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Abstract 

In this report, we defined hyperbolic system and given some examples. We study the behaviour of  

hyperbolic system. Later, we revised the exact solution of the Riemann Problem for the non- linear 

PDE, which in hyperbolic system of the general form of conservation laws which governs one- 

dimensional isentropic magnetogasdynamics. Lastly, we find the solution using phase plane analysis 

and interactions of elementary waves between the same families as well as different families.  
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INTRODUCTION 

The Riemann problem is defined as the initial value problem for the system with two valued 

piecewise constant initial data. The Riemann problem is a fundamental tool for studying the  

interaction between waves. It has played a central role both in the theoretical analysis of  

systems of hyperbolic conservation laws and in the development and implementation of 

practical numerical solutions of such systems. 

                Basically, the Riemann problem gives the micro-wave structural of the flow. 

One can think of the propagation of the flow as a set of small scale Riemann problem between 

the wave arising from these Riemann problems.   
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Chapter-1 

Introduction to Hyperbolic Systems 

1.1Definitions and Examples: 
 
The general form of system of conservation laws in several space variables 

� �  . uf
xt

u
j

d

j j

0
1

�
�
�

�
�
� �

�

� �1.1  

Here  � be an open subset of pR , ;:f j
pR	� where 
 
 ,  ,u : R p �	��� 0  

� � � � 02121 ��� ,tRx.........,,xx ,Xu.........,,uuu d
dp . 

 
The set  � is called, the set of states and the functions, � �pjjj ..,f..........ff 1� are called flux 

functions, the system (1.1) is written in conservation form, the conservation of the p real quantities
,u,.........,uu 21 .We have a simplest differential equation model for a fluid flow: 

.0
2

 
2

���
�

�
��
�

�
�
�

�
�
� u

xt
u

 

This equation is called inviscid Burger’s equation, which is also known as one- dimensional 
conservation law. 

� � � � 0�
�
�

�
�
�

�
�
� ug

y
uf

xt
u

, 

which is a  two dimensional equation. From this equation, we get following system of two 
dimensional equations: 

� � � �

� � � � 0

0

2122122

2112111

�
�

�
�

�
�

�
�
�

�
�

�
�

�
�

�
�
�

y
,uug

x
,uuf

t
u

y
,uug

x
,uuf

t
u

 

Let D be an arbitrary domain of pR and let � �Td...,n,.........nn 1� be the outward unit normal to the 

boundary  D� of D. Then, it follow from (1.1) that, 

� � . ds nufxu d
t j

d

j D
j

D

0
1

��
�
� � ��

� �

 

This is conservation law in integral form. This equation has a physical meaning that the Variation of

xu d
D
�  is equal to the losses through the boundary D� . 
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1.2 Hyperbolic  System of Conservation Laws: 

For all ,......,dj 1� , let pki,  
ku

uijf
ujA ��

�

�
�

��
�
�
�
�

�

�

��
�
�
�
�

�

� �
�
��

�
�

�
�
��

�
�  1  be an Jacobian matrix of ;����

�
�ujf  

equation (1.1)is called a hyperbolic system .  

If for any Ωu� and   ,,wdRdw,........,ww 01 ��� �
�
�

�
�
�
�

�
 

the matrix �
�
��

�
��

�
��

�
� �

�
� ujA

d

j jwu,wA
1

 has p real eigenvalues with Independent eigenvectors 

, u,wk ru,wkλ u,wkru,wA

, i.e.u,wp ,....,ru,w,ru,wr

1
21

�
�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
�

�
�
��

�
��

�
��

�
��

�
��

�
�

�
 

�
�
��

�
�u,wkr are right eigenvectors. 

� � � � � � � � p.k,      u,w lu,wλ u,wAu,wl kkk ��� 1  

� �u,wlk are left eigenvectors.  

If � �u,wA  has p real eigenvalues and p corresponding linear independent eigenvectors, and if

� �wuk ,�  real distinct eigenvalues, then the system is called strictly hyperbolic. 

 

Example: 

0
2

  )1
2

���
�

�
��
�

�
�
�

�
�
� u

xt
u

 

Let � � ��
�

�
��
�

�
�

2

2uuf , then  
 � 11���
�
�

�
�
�
�
�

� u
u
fA  

Here the eigenvalue is 1 and eigenvector is u. 
 
