minimized. As it 

is a function of x,y and , we find a best solution by maximizing the corresponding fitness 

function which is inverse of the objective function. There are two solutions that give maximum 

fitness value at the end of all the cycles.  

A computer program in MATLAB is utilized with the following objective function: 

function obj=rpr(yv) 

x=yv(1);y=yv(2);phi=yv(3); 

Lg1=100; 

Lg2=120; 

Lg3=150; 

L1S= (x^2 + y^2); 

L1 =sqrt(L1S); 

e1 =(L1-Lg1)^2; 

L2S =(x+50*cos(phi)-200)^2+(y+50*sin(phi))^2; 

L2 =sqrt(L2S); 

e2=(L2-Lg2)^2; 

L3S =(x+40*cos(phi)-40*sin(phi))^2+(y+40*sin(phi)+40*cos(phi)-200)^2; 

L3= sqrt(L3S); 

e3=(L3-Lg3)^2; 

obj=e1+e2+e3; 
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CHAPTER 4 

WORKSPACE AND JACOBIAN  MATRIX 

5.1 Workspace  

Workspace is defined as regions which can be reached by a reference point C located on the 

mobile platform. 

  
                                                            (12) 

  
                               

                    

         4   Ø]2                                                                                                                        (13) 

  
                                       

 
                    

  5    −. 6   Ø+ 3]2                                                                                    (14) 

     These are three equation of circle . By plotting them and finding the area of their                          

intersection gives  the workspace of the 3RPR mechanism . 

5.2 Jacobian matrix : 

Jacobian matrix is used to establish a relation between generalized and actuator velocities 

as well as between generalized and actuator forces and couples.  Formula for finding 

jacobian matrix is given as.. 

                                                                                                                           (15)                                

                                                                                                                     (16) 

                     a11           a12           a13 

                a21           a22           a23                                                                      (17) 

                      a31          a32           a33 
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                 ρ1         0               0 

 B  =        0            ρ2             0                                                                                (18) 

                0             0              ρ3      

Where, 

                      

                              = x                                                                                        (19) 

                                 =y                                                                                      (20) 

                                   =0                                                                                    (21) 

                      =                                                                                  (22) 

                       =                                                                                        (23) 

                  =                                                                                (24) 

                 =                                                                                 (25) 

                 =                                                                                  (26) 

                   =                                   ]                         (27)   

where , 

x,y are coordinates of the corner of  platform  w.r.t to fixed reference plane 

Ø is an orientation angle of platform . 

  is an angle of platform  . 

   and    are the lengths of side of the mobile platform. 
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CHATER 5 

RESULTS AND DISCUSSION 

5.1 Methodology adopted                                                                                                                               

Fig.6   below shows the methodology adopted in present task. 

                                                                         

 

  

 

                                                       

                              

                                                       

 

 

 

 

 

 

 

 

 

 

Figure 6 Methodology adopted for the project 

Start 

Enter the dimension (coordinates ) of base and mobile 

platforms in respective coordinates frames. 

Enter i =1 for forward analysis and Jacobian matrix                

2   for   workspace   diagram             

 

   If i =1 

Enter leg lengths     ,   ,    

Define the sum square error 

function E in terms of x, y& Ø 

Minimize E using G.A to obtain 

two sets of x, y & Ø 

Find jacobian matrix [J] at 

corresponding pose 

Print the result 

Provide       &       for legs 

Find the center of mobile platform and 

evaluate the workspace circle centers 

Plot the workspace circles & find 

intersection of overlapping   zone 

          Stop 
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5.2   Kinematic analysis of 3-RPR mechanism using genetic algorithm. 

We first use the genetic algorithm using uniform crossover and mutation. The crossover rate is 

given 0.999 and mutation rate is given as 0.001. The high crossover rate ensures that maximum 

global search is achieved. We use one example for examining our genetic algorithm code. The 3-

RPR mechanism base coordinates are given with respect to fixed reference frame and mobile 

platform coordinates are given with respect to moving reference plane. The leg lengths are taken 

as L: =[100, 120, 150]. Initialized  the initial population size with real   no  40. The three selected 

kinematics variables represent the end-effector position and orientation, being x, y and ϴ . 

Computation time is given in seconds. 

The coordinates are given as  

   = (0, 0) 

   = (200, 0) 

   = (0, 200) 

   = (0, 0) 

   = (50, 0) 

   = (40, 40) 

By   genetic algorithm we have obtained these results from the function. Fig.7 shows the fitness 

variation with no of iterations 

 

Generation 500 for G.A 

Variable  X Y ϴ 

G.A. 97.849462 20.039101 84.1045 

Algebraic method 97.99 19.91 85.01 

 

Generation 1000 for G.A 

Variable  X Y ϴ 

G.A. 52.981427 85.141740 -33.7865 

Algebraic method 52.86 84.95 -33.45 
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 (a) 

 

(b) 

Fig 7.Graph of fitness vs no of generation with generation 500 and 1000 respectively 
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5.3   Jacobain matrix  

3-RPR mechanism for which jacobian matrix has to be found out is as given below .The 

coordinates are  

  = (0, 0) 

   = (200, 0) 

   = (0, 200) 

   = (0, 0) 

   = (50, 0) 

   = (40, 40) 

coordinate of end effector B1 w.r.t to fixed reference plane  (x=97.99 y=19.91) and angle of orientation 

Ø=85.02 degree and value of leg lengths are [100,120,150] .the  jacobian matrix is as follows. 

