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                                              ABSTRACT 
 

Gaseous cavities present in the insulation materials can lead to continuous deterioration and  

eventually breakdown of insulation materials. To determine the stability of use and to acquire the 

data for the modeling and designing of electrical insulation systems ,breakdown voltage (BDV) 

of the insulation should be determined. In this paper, Fuzzy Logic (FL) method is used to model 

breakdown voltages of White minilex paper samples based on experimental data generated in the 

laboratory.  Different models are proposed with different  membership functions for the FL 

under both dc and ac voltage conditions. The cavities are created artificially.  Low values of 

mean absolute errors of the estimated breakdown voltage of the test data show the efficiency  of  

the  models. 
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INTRODUCTION 

In industrial insulating systems, aging can be contributed to microdefects present in bulk of 

insulation . The increase  in microdefects in number and sizes makes the aging process critical 

and difficult to determine as the insulation samples were both thermally as well as electrically 

aged. Breakdown voltage tests were widely used to test for  degradation of insulation systems. 

The breakdown of solid dielectrics is an event that is catastrophic. The insulation will not be able 

to withstand the service voltage that follows it.  The breakdown can be due to various causes 

such as electromechanical ,intrinsic, thermal micro discharges in the cavities . Due to the 

application of voltage, the electrical stress experienced by the cavities entrapped into the 

insulation initiate discharges when the stress value exceeds a certain critical limit. At a particular 

voltage, these discharges produce deterioration of the insulating properties in ways depending on 

geometrical factors and the nature of the dielectric material. These factors  eventually cause the 

material degradation and lead to breakdown of the insulation.  

Nowadays , the modeling of breakdown voltage is done  using soft computing techniques, such 

as, Artificial Neural Network and FL(Fuzzy Logic) .The advantage of using a soft computing 

model is that it is highly flexible  . In this paper, FL techniques have been used to model 

breakdown voltage for White Minilex Paper both under DC and  AC condition. As a diagnostic 

tool, FL techniques have been used for breakdown voltage estimation under artificially created 

air cavities of various sizes. In the next section,the experimental set up and the procedure for 

obtaining the experimental data on the breakdown voltage is described which is followed by the 

FL (fuzzy logic )model proposed and results obtained by assuming six different shapes of the 

Membership Functions (MFs). 
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EXPERIMENTAL SETUP: 

 

 

2.1 Sample preparation: 

     The samples are prepared from commercially available insulation sheets. Three different 

thickness of the insulation material 0.125 mm, 0.18mm and 0.26 mm were used. Before testing 

the conditioning procedure was adopted to the test specimen to ensure that the surfaces of the 

insulating sample were cleaned and dry, since the contamination on the insulating specimen or 

absorption of moisture might  affect the breakdown voltage. 

2.2 Creation of void: 

 The voids were artificially created with the help of a spacer made up of Kapton film, with a 

punched hole at the center whose diameter values were 1.5mm, 2 mm, 3 mm, 4mm and 5 mm. 

The thickness of the spacer used was of 0.125mm. Thus, the volume of air space, that is, the 

sizes of the voids  depend on a typical diameter of the punched hole and the  thickness of  spacer. 

2.3 Electrode Geometry: 

      The cylinder-plane electrode system as shown in the Figure 1 was used for breakdown 

voltage measurements. The electrodes were made of brass. They were polished and cleaned with 

ethanol before the start of the experiment. Further, the electrodes contact surfaces were cleaned 

by ethanol between two consecutive applications of voltage. Sufficient care had been taken to 

keep the electrode surfaces scratch-free and away from dust and other  impurities. The insulation 

sample was  then sandwiched between the electrodes as shown in Figure 1 with the help of 

insulating supports as shown below. 
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2.4. Measurement of Breakdown Voltage(BDV): 

 

 

FIGURE 1:-Experimental setup to determine breakdown voltage of insulation 
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2.5 Measurement of DC breakdown voltage 

 The dc voltage applied was obtained from a 40 KV ac/dc Series Hipot Tester  . The voltage was 

raised insteps of 1 KV and held constant for a period of 30s  in each level until the breakdown of 

the insulation occurs. The total time from the   application of voltage to the instant of occurrence 

of  breakdown were noted down. 

Five data points were obtained for a particular sample and the mean value other voltage is taken 

for modeling.  All the tests were carried oft in air at room temperature and atmospheric pressure. 

The breakdown data obtained are then corrected for atmospheric condition before being used for 

modeling. It is observed that the sample break in the middle in each case which was due to 

maximum stress in the middle and presence of cavity at the center. 

2.6 Measurement of ac Breakdown Voltage 

    In this case an ac voltage of 50 Hz was  applied from the Hipot Tester to the insulating sample. 

The voltage was raised in steps of 200V. Rest of the procedure was identical to that  presented in 

subsection D. It was observed that the breakdown occurs at much lower  ac voltage than dc 

condition for the identical samples and cavity.(AC rms is considered where as in DC peak ). 
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3.1 : FUZZY LOGIC  

  The breakdown voltage of White Minilex Paper under dc and ac conditions has been modeled 

using Fuzzy Logic techniques. 45 sets of input-output data are used for modeling purpose for 

both dc and ac conditions, oft of which 38 sets are used for framing the rule base  and remaining 

7 sets for the testing purpose. The breakdown voltage is a function of the thickness of the paper 

and  the diameter of the void ,that is V = f (t, d). The relationship between the linguistic values 

and the actual values for t, d and V are presented in Table 1 and Table 2. 

Table 1:Relation between the linguistic values and the actual values for t and d. 

 

     Linguistic Values                   t (mm) d (mm) 

Low 0-0.13 1.0-3.0 

Medium Low 0.05-0.18 1.7 -3.7 

Medium 0.10-0.23 2.4-4.4 

Medium High 0.15-0.28 3.1-5.1 

High 0.20- 0.33 3.8-5.8 
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TABLE2.Relation between the linguistic values and the actual values for V dc and V ac 

 

Linguistic Values V dc (kV) V ac (kV) 

Low  17-21 1.6-2.0 

Medium Low 19-23 1.8-2.2 

Medium 21-25 2.0-2.4 

Medium High 23-27 2.2-2.6 

High 26-30 2.4-2.8 
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The set of linguistic values assigned to t, d and V are givenas bvL= {Low (L), Medium Low 

(ML), Medium (M), Medium High (MH), High (H)}.The Membership Functions (MFs) for t, d 

and V are µt, µd and µV respectively. Since, t and d can have five linguistic values; the rule base 

can be created with a maximum of 25 rules from the experimentally generated data. Also, µt, µd 

and µV would be having 5  components corresponding to each linguistic value :- 

µt = {µtL, µtML, µtM, µtMH,µtH }                                                                                  (2) 

 µd = {µdL, µdML, µdM, µdMH, µdH}                                                                            (3) 

µV = {µVL, µVML, µVM, µVMH, µVH}                                                                         (4) 

 

The Mamdani Rule Based Inferencing (MRBI) is computationally very efficient and saves a lot 

of memory and time. Hence, it is a very popular method and has been used here to evaluate the 

modeled values  of the breakdown voltage. 

 

3.2  BREAKDOWN VOLTAGE MODELLING  

A.  Under AC condition: 

   Similarly under ac conditions corresponding to the 38 training sets, 38 „if then‟ rules are 

formulated. Oft of these 38 rules, 22 rules were used to form the rule base and the rest 16 rules 

could not be considered .The 22 rules have been presented in Table. The 7 sets of crisp input for 

the thickness of the paper and the diameter of the void, fired each of the 22 rules given in Table 

4.  
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The procedure followed to calculate the aggregated Fuzzy MFs and the MAE under AC 

conditions is identical to the DC conditions and hence equations( 5) to (7) can be used for this 

case also. 

For computational efficiency, efficient memory utilization, and performance analysis needs, a 

uniform representation of the MFs is required. This uniform representation can be achieved by 

employing MFs with uniform shape and parametric definition. The most popular choices for the 

shapes of the MFs include Triangular, Trapezoidal, Generalized Bell,Gaussian, PI shaped. In our 

work the MFs  µt , µd and µV have assumed these shapes. 

B. Under dc condition:- 

    Corresponding to the 38 sets, the 38  if then rules are formulated under dc conditions. Of these 

38 rules, 22 rules have been used to form the rule base and the rest 16 rules could not be 

considered. This is because these 16 rules satisfied the inconsistency property of the if-then rules 

. Since 7 sets of input output data have been used for testing purpose,  

the number of crisp input output pairs are 7 in number. The 22 rules have been mentioned in 

Table 3. The 7 crisp input value sets  for the thickness of the paper and the diameter of the void, 

fire each of the 22 rules given in Table 3.  

