Lie Group Analysis of Isentropic Gas

Dynamics

A Project Report

submitted by

Pooja

in partial fulfilment of the requirements

for the award of the degree

of
MASTER OF SCIENCE
IN MATHEMATICS

ROURKELA

2012

DEPARTMENT OF MATHEMATICS
NATIONAL INSTITUTE OF TECHNOLOGY ROURKELA
ROURKELA, ORISSA-769008



CERTIFICATE

This is to certify that the project report entitled Lie Group Analysis of
Isentropic Gasdynamics is the bonafide work carried out by Pooja, student
of M.Sc. Mathematics at National Institute Of Technology, Rourkela, during
the year 2012, in partial fulfilment of the requirements for the award of the
Degree of Master of Science In Mathematics under the guidance of Prof. K.C.
Pati and Prof. R.S. Tungala, National Institute of Technology, Rourkela and
that the project has not formed the basis for the award previously of any

degree, diploma, associateship, fellowship or any other similar title.

(K.C. Pati)
Professor

(R.S. Tungala)
Assistant Professor

Department of Mathematics

NIT Rourkela

i



DECLARATION

I hereby declare that the project report entitled Lie Group Analy-
sts of Isentropic Gasdynamics submitted for the M.Sc. Degree is my
original work and the project has not formed the basis for the award of any

degree, associate ship, fellowship or any other similar titles.

Place: Pooja

Date: Roll No. 410MA2081

iii



ACKNOWLEDGEMENTS

It is my great pleasure to express my heart-felt gratitude to all those

who helped and encouraged me at various stages.

I am indebted to my guide Professor K.C. Pati and Professor R.S. Tun-
gala for their valuable guidances and constant supports and explaining my
mistakes with great patience. Their concern and encouragement have always

comforted me throughout.

I would like to thank Bibekananda Bira, Ph.d scholar, for his valuable

help for this project.

I would like to thank my friends in NIT Rourkela and its outside whom

I am in contact and whom I can always rely upon.

Also, I would like to thank Saurav Bengani for his valuable help and

cooperation throughout the project.

Finally, to my family members and relatives who are always there for

me and whom I cannot thank enough!

Rourkela, 769008

May, 2012 Pooja

v



ABSTRACT

Firstly, we study the Lie group of transformations including infinitesi-
mal transformations, infinitesimal generators, invariant functions, extended
infinitesimal transformations and some theorems. Then, we study the in-
finitesimal transformations of one-layer shallow water equations. Lastly, we
find out the infinitesimals of isentropic gas dynamics by using Lie group

analysis.
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INTRODUCTION

Sophus Lie proposed Lie symmetries and by using these symmetries
we can obtain the solutions of various partial differential equations. There
are several significant studies to apply Lie groups to the differential equa-
tions. One of the main characteristics of Lie approach is looking for sym-
metry groups of differential equations and then reducing to original differ-
ential equations with fewer independent variables and investigating the self-
symmetry groups partial differential equations can be reduced to an ordinary
differential equations. The independent variable of the ordinary differential
equations is called a similarity variable. Thus, we can obtain self-similarity
solutions of the original equations from the ordinary differential equations.
And under the Lie group of transformations the self-similarity solutions are
invariant.

The main purpose of this report is to find the self-similarity solution
for isentropic gasdynamics by using Lie group analysis and to show that Lie
group analysis is a generalization of the dimension analysis.

Gasdynamics is a science in the branch of fluid dynamics, concerned
with the motion of gases and its effect on physical systems. Gasdynamics
arises from the studies of gas flows in transic and supersonic flights which is
on the basis of the principles of the fluid dynamics and thermodynamics.

Several authors have studied the equations of gasdynamics, but we inves-
tigate the solutions for isentropic gasdynamics. There is a common approach
for analyzing the isentropic gasdynamics and that is to solve hyperbolic shal-
low water equations with boundary conditions.

In this study, we use the Lie group properties and self-similarity solu-
tions already obtained for one layer shallow water equations to investigate

the self-similarity solutions of the isentropic gasdynamics.



