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ABSTRACT

Firstly, we study the Lie group of transformations including infinitesi-

mal transformations, infinitesimal generators, invariant functions, extended

infinitesimal transformations and some theorems. Then, we study the in-

finitesimal transformations of one-layer shallow water equations. Lastly, we

find out the infinitesimals of isentropic gas dynamics by using Lie group

analysis.
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INTRODUCTION

Sophus Lie proposed Lie symmetries and by using these symmetries

we can obtain the solutions of various partial differential equations. There

are several significant studies to apply Lie groups to the differential equa-

tions. One of the main characteristics of Lie approach is looking for sym-

metry groups of differential equations and then reducing to original differ-

ential equations with fewer independent variables and investigating the self-

symmetry groups partial differential equations can be reduced to an ordinary

differential equations. The independent variable of the ordinary differential

equations is called a similarity variable. Thus, we can obtain self-similarity

solutions of the original equations from the ordinary differential equations.

And under the Lie group of transformations the self-similarity solutions are

invariant.

The main purpose of this report is to find the self-similarity solution

for isentropic gasdynamics by using Lie group analysis and to show that Lie

group analysis is a generalization of the dimension analysis.

Gasdynamics is a science in the branch of fluid dynamics, concerned

with the motion of gases and its effect on physical systems. Gasdynamics

arises from the studies of gas flows in transic and supersonic flights which is

on the basis of the principles of the fluid dynamics and thermodynamics.

Several authors have studied the equations of gasdynamics, but we inves-

tigate the solutions for isentropic gasdynamics. There is a common approach

for analyzing the isentropic gasdynamics and that is to solve hyperbolic shal-

low water equations with boundary conditions.

In this study, we use the Lie group properties and self-similarity solu-

tions already obtained for one layer shallow water equations to investigate

the self-similarity solutions of the isentropic gasdynamics.
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CHAPTER 1

Lie Groups of Transformations and

Infinitesimal Transformations

1.1 Groups

Definition 1.1.1. A group G is a set of elements with a law of composition

φ between elements satisfying the following axioms:

1. Closure property : For any element a and b of G, φ(a, b) is an element

of G.

2. Associative property : For any element a, b and c of G,

φ(a, φ(b, c)) = φ(φ(a, b), c)

3. Identity element : There exists a unique identity element e of G such

that for any element a of G,

φ(a, e) = φ(e, a) = a

4. Inverse element : For any element a of G there exists a unique inverse

element a−1 in G such that

φ(a, a−1) = φ(a−1, a) = e

Definition 1.1.2. A group G is Abelian if φ(a, b) = φ(b, a) holds for all

elements a and b in G.

Definition 1.1.3. A subgroup of G is a group formed by a subset of elements

of G with the same law of composition φ.

1.2 Examples of Groups

1. G is the set of all integers with φ(a, b) = a + b. Here e = 0 and

a−1 = −a.

2. G is the set of all positive reals with φ(a, b) = a.b. Here e = 1 and

a−1 = 1
a
.

2



1.3 Groups of Transformations

Definition 1.3.1. Let x = (x1, x2, x3, · · · , xn) lie in region D ⊂ Rn. The set

of transformations

x∗ = X(x; ε)

, defined for each x in D, depending on parameter lying in set S ⊂ R, with

φ(ε, δ) defining a law of composition of parameters ε and δ in S, forms a

group of transformations on D if:

1. For each parameter ε in S the transformations are one-to-one onto D,

in particular x∗ lies in D.

2. S with the law of composition φ forms a group G.

3. x∗ = x when ε = e, i.e.

X(x; e) = x

4. If x∗ = X(x; ε), x∗∗ = X(x∗; δ),then

x∗∗ = X(x;φ(ε, δ))

1.4 One-parameter lie group of transformations

Definition 1.4.1. A group of transformations defines a one-parameter Lie

group of transformations if in addition to satisfying axioms (i)-(iv) of defini-

tion 1.3.1:

5. ε is a continuous parameter, i.e. S is an interval in R. Without loss of

generality ε = 0 corresponds to the identity element e.

6. X is infinitely differentiable with respect to x in D and an analytic func-

tion of ε in S.

7. φ(ε, δ) is an analytic function of ε and δ, ε ∈ S, δ ∈ S.

1.5 Examples of one-parameter lie groups of transformations

A Group of translations in the Plane

x∗ = x+ ε

y∗ = y, ε ∈ R.
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Here φ(ε, δ) = ε+δ. This group corresponds to motions parallel to the x-axis.

1.6 Infinitesimal transformations

Consider a one-parameter (ε) Lie group of transformations

x∗ = X(x; ε) (1.1)

with identity ε = 0 and law of composition φ. Expanding (1.1) about ε = 0,

we get

x∗ = x + ε(
∂X

∂ε
(x; ε)|ε=0) +O(ε2).

Let

ξ(x) =
∂X

∂ε
(x; ε)|ε=0 (1.2)

The transformation x+εξ(x) is called the infinitesimal transformation of the

Lie group of transformations (1.1); the components of ξ(x) are called the

infinitesimals of (1.1).

Theorem 1.6.1. (First Fundamental Theorem of Lie) There exists a param-

eterisation τ(ε) such that the Lie group of transformation is equivalent to the

solution of the initial value problem for the system of first order differential

equations

dx∗

dτ
= ξ(x∗),

with

x∗ = x when τ = 0.