Example: 

( )( ) 0=+    ;0= )2 vp
xt

u
x
u

t
υ

 

                                                    

� � � �

� � 0

 

2

22

11

��

�
�
�
�

�

�

�
�
�
�

�

�

�
�

�
�

�
�

�
�

�

�
�

�
�
�

� 
��

vpλ
u
f        

v
f

u
f        

v
f

vp
u

f,v,uu

'
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It is hyperbolic system. If the eigenvalues � �wu,x� are all distinct. The system (1.1) is called strictly 

hyperbolic. 

 

1.3 Cauchy Problem: 
Let 

� �� � ,0ut �� xuf � � � � 0, �� stssx  

be the partial differential equation with initial data of the curve. We have the surface which contains 

the curve is called Cauchy problem. � � 
 
  ,0:tx,u ���dR ,for t>0 and 0u  is the function of x 

alone and which have initial value �	dRu :0  

!
"
#


$

�
0 ,
0 ,

0 xu
xu

u
r

l

.
 

Where lu  and ru are constants, then the Cauchy problem is called Riemann problem. 

 

1.4 Riemann Problem: 
The conservation laws is given, 

� �� � .0�
�
�

�
�
� uf

xt
u

 

Let lu  and ru  be two states of ;RΩ p% we have for piecewise smooth continuous function 

t)u(x,t)(x,:u 	 solutions of (1.1) that connection lu and ru :with initial condition 

!
"
#


$

�
0
0

0 , xu
, xu

u
r

l  

is called Riemann problem. 

3)Example: 

The equation of gas dynamics in Eulerian coordinate: 

In Eulerian coordinates, the Euler equations for a compressible inviscid fluid in the conservation form. 

 

 
( )

( ) ( ) ,.31        ,0=++
t

0=+
t

3

1=

3

1=

iδpuuρ
x

uρ

uρ
x

ρ

ijij
j

i

j
j

� �
� � � � .0    ''

'2

$&�

�

vpvp

vp

�

�
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( ) ( )( ) 0=++
t

3

1=
j

j
upeρ

x
eρ

 

fluid  theofdensity =ρ , � �  velocity theu,u,uu 321� , energy internal specific pressure,p �� ' , 

energy  totalspecific  the
2

2u
e �� '
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1.5 Weak solution: 

Characteristics curve in one-dimensional case: Let  RR:f 	  be a 1C  function. The conservation 
laws, with initial data:                

� � � �1.8             0,  tR,      x,0
t
u

��
�
�

�
�
� uf

x
 

� � � � R,     x,0, 0 �� xuxu  

Here u be a smooth solution, which follows the above equations 
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� � 1C tx,u �  

Let u be smooth solution of Equation (1.1), then the non-conservation form � � 0u t �*� xuuf . 

We take   (u)fa(u) *�  

From above equation, we have non-conservation from 

   
0)(

t
u

�
�
�

�
�
�

x
uua

.
 

The characteristics curve of above condition; it will be define as the solution is integral curve of the 
differential equation 

� �� �                                      .,
dt
dx txua� (1.9)  

 
 
Theorem (1): Assume that u is a smooth of (1.1) the characteristic curve are straight lines along, 
which u is constant. 
Proof: 
Consider a characteristic curve passing through the point � �,0,x0  a solution of the ordinary 

differential equation is using the Method of characteristics, 

� �

� �

� � Cxx

uf
dt
dxso,

du
uf

dxdt
'

��

*�

��

00      valueinitialwith 

                        

01
                         

 

Along a curve, u is constant. 

� �� � � �� � � �� �

� � .0                  ,.

,,,

��
�
�

�
�
�

�
�*�

�
�

�
�

�
�
�

�

x
uuf

t
uei

dt
dxttx

x
uttx

t
uttxu

dt
d

 

By above equation is using by chain rule, 

� �� � 0,              so, �ttxu
dt
d

 

Hence the characteristic curves are straight lines, whose constant slopes depends on the initial  
value 

� �

� � � �
� � � � .

curve) intergalin  (          

0xtuftx
Ctuftx

uf
dt
dx

�*�
�*�

*�
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Example: 

4) � � 0 �� xt uuau , � � � �xuxu 00, �  

Solution: 
� �

� � � �

� �

� �� � � �� � � � � �
� �� � � �

function.smooth  is    ,.