A typical fuzzified MF obtained by firing a rule is as follows: 

µVMH1 = minimum 3 (µt* , µd* , µVMH)                                                                      (5) 

Where µt*, µd* are the MFs corresponding to the crisp inputs for the thickness of the paper and 

the diameter of the void respectively. Similarly the other fuzzified MFs obtained by firing the 

rest 21 rules are aggregated to form the aggregated fuzzified MFs. 
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The aggregated fuzzified Membership Functions   is given by 

µA1(V) = maximum 22 (µVMH1, µVH1, µVMH2 ………………., µVL3, µVMH4)               (6) 

Equations (5) and( 6) have been implemented in MATLAB 7.1 environment by writing suitable 

codes for it. The defuzz function in the toolbox was used to compute the defuzzifiedvalue of the 

breakdown voltage Vb2 from µA1(V).Just go to the command window of MATLAB 7.1 and type  

fuzzy. You will get the fuzzy toolbox. 

The Mean Absolute Error (MAE)  gives a good performance measure for finding the accuracy of 

the Fuzzy Logic System .The MAE under dc conditions expressed in (%) is given by 

MAEdc= (1/7)* | ((∑  (Vb1(s) –Vb2(s))/(Vb1(s))|*100                                                             (7) 

Where Vb1 is the experimental or the crisp value for the breakdown voltage under dc condition 

and s in this case varies from 1 to 7.Now, the analysis  is done for AC and DC  conditions 

respectively for triangular and trapezoidal MFs  each. 
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TABLE 3: RULE BASE UNDER DC CONDITION 

 

 

THICKNESS ,t DIAMETER , d BREAKDOWN VOLTAGE,V 

MH L ML 

H ML M 

MH ML MH 

H L ML 

ML M M 

L  ML M 

ML L L 

M ML L 

L M L 

M MH MH 

ML ML MH 

H H M 

MH MH M 

ML MH ML 

M H MH 

ML H ML 

L H M 

ML L MH 

MH H MH 

H MH M 

M L M 

MH M H 
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TABLE 4 : RULE BASE UNDER AC CONDITION 

 

THICKNESS,t DIAMETER OF VOID ,d BREAKDOWN VOLTAGE, 

V 

MH L M 

H ML MH 

MH ML ML 

H L MH 

ML M M 

L ML ML 

ML L M 

M ML ML 

L M M 

M MH MH 

ML ML M 

H H ML 

MH MH MH 

ML MH M 

M H ML 

ML H M 

L H M 

ML L M 

MH H MH 

H MH M 

M L M 

MH M MH 
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Triangular Membership Function 

The triangular curve is a function of a vector variable, x, and depends on three scalar parameters 

given by:- 

 

Or 

 

MATLAB command :-trimf 

 

FIGURE 2:TRIANGULAR MEMBERSHIP FUNCTION 
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TRAPEZOIDAL MEMBERSHIP FUNCTION:- 

The trapezoidal curve is a function of a vector, x, and depends on four scalar parameters. The 

relation is given by :- 

 

Or, 

 

 

Figure 3: Trapezoidal Membership Function(trapmf) 
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TABLE 5: Table for AC  breakdown voltage for White Minilex paper. 

 

 

Sl.no. 

Thickness of 

the material 

(mm) 

Void Depth 

(mm) 

Void 

Diameter 

(mm) 

Mean value of 

Breakdown 

Voltage 

(Experimental)  

(kV) 

1. 0.26 0.025 1.5 2 

2. 0.26 0.125 3.0 2.1 

3. 0.26 0.025 1.5 2 

4. 0.26 0.125 2.0 2.1 

5. 0.18 0.025 3.0 2.2 

6. 0.125 0.125 3.0 2.4 

7. 0.125 0.025 1.5 2 

8. 0.125 0.125 1.5 2.1 

9. 0.125 0.025 3.0 2.3 

10. 0.18 0.125 5.0 2.2 

11. 0.18 0.025 3.0 2.4 

12. 0.18 0.125 2.0 2.3 

13. 0.26 0.025 3.0 2.1 

14. 0.26 0.125 5.0 2.4 

15. 0.26 0.025 5.0 2 

16. 0.26 0.125 2.0 2.3 

17. 0.125 0.025 5.0 2.3 

18. 0.18 0.125 2.0 2.1 

19. 0.18 0.025 4.0 2.1 

20. 0.18 0.125 5.0 2 

21. 0.125 0.025 5.0 2.3 

22. 0.125 0.125 2.0 2.2 

23. 0.18 0.025 3.0 2.2 

24. 0.18 0.125 5.0 2.0 

25. 0.125 0.025 4.0 2.0 

26. 0.26 0.125 1.5 2.3 

27. 0.18 0.025 1.5 2.4 

28. 0.26 0.125 2.0 2.2 

29. 0.26 0.025 4.0 2.1 

30. 0.18 0.125 4.0 2.2 

 

These are the crisp data on which we worked oftforcalculation the breakdown voltage models 

under  AC conditions 
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Table 6: Comparison of the Crisp (Vb1) and defuzzified values (Vb2) of the Breakdown 

Voltage with Triangular MF for White Minilex under AC condition 

t(mm) 

 

t1(mm) d (mm) Breakdown 

Voltage 

(Vb1) (kV) 

Breakdown Voltage 

Vb2 (kV) 

MAE (%) 

0.125 0.025 1.5 2.0 2.2057 

 

 

 

 

 

6.7501 

0.26 0.125 3.0 2.1 2.2286 

0.125 0.025 1.5 2.0 2.2057 

0.125 0.025 3.0 2.3 2.2571 

0.18 0.025 3.0 2.2 2.3000 

0.26 0.125 5.0 2.4 2.2000 

0.26 0.025 3.0 2.1 2.2222 
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FIGURE 4:FUZZIFIED TRIANGULAR MODELS OF BDV(AC) 
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FIGURE 5:DEFUZZIFIED TRIANGULAR MODELS OF BDV(AC) 
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Table 7: Comparison of the Crisp (Vb1) and defuzzified values (Vb2) of the Breakdown 

Voltage with Trapezoidal  MF for White Minilex under AC condition 

t(mm) 

 

t1(mm) d (mm) Breakdown 

Voltage 

(Vb1) (kV) 

Breakdown Voltage 

Vb2 (kV) 

MAE (%) 

0.125 0.025 1.5 2.0 2.2143 

 

 

 

 

 

7.0646 

0.26 0.125 3.0 2.1 2.2400 

0.125 0.025 1.5 2.0 2.2143 

0.125 0.025 3.0 2.3 2.2583 

0.18 0.025 3.0 2.2 2.3000 

0.26 0.125 5.0 2.4 2.2000 

0.26 0.025 3.0 2.1 2.2400 
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FIGURE 6: FUZZIFIED TRAPEZOIDAL MODELS OF BDV(AC) 
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FIGURE 7: DEFUZZIFIED TRAPEZOIDAL MODELS OF BDV(AC) 
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DC Breakdown Volatage modelling 

 

In this part, we are doing the breakdown voltage modeling of high volatage insulation  under DC   

TABLE 8:Table for DC breakdown voltage for White Minilex paper. 

 
Sl.no. 

Thickness of 
the material 
(mm) 

Void Depth 
(mm) 

Void Diameter 
(mm) 

Mean value of Breakdown 
Voltage (Experimental)  
(kV) 

1. 0.125 0.025 1.5 23.44 

2. 0.125 0.025 2.0 22.88 

3. 0.125 0.025 3.0 23.22 

4. 0.125 0.025 4.0 24.44 

5. 0.125 0.025 5.0 22.55 

6. 0.18 0.025 1.5 23.55 

7. 0.18 0.025 2.0 23.22 

8. 0.18 0.025 3.0 24.44 

9. 0.18 0.025 4.0 23.77 

10. 0.18 0.025 5.0 22.88 

11. 0.26 0.025 1.5 23.33 

12. 0.26 0.025 2.0 23.00 

13. 0.26 0.025 3.0 24.44 

14. 0.26 0.025 4.0 23.77 

15. 0.26 0.025 5.0 23.22 

16. 0.125 0.125 1.5 24.44 

17. 0.125 0.125 2.0 23.55 

18. 0.125 0.125 3.0 22.55 

19. 0.125 0.125 4.0 23.22 

20. 0.125 0.125 5.0 23.77 

21. 0.18 0.125 1.5 23.00 

22. 0.18 0.125 2.0 24.33 

23. 0.18 0.125 3.0 23.77 

24. 0.18 0.125 4.0 22.88 

25. 0.18 0.125 5.0 24.33 

26. 0.26 0.125 1.5 23.22 

27. 0.26 0.125 2.0 23.55 

28. 0.26 0.125 3.0 23.44 

29. 0.26 0.125 4.0 23.77 

30. 0.26 0.125 5.0 22.88 
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t(mm) 

 

t1(mm) d (mm) Breakdown 

Voltage 

(Vb1) (kV) 

Breakdown Voltage 

Vb2 (kV) 

MAE (%) 

0.125 0.025 1.5 23.44 21.4759 

 

 

 

 

 

8.0773 

0.125 0.025 2.0 22.88 23.4093 

0.125 0.025 3.0 23.22 26.2015 

0.125 0.025 4.0 24.44 21.7904 

0.18 0.025 3.0 24.44 23.9194 

0.26 0.125 1.5 23.00 25.2807 

0.26 0.025 4.0 23.77    21.3643 

 