CHAPTER 1

Lie Groups of Transformations and

Infinitesimal Transformations

1.1 Groups

Definition 1.1.1. A group G is a set of elements with a law of composition

¢ between elements satisfying the following axioms:

1. Closure property: For any element a and b of G, ¢(a,b) is an element
of G.

2. Associative property: For any element a, b and ¢ of G,

¢(aa ¢(b> C)) = ¢<¢(aa b)? C)

3. Identity element: There exists a unique identity element e of G such

that for any element a of G,
o(a,e) = d(e,a) =a

4. Inverse element: For any element a of G there exists a unique inverse

element ¢~ ! in G such that
dla,a™)=¢(a " a)=¢

Definition 1.1.2. A group G is Abelian if ¢(a,b) = ¢(b,a) holds for all

elements a and b in G.

Definition 1.1.3. A subgroup of G is a group formed by a subset of elements

of G with the same law of composition ¢.

1.2 Examples of Groups

1. G is the set of all integers with ¢(a,b) = a +b. Here e = 0 and

a !l = —a.

2. G is the set of all positive reals with ¢(a,b) = a.b. Here e = 1 and

a = .
a



1.3 Groups of Transformations

Definition 1.3.1. Let x = (21, 29, 3, -+ , x,) lie in region D C R™. The set

of transformations
x* = X(x;€)
, defined for each x in D, depending on parameter lying in set S C R, with

¢(€,0) defining a law of composition of parameters € and ¢ in S, forms a

group of transformations on D if:
1. For each parameter € in S the transformations are one-to-one onto D,
in particular x* lies in D.
2. S with the law of composition ¢ forms a group G.
3. x* = x when € =g, i.e.
X(x;e) =x
4. If x* = X(x;¢€), x* = X(x*;d),then
x* = X(x;0(¢,0))

1.4 One-parameter lie group of transformations

Definition 1.4.1. A group of transformations defines a one-parameter Lie
group of transformations if in addition to satisfying axioms (i)-(iv) of defini-
tion 1.3.1:

5. € is a continuous parameter, i.e. S is an interval in R. Without loss of
generality € = 0 corresponds to the identity element e.

6. X is infinitely differentiable with respect to x in D and an analytic func-
tion of € in S.

7. ¢(€,6) is an analytic function of € and 4, e € S, § € S.

1.5 Examples of one-parameter lie groups of transformations
A Group of translations in the Plane
X" "=x+e€

y =y, e€R



Here ¢(¢€,d) = e+ 0. This group corresponds to motions parallel to the x-axis.

1.6 Infinitesimal transformations
Consider a one-parameter (¢) Lie group of transformations
x* = X(x;¢) (1.1)

with identity e = 0 and law of composition ¢. Expanding (1.1) about € = 0,

we get 5
X
X" = x4 e(5=(;6)|emo) + O(%).
Let oX
§(x) = - (x:6)leo (1.2)

The transformation x + e£(x) is called the infinitesimal transformation of the
Lie group of transformations (1.1); the components of £(x) are called the

infinitesimals of (1.1).

Theorem 1.6.1. (First Fundamental Theorem of Lie) There exists a param-
eterisation 7(€) such that the Lie group of transformation is equivalent to the
solution of the initial value problem for the system of first order differential
equations

with

x*=x when T=0.

In particular

where

and



1.7 Infinitesimal generators

Definition 1.7.1. The infinitesimal generator of the one-parameter Lie group

of transformations (1.1) is the operator

X = X(x) :§(x).V:E§i(x)%, i=1,---,n (1.3)

where V is the gradient operator,

0o 0 0

V= (g g )
For any differentiable function F(x) = F(z1,x9, 23, " , Ty),
F
XF(x)=¢(x). VF(x) = zgi(x)aa—f‘)‘ i=1,---n.

Note that Xx = £(x).

Theorem 1.7.2. The one-parameter Lie group of transformations (1.1) is

equivalent to
2
r=eYr=c+eXx+ 5X2:1:+ .
2
= [1+eX+5X2+...]a:
k=0

where the operator X = X(x) is defined by (1.3) and the operator X* =
XXkt k= 1,2,... ; in particular X*F(x) is the function obtained
by applying the operator X to the function X* 'F(x), k = 1,2,..., with
XF(z) = F(=).

k
€
'Xkcc

>

1.8 Invariant Functions

Definition 1.8.1. An infinitely differentiable function F(x) is an invariant
function of the Lie group of transformations (1.1) if and only if for any group
transformation (1.1) F(x*) = F(x). If F(x) is an invariant function of (1.1),
then F(x) is called an invariant of (1.1) and F(x) is said to be invariant
under (1.1).