00       
data, initial  toaccording        

       
are curves sticcharacteri e        th

 let    
0        

0

0

000

0

uei
atxu,ttx       u

atxuxu,xu,ttxu

xattx

uauf
uuau xt

 �
 ���

��

�*
��

   

Non-smooth Solution: � � � � 00 $**** uf and  uf  are two cases for convex and concave 

respectively. 

Existences of non-smooth solution: 
We consider convex case � � 0uf i.e, ** . 

Let R,,xx �21 such that 12 xx   

if � �xu0  is decreasing function, then � � � �2010 u xu x . 

Since, � � ,uf 0**  then � � � �)u( )xu( 2010 xff **  

� � � �1011, xutxu � , implies that � � � �1020 xuxu $ . 

So that characteristics intersect after finite time and form non smooth solution. 
 
Example: 
5) The Burgers’ equation (inviscid equation) is ,uuu xt 0��  with initial condition 

� �
+
!

+
"

#


��

$
�

1 xif       0,
1x0 if   x,-1

0 xif       , 1
0,xu

.

 

Solution: 

0
2

2

���
�

�
��
�

�
�

x
t

uu  

By solving characteristic curve we get. 



18 
 

  
  

� � � �
� �

� � � �    000

0

0

xxtutx
xx,tt ux(t)

xufttx

��
��

�*�
 

In these means, the characteristics curve passes through the point � �.00,x  Then we have 

 

� � � �

� �

+
+
!

++
"

#

$,

��

��

�

+
+
!

++
"

#

,

��

� 

�

�
�
�

�

�

,
�� �

��
��

110

1
1

1
1 1

1

1
1

1 that,know  we

1
101

0

0

00

000

00

0

,t x,      if 

x ,  if t
-t

x-
tx ,       if

x,tu

f  xx,       i

x,   if t
-t

x-
tt,   if xx

x

  x        if,         x
x,   if xtx

     if xt,        x
,txxx

 

At t=1, the characteristic intersect 

� �
!
"
#


$

�
10
11

1
 if x,         
 if x,         

x,u  

Now, it is discontinuities may develop after a finite time if f is nonlinear, when 0u  is smooth in  

fig. (1). 
 

                                         
                                                                   fig. (1)              
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Chapter-2 
 

Riemann Problem for isentropic magnetogasdynamics 
 

2.1 Shock and rarefaction waves: 
When flow of an isentropic, inviscid and perfectly conducting compressible fluid is subjected to a 
transverse magnetic field, then conservation form can be written as 

� � � �

� � � �2.1                            00
2

0

2
2 R     , x, t)

μ
Bρu(p

t
ρu

t

ρu
t

ρ
t

����
�
�

�
�
�

�
�
�

�
�
�

 

Where  ρ 0, , , 0,p , it may represent density, velocity, pressure, 0,B transversal magnetic 

field and 0- denote magnetic permeability, respectively; p and B are functions in which are 
γρk p 1� and ρkB 2� , where   k1 and 2k  are positive constants and  ( is the adiabatic constant  

which lies in the range 21 �$ (  for most of the gases. The independent variables are t and x. 
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for smooth solutions, system (2.1) can be written as 
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The eigenvalues of A are wu  �1� and wu ��2� . Thus, the system (2.2) is strictly hyperbolic  

when w>0. Let � �tr1 ,r w) �
	

 and � �  , tr
2 wr ) �

	

are the right eigenvectors corresponding to the 

eigenvalues 1� and 2� respectively. We have 
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when � � 0,** ρp , the first characteristic field is genuinely nonlinear. Similarly, it can be 

shown that the second characteristic field is nonlinear when � � . ρp 0,**  
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The waves associated with 
	

1r  and 
	

2r  characteristic field will be either shock or rarefaction waves. 

2.2 Shock: Let lρ and ρ , the left and right hand states of either a shock or a rarefaction wave are

� � � � � �lll ,, ))) BBppuu lll ���   and � � � � � �))) BBppuu ��� ,, denotes respectively; the system 

(2.1) are using in Rankine–Hugonist jump conditions, the given by   
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where 
 �.  denote the jump across a discontinuity curve � �txx �  and 
dt
dxυ �  is the shock speed. 

 

Lemma 2.1: 

Let 1S  and 2S  respectively denote 1- shock and 2-shock associated with 1�  and 2�  characteristic fields. 