Table 9: Comparison of the Crisp (Vb1) and defuzzified values (Vb2) of the Breakdown 

Voltage with Triangular MF for White Minilex under dc condition 
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FIGURE 8: FUZZIFIED TRIANGULAR MODELS OF BDV(DC) 

 

 



                                                                                     28 

 

 

 

FIGURE 9: DEFUZZIFIED TRIANGULAR MODELS OF BDV(DC) 
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Table 10: Comparison of the Crisp (Vb1) and defuzzified values (Vb2) of the Breakdown 

Voltage with Trapezoidal MF for White Minilex under dc condition 

t(mm) 

 

t1(mm) d (mm) Breakdown 

Voltage 

(Vb1) (kV) 

Breakdown Voltage 

Vb2 (kV) 

MAE (%) 

0.125 0.025 1.5 23.44 21.3077 

 

 

 

 

 

7.1502 

0.125 0.025 2.0 22.88 23.0037 

0.125 0.025 3.0 23.22 26.3500 

0.125 0.025 4.0 24.44 22.5870 

0.18 0.025 3.0 24.44 24.1667 

0.26 0.125 1.5 23.00 25.0870 

0.26 0.025 4.0 23.77    21.5926 
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FIGURE 10: FUZZIFIED TRAPEZOIDAL  MODELS OF BDV(DC) 
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FIGURE 11: DEFUZZIFIED  TRAPEZOIDAL   MODELS OF BDV(DC) 
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CONCLUSION: 

The breakdown voltage of various samples of White Minilex paper of various thickness with 

artificially created voids  were modeled using two different shapes of the Membership functions  

under ac and dc conditions. The results suggest the benefits of FL in modeling the BDV of 

insulating samples. An advantage of this technique is that the dielectric behaviour can be 

analyzed at a virtually negligible computing cost. In this work the triangular and trapezoidal MFs 

was used to predict the breakdown voltage of White Minilex under  AC as well as DC 

conditions. Similiarly, the work can be  easily extended to by assuming Gaussian,Trapezoidal, 

Generalized Bell , Pi shaped MF for all the input and Output MFs. 
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                                   APPENDIX-1 

Matlab Code for BDV modeling under AC conditions using fuzzy logic 

and triangular MF 

clear all; 

% Three Inputs (thickness of material, thickness of void and diameter of 

% void) 

% To model the BDV under AC conditions using fuzzy logic 

% and triangular MF(Mamdani Rule Based Inference  

%  andCentroidal Defuzzification) 

% MF  of the thickness of the dielectric 

t= (0:0.005:0.33)'; 

at=0.03; 

ftL=trimf(t,[0 at 0.13]); 

ftML=trimf(t,[0.05 at+0.05 0.18]); 

ftM=trimf(t,[0.10 at+0.10 0.23]); 

ftMH=trimf(t,[0.15 at+0.15 0.28]); 

ftH=trimf(t,[0.20 at+0.20 0.33]); 

ft=[ftL,ftML,ftM,ftMH,ftH]; 

% MF of the thickness of the void 

t1= (0:0.005:0.15)'; 

at1=0.02; 

ft1L=trimf(t1,[0 at1 0.07]); 

ft1H=trimf(t1,[0.08 at1+0.08 0.15]); 

ft1=[ft1L,ft1H]; 

% MF of the diameter of the void 

d= (1.0:0.1:5.8)'; 

ad=1.6; 

fdL=trimf(d,[1.0 ad 3.0]); 

fdML=trimf(d,[1.7 ad+0.7 3.7]); 

fdM=trimf(d,[2.4 ad+1.4 4.4]); 

fdMH=trimf(d,[3.1 ad+2.1 5.1]); 

fdH=trimf(d,[3.8 ad+2.8 5.8]); 

fd=[fdL,fdML,fdM,fdMH,fdH]; 

% MF of the breakdown voltage (BDV) 

B= (1.9:0.1:2.5)'; 

a1=2.0; 
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fBL=trimf(B,[1.9 a1 2.1]); 

fBML=trimf(B,[2.0 a1+0.1 2.2]); 

fBM=trimf(B,[2.1 a1+0.2 2.3]); 

fBMH=trimf(B,[2.2 a1+0.3 2.4]); 

fBH=trimf(B,[2.3 a1+0.4 2.5]); 

fB=[fBL,fBML,fBM,fBMH,fBH]; 

% Program for using the Fuzzy Logic System to evaluate the MAE 

% (Thickness of material) 

t3=[0.125;0.26;0.125;0.125;0.18;0.26;0.26]; 

% (Thickness of void) 

 t4=[0.025;0.125;0.025;0.025;0.025;0.125;0.025]; 

%(Diameter of the void) 

d3=[1.5;3.0;1.5;3.0;3.0;5.0;3.0]; 

% (Breakdown voltage) 

bve1=[2.0;2.1;2.0;2.3;2.2;2.4;2.1]; 

%Fuzzification (thickness of material) 

for z=1:7 

ftL1(z)=trimf(t3(z),[0 at 0.13]); 

ftML1(z)=trimf(t3(z),[0.05 at+0.05 0.18]); 

ftM1(z)=trimf(t3(z),[0.10 at+0.10 0.23]); 

ftMH1(z)=trimf(t3(z),[0.15 at+0.15 0.28]); 

ftH1(z)=trimf(t3(z),[0.20 at+0.20 0.33]); 

%Fuzzification (thickness of void) 

ft1L1(z)=trimf(t4(z),[0 at1 0.07]); 

ft1H1(z)=trimf(t4(z),[0.08 at1+0.08 0.15]); 

%Fuzzification (diameter of void) 

fdL1(z)=trimf(d3(z),[1.0 ad 3.0]); 

fdML1(z)=trimf(d3(z),[1.7 ad+0.7 3.7]); 

fdM1(z)=trimf(d3(z),[2.4 ad+1.4 4.4]); 

fdMH1(z)=trimf(d3(z),[3.1 ad+2.1 5.1]); 

fdH1(z)=trimf(d3(z),[3.8 ad+2.8 5.8]); 

% Mamdani Rule Based Inference(MRBI) 

for k=1:size(B) 

% 1st rule fired 

fBM11(z,k,:)=[ftH1(z),ft1L1(z),fdL1(z),fBM(k)]; 

fBM1(z,k)=min(fBM11(z,k,:)); 

% 2nd rule fired 

fBM21(z,k,:)=[ftH1(z),ft1H1(z),fdML1(z),fBM(k)]; 

fBM2(z,k)=min(fBM21(z,k,:)); 

% 3rd rule fired 

fBM31(z,k,:)=[ftMH1(z),ft1L1(z),fdL1(z),fBM(k)]; 

fBM3(z,k)=min(fBM31(z,k,:)); 

% 4th rule fired 

fBMH11(z,k,:)=[ftH1(z),ft1H1(z),fdL1(z),fBMH(k)]; 

fBMH1(z,k)=min(fBMH11(z,k,:)); 

% 5th rule fired 



                                                                                     39 

fBH11(z,k,:)=[ftM1(z),ft1L1(z),fdM1(z),fBH(k)]; 

fBH1(z,k)=min(fBH11(z,k,:)); 

% 6th rule fired 

fBH21(z,k,:)=[ftML1(z),ft1H1(z),fdML1(z),fBH(k)]; 

fBH2(z,k)=min(fBH21(z,k,:)); 

% 7th rule fired 

fBMH21(z,k,:)=[ftL1(z),ft1L1(z),fdL1(z),fBMH(k)]; 

fBMH2(z,k)=min(fBMH21(z,k,:)); 

% 8th rule fired 

fBM41(z,k,:)=[ftML1(z),ft1H1(z),fdL1(z),fBM(k)]; 

fBM4(z,k)=min(fBM41(z,k,:)); 

% 9th rule fired 

fBMH31(z,k,:)=[ftM1(z),ft1L1(z),fdML1(z),fBMH(k)]; 

fBMH3(z,k)=min(fBMH31(z,k,:)); 

%10th rule fired 

fBM51(z,k,:)=[ftMH1(z),ft1H1(z),fdH1(z),fBM(k)]; 

fBM5(z,k)=min(fBM51(z,k,:)); 

% 11th rule fired 

fBM61(z,k,:)=[ftML1(z),ft1L1(z),fdML1(z),fBM(k)]; 

fBM6(z,k)=min(fBM61(z,k,:)); 

% 12th rule fired 

fBM71(z,k,:)=[ftM1(z),ft1H1(z),fdML1(z),fBM(k)]; 

fBM7(z,k)=min(fBM71(z,k,:)); 

% 13th rule fired 

fBM81(z,k,:)=[ftH1(z),ft1L1(z),fdM1(z),fBM(k)]; 

fBM8(z,k)=min(fBM81(z,k,:)); 

% 14th rule fired 

fBM91(z,k,:)=[ftH1(z),ft1H1(z),fdMH1(z),fBM(k)]; 

fBM9(z,k)=min(fBM91(z,k,:)); 

% 15th rule fired 

fBM101(z,k,:)=[ftH1(z),ft1L1(z),fdH1(z),fBM(k)]; 

fBM10(z,k)=min(fBM101(z,k,:)); 