Theorem 1.8.2. F(x) is invariant under (1.1) if and only if
XF(x)=0

Theorem 1.8.3. For a Lie group of transformations (1.1), the identity

1.9 Extended Infinitesimal Transformations-One Dependent And
One Independent Variable

The one-parameter Lie group of transformations
o* = X(z,y;¢) = & + (2, y) + O(e), (1.4)

v =Y(z,y5€) =y +en(z,y) + O(€), (1.5)

acting on (x,y)-space, has as its infinitesimal

£(x) = (E(z,y),n(z,y)),

with corresponding infinitesimal generator
0

0

Ox
The k-th extension of ((1.4) (1.5)), given by

vt = X(z,y;€) = 2+ (2, y) + O(e?),
vt =Y(x,y;€) =y +en(z,y) + O(e?),
y; = Yl(x7y7 Yi; 6) =y + En(l)(x7y7 yl) + O(€2>7

*

Y = Yk('ruy?yla B 73/k35) = Yk + En(k)<x7y7y17 s ;Z/k) + O<€2)7

has as its (k-th extended) infinitesimal

(f(%?J)777(937?/)a77(1)(33,?/ayl)7 s 777(k)($ay>y17 cee ayk))a

6



with corresponding (k-th extended) infinitesimal generator

0 0 ) )
X (k) — (1) ERNNTIRIPN () .. =
£(x,y)ax+n(w,y)ay+n (w,y,y1)8y1+ +0" (x, v, v, ,yk)ayk,

k=1,2,....

Theorem 1.9.1.

DpE=1) DE(x,y)
(k) = — ’ k=1,2,....
n (SL’, Y, Y1, ) Z/k) Dzr Yk Dzr ) ) &y
where
' =n(z,y).

1.10 Lie Group Analysis of A System of Shallow Water Equations

The one-layer shallow-water equations can be written as:
h: + hu, +uh, =0 (1.6)

Uy + utty +hy, =0 (1.7)

where h and u are dependent variables and x and ¢ are independent variables.

1.11 Symmetry group analysis of the governing equations

In this section the most general Lie group of transformations which
leaves the one-layer shallow-water equation (1.6) and (1.7) invariant are in-
vestigated. At first, the Lie group of transformations with independent vari-

ables z, t and dependent variables u, h for the problem are considered.

" =x"(x,t,u, h;e)
t* =t"(z,t,u, h;e)
ut =u"(x,t,u, h;e)
h* = h*(x,t,u, h;e)

where € is the group parameter. The infinitesimal generators can be expressed

in the following vector form

_.Ia ta ua ha
V=g 85 T T gy,

7



in which &%, £, n%, n" are the infinitesimal functions of the group variables.
So, the corresponding one-parameter Lie group of transformations is given
by

ot = eV (z) = v+ e (x,t,u, h) + O(e?)
t*=eV(t) =t +e(w,t,u,h) + O(?)

u* = eV (u) = u+ e (z,t,u, h) + O(?)
h* = e (h) = h+en"(x,t,u, h) + O(e?)

Since the system of one-layer shallow-water equations has at most first-order

derivatives, the first prolongations of the generator should be considered as:

9 9 9 9
1‘ e 174 u u h h
b " ou, M ou, ok, 'Ok

(1.8)
where

T =y e e — ue (6 + Eue + E5pe) — wi(§ + e+ Eppe)  (1.9)
T = 1 4 Nt 4 0y pr — Ua (€5 + Egtin + €5 pz) — w(E) + ELtla + & pa)
(1.10)
0 =0l + 0w+ 0ipe — po(& + Eur + Epr) — pe(&) + Eue + Epy)  (1.11)
T = 1h e+ 05 — 0o (&5 4 St + €5 p2) — pr(EL + St + Ep2)
(1.12)

Now, we apply the first prolongation of the infinitesimal generator (1.8) to
the system of the partial differential equations (1.6) and (1.7). Firstly we
apply (1.8) to the Eq.(1.6),

oh oh Ju
1V = \5 A h— =—vuhg—huy — 0
pr (8t+uax+ ax)!ht— ha—haty
then we get,
" nthy +ur 4+ 0 u, + ATt =0 (1.13)
Similarly by applying (1.8) to the Eq. (1.7),
ou ou Oz
) lui=—uug— =0
5t T ar T g et
then we get
T 0"y +uth 4+ T =0 (1.14)