In particular

τ(ε) =

∫ ε

0

Γ(ε
′
)dε

′

where

Γ(ε) =
∂φ(a, b)

∂b
|(a,b)=(ε−1,ε)

and

Γ(0) = 1.
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1.7 Infinitesimal generators

Definition 1.7.1. The infinitesimal generator of the one-parameter Lie group

of transformations (1.1) is the operator

X = X(x) = ξ(x).∇ = Σξi(x)
∂

∂xi
, i = 1, · · · , n (1.3)

where ∇ is the gradient operator,

∇ = (
∂

∂x1
,
∂

∂x2
, . . . ,

∂

∂xn
)

For any differentiable function F (x) = F (x1, x2, x3, · · · , xn),

XF (x) = ξ(x) �∇F (x) = Σξi(x)
∂F (x)

∂xi
. i = 1, · · · , n.

Note that Xx = ξ(x).

Theorem 1.7.2. The one-parameter Lie group of transformations (1.1) is

equivalent to

x∗ = eεXx = x + εXx +
ε2

2
X2x + . . .

= [1 + εX +
ε2

2
X2 + . . . ]x

=
∞∑
k=0

εk

k!
Xkx

where the operator X = X(x) is defined by (1.3) and the operator Xk =

XXk−1, k = 1, 2, . . . ; in particular XkF (x) is the function obtained

by applying the operator X to the function Xk−1F (x), k = 1, 2, . . . , with

X0F (x) ≡ F (x).

1.8 Invariant Functions

Definition 1.8.1. An infinitely differentiable function F(x) is an invariant

function of the Lie group of transformations (1.1) if and only if for any group

transformation (1.1) F (x∗) ≡ F (x). If F (x) is an invariant function of (1.1),

then F (x) is called an invariant of (1.1) and F (x) is said to be invariant

under (1.1).
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Theorem 1.8.2. F (x) is invariant under (1.1) if and only if

XF (x) ≡ 0

Theorem 1.8.3. For a Lie group of transformations (1.1), the identity

F (x∗) ≡ F (x) + ε

holds if and only if F (x) is such that

XF (x) ≡ 1

1.9 Extended Infinitesimal Transformations-One Dependent And

One Independent Variable

The one-parameter Lie group of transformations

x∗ = X(x, y; ε) = x+ εξ(x, y) +O(ε2), (1.4)

y∗ = Y (x, y; ε) = y + εη(x, y) +O(ε2), (1.5)

acting on (x, y)-space, has as its infinitesimal

ξ(x) = (ξ(x, y), η(x, y)),

with corresponding infinitesimal generator

X = ξ(x, y)
∂

∂x
+ η(x, y)

∂

∂y
.

The k-th extension of ((1.4) (1.5)), given by

x∗ = X(x, y; ε) = x+ εξ(x, y) +O(ε2),

y∗ = Y (x, y; ε) = y + εη(x, y) +O(ε2),

y∗1 = Y1(x, y, y1; ε) = y1 + εη(1)(x, y, y1) +O(ε2),

...

y∗k = Yk(x, y, y1, . . . , yk; ε) = yk + εη(k)(x, y, y1, . . . , yk) +O(ε2),

has as its (k-th extended) infinitesimal

(ξ(x, y), η(x, y), η(1)(x, y, y1), . . . , η
(k)(x, y, y1, . . . , yk)),

6



with corresponding (k-th extended) infinitesimal generator

X(k) = ξ(x, y)
∂

∂x
+η(x, y)

∂

∂y
+η(1)(x, y, y1)

∂

∂y1
+· · ·+η(k)(x, y, y1, · · · , yk)

∂

∂yk
,

k = 1, 2, . . . .

Theorem 1.9.1.

η(k)(x, y, y1, . . . , yk) =
Dη(k−1)

Dx
− yk

Dξ(x, y)

Dx
, k = 1, 2, . . . .

where

η(0) = η(x, y).

1.10 Lie Group Analysis of A System of Shallow Water Equations

The one-layer shallow-water equations can be written as:

ht + hux + uhx = 0 (1.6)

ut + uux + hx = 0 (1.7)

where h and u are dependent variables and x and t are independent variables.

1.11 Symmetry group analysis of the governing equations

In this section the most general Lie group of transformations which

leaves the one-layer shallow-water equation (1.6) and (1.7) invariant are in-

vestigated. At first, the Lie group of transformations with independent vari-

ables x, t and dependent variables u, h for the problem are considered.

x∗ = x∗(x, t, u, h; ε)

t∗ = t∗(x, t, u, h; ε)

u∗ = u∗(x, t, u, h; ε)

h∗ = h∗(x, t, u, h; ε)

where ε is the group parameter. The infinitesimal generators can be expressed

in the following vector form

V = ξx
∂

∂x
+ ξt

∂

∂t
+ ηu

∂

∂u
+ ηh

∂

∂h

7



in which ξx, ξt, ηu, ηh are the infinitesimal functions of the group variables.