% 16th rule fired 

fBMH41(z,k,:)=[ftMH1(z),ft1H1(z),fdML1(z),fBMH(k)]; 

fBMH4(z,k)=min(fBMH41(z,k,:)); 

% 17th rule fired 

fBM111(z,k,:)=[ftL1(z),ft1L1(z),fdMH1(z),fBM(k)]; 

fBM11(z,k)=min(fBM111(z,k,:)); 

% 18th rule fired 

fBM121(z,k,:)=[ftM1(z),ft1H1(z),fdH1(z),fBM(k)]; 

fBM12(z,k)=min(fBM121(z,k,:)); 

% 19th rule fired 

fBM131(z,k,:)=[ftML1(z),ft1L1(z),fdL1(z),fBM(k)]; 

fBM13(z,k)=min(fBM131(z,k,:)); 

% 20th rule fired 

fBMH51(z,k,:)=[ftM1(z),ft1H1(z),fdMH1(z),fBMH(k)]; 
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fBMH5(z,k)=min(fBMH51(z,k,:)); 

% 21st rule fired 

fBM141(z,k,:)=[ftL1(z),ft1L1(z),fdH1(z),fBM(k)]; 

fBM14(z,k)=min(fBM141(z,k,:)); 

% 22nd rule fired 

fBMH61(z,k,:)=[ftL1(z),ft1H1(z),fdMH1(z),fBMH(k)]; 

fBMH6(z,k)=min(fBMH61(z,k,:)); 

% 23rd rule fired 

fBH31(z,k,:)=[ftL1(z),ft1L1(z),fdML1(z),fBH(k)]; 

fBH3(z,k)=min(fBH31(z,k,:)); 

% 24th rule  fired 

fBM151(z,k,:)=[ftM1(z),ft1H1(z),fdL1(z),fBM(k)]; 

fBM15(z,k)=min(fBM151(z,k,:)); 

% 25th rule fired 

fBM161(z,k,:)=[ftML1(z),ft1L1(z),fdH1(z),fBM(k)]; 

fBM16(z,k)=min(fBM161(z,k,:)); 

% 26th rule fired 

fBM171(z,k,:)=[ftML1(z),ft1H1(z),fdMH1(z),fBM(k)]; 

fBM17(z,k)=min(fBM171(z,k,:)); 

% Fired27th rule 

fBM181(z,k,:)=[ftM1(z),ft1L1(z),fdL1(z),fBM(k)]; 

fBM18(z,k)=min(fBM181(z,k,:)); 

% Fired28th rule 

fBM191(z,k,:)=[ftMH1(z),ft1H1(z),fdL1(z),fBM(k)]; 

fBM19(z,k)=min(fBM191(z,k,:)); 

% Fired29th rule 

fBMH71(z,k,:)=[ftMH1(z),ft1L1(z),fdML1(z),fBMH(k)]; 

fBMH7(z,k)=min(fBMH71(z,k,:)); 

% Fired30th rule 

fBM201(z,k,:)=[ftH1(z),ft1H1(z),fdH1(z),fBM(k)]; 

fBM20(z,k)=min(fBM201(z,k,:)); 

% Fired31st rule 

fBMH81(z,k,:)=[ftH1(z),ft1L1(z),fdMH1(z),fBMH(k)]; 

fBMH8(z,k)=min(fBMH81(z,k,:)); 

% Fired32nd rule 

fBM211(z,k,:)=[ftMH1(z),ft1L1(z),fdMH1(z),fBM(k)]; 

fBM21(z,k)=min(fBM21(z,k,:)); 

% Fired33rd rule 

fBMH91(z,k,:)=[ftML1(z),ft1H1(z),fdH1(z),fBMH(k)]; 

fBMH9(z,k)=min(fBMH91(z,k,:)); 

% Fired34th rule 

fBM221(z,k,:)=[ftL1(z),ft1H1(z),fdM1(z),fBM(k)]; 

fBM22(z,k)=min(fBM221(z,k,:)); 

% Aggregated Membership function(taking the maximum of all 34 

% outputs  for each value of input& each value of 

fB2(z,k,:)=[fBM1(z,k);fBM2(z,k);fBM3(z,k);fBMH1(z,k);fBMH1(z,k);fBH2(z,k); 
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fBMH2(z,k);fBM4(z,k);fBMH3(z,k);fBM5(z,k);fBM6(z,k);fBM7(z,k);fBM8(z,k);fBM9(z,k); 

fBM10(z,k);fBMH4(z,k);fBM11(z,k);fBM12(z,k);fBM13(z,k);fBMH5(z,k);fBM14(z,k); 

fBMH6(z,k);fBH3(z,k);fBM15(z,k);fBM16(z,k);fBM17(z,k);fBM18(z,k);fBM19(z,k); 

fBMH7(z,k);fBM20(z,k);fBMH8(z,k);fBM21(z,k);fBMH9(z,k);fBM22(z,k)]; 

fB3(z,k)= max(fB2(z,k,:)); 

end; 

end; 

% Defuzzification(Centroidal Method) 

for z=1:7 

bve2(z,:)= defuzz(B,fB3(z,:),'centroid'); 

end; 

% MAE 

MAE=0; 

for z=1:7 

MAE = MAE+abs((bve2(z,:)-bve1(z))/(bve1(z)))*(100/7); 

end; 

subplot(3,3,1); plot(B, [fB3(1,:) ]); 

subplot(3,3,2); plot(B, [fB3(2,:) ]); 

subplot(3,3,3); plot(B, [fB3(3,:) ]); 

subplot(3,3,4); plot(B, [fB3(4,:) ]); 

subplot(3,3,5); plot(B, [fB3(5,:) ]); 

subplot(3,3,6); plot(B, [fB3(6,:) ]); 

subplot(3,3,7); plot(B, [fB3(7,:) ]); 
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                                               Appendix 2 

Matlab Code for BDV modeling under AC conditions using fuzzy logic 

and trapezoidal MFs 

clear all; 

% Three Inputs (thickness ofthe  material, thickness of void and diameter of 

% void) 

% To model the BDV under AC conditions using fuzzy logic 

% and trapezoidal MF(Mamdani Rule Based Inference  

% & Centroid Defuzzification) 

% MF of the thickness of the dielectric 

t= (0:0.005:0.33)'; 

at=0.03; 

ftL=trapmf(t,[0 at at+0.07 0.13]); 

ftML=trapmf(t,[0.05 at+0.05 at+0.12 0.18]); 

ftM=trapmf(t,[0.10 at+0.10 at+0.17 0.23]); 

ftMH=trapmf(t,[0.15 at+0.15 at+0.22 0.28]); 

ftH=trapmf(t,[0.20 at+0.20 at+0.27 0.33]); 

ft=[ftL,ftML,ftM,ftMH,ftH]; 

% MF of the thickness of the void 

t1= (0:0.005:0.15)'; 

at1=0.02; 

ft1L=trapmf(t1,[0 at1 at1+0.03 0.07]); 

ft1H=trapmf(t1,[0.08 at1+0.08 at1+0.11 0.15]); 

ft1=[ft1L,ft1H]; 

% MF of the diameter of the void 

d= (1.0:0.1:5.8)'; 

ad=1.5; 

fdL=trapmf(d,[1.0 ad ad+1 3.0]); 

fdML=trapmf(d,[1.7 ad+0.7 ad+1.7 3.7]); 

fdM=trapmf(d,[2.4 ad+1.4 ad+2.4 4.4]); 

fdMH=trapmf(d,[3.1 ad+2.1 ad+3.1 5.1]); 

fdH=trapmf(d,[3.8 ad+2.8 ad+3.8 5.8]); 

fd=[fdL,fdML,fdM,fdMH,fdH]; 

% MF of the breakdown voltage  

B= (1.9:0.1:2.5)'; 

a1=1.95; 
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fBL=trapmf(B,[1.9 a1 a1+0.1 2.1]); 

fBML=trapmf(B,[2.0 a1+0.1 a1+0.2 2.2]); 

fBM=trapmf(B,[2.1 a1+0.2 a1+0.3 2.3]); 

fBMH=trapmf(B,[2.2 a1+0.3 a1+0.4 2.4]); 

fBH=trapmf(B,[2.3 a1+0.4 a1+0.5 2.5]); 

fB=[fBL,fBML,fBM,fBMH,fBH]; 

 

% Program for using the Fuzzy Logic System to evaluate the MAE 

% (Thickness of material) 

t3=[0.125;0.26;0.125;0.125;0.18;0.26;0.26]; 

% (Thickness of void) 

 t4=[0.025;0.125;0.025;0.025;0.025;0.125;0.025]; 

 %(Diameter of the void) 

d3=[1.5;3.0;1.5;3.0;3.0;5.0;3.0]; 

% (Breakdown voltage) 

bve1=[2.0;2.1;2.0;2.3;2.2;2.4;2.1]; 