8



It is well-known that one-layer shallow-water equations are the coupled sys-
tem of partial differential equations. From this, the equations (1.13) and
(1.14) must be the coupled system of partial differential equations. These
two equations can be arranged by using the above explicit expressions, then
each of these equations can get a polynomial in terms of dependent variables.
Since we take the problem in a jet space of the system (1.6) and (1.7), one can
consider the derivatives of dependent variables w.r.t. the independent vari-
ables as independent functions and equate each coefficient of these functions

to zero. First we consider equation (1.13)
7 4+ n"he +utl 4+ n'u, + AT =0

= (7715Z + Uﬁut + n}?ht — h(§F + Ehue + fzht> - ht(g + SZut + gitzht))
0t u(n + nug 4+ nfhy — he (€8 4+ E0uy + E8hy) — he(€L + by + ELRy))+
Ny + (% + 0 + 00y — e (€% + %y + EFhy) — ug (L + Eup +EDy)) = 0
= 77;‘ + nﬁut + nﬁht + ho&f — Eluphy — & hihy — B — hi&luy — §) 07
+ 1"hg + unt 4 unfiug + unfthy — uhpEE — uhaEiu, — u&ih — ubygl —
whi&u, — uhi&l by + nug + hn® + hnlu, + hnith, —
U hE® — hE U2 — u h&F hy — hugl — hulu, — hi&lh, =0

Now arranging all the h; terms and using h; = —uh, — hu, , we get

= g tun+hag i — & he— & houwtn hy Hunfug Hunghe—ugl hy —
UET hptty — h&¥u2 — hEFhyuy, — h&iuy — hE upuy, — h& ugh, — unfth, + uEhz +
u€thy + u€lhou + wELR2 + WP ughy + wPELRE — hifug, + hEEhouy + héfu, +
h& upu, + hullu, + uh&lu? + uhél hyu, — u?EEh? — h?&u? — 2uhé hyu, = 0

Comparing the constants and coefficients of the independent functions,
we get

0+ gy + hay =0

u(nlt — hgl) =0
= = hel

hao(=E&F + 0" 4+ unp — u€l + hnp — unp 4+ uéf +u*€t) =0
— hnp 40" =& 4 ull — u) — uPEl
= 4+t + 0t = EF + ul® — ull — v — hEl (since, P = hE)
=~ +h 0t =& gl — gl — (P + h)E,

9



g (unfy + 0" + hny — h&E — hny + héf + uhgl) = 0

—hny + hnf 4 nn + unj) = h&l — h&) — uhél,

N Al =& — & — ug

—np A+ RREL = €8 — &) —ugl  (since, )} = hEl)
—np ol + =& — & — 2ugl

FEL

ha(—€5 — hgj, +ug,) =0
= —& — &, +ug, =0

Now, Similarly by solving the equation (1.14) we will get the over-

determined system of equations are as follows :

0y + unfy + hagy =0
h n" t ¢
b+ = e — g 2ugl
—1 + g+ 0" = €7 — u€p + ugl — (u® + h)E,
— h&j, — & +ug, =0
0y + uny + g =0
=y 1l = €5 — & — 2u€],
& —ugh+¢, =0
My — iy + 0" = & — u&y +ugg — (v + h)E,
o —u&, +h&, =0
those are called determining equations in terms of infinitesimals and deriva-
tives of the infinitesimal functions w.r.tthe independent and dependent vari-

ables. Obtaining the most general Lie groups of the system of PDEs (1.6) and

(1.7) is possible by using the solutions of the above determining equations.