So, the corresponding one-parameter Lie group of transformations is given

by

x∗ = eεV (x) = x+ εξx(x, t, u, h) +O(ε2)

t∗ = eεV (t) = t+ εξt(x, t, u, h) +O(ε2)

u∗ = eεV (u) = u+ εξu(x, t, u, h) +O(ε2)

h∗ = eεV (h) = h+ εηh(x, t, u, h) +O(ε2)

Since the system of one-layer shallow-water equations has at most first-order

derivatives, the first prolongations of the generator should be considered as:

pr1V = V + τux
∂

∂ux
+ τut

∂

∂ut
+ τhx

∂

∂hx
+ τht

∂

∂ht
(1.8)

where

τut = ηut + ηuuut + ηuρρt − ux(ξxt + ξxuut + ξxρρt)− ut(ξtt + ξtuut + ξtρρt) (1.9)

τux = ηux + ηuuux + ηuρρx − ux(ξxx + ξxuux + ξxρρx)− ut(ξtx + ξtuux + ξtρρx)

(1.10)

τ ρt = ηρt + ηρuut + ηρρρt − ρx(ξxt + ξxuut + ξtρρt)− ρt(ξtt + ξtuut + ξtρρt) (1.11)

τ ρx = ηρx + ηρuux + ηρρρx − ρx(ξxx + ξxuux + ξxρρx)− ρt(ξtx + ξtuux + ξtρρx)

(1.12)

Now, we apply the first prolongation of the infinitesimal generator (1.8) to

the system of the partial differential equations (1.6) and (1.7). Firstly we

apply (1.8) to the Eq.(1.6),

pr1V = (
∂h

∂t
+ u

∂h

∂x
+ h

∂u

∂x
)|ht=−uhx−hux = 0

then we get,

τht + ηuhx + uτhx + ηhux + hτux = 0 (1.13)

Similarly by applying (1.8) to the Eq. (1.7),

pr1V = (
∂u

∂t
+ u

∂u

∂x
+
∂x

∂x
)|ut=−uux−hx = 0

then we get

τut + ηuux + uτux + τhx = 0 (1.14)
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It is well-known that one-layer shallow-water equations are the coupled sys-

tem of partial differential equations. From this, the equations (1.13) and

(1.14) must be the coupled system of partial differential equations. These

two equations can be arranged by using the above explicit expressions, then

each of these equations can get a polynomial in terms of dependent variables.

Since we take the problem in a jet space of the system (1.6) and (1.7), one can

consider the derivatives of dependent variables w.r.t. the independent vari-

ables as independent functions and equate each coefficient of these functions

to zero. First we consider equation (1.13)

τht + ηuhx + uτhx + ηhux + hτux = 0

=⇒ (ηht + ηhuut + ηhhht − hx(ξxt + ξxuut + ξthht)− ht(ξtt + ξtuut + ξthht))

+ηuhx+u(ηhx + ηhuux + ηhhhx − hx(ξxx + ξxuux + ξxhhx)− ht(ξtx + ξtuux + ξthhx))+

ηhux +h(ηux + ηuuux + ηuhhx−ux(ξxx + ξxuux + ξxhhx)−ut(ξtx + ξtuux + ξthhx)) = 0

=⇒ ηht + ηhuut + ηhhht + hxξ
x
t − ξxuuthx − ξthhthx − htξtt − htξtuut − ξthh2t

+ ηuhx + uηhx + uηhuux + uηhhhx − uhxξxx − uhxξxuux − uξxhh2x − uhtξtx −
uhtξ

t
uux − uhtξthhx + ηhux + hηux + hηuuux + hηuhhx −

uxhξ
x
x − hξxuu2x − uxhξxhhx − hutξtx − hutξtuux − htξthhx = 0

Now arranging all the ht terms and using ht = −uhx − hux , we get

=⇒ ηht +uηhx+hηux+ηhuut−ξxt hx−ξxuhxut+ηuhx+uηhuux+uηhhhx−uξxxhx−
uξxuhxux − hξxuu2x − hξxhhxux − hξtxut − hξtuutux − hξthuthx − uηhhhx + uξxhh

2
x +

uξtthx + uξtuhxut + u2ξtxh
2
x + u2ξtuuxhx + u2ξthh

2
x − hηhhux + hξxhhxux + hξttux +

hξtuutux + huξtxux + uhξtuu
2
x + uhξthhxux − u2ξthh2x − h2ξthu2x − 2uhξthhxux = 0

Comparing the constants and coefficients of the independent functions,

we get

ηht + uηhx + hηux = 0

ut(η
h
u − hξtx) = 0

=⇒ ηhu = hξtx

hx(−ξxt + ηu + uηhh − uξxx + hηuh − uηhh + uξtt + u2ξtx) = 0

=⇒ hηuh + ηu = ξxt + uξxx − uξtt − u2ξtx
=⇒ −ηhu + hηuh + ηu = ξxt + uξxx − uξtt − u2ξtx − hξtx (since, ηhu = hξtx)

=⇒ −ηhu + hηuh + ηu = ξxt + uξxx − uξtt − (u2 + h)ξtx

9



ux(uη
h
u + ηh + hηuu − hξxx − hηhh + hξtt + uhξtx) = 0

=⇒ −hηhh + hηuu + ηh + uηhu = hξxx − hξtt − uhξtx
=⇒ −ηhh + ηuu + ηh

h
+ u

h
ηhu = ξxx − ξtt − uξtx

=⇒ −ηhh + ηuu + ηh
h

+ u
h
hξtx = ξxx − ξtt − uξtx (since, ηhu = hξtx)