%Fuzzification (thickness of material) 

for z=1:7 

ftL1(z)=trapmf(t3(z),[0 at at+0.07 0.13]); 

ftML1(z)=trapmf(t3(z),[0.05 at+0.05 at+0.12 0.18]); 

ftM1(z)=trapmf(t3(z),[0.10 at+0.10 at+0.17 0.23]); 

ftMH1(z)=trapmf(t3(z),[0.15 at+0.15 at+0.22 0.28]); 

ftH1(z)=trapmf(t3(z),[0.20 at+0.20 at+0.27 0.33]); 

%Fuzzification (thickness of void) 

ft1L1(z)=trapmf(t4(z),[0 at1 at1+0.03 0.07]); 

ft1H1(z)=trapmf(t4(z),[0.08 at1+0.08 at1+0.11 0.15]); 

%Fuzzification (diameter of void) 

fdL1(z)=trapmf(d3(z),[1.0 ad ad+1 3.0]); 

fdML1(z)=trapmf(d3(z),[1.7 ad+0.7 ad+1.7 3.7]); 

fdM1(z)=trapmf(d3(z),[2.4 ad+1.4 ad+2.4 4.4]); 

fdMH1(z)=trapmf(d3(z),[3.1 ad+2.1 ad+3.1 5.1]); 

fdH1(z)=trapmf(d3(z),[3.8 ad+2.8 ad+3.8 5.8]); 

% Mamdani Rule Based Inference(MRBI) 

for k=1:size(B) 

% Fired1st rule 

fBM11(z,k,:)=[ftH1(z),ft1L1(z),fdL1(z),fBM(k)]; 

fBM1(z,k)=min(fBM11(z,k,:)); 

% Fired2nd rule 

fBM21(z,k,:)=[ftH1(z),ft1H1(z),fdML1(z),fBM(k)]; 

fBM2(z,k)=min(fBM21(z,k,:)); 

% Fired3rd rule 

fBM31(z,k,:)=[ftMH1(z),ft1L1(z),fdL1(z),fBM(k)]; 

fBM3(z,k)=min(fBM31(z,k,:)); 

% Fired4th rule 

fBMH11(z,k,:)=[ftH1(z),ft1H1(z),fdL1(z),fBMH(k)]; 

fBMH1(z,k)=min(fBMH11(z,k,:)); 
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% Fired5th rule 
fBH11(z,k,:)=[ftM1(z),ft1L1(z),fdM1(z),fBH(k)]; 

fBH1(z,k)=min(fBH11(z,k,:)); 

% Fired6th rule 

fBH21(z,k,:)=[ftML1(z),ft1H1(z),fdML1(z),fBH(k)]; 

fBH2(z,k)=min(fBH21(z,k,:)); 

% Fired7th rule 

fBMH21(z,k,:)=[ftL1(z),ft1L1(z),fdL1(z),fBMH(k)]; 

fBMH2(z,k)=min(fBMH21(z,k,:)); 

% Fired8th rule 

fBM41(z,k,:)=[ftML1(z),ft1H1(z),fdL1(z),fBM(k)]; 

fBM4(z,k)=min(fBM41(z,k,:)); 

% Fired9th rule 

fBMH31(z,k,:)=[ftM1(z),ft1L1(z),fdML1(z),fBMH(k)]; 

fBMH3(z,k)=min(fBMH31(z,k,:)); 

% Fired10th rule 

fBM51(z,k,:)=[ftMH1(z),ft1H1(z),fdH1(z),fBM(k)]; 

fBM5(z,k)=min(fBM51(z,k,:)); 

% Fired11th rule 

fBM61(z,k,:)=[ftML1(z),ft1L1(z),fdML1(z),fBM(k)]; 

fBM6(z,k)=min(fBM61(z,k,:)); 

% Fired12th rule 

fBM71(z,k,:)=[ftM1(z),ft1H1(z),fdML1(z),fBM(k)]; 

fBM7(z,k)=min(fBM71(z,k,:)); 

% Fired13th rule 

fBM81(z,k,:)=[ftH1(z),ft1L1(z),fdM1(z),fBM(k)]; 

fBM8(z,k)=min(fBM81(z,k,:)); 

% Fired14th rule 

fBM91(z,k,:)=[ftH1(z),ft1H1(z),fdMH1(z),fBM(k)]; 

fBM9(z,k)=min(fBM91(z,k,:)); 

% Fired15th rule 

fBM101(z,k,:)=[ftH1(z),ft1L1(z),fdH1(z),fBM(k)]; 

fBM10(z,k)=min(fBM101(z,k,:)); 

% Fired16th rule 

fBMH41(z,k,:)=[ftMH1(z),ft1H1(z),fdML1(z),fBMH(k)]; 

fBMH4(z,k)=min(fBMH41(z,k,:)); 

% Fired17th rule 

fBM111(z,k,:)=[ftL1(z),ft1L1(z),fdMH1(z),fBM(k)]; 

fBM11(z,k)=min(fBM111(z,k,:)); 

% Fired18th rule 

fBM121(z,k,:)=[ftM1(z),ft1H1(z),fdH1(z),fBM(k)]; 

fBM12(z,k)=min(fBM121(z,k,:)); 

% Fired19th rule 

fBM131(z,k,:)=[ftML1(z),ft1L1(z),fdL1(z),fBM(k)]; 

fBM13(z,k)=min(fBM131(z,k,:)); 

% Fired20th rule 
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fBMH51(z,k,:)=[ftM1(z),ft1H1(z),fdMH1(z),fBMH(k)]; 

fBMH5(z,k)=min(fBMH51(z,k,:)); 

% Fired21st rule 

fBM141(z,k,:)=[ftL1(z),ft1L1(z),fdH1(z),fBM(k)]; 

fBM14(z,k)=min(fBM141(z,k,:)); 

% Fired22nd rule 

fBMH61(z,k,:)=[ftL1(z),ft1H1(z),fdMH1(z),fBMH(k)]; 

fBMH6(z,k)=min(fBMH61(z,k,:)); 

% Fired23rd rule 

fBH31(z,k,:)=[ftL1(z),ft1L1(z),fdML1(z),fBH(k)]; 

fBH3(z,k)=min(fBH31(z,k,:)); 

% Fired24th rule 

fBM151(z,k,:)=[ftM1(z),ft1H1(z),fdL1(z),fBM(k)]; 

fBM15(z,k)=min(fBM151(z,k,:)); 

% Fired25th rule 

fBM161(z,k,:)=[ftML1(z),ft1L1(z),fdH1(z),fBM(k)]; 

fBM16(z,k)=min(fBM161(z,k,:)); 

% Fired26th rule 

fBM171(z,k,:)=[ftML1(z),ft1H1(z),fdMH1(z),fBM(k)]; 

fBM17(z,k)=min(fBM171(z,k,:)); 

% Fired27th rule 

fBM181(z,k,:)=[ftM1(z),ft1L1(z),fdL1(z),fBM(k)]; 

fBM18(z,k)=min(fBM181(z,k,:)); 

% Fired28th rule 

fBM191(z,k,:)=[ftMH1(z),ft1H1(z),fdL1(z),fBM(k)]; 

fBM19(z,k)=min(fBM191(z,k,:)); 

% Fired29th rule 

fBMH71(z,k,:)=[ftMH1(z),ft1L1(z),fdML1(z),fBMH(k)]; 

fBMH7(z,k)=min(fBMH71(z,k,:)); 

% Fired30th rule 

fBM201(z,k,:)=[ftH1(z),ft1H1(z),fdH1(z),fBM(k)]; 

fBM20(z,k)=min(fBM201(z,k,:)); 

% Fired31st rule 

fBMH81(z,k,:)=[ftH1(z),ft1L1(z),fdMH1(z),fBMH(k)]; 

fBMH8(z,k)=min(fBMH81(z,k,:)); 

% Fired32nd rule 

fBM211(z,k,:)=[ftMH1(z),ft1L1(z),fdMH1(z),fBM(k)]; 

fBM21(z,k)=min(fBM21(z,k,:)); 

% Fired33rd rule 

fBMH91(z,k,:)=[ftML1(z),ft1H1(z),fdH1(z),fBMH(k)]; 

fBMH9(z,k)=min(fBMH91(z,k,:)); 

% Fired34th rule 

fBM221(z,k,:)=[ftL1(z),ft1H1(z),fdM1(z),fBM(k)]; 

fBM22(z,k)=min(fBM221(z,k,:)); 

% Aggregated Membership function(taking the maximum of all 34 

% outputs for each value of input& each value of 
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fB2(z,k,:)=[fBM1(z,k);fBM2(z,k);fBM3(z,k);fBMH1(z,k);fBMH1(z,k);fBH2(z,k); 

fBMH2(z,k);fBM4(z,k);fBMH3(z,k);fBM5(z,k);fBM6(z,k);fBM7(z,k);fBM8(z,k); 

fBM9(z,k);fBM10(z,k);fBMH4(z,k);fBM11(z,k);fBM12(z,k);fBM13(z,k);fBMH5(z,k); 

fBM14(z,k);fBMH6(z,k);fBH3(z,k);fBM15(z,k);fBM16(z,k);fBM17(z,k);fBM18(z,k); 

fBM19(z,k);fBMH7(z,k);fBM20(z,k);fBMH8(z,k);fBM21(z,k);fBMH9(z,k); 

fBM22(z,k)]; 

fB3(z,k)= max(fB2(z,k,:)); 

end; 

end; 