Let the states lU  and U satisfy the Rankine-Hugoniot jump conditions (2.4) and (2.3). Then the shock 

curves satisfy, 

� �,ρρguu ll  �                                       (2.5) 
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such that for, ,21 $$ (  we have for 0 $* u,ρρ l and  u 0**  on 1S , whilst for lρρ $  we have  

0*u  and  0$**u  on 2S . 
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Let � � � �;,2
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which is negative for l))  . We can already show that 3  and 3 *  are positive for l))  , and 

� � � � ;ρψρψ l 0�*� further, 2,1 $$ ( 0**ψ , whilst 0$***ψ . 

Let � � � �� � � � � �� �ρψρψρψρχ ** *� 22
 

so that � � 0�lρχ . Since � � � � � �ρψρψρχ *** �* 2 , it follows for � � 02,1 *$$ ρχ( . Hence, � � � �l)5)5 

for l))  . Thus, for 21 $$ ( , if we differentiate again, we get  
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Similarly, for l)) $  and 2,1 $$ ( we have 0
dρ
du

on again differentiating, then 2

2

Son   0d
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)d
u
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Now, these shock curves are satisfied the Lax entropy conditions. 

Lemma(2.2): 

If p satisfies 0*p  and ,p 0,**  then the Lax condition hold, 

i.e., 1-shock satisfies  

� � � � � �UUUl 211   , �2��2 $$$ � �2.6  

Whilst the 2-shock satisfies   

� � � � � �     , 221 2��2� $$$ UUU ll � � 2.7  

Proof:  

Let us consider 1-shock curve to prove � �lU1�2 $ . On apply 1-shock, we know that ,l))  since 0*p
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� � � � � �� � � �a,b,   cabcfbfaf � *�  

� � � � � �� �

� � � � � �
� � � �,,ρρ,  ξ

ρρ
ρpρpξp

ρρξpρpρp
ρ,  bρp,   af

l
l

l

ll

l

�
 
 

�*

 *� 
���

 



25 
 

  
  

further, since ,0p ,**  we have 00 ,*** p,p and p*  is an increasing function � �   , ,, l 6)))6 $� l  
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In (2.5), the above inequality holds that 
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and hence from (2.10) and (2.11), we obtain 
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 , which implies that )(2 U�2 $ . 

Hence 1-shock satisfied Lax condition; as well as way satisfied by the lax condition for the 

2-shock. 

 

Now we will show that the density, pressure, velocity magnetic field vary across a shock. 

Applying equation (2.1) for 1-shock the left and right states have to satisfies Lax conditions  

(2.6). Let us define -u V 2� ; then since � �lU1�2 $ , it follows that ll wV  $ implies that  
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,so wV  -ww, vυu-w $$�$$  

hence wV $ . From (2.3) we have llVρρV � . Since )  and lρ  are positive, both V  and   Vl  

must have same sign; since ,Vl 0$  we have 0$V . For 1-shock, the gas speed on the both sides of 

shock is greater than shock speed, and therefore the particles cross the from left to right. 

In case of 2-shock, applying Lax conditions, (2.7) this implying  ll wV $  since  )(2 2� $U or  

equivalently υwu �� , which follows that Vw$ , and hence 0V . In case of 2-shock particles  

cross from right to left. 

Let the states ahead of, and behind the shock be designated the 1- state and 2-state, respectively.  

Then, for 1-shock 2 ,1 �� rl , and  

hence .
ll W V WV 2

2
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2
22 and $ ;  

for 2-shock .
ll W and VW, so V rl 2

2
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2
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Thus, for both shocks we have 
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the above inequalities follows that 2l )) $ , and 

therefore .B B pp 2121 and $$  and from (2.3) we have 
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Since 21 ))  , it follows that .21 VV  Since for 1-shock 01 $V and 21 )) $ , and it follows that 

12 VV  , implies that 21 uu  . Similarly, for 2-shock 02 V and 21 )) $ , its implying that 21 VV   

and so 21 uu $ . 