=⇒ −ηhh + ηuu + ηh
h

= ξxx − ξtt − 2uξtx

hxut(−ξxu − hξth + uξtu) = 0

=⇒ −ξxu − hξth + uξtu = 0

Now, Similarly by solving the equation (1.14) we will get the over-

determined system of equations are as follows :

ηht + uηhx + hηux = 0

−ηhh + ηuu +
ηh

h
= ξxx − ξtt − 2uξtx

−ηhu + hηuh + ηu = ξxt − uξtt + uξxx − (u2 + h)ξtx

− hξth − ξxu + uξtu = 0

ηut + uηux + ηhx = 0

−ηuu + ηhh = ξxx − ξtt − 2uξtx

ξxh − uξth + ξtu = 0

ηhu − hηuh + ηu = ξxt − uξtt + uξxx − (u2 + h)ξtx

ξxu − uξtu + hξth = 0

those are called determining equations in terms of infinitesimals and deriva-

tives of the infinitesimal functions w.r.tṫhe independent and dependent vari-

ables. Obtaining the most general Lie groups of the system of PDEs (1.6) and

(1.7) is possible by using the solutions of the above determining equations.

1.12 The solutions of the determining equations

Here, we will find the solutions ξx, ξt, ηu, ηh of the above determining

Eqs. There is no general method for solving the over-determined system of

these determining equations. The power-series method of a solution form is

10



one of these solution techniques for finding the solutions of the determining

equations in the Lie group analysis of differential equations. So, at first, we

choose the first order of power-series of the infinitesimals which are given by

ξx = a0 + a10x+ a11t+ a12u+ a13ρ

ξt = b0 + b10x+ b11t+ b12u+ b13ρ

ηρ = c0 + c10x+ c11t+ c12u+ c13ρ

ηu = d0 + d10x+ d11t+ d12u+ d13ρ

Now, By substituting the above power series forms into the over deter-

mining equations, we obtain the equations with powers of the variables x,

t, u, ρ and calculate the constant coefficients of the power series forms by

equating each coefficient of various powers to zero. Now,

ηht + uηhx + hηux = 0

=⇒ c11 + uc10 + hd10 = 0

=⇒ c11 = 0, c10 = 0, d10 = 0

−ηhh + ηuu +
ηh
h

= ξxx − ξtt − 2uξtx

=⇒ −c13 + d12 +
1

h
(c0 + c12u+ c13h = a10− b11 − 2ub10

=⇒ a10 − b11 − d12 = 0, c0 = 0, c12 = 0, b10 = 0

−ηhu + hηuh + ηu = ξxt + uξxx − uξtt − (u2 + h)ξtx

=⇒ hd13 + d0 + d11t+ d12u+ d13h = a11 − ub11 + ua10

=⇒ 2d13h+ d0 − a11 + d11t+ u(d12 − a10 + b11 = 0

=⇒ a11 − d0 = 0, d11 = 0, d13 = 0

−ξxu − hξth + uξtu = 0

−a12 − hb13 + ub12 = 0

=⇒ a12 = 0, b13 = 0, b12 = 0
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−ηuu + ηhh = ξxx − ξtt − 2uξtx

=⇒ −d12 + c13 = a10 − b11
=⇒ a10 − b11 + d12 − c13 = 0

ξxh − uξth + ξtu = 0

=⇒ a13 = 0, b11 = 0

ηhu − hηuh + ηu = ξxt − uξtt + uξxx − (u2 + h)ξtx

=⇒ d0 + d12u = a11 − ub11 + ua10

=⇒ a11 − d0 = 0, a10 − b11 − d12 = 0

And from the equations

a10 − b11 − d12 − c13 = 0

a10 − b11 − d12 = 0

we get

c13 = a10 − b11

also

d12 = c13

So, now we get the infinitesimals as follows:

ξx = a0 + a10x+ a11t

ξt = b0 + b11t

ηh = c13h

ηu = d0 + d12u

12



CHAPTER 2

Lie Group Analysis Of Isentropic Gas

Dynamics

2.1 Lie Group Analysis Of Isentropic Gas Dynamics

The system of equations which governs the ”isentropic gas dynamics”

can be written as:

ρt + ρux + uρx = 0 (2.1)

ut + uux + k1γρ
γ−2ρx = 0 (2.2)

where u and ρ are the dependent variables and the independent variables

are t and x. Equations (2.1) and (2.2) are a quasilinear system of first order

PDEs wih two independent and two dependent variables. In this section,

we investigate the most general Lie group of transformations which leaves

the equations (2.1) and (2.2) invariant. At first, we consider Lie group of

transformations with independent variables x,t and dependent variables u,ρ

that are:

x∗ = x∗(x, t, u, ρ; ε)

t∗ = t∗(x, t, u, ρ; ε)

u∗ = u∗(x, t, u, ρ; ε)

ρ∗ = ρ∗(x, t, u, ρ; ε)

where ε is the group parameter.