% Defuzzification(Centroidal Method) 

for z=1:7 

bve2(z,:)= defuzz(B,fB3(z,:),'centroid'); 

end; 

% MAE 

MAE=0; 

for z=1:7 

MAE = MAE+abs((bve2(z,:)-bve1(z))/(bve1(z)))*(100/7); 

end; 

subplot(3,3,1); plot(B, [fB3(1,:) ]); 

subplot(3,3,2); plot(B, [fB3(2,:) ]); 

subplot(3,3,3); plot(B, [fB3(3,:) ]); 

subplot(3,3,4); plot(B, [fB3(4,:) ]); 

subplot(3,3,5); plot(B, [fB3(5,:) ]); 

subplot(3,3,6); plot(B, [fB3(6,:) ]); 

subplot(3,3,7); plot(B, [fB3(7,:) ]); 
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APPENDIX  3 

MATLAB Code for BDV modeling under DC conditions using fuzzy logic 

and triangular MF 

clear all; 

% Three Inputs (thickness of material, thickness of void and diameter of 

% void) 

% To model the BDV under DC conditions using fuzzy logic 

% and triangular MF (Mamdani Rule Based Inference  

% & Centroid Defuzzification) 

% MF of the thickness of the dielectric 

t= (0:0.005:0.33)'; 

at=0.05; 

ftL=trimf(t,[0 at 0.13]); 

ftML=trimf(t,[0.05 at+0.05 0.18]); 

ftM=trimf(t,[0.10 at+0.10 0.23]); 

ftMH=trimf(t,[0.15 at+0.15 0.28]); 

ftH=trimf(t,[0.20 at+0.20 0.33]); 

ft=[ftL,ftML,ftM,ftMH,ftH]; 

% MF of the thickness of the void 

t1= (0:0.005:0.15)'; 

at1=0.03; 

ft1L=trimf(t1,[0 at1 0.07]); 

ft1H=trimf(t1,[0.08 at1+0.08 0.15]); 

ft1=[ft1L,ft1H]; 

% MF of the diameter of the void 
d= (1.0:0.1:5.8)'; 

ad=1.6; 

fdL=trimf(d,[1.0 ad 3.0]); 

fdML=trimf(d,[1.7 ad+0.7 3.7]); 

fdM=trimf(d,[2.4 ad+1.4 4.4]); 

fdMH=trimf(d,[3.1 ad+2.1 5.1]); 

fdH=trimf(d,[3.8 ad+2.8 5.8]); 

fd=[fdL,fdML,fdM,fdMH,fdH]; 

% MF of the breakdown voltage  

B= (17:1:30)'; 

a1=18; 
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fBL=trimf(B,[17 a1 21]); 

fBML=trimf(B,[19 a1+2 23]); 

fBM=trimf(B,[21 a1+4 25]); 

fBMH=trimf(B,[23 a1+6 27]); 

fBH=trimf(B,[26 a1+9 30]); 

fB=[fBL,fBML,fBM,fBMH,fBH]; 

 

% Program for using the Fuzzy Logic System to evaluate the MAE 

% (Thickness of material) 
t3=[0.125;0.125;0.125;0.125;0.18;0.18;0.26]; 

% (Thickness of void) 

t4=[0.025;0.025;0.025;0.025;0.025;0.125;0.025]; 

% (Diameter of the void) 

d3=[1.5;2.0;3.0;4.0;3.0;1.5;4.0]; 

% (Breakdown voltage) 

bve1=[23.44;22.88;23.22;24.44;24.44;23.00;23.77]; 

%Fuzzification (thickness of material) 
for z=1:7 

ftL1(z)=trimf(t3(z),[0 at 0.13]); 

ftML1(z)=trimf(t3(z),[0.05 at+0.05 0.18]); 

ftM1(z)=trimf(t3(z),[0.10 at+0.10 0.23]); 

ftMH1(z)=trimf(t3(z),[0.15 at+0.15 0.28]); 

ftH1(z)=trimf(t3(z),[0.20 at+0.20 0.33]); 

%Fuzzification (thickness of void) 
ft1L1(z)=trimf(t4(z),[0 at1 0.07]); 

ft1H1(z)=trimf(t4(z),[0.08 at1+0.08 0.15]); 

%Fuzzification (diameter of void) 
fdL1(z)=trimf(d3(z),[1.0 ad 3.0]); 

fdML1(z)=trimf(d3(z),[1.7 ad+0.7 3.7]); 

fdM1(z)=trimf(d3(z),[2.4 ad+1.4 4.4]); 

fdMH1(z)=trimf(d3(z),[3.1 ad+2.1 5.1]); 

fdH1(z)=trimf(d3(z),[3.8 ad+2.8 5.8]); 

% Mamdani Rule Based Inference(MRBI) 
for k=1:size(B) 

% Fired 1st rule 

fBM11(z,k,:)=[ftH1(z),ft1L1(z),fdL1(z),fBL(k)]; 

fBM1(z,k)=min(fBM11(z,k,:)); 

% Fired 2nd rule 
fBMH11(z,k,:)=[ftH1(z),ft1H1(z),fdML1(z),fBML(k)]; 

fBMH1(z,k)=min(fBMH11(z,k,:)); 

% Fired 3rd rule 

fBH11(z,k,:)=[ftMH1(z),ft1L1(z),fdL1(z),fBL(k)]; 

fBH1(z,k)=min(fBH11(z,k,:)); 

% Fired 4th rule 

fBM21(z,k,:)=[ftH1(z),ft1H1(z),fdL1(z),fBM(k)]; 
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fBM2(z,k)=min(fBM21(z,k,:)); 

% Fired 5th rule 

fBML11(z,k,:)=[ftM1(z),ft1L1(z),fdM1(z),fBMH(k)]; 

fBML1(z,k)=min(fBML11(z,k,:)); 

% Fired 6th rule 

fBMH21(z,k,:)=[ftML1(z),ft1H1(z),fdML1(z),fBH(k)]; 

fBMH2(z,k)=min(fBMH21(z,k,:)); 

% Fired 7th rule 
fBL11(z,k,:)=[ftL1(z),ft1L1(z),fdL1(z),fBL(k)]; 

fBL1(z,k)=min(fBL11(z,k,:)); 

% Fired 8th rule 

fBL21(z,k,:)=[ftML1(z),ft1H1(z),fdL1(z),fBML(k)]; 

fBL2(z,k)=min(fBL21(z,k,:)); 

% Fired 9th rule 

fBML21(z,k,:)=[ftM1(z),ft1L1(z),fdML1(z),fBMH(k)]; 

fBML2(z,k)=min(fBML21(z,k,:)); 

% Fired 10th rule 
fBM31(z,k,:)=[ftMH1(z),ft1H1(z),fdH1(z),fBM(k)]; 

fBM3(z,k)=min(fBM31(z,k,:)); 

% Fired 11th rule 

fBMH31(z,k,:)=[ftML1(z),ft1L1(z),fdML1(z),fBH(k)]; 

fBMH3(z,k)=min(fBMH31(z,k,:)); 

% Fired 12th rule 
fBM41(z,k,:)=[ftM1(z),ft1H1(z),fdML1(z),fBMH(k)]; 

fBM4(z,k)=min(fBM41(z,k,:)); 

% Fired 13th rule 

fBH21(z,k,:)=[ftH1(z),ft1L1(z),fdM1(z),fBML(k)]; 

fBH2(z,k)=min(fBH21(z,k,:)); 

% Fired 14th rule 

fBMH41(z,k,:)=[ftH1(z),ft1H1(z),fdMH1(z),fBH(k)]; 

fBMH4(z,k)=min(fBMH41(z,k,:)); 

% Fired 15th rule 

fBM51(z,k,:)=[ftH1(z),ft1L1(z),fdH1(z),fBL(k)]; 

fBM5(z,k)=min(fBM51(z,k,:)); 

% Fired 16th rule 
fBML31(z,k,:)=[ftMH1(z),ft1H1(z),fdML1(z),fBMH(k)]; 

fBML3(z,k)=min(fBML31(z,k,:)); 

% Fired 17th rule 
fBL31(z,k,:)=[ftL1(z),ft1L1(z),fdMH1(z),fBML(k)]; 

fBL3(z,k)=min(fBL31(z,k,:)); 

% Fired 18th rule 

fBH31(z,k,:)=[ftM1(z),ft1H1(z),fdH1(z),fBML(k)]; 

fBH3(z,k)=min(fBH31(z,k,:)); 

% Fired 19th rule 

fBM61(z,k,:)=[ftML1(z),ft1L1(z),fdL1(z),fBL(k)]; 

fBM6(z,k)=min(fBM61(z,k,:)); 
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% Fired 20th rule 

fBML41(z,k,:)=[ftM1(z),ft1H1(z),fdMH1(z),fBM(k)]; 

fBML4(z,k)=min(fBML41(z,k,:)); 