 

2.3 Rarefaction waves: 
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If we take 
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xη � , then the equation (2.2) is a system of ordinary differential equations and it can be 

written as                                  � � ,0,-
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where I is 22�  identity matrix and the differentiating with respect to the variable  8  is denoted by 
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eigenvector of the matrix A  corresponding to the eigenvalue8 . Since it has two real and distinct 

eigenvalues 21 �� $ , so it has two families of the rarefaction waves 1R  and 2R  which are 1-Rarefaction 

waves and 2-Rarefaction waves respectively; Let us consider 1-rarefaction waves, since   
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and with wu  �1�  we have 
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Where 19 1-Riemann invariant is (2.14) represents 1R  curve. Similarly, 29 2-Riemann invariant of the 

2-Rarefaction wave curve is represent R2 curve  

� �          .02 � �9 � dy
y
ywu

                              (2.15)                      
 

Theorem 2.1 

On � �21 Rly respectiveR the Riemann invariant )ly respective( 21 99  is constant. 

 

Lemma2.3:Across1-rarefaction waves (respectively, 2-rarefaction waves), l)) � and u ul �

(respectively, l)) , and u ul , if and only if, characteristic speed increases from left hand state to 

right hand state. 
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Proof: Since, we know that                  

� � 0
22

2

22

��
�

�
��
�

� *
�

**
�

��

μw
B

w
p

dρ
dw

 bcw
 

w is an increasing function of ;)  so it form for 1-rarefaction waves, � � � �lρwρw �  or it can be written 

as w-wl  � . These inequalities are uul �  and w-wl  �  show that � � � �UλU λ l 11 � . Similarly we can 

prove � � � �UλUλ l 22 �  for 2-rarefaction waves. Then the conversely for 1-rarefaction waves, 

since � � � �UUl 11 �� � , we have 

. uuw-w ll  �                                            (2.16) 

In further, since 1-rarefaction wave region 19  is constant, then we get 

� � � �dy
y
ywdy

y
ywu-u

ρρl

��  �
00

1  , 

the equation (2.16) shows that  

� � � �dy,
y
ywdy

y
yww-w

ρρ

l

l

��  �
00

 

which implies that l)) �  and 

� � � � 0
00

1 , � �� dy
y
ywdy

y
ywu-u

ρρl

.  

Hence l)) � and uul � .Similarly, it can be shown that the 2-rarefaction waves, l)) , and uul , . 

 

Introducing a new parameter ,: where  r

l)
): �  obtain from (2.5) the following formulas for shock 

curves, for 1-shock curve 1 :  and 2-shock curve 1$: .(Respectively, rarefaction curves in the term of 
parameterizations). 

From equation (2.5), 
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For 1-rarefaction waves 1),( $: since 1-Riemann invariant is constant, we have 

γ

l

r

l

r θ
p
pθ, 

ρ
ρ

�� , ,θ
B
B

l

r �  so that 
ll

r

B
B

)
): r��  

if we set dtdθt,θ ��  , dt
θ

BtγAt
u
u γ

l

r �
�
�

�
�
�  ���  1121 1  

dt
t

BtγAt
u
u γ

l

r 2
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1 �
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                                  (2.18) 

Similarly, for 2-rarefaction wave � �1: , we have  

, ,r (::
)
)
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l

r

l p
p :�
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B
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then as well as we set  
ll

r

B
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)
): r��  
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Thus, for 1-family, either shock or rarefaction wave, we have 
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  (2.19)                           
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In the similar way, 
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where  2

1
1

l

γ
l

u
ρkA

 

�  and 2

2
2

2 l

l

μu
ρkB � ; is as to expression in above equations (2.19) and (2.20). 

 

Theorem 3.1: 

The 1R  curve is convex and monotonic decreasing while 2R  curve is concave and monotonic 

increasing. 

Proof:  We know that, 1-rarefaction wave is 

� � (3.1)                                ρρ dy   ,if 
y
ywuu l

ρ

ρ
l

l

��� �  

On differentiating with respect to , )  we have 

0$�
ρ
w- 

dρ
du
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(3.2)                                     22

2

  .         
ρ
w

ρ
w

dρ
ud *

 �  

We know that ,cw 22 b�� since ρk,Bρkp γ
21 ��  in the following equations 

 

 

 

 

 

 

Again, on differentiating with respect to ) ,we have 

)))

'

22

2d ww
d

u
 �  

� �

� �

� �

� �

� �''2
2

1
12

2

''2
2

2

2

''2

2

2

''

22

2

22

2

kd

d

d

d

d

ccbbk
d

u

ccbbw
d

u
w

ccbbw
d

u
w

ccbbw
d

u
w

ccbbw
d

u

� ��

� �

� 
�

�
 �

*�*
 �

 )
-
))(

)

)
)

)
)

)

)))

)))

(

 

We know that b and c are differentiating, we have 
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and, therefore, u is convex with respect )  for1-rarefaction waves. Similarly, we can show for 

2-rarefaction waves. 