The infinitesimal generators can be expressed as a vector form :

V = ξx
∂

∂x
+ ξt

∂

∂t
+ ηu

∂

∂u
+ ηρ

∂

∂ρ

in which ξx, ξt, ηu, ηρ are infintesimal functions of the group variables. Thus,

the corresponding one-parameter Lie group of transformations is given by

x∗ = eεV (x) = x+ εξx(x, t, u, ρ) +O(ε2)

t∗ = eεV (t) = t+ εξt(x, t, u, ρ) +O(ε2)

u∗ = eεV (u) = u+ εξu(x, t, u, ρ) +O(ε2)

ρ∗ = eεV (ρ) = ρ+ εηρ(x, t, u, ρ) +O(ε2)
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Since the system of governing equations has atmost first order derivatives,

the first prolongation of generator will be :

pr1V = V + τux
∂

∂ux
+ τut

∂

∂ut
+ τ ρx

∂

∂ρx
+ τ ρt

∂

∂ρt
(2.3)

where

τut = ηut + ηuuut + ηuρρt − ux(ξxt + ξxuut + ξxρρt)− ut(ξtt + ξtuut + ξtρρt)

τux = ηux + ηuuux + ηuρρx − ux(ξxx + ξxuux + ξxρρx)− ut(ξtx + ξtuux + ξtρρx)

τ ρt = ηρt + ηρuut + ηρρρt − ρx(ξxt + ξxuut + ξtρρt)− ρt(ξtt + ξtuut + ξtρρt)

τ ρx = ηρx + ηρuux + ηρρρx − ρx(ξxx + ξxuux + ξxρρx)− ρt(ξtx + ξtuux + ξtρρx)

Now, we apply the first prolongation of the infinitesimal generator (2.3) to

the system of PDEs (2.1) and (2.2) .

By applying (2.3) to (2.1), we get

(ξx
∂

∂x
+ξt

∂

∂t
+ηu

∂

∂u
+ηρ

∂

∂ρ
+τux

∂

∂ux
+τut

∂

∂ut
+τ ρx

∂

∂ρx
+τ ρt

∂

∂ρt
)(ρt+uρx+ρux) = 0

=⇒ ηuρx + ηρux + ρτux + uτ ρx + τ ρt = 0

=⇒ τ ρt + ηuρx + uτ ρx + ηρux + ρτux = 0

By applying (2.3) to (2.2), we get

(ξx
∂

∂x
+ ξt

∂

∂t
+ ηu

∂

∂u
+ ηρ

∂

∂ρ
)(ut + uux + k1γρ

γ−2ρx) = 0

=⇒ τut + ηρ(γ − 2)k1γρ(γ − 1)ρx + k1γρ
γ−2τ ρx + ηuux + uτux = 0

=⇒ τut + ηuux + uτux + ηρk1γ(γ − 2)ργ−1ρx + k1γρ
γ−2τ ρx = 0

We know that the given system of equations are the coupled system of PDEs.

So, the above equations must be coupled system of PDEs. These equations

can be arranged by using the above explicit expression in, then each of these

equations can get a polynomial in terms of dependent variables and in terms

of independent variables. Here, one can consider the derivatives of dependent

variables w.r.tṫhe independent variables as independent functions and equate
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each coefficients of these functions to zero.

i.e.,

First we consider equation

τ ρt + ηuρx + uτ ρx + ηρux + ρτux = 0

=⇒ (ηρt + ηρuut + ηρρρt − ρx(ξxt + ξxuut + ξtρρt)− ρt(ξtt + ξtuut + ξtρρt)) +

ηuρx+u(η
/
xrho+ ηρuux + ηρρρx − ρx(ξxx + ξxuux + ξxρρx)− ρt(ξtx + ξtuux + ξtρρx))+

ηρux + ρ(ηux + ηuuux + ηuρρx − ux(ξxx + ξxuux + ξ/rho
xρx)−

ut(ξ
t
x + ξtuux + ξtρρx)) = 0

=⇒ ηρt +ηρuut+η
ρ
ρρt+ρxξ

x
t −ξxuutρx−ξtρρtρx−ρtξtt−ρtξtuut−ξtρρ2t +ηuρx+uηρx+

uηρuux+uηρρρx−uρxξxx−uρxξxuux−uξxρρ2x−uρtξtx−uρtξtuux−uρtξtρρx+ηρux+

ρηux +ρηuuux+ρηuρρx−uxρξxx−ρξxuu2x−uxρξxρρx−ρutξtx−ρutξtuux−ρtξtρρx = 0

Now arranging all the ρt terms and using ρt = −uρx − ρux ,we get

=⇒ ηρt + uηρx + ρηux + ηρuut − ξxt ρx − ξxuρxut + ηuρx + uηρuux + uηρρρx −
uξxxρx − uξxuρxux − ρξxuu2x − ρξxρρxux − ρξtxut − ρξtuutux − ρξtρutρx − uηρρρx +

uξxρρ
2
x + uξttρx + uξtuρxut + u2ξtxρ

2
x + u2ξtuuxρx + u2ξtρρ

2
x − ρηρρux + ρξxρρxux +

ρξttux+ρξtuutux+ρuξtxux+uρξtuu
2
x+uρξtρρxux−u2ξtρρ2x−ρ2ξtρu2x−2uρξtρρxux = 0

Comparing the constants and coefficients of the independent functions,

we get

=⇒ ηρt + uηρx + ρηux = 0

ut(η
ρ
u − ρξtx) = 0

=⇒ ηρu = ρξtx

ρx(−ξxt + ηu + uηρρ − uξxx + ρηuρ − uηρρ + uξtt + u2ξtx) = 0

=⇒ ρηuρ + ηu = ξxt + uξxx − uξtt − u2ξtx
=⇒ −ηρu + ρηuρ + ηu = ξxt + uξxx − uξtt − u2ξtx − ρξtx (since, ηρu = ρξtx)