1.12 The solutions of the determining equations

Here, we will find the solutions &%, &, n*, n* of the above determining
Eqgs. There is no general method for solving the over-determined system of

these determining equations. The power-series method of a solution form is

10



one of these solution techniques for finding the solutions of the determining
equations in the Lie group analysis of differential equations. So, at first, we

choose the first order of power-series of the infinitesimals which are given by

§" = ag + aror + ant + apu + azp
gt = bo + bloflf + bllt + b12u + blgp
77'0 = Co + C10T + Cllt —+ c1ou + C13p

n" = dog + dyor + diit + disu + dysp

Now, By substituting the above power series forms into the over deter-
mining equations, we obtain the equations with powers of the variables x,
t, u, p and calculate the constant coefficients of the power series forms by

equating each coefficient of various powers to zero. Now,

ny + iy + by =0
— c¢y1 +ucig + hdig=0

= c1 =0, co=0, dip=0

u Th x

1
= —c13 +diz + E(CO + ciou + ci3h = @10 — by — 2ubyg

= a0 — b —di2=0, co=0, ci12=0, bip=0

—1y + hiy 40" =& ugl —ug — (u' + h)g,
= hdiz + do + diit + digu + dizh = a11 — uby; + uay
= 2di3h + dy — ayy + diit +u(diz — ayo + b1 =0
= a11—dy=0, di;1 =0, di3=0

—&y — &, +ug, =0

—a12 — hblg + Ub12 =0

= a;2=0, bi3=0, b2=0

11



—nu oy =& — & — 2ug,
= —dis+c13=a0—bn

= aj90— by +dipg—c13=0

& —up, +&,=0
:>(113:0, b11:0

My — hijy 0" = & — u&y + gl — (u? + h)E,
— do + d12u = ay; — ubn + uaqg

= an —do=0, ap—0by1—dp=0
And from the equations

ayp — by —dig —ci3=0

ajg — b1 —di2 =0

we get

c13 = ajo — bis

also
diy = 13
So, now we get the infinitesimals as follows:

& = ap + ajpxr + asit

gt == bo + bllt
77h = ci3h
n" =dy + dyu

12



CHAPTER 2

Lie Group Analysis Of Isentropic Gas

Dynamics

2.1 Lie Group Analysis Of Isentropic Gas Dynamics

The system of equations which governs the ”isentropic gas dynamics”

can be written as:
Pt + puy +up, =0 (2.1)
Uy 4 Wy + k1yp? 2 py = 0 (2.2)

where u and p are the dependent variables and the independent variables
are t and z. Equations (2.1) and (2.2) are a quasilinear system of first order
PDEs wih two independent and two dependent variables. In this section,
we investigate the most general Lie group of transformations which leaves
the equations (2.1) and (2.2) invariant. At first, we consider Lie group of
transformations with independent variables x,t and dependent variables wu,p
that are:

= a"(x,t,u,p;e)

t* =t"(x,t,u,p;e)

ut = u"(z,t,u, p;e)

*

p" = p*(x,t,u,p;e)
where € is the group parameter.

The infinitesimal generators can be expressed as a vector form :

I R R
L TR Wi

in which &%, £, n*, n? are infintesimal functions of the group variables. Thus,

the corresponding one-parameter Lie group of transformations is given by

v* = eV (z) = 2+ &% (x, t,u, p) + O(e?)
t*=eV(t) =t + e (z,t,u,p) + O()

wt = eV (u) = u+ e"(z,t,u, p) + O(?)
p*=eV(p) = p+enf(a,t,up)+ O(?)

13



Since the system of governing equations has atmost first order derivatives,

the first prolongation of generator will be :

, 0 0 0
+7—+7f

0

1 u p
p V=V4+r1 + 7F—
" v 8ut wapx tapt

Oy

(2.3)
where

7= e + 0o — Ul (§ + Eque + §5pe) — ug (& + &y + g/t)pt)
T = 1y gt + 1 e — U (€5 + Ently + 5 pa) — (& + Lty 4 € p0)
0 =0 A nfue -+ 15— pe (&8 + Equn + Epe) — pr(&f + Eun + Epr)
T8 =+ e+ 0pe — pa(E5 + Entie + &5 pa) — pe(EL + Etie + Epr)

Now, we apply the first prolongation of the infinitesimal generator (2.3) to

the system of PDEs (2.1) and (2.2) .