% Fired 21st rule 
fBL41(z,k,:)=[ftL1(z),ft1L1(z),fdH1(z),fBM(k)]; 

fBL4(z,k)=min(fBL41(z,k,:)); 

% Fired 22nd rule 
fBM71(z,k,:)=[ftL1(z),ft1H1(z),fdMH1(z),fBMH(k)]; 

fBM7(z,k)=min(fBM71(z,k,:)); 

% Fired 23rd rule 

fBML51(z,k,:)=[ftL1(z),ft1L1(z),fdML1(z),fBM(k)]; 

fBML5(z,k)=min(fBML51(z,k,:)); 

% Fired 24th rule 

fBMH51(z,k,:)=[ftM1(z),ft1H1(z),fdL1(z),fBM(k)]; 

fBMH5(z,k)=min(fBMH51(z,k,:)); 

% Fired25th rule 

fBMH61(z,k,:)=[ftML1(z),ft1L1(z),fdH1(z),fBL(k)]; 

fBMH6(z,k)=min(fBMH61(z,k,:)); 

% Fired 26th rule 

fBM81(z,k,:)=[ftML1(z),ft1H1(z),fdMH1(z),fBM(k)]; 

fBM8(z,k)=min(fBM81(z,k,:)); 

% Fired 27th rule 
fBMH71(z,k,:)=[ftM1(z),ft1L1(z),fdL1(z),fBMH(k)]; 

fBMH7(z,k)=min(fBMH71(z,k,:)); 

% Fired 28th rule 

fBMH81(z,k,:)=[ftMH1(z),ft1H1(z),fdL1(z),fBH(k)]; 

fBMH8(z,k)=min(fBMH81(z,k,:)); 

% Fired 29th rule 

fBH41(z,k,:)=[ftMH1(z),ft1L1(z),fdML1(z),fBM(k)]; 

fBH4(z,k)=min(fBH41(z,k,:)); 

% Fired 30th rule 

fBMH91(z,k,:)=[ftH1(z),ft1H1(z),fdH1(z),fBML(k)]; 

fBMH9(z,k)=min(fBMH91(z,k,:)); 

% Fired 31st rule 
fBM91(z,k,:)=[ftH1(z),ft1L1(z),fdMH1(z),fBM(k)]; 

fBM9(z,k)=min(fBM91(z,k,:)); 

% Fired 32nd rule 
fBMH101(z,k,:)=[ftMH1(z),ft1L1(z),fdMH1(z),fBML(k)]; 

fBMH10(z,k)=min(fBMH101(z,k,:)); 

% Fired 33rd rule 

fBM101(z,k,:)=[ftML1(z),ft1H1(z),fdH1(z),fBL(k)]; 

fBM10(z,k)=min(fBM101(z,k,:)); 

% Fired34th rule 

fBML61(z,k,:)=[ftL1(z),ft1H1(z),fdM1(z),fBML(k)]; 

fBML6(z,k)=min(fBML61(z,k,:)); 

% Aggregated Membership function(taking the maximum of all 34 
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% outputs for each value of input& each value of 
fB2(z,k,:)=[fBM1(z,k);fBMH1(z,k);fBH1(z,k);fBM2(z,k);fBML1(z,k);fBMH2(z,k);fBL1(z,); 

fBL2(z,k);fBML2(z,k);fBM3(z,k);fBMH3(z,k);fBM4(z,k);fBH2(z,k);fBMH4(z,k);fBM5(z,k); 

fBML3(z,k);fBL3(z,k);fBH3(z,k);fBM6(z,k);fBML4(z,k);fBL4(z,k);fBM7(z,k);fBML5(z,k); 

fBMH5(z,k);fBMH6(z,k);fBM8(z,k);fBMH7(z,k);fBMH8(z,k);fBH4(z,k);fBMH9(z,k); 

fBM9(z,k);fBMH10(z,k);fBM10(z,k);fBML6(z,k)]; 

fB3(z,k)= max(fB2(z,k,:)); 

end; 

end; 

% Defuzzification(Centroidal Method) 

for z=1:7 

bve2(z,:)= defuzz(B,fB3(z,:),'centroid'); 

end; 

% MAE 

MAE=0; 

for z=1:7 

MAE = MAE+abs((bve2(z,:)-bve1(z))/(bve1(z)))*(100/7); 

end; 

subplot(3,3,1); plot(B, [fB3(1,:) ]); 

subplot(3,3,2); plot(B, [fB3(2,:) ]); 

subplot(3,3,3); plot(B, [fB3(3,:) ]); 

subplot(3,3,4); plot(B, [fB3(4,:) ]); 

subplot(3,3,5); plot(B, [fB3(5,:) ]); 

subplot(3,3,6); plot(B, [fB3(6,:) ]); 

subplot(3,3,7); plot(B, [fB3(7,:) ]); 
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Appendix 4 

Matlab Code for BDV modeling under DC conditions using fuzzy logic 

and trapezoidal membership function 

clear all; 

% Three Inputs (thickness of material, thickness of void and diameter of 

% void) 

% To model the BDV under DC conditions using fuzzy logic 

% and trapezoidal MF (Mamdani Rule Based Inference  

% & Centroid Defuzzification) 

% MF of thickness of the dielectric 

t= (0:0.005:0.33)'; 

at=0.05; 

ftL=trapmf(t,[0 at at+0.04 0.13]); 

ftML=trapmf(t,[0.05 at+0.04 at+0.09 0.18]); 

ftM=trapmf(t,[0.10 at+0.09 at+0.14 0.23]); 

ftMH=trapmf(t,[0.15 at+0.14 at+0.19 0.28]); 

ftH=trapmf(t,[0.20 at+0.19 at+0.24 0.33]); 

ft=[ftL,ftML,ftM,ftMH,ftH]; 

% MF of the thickness of the void 

t1= (0:0.003:0.12:0.15)'; 

at1=0.02; 
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ft1L=trapmf(t1,[0 at1 at1+0.03 0.07]); 

ft1H=trapmf(t1,[0.08 at1+0.08 at1+0.11 0.15]); 

ft1=[ft1L,ft1H]; 

% MF of the diameter of the void 

d= (1.0:0.1:5.8)'; 

ad=1.5; 

fdL=trapmf(d,[1.0 ad ad+1 3.0]); 

fdML=trapmf(d,[1.7 ad+0.7 ad+1.7 3.7]); 

fdM=trapmf(d,[2.4 ad+1.4 ad+2.4 4.4]); 

fdMH=trapmf(d,[3.1 ad+2.1 ad+3.1 5.1]); 

fdH=trapmf(d,[3.8 ad+2.8 ad+3.8 5.8]); 

fd=[fdL,fdML,fdM,fdMH,fdH]; 

% MF of the breakdown voltage  

B= (17:1:30)'; 

a1=18; 

fBL=trapmf(B,[17 a1 a1+2 21]); 

fBML=trapmf(B,[19 a1+2 a1+4 23]); 

fBM=trapmf(B,[21 a1+4 a1+6 25]); 

fBMH=trapmf(B,[23 a1+6 a1+8 27]); 

fBH=trapmf(B,[25 a1+8 a1+10 30]); 

fB=[fBL,fBML,fBM,fBMH,fBH]; 

% Program for using the Fuzzy Logic System to evaluate the MAE 

% (Thickness of material) 

t3=[0.125;0.125;0.125;0.125;0.18;0.18;0.26]; 

% (Thickness of void) 

t4=[0.025;0.025;0.025;0.025;0.025;0.125;0.025]; 

% (Diameter of the void) 



                                                                                     54 

d3=[1.5;2.0;3.0;4.0;3.0;1.5;4.0]; 

% (Breakdown voltage) 

bve1=[23.44;22.88;23.22;24.44;24.44;23.00;23.77]; 

%Fuzzification (thickness of material) 

for z=1:7 

ftL1(z)=trapmf(t3(z),[0 at at+0.04 0.13]); 

ftML1(z)=trapmf(t3(z),[0.05 at+0.04 at+0.09 0.18]); 

ftM1(z)=trapmf(t3(z),[0.10 at+0.09 at+0.14 0.23]); 

ftMH1(z)=trapmf(t3(z),[0.15 at+0.14 at+0.19 0.28]); 

ftH1(z)=trapmf(t3(z),[0.20 at+0.19 at+0.24 0.33]); 

%Fuzzification (thickness of void) 

ft1L1(z)=trapmf(t4(z),[0 at1 at1+0.03 0.07]); 

ft1H1(z)=trapmf(t4(z),[0.08 at1+0.08 at1+0.11 0.15]); 

%Fuzzification (diameter of void) 

fdL1(z)=trapmf(d3(z),[1.0 ad ad+1 3.0]); 

fdML1(z)=trapmf(d3(z),[1.7 ad+0.7 ad+1.7 3.7]); 

fdM1(z)=trapmf(d3(z),[2.4 ad+1.4 ad+2.4 4.4]); 

fdMH1(z)=trapmf(d3(z),[3.1 ad+2.1 ad+3.1 5.1]); 

fdH1(z)=trapmf(d3(z),[3.8 ad+2.8 ad+3.8 5.8]); 