=⇒ −ηρu + ρηuρ + ηu = ξxt + uξxx − uξtt − (u2 + ρ)ξtx

ux(uη
ρ
u + ηρ + ρηuu − ρξxx − ρηρρ + ρξtt + uρξtx) = 0

=⇒ −ρηρρ + ρηuu + ηρ + uηρu = ρξxx − ρξtt − uρξtx
=⇒ −ηρρ + ηuu + ηρ

ρ
+ u

ρ
ηρu = ξxx − ξtt − uξtx
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=⇒ −ηρρ + ηuu + ηρ
ρ

+ u
ρ
ρξtx = ξxx − ξtt − uξtx(since, ηρu = ρξtx)

=⇒ −ηρρ + ηuu + ηρ
ρ

= ξxx − ξtt − 2uξtx
ρxut(−ξxu − ρξtρ + uξtu) = 0

=⇒ −ξxu − ρξtρ + uξtu = 0

Now, Let us consider equation

τut + ηuux + uτux + ηρk1γ(γ − 2)ργ−1ρx + k1γρ
γ−2τ ρx = 0

=⇒ ηρk1γ(γ−2)ργ−3ρx+ηuux+ηut +ηuuut+ηuρρt−uxξxt − ξxuuxut− ξxρρtux−
ξtρut − ξtuu2t − ξtρρtut + u(ηux + ηuuux + ηuρρx − uxξxx − ξxuu2x − uxξxρρx − utξtx −
utξ

t
uux− utξtρρx) + k1γρ

γ−2(ηρx + ηρuux + ηρρρx− ρxξxx − ρxξxuux− ξxρρ2x− ρtξtx−
ρtξ

t
uux − ρtξtρρx) = 0

=⇒ ηut + uηux + k1γρ
γ−2ηρx + ρx(η

ρk1γ(γ − 2)ργ−3 + uηuρ + k1γρ
γ−2ηρρ −

k1γρ
γ−2ξxx)+ux(η

u−ξxt +uηuu−uξxx+k1γρ
γ−2ηρu)+ut(η

u
u−ξxuux−ξtt−ξtρρt−uξtx−

uξtuux− uξtρρx)− ξtuu2t + ρxux(−uξxρ − k1γργ−2ξxu) + ρtux(−ξxρ − k1γργ−2ξtu) +

ρxρt(−k1γργ−2ξtρ) + ρ2x(−k1γργ−2ξxρ )− u2xuξxu + ρt(η
u
ρ − k1γργ−2ξtx) = 0

Now, By using ut = −uux − k1γργ−2ρx, we get :

=⇒ ηut +uηux+k1γρ
γ−2ηρx+ρx(η

ρk1γ(γ−2)ργ−2+uηuρ+k1γρ
γ−2ηρρ−k1γργ−2ξxx−

k1γρ
γ−2ηuu + k1γρ

γ−2ξtt +uk1γρ
γ−2ξtx) +ux(η

u− ξxt +uηuu−uξxx + k1γρ
γ−2ηρu−

uηuu +uξtt +u2ξtx)+ρxux(−uξxρ −k1γργ−2ξxu +u2ξtρ+k1γρ
γ−2ξxu +k1γρ

γ−2uξtu−
2k1γρ

γ−2uξtu)+ρtux(−ξxρ−k1γργ−2ξtu+uξtρ)+ρxρt(−k1γργ−2ξtρ+k1γρ
γ−2ξtρ)+

ρ2x(−k1γργ−2ξxρ +k1γρ
γ−2uξtρ−(k1γρ

γ−2)2ξtu)+u2x(0)+ut(η
u
ρ−k1γργ−2ξtx) = 0

Comparing the constants and coefficients of the independent functions to

zero, we get

ηut + uηux + k1γρ
γ−2ηρx = 0

ut(η
u
ρ − k1γργ−2ξtx) = 0

=⇒ ηuρ = k1γρ
γ−2ξtx

ρx(η
ρk1γ(γ−2)ργ−3+uηuρ +k1γρ

γ−2ηρρ−k1γργ−2ξxx−k1γργ−2ηuu+k1γρ
γ−2ξtt +

uk1γρ
γ−2ξtx) = 0

=⇒ ηρk1γ(γ−2)ργ−2+uηuρ+k1γρ
γ−2ηρρ−k1γργ−2ηuu = k1γρ

γ−2ξxx−k1γργ−2ξtt−
uk1γρ

γ−2ξtx (since ηuρ = k1γρ
γ−2ξtx)

=⇒ uηuρ+k1γρ
γ−2ηρρ−k1γργ−2ηuu+k1γ(γ−2)ργ−3ηρ = k1γρ

γ−2ξxx−k1γργ−2ξtt−
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uk1γρ
γ−2ξtx