 

Now we prove that the shock curves are starlike with respect to � �ll u,)  for p and B, these has a good 

geometry in Riemann invariant coordinates whenever .0and0 ,*** p  p  

Theorem 3.2: 

The 1-shock and 2-shock curve are starlike with respect to � �lu,l)  when γρkp 1�  and  ρkB 2�  for 

values of ( lying in the range � �21 �� ( . 

Proof: 

We have to prove that any ray through the point � �lu,l)  be intersected 1-shock curve in at  atmost one 

point for this is sufficient to prove the rays � �lu,l)  through the two different points � � � �2211 ,,, uu ))  on 

the 1-shock curve, and whose slope are different. The slope of the line joining � �lu,l) with 

� � � � ,,, 2211 uu )) is
l

l

ρρ
-uu
 1

1  and  
l

l

ρρ
uu

 
 

2

2 . 

 For the 1-shock equation (2.5) are implies that 
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we prove that � �  0' $)lf and � � 0'
2 $)f . When putting ρkB 2�  in � �)2f  and differentiating with 
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and its again differentiating  with respect to ,)  we have 
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It also proved that, when � �)1f  in γρkp 1�  and differentiating with respect to ,) and we obtain 
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on differentiating, we have 
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Let � � � � � �   ,ρkρkρργkρργkρg γ
l

γ
l

γ
l

γ
l

2
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1
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2
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1
11 212 ���  � � � then � � 01 �lρg .  

Then � � � �� � � � 1
1

1
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111 2112 ��  � �� � γ

l
γ
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γ
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γ
l

' ρkρkρργγkρργγkρg  , � � 01 �l
' ρg .  

Since � � � �� � � �� � 22
1

1
11 1112     �� � γ

l
γ

l
'' ρργγγkργργγ kρg , if above condition are follows that the 

values of ( in 21 �� ( , we have � � 0g ''
1 $) . The above equation to be held in 1-shock and then )) $l
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and � � � � 0gg '
1

'
1 �$ l)) , implying that � �)1g  is a decreasing function of ) ; and this follows that

� � � �l)) 11 gg $ , it therefore 0'
1 $f . Thus, 

l

l

-
u-u
))

 is a decreasing function of ) ; we hence 1-shock curve 

is starlike with respect to � �lul) ,  as usually in same way 2-shock curve and is also a starlike with respect 

to � �lul) . 

 

Lemma 3.1 

With � � 0ρp'  and ,0,''p  the inequalities 10
2

1 $$
dΠ
dΠ

 and 10
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2 $$
dΠ
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hold along 1-shock and 2-
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hence the above condition holds that 

� � � � 0$�
ρ
ρw

dρ
ρdu

, and these implies that 01 $ 
dρ

dΠ
. 

Similarly, we show that  1
2

10 $$
dΠ

dΠ
 along 2-shock curves. 

4. Riemann Problem: 

The system (2.1) be the initial condition as 

� �
!
"
#


$

�
0

0
0   ,

,  ,
,

xxifU
xxifU

txU
r

l ,                                     (4.1) 

is called as Riemann problem. Where lU  be the state to the left of 0xx �  and rU  be the state to the 

right of 0xx �  the constant states are separated by in both waves either a shock waves or rarefaction 

wave. The Riemann invariant coordinates are 

� � � �dy
y
ywuΠdy

y
ywu Π

ρρ

��  ��� 21   and  . 

Lemma (4.1): 

The mapping � � � �21,ΠΠρ,u 	  is one to one and the Jacobian of this mapping is nonzero when 0) . 
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Proof: Since, 
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Thus, the Jacobian of the mapping � � � �21,ΠΠρ,u 	  
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This is one-one and onto. 

 

We consider Riemann invariants as coordinate system. Let us will take a plane � �21,ΠΠ in that plane we 

draw the curves 121  , ,S RS and 2  R which divide the plane can into four distinct regions. I, II, III, and IV. 