By applying (2.3) to (2.1), we get
0 0 0

o 0
r_ 7 t 7 u_~ p__ u
e ™ 5 5™ g

0
+7{ =) (Pr+upe+pu,) =0
7 0pt)('0t U tPUls)

o,

ouy 0Pz
= 0"pe + 1 Uy + p1y +uttl + 77 =0
= T 0" Uty + 10U + p7; =0

By applying (2.3) to (2.2), we get

za ta ua pa y—2 _
(& 3x+€8t+n 5o T ap)(ut+uux+knp pz) =0

= 7' 0" (v = 2kp(y = Dpe + kv 7+ 0"+ u =0
= T 0"+ ur + 0 k(Y = 2)p7 pe + Ry Pl =0

We know that the given system of equations are the coupled system of PDEs.
So, the above equations must be coupled system of PDEs. These equations
can be arranged by using the above explicit expression in, then each of these
equations can get a polynomial in terms of dependent variables and in terms
of independent variables. Here, one can consider the derivatives of dependent

variables w.r.tthe independent variables as independent functions and equate

14



each coefficients of these functions to zero.
ie.,

First we consider equation
T+ 0" pa + uty +0ug + p7, = 0

= (0 +nhus + 050 — pe(&F + Eoue +§)pe) — pe(§f + Eue +§ppt)) +
0 putu(brho + g + 000s — pul(ES + Eup + E5p5) — pr(EL + Ebug + Ebpy))+
NPy + p(N + Nitte + 05 pr — e (§F 4 €Ly + §/rho”p,) —
ue(€L + g + Epy)) = 0
= 0} AN P —Eiunpe —Eopi 0w — Pe&f — P&l —ELp7 1" paHunf+
UG + U pe — UP2Ey — WP Ue — UEL P — ULl — uprEltie — upEl pe +1 Uy +
P+ Pt~ 1) P — U pET — PETUS — Uy PES pr — pUsEL — pusEitty — pi&lpe = 0

Now arranging all the p; terms and using p; = —up, — pu, ,we get

= 1 +unf + pn;‘ + 08Uy — & po — EEpaty + 0 P + UNLUL + unlp, —
UET P — UES Pty — PETUT — PES PRy — pELuy — Pl UL — PELULPL — UN Py +
uEl P2 + u& pr + ugl pouy + uELp7 + urEugpy + Pl pE — pfuy + P&l prty +
P& P& U Uy APty +upEl s A upgl putty—uE] pr— pPE Ut —2upEl pruy, = 0

Comparing the constants and coefficients of the independent functions,
we get

= 1 +uny +pny =0

ug (1) — Pf;;) =

= 0l = pt.

Pa(—=EF + 0" 4 unf — u€l + pnlt — unf +ugf +uEl) =0
P+t =&+ ull — ugf — urEl

=+ pny 0t =& A ugl — uéf —uEl — p€l (since,nf = pEl)
—nf + pnly =&+ ull —ugf — (U + p)El

I

w (unf, +n° + pny — €5 — pnf + p&f +upy) =0
—pnl + pn 4, +unf, = p&y — p& — upé,
—np oy gt = — & — g

I

15



= —np L+ 2p8 = & — & — u(since, nf = p&y)
— T = e 2ug!

patir(—Ep — p&h +ugl) =0

= —& —p€, +ug, =0

Now, Let us consider equation

T+ 0"y +urt + 0 kiy(y = 2)p7  pp + kyp? TPTE =0

= 0Pky(y —2)p7 2 po 0 g+ pt - mis A0 pr — unF — EEuguy — E5 prug —
Ehuy — ELuf — Epruy 4+ u(n + g + 1 pe — UlE — EuL — Ul pe — Wil —
Wty — whps) + kyp? T2 () A+ 0hus + 18P — paly — pabitia — E5pE — P&l —
P&ty — pi€hpe) =0

= ouny + k70l A pe PRy (v — 2)p7 7+ unl + kvyp? "l —
Ry p? 268 ) g (0" =& Fumy —u&l+hyyp) 7 0l Fuy (0 — € — & =&l pr—ul—
u&u, — uf;/)x) —&Lui + pwuz(_ufi — ki) + ptux(_g;f —kiyp 2L +
papi(—k1yp? 2EL) + pr(—hyp? 2ES) — uiugl + pr(ny — kiyp? €)= 0

Now, By using u, = —uu, — ki1vp" " 2p,, we get :