=⇒ u(k1γρ
γ−2ξtx) + k1γρ

γ−2ηρρ − k1γ(γ − 2)ργ−3ηuu + k1γ(γ − 2)ργ−3ηρ =

k1γρ
γ−2ξxx − k1γργ−2ξtt − uk1γργ−2ξtx

=⇒ ηρρ − ηuu + (γ − 2)η
ρ

ρ
= ξxx − ξtt − 2uξtx

ux(η
u − ξxt − uξxx + k1γρ

γ−2ηρu + uξtt + u2ξtx) = 0

=⇒ ηu − ξxt − uξxx + k1γρ
γ−2ηρu + uξtt + u2ξtx = 0

=⇒ ηu + k1γρ
γ−2ηρu = ξxt + uξxx − uξtt − u2ξtx

=⇒ ηu + k1γρ
γ−2ηρu − ηuρ = ξxt + uξxx − uξtt − (u2 + k1γρ

γ−2)ξtx

ρxux(−uξxρ + u2ξtρ − uk1γργ−2ξtu) = 0

=⇒ −ξxρ + uξtρ − k1γργ−2ξtu = 0

=⇒ ξxρ − uξtρ + k1γρ
γ−2ξtu = 0

So, the over-determined system of equations are as follows :

ηρt + uηρx + ρηux = 0

ηρu − ρξtx = 0

−ξxu − ρξtρ + uξtu = 0

−ηρρ + ηuu +
ηρ
ρ

= ξxx − ξtt − 2uξtx

−ηρu + ρηuρ + ηu = ξxt + uξxx − uξtt − (u2 + ρ)ξtx

ηuρ − k1γργ−2ξtx = 0

ηρρ − ηuu + (γ − 2)
ηρ

ρ
= ξxx − ξtt − 2uξtx

ηu + k1γρ
γ−2ηρu − ηuρ = ξxt + uξxx − uξtt − (u2 + k1γρ

γ−2)ξtx

ξxρ − uξtρ + k1γρ
γ−2ξtu = 0

ηut + uηux + k1γρ
γ−2ηρx = 0

that are called determining equations in terms of infinitesimals.

2.2 Solutions of Determining Equations

Here, we find the solutions ξx, ξt, ηu, ηρ of the above determining equa-

tions. There are several solution techniques to deal with the determining

equations in the Lie group analysis of differential equations. The power se-
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ries of a solution form is one of these solution techniques.

So, here we first choose the first order of power series of the infinitesimals

which are given by:

ξx = a0 + a10x+ a11t+ a12u+ a13ρ

ξt = b0 + b10x+ b11t+ b12u+ b13ρ

ηρ = c0 + c10x+ c11t+ c12u+ c13ρ

ηu = d0 + d10x+ d11t+ d12u+ d13ρ

Now, by substituting the above power series forms into the determining equa-

tions, we obtain the equations with powers of the variables x, t, u, ρ and

calculate the constant coefficients of the power series forms by equating each

coefficient of various powers to zero. Now,

ηρt + uηρx + ρηux = 0

=⇒ c11 + uc10 + ρd10 = 0

=⇒ c11 = 0, c10 = 0, d10 = 0

ηρu − ρξtx = 0

=⇒ c12 − ρb10 = 0

=⇒ c12 = 0, b10 = 0

−ξxu − ρξtρ + uξtu = 0

=⇒ −a12 − ρb13 + ub12 = 0

=⇒ a12 = 0, b13 = 0, b12 = 0

−ηρρ + ηuu +
ηρ
ρ

= ξxx − ξtt − 2uξtx

=⇒ −c13 + d12 +
1

ρ
(c0 + c13ρ) = a10 − b11

=⇒ c0 = 0, d12 − a10 + b11 = 0

−ηρu + ρηuρ + ηu = ξxt + uξxx − uξtt − (u2 + ρ)ξtx

=⇒ ρd13 + d0 + d11t+ d12u+ d13ρ = a11 + ua10 − ub11
=⇒ 2d13ρ+ d0 − a11 + d11t+ u(d12 − a10 + b11 = 0

=⇒ d13 = 0, d11 = 0, d0 = a11, d12 − a10 + b11 = 0
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ηρρ − ηuu + (γ − 2)
ηρ

ρ
= ξxx − ξtt − 2uξtx

=⇒ c13 − d12 + (γ − 2)c13 = a10 − b11
=⇒ c13 = 0, d12 + a10 − b11 = 0

ηu + k1γρ
γ−2ηρu − ηuρ = ξxt + uξxx − uξtt − (u2 + k1γρ

γ−2)ξtx

=⇒ d0 + d12u = a11 + a10u− b11u
=⇒ d0 = a11, d12 − a10 + b11 = 0

ξxρ − uξtρ + k1γρ
γ−2ξtu = 0

=⇒ a13 = 0.

And from the Eqs.:

d12 + a10 − b11 = 0

d12 − a10 + b11 = 0

we get:

2d12 = 0

=⇒ d12 = 0

So, now we get the infinitesimals as follows:

ξx = a0 + a10x+ a11t

ξt = b0 + a10t

ηρ = 0

ηu = a11

2.3 Similarity Analysis

In this section, we want to reduce PDEs (2.1) and (2.2) to a system of

ODEs by constructing similarity variables. Let us denote ξt, ξx, ηu, ηρ by
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φ1, φ2, ψ1 and ψ2 respectively. So,

φ1 = b0 + a10t

φ2 = a0 + a10x+ a11t

ψ1 = a11

ψ2 = 0

The characteristic equations are :

dt

φ1

=
dx

φ2

=
du

ψ1

=
dρ

ψ2

(2.4)

Solving these characteristic equations, we get similarity variable θ which is

given as a constant in the solution. Here, we distinguish 4 cases:

Case 1: a0 = 0, a10 = 0 , a11 = 0

Case 2: a0 = 0, a10 6= 0, a11 6= 0

Case 3: a0 6= 0, a10 = 0, a11 6= 0

Case 4: a0 6= 0, a10 6= 0, a11 6= 0

We solve the above distinguished cases one by one to get the similarity vari-

able in each case.