 

                                               -0.855658                  0.190268                       -0.0903346 

                          [J]    =               -0.811356                  -0.93643                        0.444595 

                                               -0.00522636               -0.0127963                    -0.00770599 
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5.4 Workspace diagram 

The workspace diagram for the above given planar parallel mechanism has been plotted with  

      = 80,      = 160  and orientation angle  Ø= 15 degree. (Fig .8) 

 

 

       

 

Fig. 8 Workspace for Ø=15 degree 
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Workspace circle for previous 3-RPR mechanism with orientation angle Ø=30 degree (Fig.9) 

 

 

 

Fig .9 Workspace for Ø=30 degree 
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Workspace circle for previous 3-RPR mechanism with orientation angle Ø=45 degree. (Fig.10) 

 

 

 

Fig. 10 Workspace for Ø=45 degree 

 

 

 



28 | P a g e  
 

 

Workspace circle for previous 3-RPR mechanism with orientation angle Ø=60 degree (Fig .11) 

 

 

Fig 11. Workspace for Ø= 60 degree 
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                                    CHAPTER 6 

CONCLUSION 

6.1 Summary of the work 

In this project initially the forward kinematic solutions of 3-RPR mechanism are obtained as an 

optimization solution. The objective here is the distance between the connecting points of the 

limbs with platform as calculated from the moving coordinate frame and fixed reference frame, 

which is minimized so as to obtain the required pose of the platform corresponding to a known 

actuated lengths. When this distance ( error ) is zero for all the limbs, the manipulators achieve a 

possible configuration for desired position and orientation of mobile platform. The project 

employs genetic algorithms for obtaining multi-objective solution and neural network model for 

arriving the forward kinematic solution.  In addition we have also plotted the workspace circle 

and jacobian matrix has been found for given 3-RPR mechanism. 
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APPENDIX  

COMPUTER PROGRAMS 

A C++ program is written for finding the Jacobian matrix of 3-RPR mechanism 

// program to find the jacobian matrix 

# include<iostream.h> 

# include<stdio.h> 

# include<conio.h> 

# include<math.h> 

int main() 

{ 

  float a[3][3],b[3][3],c[3][3],d[3][3],e[3][3],h[3][3]; 

  float x,y,n=0,q; 

  int t1,t2,t3,i,j,k; 

  float phi,gam,m; 

  float d1,d2,d3,l1,l2,l3; 

  cout<<"enter the value of coordinate of the mobile platform w.r.t to fixed platform"; 

  cin>>x>>y; 

  cout<<"enter the coordinates of the base"; 

  cin>>t1>>t2>>t3; 

  cout<<"enter the value of leg lenghts at given position"; 

  cin>>d1>>d2>>d3; 

  cout<<"enter the dimension of platform"; 

  cin>>l1>>l2>>l3; 

  cout<<"enter the value of angle of platform for given position"; 

  cin>>phi; 

  m=(pow(l2,2)+pow(l3,2)-pow(l1,2))/(2*l2*l3); 

  gam=acos(m); 

  a[0][0]=x; 

  a[0][1]=y; 

  a[0][2]=0; 

  a[1][0]=(x-t1)+l2*cos(phi); 

  a[1][1]=y+l2*sin(phi); 

  a[1][2]=l2*(y*cos(phi)-(x-t1)*sin(phi)); 

  a[2][0]=(x-t2)+l3*cos(phi+gam); 

  a[2][1]=(y-t3)+l3*sin(phi+gam); 

  a[2][2]=l3*((y-t3)*cos(phi+gam)-(x-t3)*sin(phi+gam)); 

  b[0][0]=d1; 

  b[0][1]=0; 

  b[0][2]=0; 

  b[1][0]=0; 

  b[1][1]=d2; 

  b[1][2]=0; 

  b[2][0]=0; 

  b[2][1]=0; 

  b[2][2]=d3; 

   for(i=0;i<3;i++) 

     {     cout<<endl; 

          for(j=0;j<3;j++) 

          {      

               c[i][j]=0; 

               d[i][j]=0; 



32 | P a g e  
 

               e[i][j]=0; 

               h[i][j]=0; 

          } 

          } 

  //calculating the determinant of the matrix 

  for(i=0,j=0;j<3;j++) 

          {      

               if(j==2) 

               n+=a[i][j]*a[i+1][0]*a[i+2][1]; 

               else if(j==1) 

               n+=a[i][j]*a[i+1][j+1]*a[i+2][0]; 

               else 

               n+=a[i][j]*a[i+1][j+1]*a[i+2][j+2]; 

          } 

          for(i=2,j=0;j<3;j++) 