% Mamdani Rule Based Inference(MRBI) 

for k=1:size(B) 

% Fired1st rule 

fBM11(z,k,:)=[ftH1(z),ft1L1(z),fdL1(z),fBL(k)]; 

fBM1(z,k)=min(fBM11(z,k,:)); 

% Fired2nd rule 

fBMH11(z,k,:)=[ftH1(z),ft1H1(z),fdML1(z),fBML(k)]; 

fBMH1(z,k)=min(fBMH11(z,k,:)); 
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% Fired3rd rule 

fBH11(z,k,:)=[ftMH1(z),ft1L1(z),fdL1(z),fBL(k)]; 

fBH1(z,k)=min(fBH11(z,k,:)); 

% Fired4th rule 

fBM21(z,k,:)=[ftH1(z),ft1H1(z),fdL1(z),fBM(k)]; 

fBM2(z,k)=min(fBM21(z,k,:)); 

% Fired5th rule 

fBML11(z,k,:)=[ftM1(z),ft1L1(z),fdM1(z),fBMH(k)]; 

fBML1(z,k)=min(fBML11(z,k,:)); 

% Fired6th rule 

fBMH21(z,k,:)=[ftML1(z),ft1H1(z),fdML1(z),fBH(k)]; 

fBMH2(z,k)=min(fBMH21(z,k,:)); 

% Fired7th rule 

fBL11(z,k,:)=[ftL1(z),ft1L1(z),fdL1(z),fBL(k)]; 

fBL1(z,k)=min(fBL11(z,k,:)); 

% Fired8th rule 

fBL21(z,k,:)=[ftML1(z),ft1H1(z),fdL1(z),fBML(k)]; 

fBL2(z,k)=min(fBL21(z,k,:)); 

% Fired9th rule 

fBML21(z,k,:)=[ftM1(z),ft1L1(z),fdML1(z),fBMH(k)]; 

fBML2(z,k)=min(fBML21(z,k,:)); 

% Fired10th rule 

fBM31(z,k,:)=[ftMH1(z),ft1H1(z),fdH1(z),fBM(k)]; 

fBM3(z,k)=min(fBM31(z,k,:)); 

% Fired11th rule 

fBMH31(z,k,:)=[ftML1(z),ft1L1(z),fdML1(z),fBH(k)]; 

fBMH3(z,k)=min(fBMH31(z,k,:)); 
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% Fired12th rule 

fBM41(z,k,:)=[ftM1(z),ft1H1(z),fdML1(z),fBMH(k)]; 

fBM4(z,k)=min(fBM41(z,k,:)); 

% Fired13th rule 

fBH21(z,k,:)=[ftH1(z),ft1L1(z),fdM1(z),fBML(k)]; 

fBH2(z,k)=min(fBH21(z,k,:)); 

% Fired14th rule 

fBMH41(z,k,:)=[ftH1(z),ft1H1(z),fdMH1(z),fBH(k)]; 

fBMH4(z,k)=min(fBMH41(z,k,:)); 

% Fired15th rule 

fBM51(z,k,:)=[ftH1(z),ft1L1(z),fdH1(z),fBL(k)]; 

fBM5(z,k)=min(fBM51(z,k,:)); 

% Fired16th rule 

fBML31(z,k,:)=[ftMH1(z),ft1H1(z),fdML1(z),fBMH(k)]; 

fBML3(z,k)=min(fBML31(z,k,:)); 

% Fired17th rule 

fBL31(z,k,:)=[ftL1(z),ft1L1(z),fdMH1(z),fBML(k)]; 

fBL3(z,k)=min(fBL31(z,k,:)); 

% Fired18th rule 

fBH31(z,k,:)=[ftM1(z),ft1H1(z),fdH1(z),fBML(k)]; 

fBH3(z,k)=min(fBH31(z,k,:)); 

% Fired19th rule 

fBM61(z,k,:)=[ftML1(z),ft1L1(z),fdL1(z),fBL(k)]; 

fBM6(z,k)=min(fBM61(z,k,:)); 

% Fired20th rule 

fBML41(z,k,:)=[ftM1(z),ft1H1(z),fdMH1(z),fBM(k)]; 

fBML4(z,k)=min(fBML41(z,k,:)); 



                                                                                     57 

% Fired21st rule 

fBL41(z,k,:)=[ftL1(z),ft1L1(z),fdH1(z),fBM(k)]; 

fBL4(z,k)=min(fBL41(z,k,:)); 

% Fired22nd rule 

fBM71(z,k,:)=[ftL1(z),ft1H1(z),fdMH1(z),fBMH(k)]; 

fBM7(z,k)=min(fBM71(z,k,:)); 

% Fired23rd rule 

fBML51(z,k,:)=[ftL1(z),ft1L1(z),fdML1(z),fBM(k)]; 

fBML5(z,k)=min(fBML51(z,k,:)); 

% Fired24th rule 

fBMH51(z,k,:)=[ftM1(z),ft1H1(z),fdL1(z),fBM(k)]; 

fBMH5(z,k)=min(fBMH51(z,k,:)); 

% Fired25th rule 

fBMH61(z,k,:)=[ftML1(z),ft1L1(z),fdH1(z),fBL(k)]; 

fBMH6(z,k)=min(fBMH61(z,k,:)); 

% Fired26th rule 

fBM81(z,k,:)=[ftML1(z),ft1H1(z),fdMH1(z),fBM(k)]; 

fBM8(z,k)=min(fBM81(z,k,:)); 

% Fired27th rule 

fBMH71(z,k,:)=[ftM1(z),ft1L1(z),fdL1(z),fBMH(k)]; 

fBMH7(z,k)=min(fBMH71(z,k,:)); 

% Fired28th rule 

fBMH81(z,k,:)=[ftMH1(z),ft1H1(z),fdL1(z),fBH(k)]; 

fBMH8(z,k)=min(fBMH81(z,k,:)); 

% Fired29th rule 

fBH41(z,k,:)=[ftMH1(z),ft1L1(z),fdML1(z),fBM(k)]; 

fBH4(z,k)=min(fBH41(z,k,:)); 
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% Fired 30th rule 

fBMH91(z,k,:)=[ftH1(z),ft1H1(z),fdH1(z),fBML(k)]; 

fBMH9(z,k)=min(fBMH91(z,k,:)); 

% Fired31st rule 

fBM91(z,k,:)=[ftH1(z),ft1L1(z),fdMH1(z),fBM(k)]; 

fBM9(z,k)=min(fBM91(z,k,:)); 

% Fired32nd rule 

fBMH101(z,k,:)=[ftMH1(z),ft1L1(z),fdMH1(z),fBML(k)]; 

fBMH10(z,k)=min(fBMH101(z,k,:)); 

% Fired33rd rule 

fBM101(z,k,:)=[ftML1(z),ft1H1(z),fdH1(z),fBL(k)]; 

fBM10(z,k)=min(fBM101(z,k,:)); 

% Fired34th rule 

fBML61(z,k,:)=[ftL1(z),ft1H1(z),fdM1(z),fBML(k)]; 

fBML6(z,k)=min(fBML61(z,k,:)); 

% Aggregatedoutpt. Membership function(taking the maximum of all 34 

% outputs for each value of 

inputfB2(z,k,:)=[fBM1(z,k);fBMH1(z,k);fBH1(z,k);fBM2(z,k);fBML1(z,k);fBMH2(z,k);fBL1(

z,); 

fBL2(z,k);fBML2(z,k);fBM3(z,k);fBMH3(z,k);fBM4(z,k);fBH2(z,k);fBMH4(z,k); 

fBM5(z,k);fBML3(z,k);fBL3(z,k);fBH3(z,k);fBM6(z,k);fBML4(z,k);fBL4(z,k);fBM7(z,k); 

fBML5(z,k);fBMH5(z,k);fBMH6(z,k);fBM8(z,k);fBMH7(z,k);fBMH8(z,k);fBH4(z,k); 

fBMH9(z,k);fBM9(z,k);fBMH10(z,k);fBM10(z,k);fBML6(z,k)]; 

fB3(z,k)= max(fB2(z,k,:)); 

end; 

end; 

% Defuzzification(Centroidal Method) 

for z=1:7 
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bve2(z,:)= defuzz(B,fB3(z,:),'centroid'); 

end; 

% MAE 

MAE=0; 

for z=1:7 

MAE = MAE+abs((bve2(z,:)-bve1(z))/(bve1(z)))*(100/7); 

end; 

subplot(3,3,1); plot(B, [fB3(1,:) ]); 

subplot(3,3,2); plot(B, [fB3(2,:) ]); 

subplot(3,3,3); plot(B, [fB3(3,:) ]); 

subplot(3,3,4); plot(B, [fB3(4,:) ]); 

subplot(3,3,5); plot(B, [fB3(5,:) ]); 

subplot(3,3,6); plot(B, [fB3(6,:) ]); 

subplot(3,3,7); plot(B, [fB3(7,:) ]); 

 

 

 

 

 

 

 

 