CASE 1: a0 = 0, a10 = 0, a11 = 0

Using the characteristic equation (2.4)

dt

b0 + a10t
=

dx

a0 + a10x+ a11t
=
du

a11
=
dρ

0

=⇒ dt

b0
=
dx

0

=⇒ dx = 0

=⇒ θ = x

and

dt

b0
=
du

0

=⇒ U(θ) = u(x, t)
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also

dt

b0
=
dρ

0

=⇒ R(θ) = ρ(x, t)

So, we get

θ = x

U(θ) = u(x, t)

R(θ) = ρ(x, t)

where U(θ) and R(θ) are the integration constants and are the new depen-

dent variables.

Substituting these new dependent variables into equation (2.1) and (2.2), we

get a system of ODEs with independent variable θ.

1. ρt + ρux + uρx = 0

ρt =
∂R

∂θ
.
∂θ

∂t
= R′.0 = 0

ρx =
∂R

∂θ
.
∂θ

∂x
= R′

ux =
∂U

∂θ
.
∂θ

∂x
= U ′

=⇒ UR′ +RU ′ = 0

ut + uux + k1γρ
γ−2ρx = 0

ut =
∂U

∂θ
.
∂θ

∂t
= 0

=⇒ UU ′ + k1γR
γ−2R′ = 0
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Solving the above system of ODEs, we get

UR′ +RU ′ = 0

=⇒ R′

R
+
U ′

U
= 0

=⇒ lnR + lnU = ln k1

=⇒ R =
k1
U

=⇒ ρ =
k1
U

(since, R(θ) = ρ(x, t))

and

UU ′ + k1γR
γ−2R′ = 0

=⇒ u2

2
+

k1γ

γ − 1
Rγ−1 = k2

=⇒ u2

2
+

k1γ

γ − 1
ργ−1 = k2 (since, R(θ) = ρ(x, t))

Case 2: a0 = 0, a10 6= 0, a11 6= 0

Using the characteristic equation (2.4)

dt

b0 + a10t
=

dx

a0 + a10x+ a11t
=
du

a11
=
dρ

0

=⇒ dt

b0
=

dx

a10t+ a11
=
du

a10
=
dρ

0

=⇒ (a10 + a11)dt = b0dx

=⇒ b0x− a10
t2

2
− a11t = θ

and

dt

b0
=
du

a10

=⇒ a10
b0
t+ U(θ) = u(x, t)

=⇒ U(θ) = u(x, t)− a10
b0
t
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also

dt

b0
=
dρ

0

=⇒ R(θ) = ρ(x, t)

where U(θ) and R(θ) are the integration constants and are the new dependent

variables.

Substituting these new dependent variables into equation (2.1) and,(2.2) we

get a system of ODEs with independent variable θ.

1. ρt + ρux + uρx = 0

ρt =
∂R

∂θ
.
∂θ

∂t
= R′.(−a10t− a11)

ρx =
∂R

∂θ
.
∂θ

∂x
= R′(b0)

ux =
∂U

∂θ
.
∂θ

∂x
= U ′(b0)

ut =
∂U

∂θ
.
∂θ

∂t
= U ′(b0t− a11)

=⇒ R′(−a10t− a11) + (U +
a10
b0
t)R′(b0) + b0RU

′ = 0

=⇒ R′(b0U − a11) + b0RU
′ = 0

ut + uux + k1γρ
γ−2ρx = 0

=⇒ U ′(−a10t− a11) +
a10
b0

+ (b0U + a10t)U
′ + b0k1γR

γ−2R′ = 0

=⇒ U ′(b0U − a11) + k1γa4R
γ−2R′ +

a10
b0

= 0

Now solving the above ODEs,we get for U = a11
b0
,

the above equation will be:

k1γa4R
γ−2R′ +

a10

b0
= 0
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=⇒ k1γa4R
γ−1R′

γ − 1
+
a10

b0
(b0x−

a10

2
t2 − a11t) = c2

=⇒ k1γa4R
γ−1R′ +

a10

b0
(b0x−

a10

2
t2 − a11t)(γ − 1) = (γ − 1)c2

=⇒ k1γa4R
γ−1R′ =

a10

b0
(γ − 1)(

a10

2
t2 − a11t− b0x) + c3

=⇒ Rγ−1 = [
a10
b0

(γ − 1)(a10
2
t2 + a11t− b0x)

k1γb0
] + c3

=⇒ R = [
a10(γ − 1)(a10

2
t2 + a11t− b0x)

k1γb02
] + c3
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CONCLUSION

We studied the systematic procedure for solving partial differential

equations by using Lie group analysis. We applied this procedure to

isentropic gasdynamics. By using infinitesimal transformations, we re-

duced the partial differential equations to ordinary differential equa-

tions; in some cases, we obtained the exact solution and in the other

one can solve numerically.
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