= NpFunEky e T4 (0P Ry (Y=2) 07 P bun Ry p) Tl —kayp) TS —
vy + Ry e T2E Huknyp? T PEL) + ua (0t — & umy — u€l + kiyp? 0l —
wiy +ulf +uPEL) 4 patte (Ul — kyyp?EL AUl kiyp 2L+ Rayp g, —
2k1yp" 2 uy) + prug (—E€5 — Ry p? 26 b)) + pep (k1?2 HRiyp T2 +
pa(—kiyp 268 A Ry p T Pug) — (kiyp??)2EL) +u(0) +ue(nl — kiypr~%EL) = 0
Comparing the constants and coefficients of the independent functions to
zero, we get

n g+ kv =0

u(nly — kiyp?2EL) =0
— 0l =kiyp' T,

Pa (P y (7 = 2)p7 2 umlt 4 kyyp? 7208 — kayp? 2L — kayp? P4 kv p? 26+
uk1yp? %) =0

= kv (v=2)p" P Funi4+kyyp =k TPl = kayp TR —kyp TR —
ukyyp? 2, (since 1y = kiyp?%EL)

= unitkiyp P —kiyp? Pk (v=2)p" 0P = kiyp A=k TR —
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ukyypr 2L

= uw(k1yp? 2L + kiyp 0l — kay(y — 2)p7 7l + Ry (y = 2)p7 PP =
kiyp T2 — kaypd T2 — ukyyprEL

— o (Y- 2) = & — - 2ugl

Up (" — &F — u€l + kyyp? 20l + ué) + u*€l) = 0

Nt — & — u&l + kyyp? Pl + ué + uPEl =0

N+ kiyp?7Pnf = & A+ uby — gl — u?El

N A kyp Pl =t = &F +ull —ugf — (U + kyp ?)EL

il

Petie(—uEl 4+ u*El — ukyyp2EL) =0
= &+ ug, — k%, =0
= & —ul, + kL =0
So, the over-determined system of equations are as follows :

ny +unh +pny =0

= p&, =0

—&p — p&l +ugl, =0
U /’7 T

—nl 4 pny 0" =& +ull —ul — (U + p)EL
My — kiyp? %€, = 0
P U np T t t
N+ kyp? il — = & +ubp —ué — (U + kv g,

& —ul + kiyp 2L =0
n -+ unt + kiyp' "0l =0

that are called determining equations in terms of infinitesimals.

2.2 Solutions of Determining Equations

Here, we find the solutions &%, &Y, n“, n” of the above determining equa-
tions. There are several solution techniques to deal with the determining

equations in the Lie group analysis of differential equations. The power se-
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ries of a solution form is one of these solution techniques.
So, here we first choose the first order of power series of the infinitesimals
which are given by:

£ = ag + ayor + ant + apu + azp

gt = bo + bloﬂf + bllt + blgu + blgp

n” = co + croT + it + crou + ci3p

77“ = d(] + dlol’ + dut + d12u + dlgp
Now, by substituting the above power series forms into the determining equa-
tions, we obtain the equations with powers of the variables z, t, u, p and
calculate the constant coefficients of the power series forms by equating each
coefficient of various powers to zero. Now,

e+ unf + png =0
— (11 +UC + pd10 =0

= c11 =0, ¢ci1p=0, dip=0

= p& =0
= c12 — pbiy =0

E=4 012:0, blOZO

—& — P&, +ug, =0
— —Q19 — pb13 + Ub12 =0
= a;2=0, bi3=0, bip=0
P u @ _¢x __ ¢t 2 t
1
— —ci3+dip+ ;(Co + c13p) = a1o — biy
= =0, dig—ajo+b1=0
—nlh + pny + 0" = & +ugl —u& — (U + )&,
— pdlg + do + dllt + d12u + d13p = a1 + uag — ub11

- 2d13p + d() — a1 + dnt + u(d12 — aig + b11 =0
= di3=0, di1 =0, dy=ay, dig—apg+b;=0
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u "
= c13—dio+ (v —2)c13 = a0 — by
= c13=0, dig+a;0—b11=0

N+ kv 7l =y = &+ ugl — ugy — (U + kiyp 0)EL
= do + digu = a11 + apu — bju

= do = a1, dig—ap+b1 =0
& —ul, + kyyp' 2, =0
= a3 = 0.
And from the Egs.:

dia +ajp—b1 =0
dig —ap+b1 =0

we get:

2d12 =0

- d12 =0
So, now we get the infinitesimals as follows:

§" = ap + ajpr + ait

&= by + aol
n”=0
77” = a1

2.3 Similarity Analysis

In this section, we want to reduce PDEs (2.1) and (2.2) to a system of
ODEs by constructing similarity variables. Let us denote &, £%, n“, n? by
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®1, P2, Y1 and 19 respectively. So,

¢1 = bo + aot

$2 = ag + apx + ant
Y1 = an

e =0

The characteristic equations are :

d_dr_du_dp 0
o1 g2 U1

Solving these characteristic equations, we get similarity variable # which is
given as a constant in the solution. Here, we distinguish 4 cases:

Case 1: ap =0,a10=0,a1; =0

Case 2: ap =0,a19 # 0,a1; # 0

Case 3: a9 # 0,a10 =0,a1; #0

Case 4: ayg # 0,a10 # 0,a1; # 0

We solve the above distinguished cases one by one to get the similarity vari-
able in each case.

CASE 1: =0, a;0=0, a;; =0

Using the characteristic equation (2.4)

e dz _du  dp
bo + alot n ag + a0 + ant N aiq 0

at _ du

by O
= dz =0
— ==z

and
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also

So, we get
0=z
U(0) = u(x,t)
R(0) = pla, 1)

where U(f) and R(6) are the integration constants and are the new depen-
dent variables.
Substituting these new dependent variables into equation (2.1) and (2.2), we

get a system of ODEs with independent variable 6.

1. pr+ puy +up, =0

OR 00 b

_oro_,
Pr =59 0w —

_ou 09

Y00 or

= UR' +RU' =0

Uy + utty + kyyp? 2 pp = 0

_ U _
000t
— UU' 4+ kyR?R =0

0

Uy
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Solving the above system of ODEs, we get

UR + RU' =0
R U
—+—==0
— RTT
— ImR+InU=1Ink;
k1

R:_
e U

= p= % (since, R(6) = p(x,t))

and

UU 4+ kvR*R =0

2k
— u— + i R'Yil == k2
2 -1
u’ klfy =1 _ . i
= — 4+ ——p" " =ky (since,R(0) = p(x,t))

2 -1

Case 2: ap =0, ay;0#0, a1 #0
Using the characteristic equation (2.4)

dt dx _du _dp

bo + alot n ag + a10T + CL11t N a1y 0

dt dx du dp
_ — = — = —
bo ajot + an Q10 0
— (am + an)dt = bodl‘
t2
— boﬂ? —ayp—= —ant = 0

2
and
a_
bo aio
= 62—10025 +U(0) = u(z,t)
— U(0) = u(z,t) — “b—ft
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also

dt  dp
by O
= R(0) = p(z,1)

where U () and R(#) are the integration constants and are the new dependent
variables.
Substituting these new dependent variables into equation (2.1) and,(2.2) we

get a system of ODEs with independent variable 6.

1. pr+ puy +up, =0
OR 00

Pt = %E = R,.(—alot - (111)

_OR 09 _ /(bo)
Pe =00 ox -\

— R'(—awt —an) + (U + %t)R’(bo) +bRU' =0
0

- R,(boU — CLH) + boRU’ =0
W+ iy + kiyp?2p, = 0

> U’(—al()t — (111) + % + (boU + alot)U, + b()k?l’}/Rv_QR/ =0
0

— U,(boU — an) + /ﬁ’ya4RV’2R’ + % =0
0

Now solving the above ODEs,we get for U = %7

the above equation will be:

kiya, R 2R + %O =0
0
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kiya,R7IR a0 a0 ,
AT T T g — e —a1t) =
vo1 T et el =
0 0
— kiya RIR + %(box - %tQ —alt)(y—1)=(y— e
0
0 0
— kyaRIR = %(7 - 1)(%752 — a1t — box) + c3
0
G0 (y — 1) (4% + ay 1t — byx)
v 1 0
— R 1= 2
[ k17bo ] e
a10(y — 1)(2242 + a, 1t — by)
= E=| 1517602 e
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CONCLUSION

We studied the systematic procedure for solving partial differential
equations by using Lie group analysis. We applied this procedure to
isentropic gasdynamics. By using infinitesimal transformations, we re-
duced the partial differential equations to ordinary differential equa-
tions; in some cases, we obtained the exact solution and in the other

one can solve numerically.
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