          {      

               if(j==2) 

               n-=a[i][j]*a[i-1][0]*a[i-2][1]; 

               else if(j==1) 

               n-=a[i][j]*a[i-1][j+1]*a[i-2][0]; 

               else 

               n-=a[i][j]*a[i-1][j+1]*a[i-2][j+2]; 

          } 

    

    if(n!=0)  

    q=1.0/n; 

     else 

     { 

          cout<<"Division by 0, not good!\n"; 

          cout<<"==========================================\n"<<endl; 

          return 0; 

     }; 

     // finding the inverse of matrix 

     for(i=0;i<3;i++) 

     { 

          cout<<endl; 

          for(j=0;j<3;j++) 

          {      

                    

               d[i][j]=a[j][i]; 

                

          } 

     } 

     cout<<endl<<endl; 

  

  

     c[0][0]=d[1][1]*d[2][2]-(d[2][1]*d[1][2]); 

     c[0][1]=(-1)*(d[1][0]*d[2][2]-(d[2][0]*d[1][2])); 

     c[0][2]=d[1][0]*d[2][1]-(d[2][0]*d[1][1]); 

      

     c[1][0]=(-1)*(d[0][1]*d[2][2]-d[2][1]*d[0][2]); 

     c[1][1]=d[0][0]*d[2][2]-d[2][0]*d[0][2]; 

     c[1][2]=(-1)*(d[0][0]*d[2][1]-d[2][0]*d[0][1]); 

  

     c[2][0]=d[0][1]*d[1][2]-d[1][1]*d[0][2]; 

     c[2][1]=(-1)*(d[0][0]*d[1][2]-d[1][0]*d[0][2]); 
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     c[2][2]=d[0][0]*d[1][1]-d[1][0]*d[0][1]; 

  

     for(i=0;i<3;i++) 

     { 

          for(j=0;j<3;j++) 

          {      

               e[i][j]=c[i][j]*q;                 //inverse of the matrix 

                

          } 

     } 

     // multiplication of two matrix 

     for( i=0;i<3;i++) 

     { 

     for( j=0;j<3;j++) 

     { 

        h[i][j] = 0; 

        for( k = 0 ;k < 3 ; k++) 

           h[i][j]+= e[i][k]*b[k][j]; 

     } 

     } 

      for( i=0;i<3;i++) 

     { 

     for( j=0;j<3;j++) 

     { 

          h[i][j]=-1*h[i][j]; 

          } 

     cout<<"\n========== The jacobian matrix is!!! ==========\n"; 

         for(i=0;i<3;i++) 

         {     cout<<endl; 

              for(j=0;j<3;j++) 

              {      

                   cout<<" h["<<i<<"]["<<j<<"]= "<<h[i][j]; 

              

              } 

         } 

         cout<<endl<<endl;  

   

    getch(); 

  return 0; 

} 
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A MATLAB program is used for drawing workspace diagram 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
clc; 

clear all; 

t1=200; 

t2=0; 

t3=200; 

t4=50; 

t5=40; 

t6=40; 

      dmin=80; 

      dmax=160; 

      xb=[0 t1 t2 0];yb=[0 0 t3 0]; 

       

       

       % CENTROID OF THE MOBILE PLATFORM WITH MOVING COORDINATE FRAME  

     x=(t4+t5)/3; 

     y=t6/3; 

     phi=60*pi/180;%.52381; 

     x1=x*cos(phi)-y*sin(phi); 

     y1=x*sin(phi)+y*cos(phi); 

     %cout<<"\ncenter of first workspace circles are"<<x1<<" "<<y1; 

     x2=x*cos(phi)-y*sin(phi)-t4*cos(phi)+t1; 

     y2=x*sin(phi)+y*cos(phi)-t4*sin(phi); 

     %cout<<"\ncenter of  second workspace circles are"<<x2<<" "<<y2; 

     x3=x*cos(phi)-y*sin(phi)-t5*cos(phi)+t6*sin(phi)+t2; 

     y3=x*sin(phi)+y*cos(phi)-t5*cos(phi)-t6*sin(phi)+t3; 

     i=1; 

     for t=0:pi/100:2*pi 

    Xmin=dmin*cos(t); 

    Ymin=dmin*sin(t); 

    Xmax=dmax*cos(t); 

    Ymax=dmax*sin(t); 

    x1min(i)=Xmin+x1;y1min(i)=Ymin+y1; 

    x2min(i)=Xmin+x2;y2min(i)=Ymin+y2; 

    x3min(i)=Xmin+x3;y3min(i)=Ymin+y3; 

    x1max(i)=Xmax+x1;y1max(i)=Ymax+y1; 

    x2max(i)=Xmax+x2;y2max(i)=Ymax+y2; 

     x3max(i)=Xmax+x3;y3max(i)=Ymax+y3; 

    i=i+1; 

 end 

  

 plot(x1min,y1min,'--',x1max,y1max,x2min,y2min,'--',x2max,y2max,x3min,y3min,'--',x3max,y3max); 

 hold on; 

 plot(x1,y1,'.',x2,y2,'.',x3,y3,'.'); 

 hold on; 

 plot(xb,yb,'b');  

 grid on; 

 title('workspace of 3-RPR for \phi=60^o'); 

  

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 