Let lU  are left state. Fixing lU  and varying rU . Let us consider rU belong to any of the four region as 

fig.4 (a). For 2RU� . 

� � � � � �/ 0
� � � � � �/ 0 � � � � � � 21  and 21

21

2121

2121

,n,URUSU T ,,nR,ΠΠ:,ΠΠUR
.,,nS,ΠΠ:,ΠΠUS

nnnnn

nn

�����
���

�
 

In an above wave curves, the plane � �ρ,u  divides into a four region. To solve the Riemann problem, 

consider the wave curve � � 2 mUT for �mU � �lUT1 . And we have to verify that two curves � �mUT2 and

� �m*UT2 , where � �lm*m UT,UU 1� , so these a two curves are non-intersecting and the set of all such 

curves to entire half space 0)  in the plane � �21,ΠΠ in one-one fashion.  

If �rU I, draw a vertical line rΠΠ 22 �  in fig.4 (a). Which will be intersects  S1 uniquely at a point
1

 mU . 

The solution to Riemann problem is now obvious; we taking on constant state of 1mU  by a 1-shock and 

then from 1mU  to the constant state rU  by a 2-rarefaction wave.  
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Let �rU II region, draw a vertical line rΠΠ 22 �  in fig.4 (a) which is intersect  R1 uniquely at a point

2mU . The solution is going from  lU  and  2mU  by  1R and to from 2m U  to  rU by 2R . 

If  �rU III region, we define the concept of inverse shock curve. The inverse curve denote by *
2S  

consists of those states � �21,ΠΠ  which can be connected to the state � �rr ,ΠΠ 21  on the right by  2S
shock in fig.4 (a). These represented, from (2.5) by 

 

 

Fig 4(a). Rarefaction curves (R1 and R2) and shock curves (S1 and S2) in the plane � �21,ΠΠ .
 

.
22

  
22

��
�

�
��
�

�  
��
�

�
��
�

�
  ���

r

rr
rr ρρ

ρρ
μ

Bp
μ

Bpuu The above curve intersect the 1R  uniquely a point 3mU  

.Therefore, rU can be connected with  Ul by 1R  are followed by 2S .  

If  �rU IV region (see fig.4(c)), (as from lemma 3.1) 1
1

2 
dΠ
dΠ

on 1S . It also defines in 1
1

2 $
dΠ
dΠ

on *
2S . 

This mean that, the 1S and *
2S  will intersecting uniquely at the point

4mU , therefore, the solution consists 

of 1-shock and 2-shock. Thus we have shown that set � � � �/ 0lmm UT:UUT 12 � , covers the entire half 

space 0,)  in the plane � �21ΠΠ  in a one-one way.
 

 

When the vacuum state � �0�ρ  it’s not satisfied the same condition. 

Lemma (4.2): 

If ,21 rl ΠΠ � the vacuum occurs. 
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Proof: 

From fig.4 (a),      ; and 2211 rmlm ΠΠΠ Π ��  

if .0 then , 212121 � � � rlmmrl ΠΠΠΠΠ Π  

But it will be      
� �dy
y
ywΠΠ

mρ

mm �� 
0

21 2   y 

Which implying that that .ρm 0� Hence, vacuum occurs. 

 

 

ρ,u).( planein  curves   waveFig4(b).  

 

Theorem (4.1): 

Assume that 00 , ''' ,pp  and that we are given initial states lU  and rU where  ,ρl 0 0))  for 

the Riemann problem of system (2.1).  Assume that rl ΠΠ 21  . Then there exists a solution of the 

Riemann problem for system (2.1). Moreover, the solution is given by 1- wave following by a 2-wave 
satisfying  0,)  and the solution is unique in the class of constant states separated by shock waves 

and rarefaction waves. 
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  fig.4(c). 2-shock wave and 1-shock wave. 

 

 

fig4(d). vacuum curve 

 

5. Interaction of Elementary waves: 

The interaction of elementary waves, obtaining from the Riemann problem (4.1), gives rise to new 
emerging elementary waves. And  then two jump discontinuities at , and 21 ,xx it as follows:  

� � � �5.1                                                            

2

21

1

0                      
x,if xU

xx,if xU
xx,ifU

x,t U

r

*

l

+
!

+
"

#

�$$
�$
�$� 

�  

The choice of *U  and rU  in the terms of lU  and an arbitrary  . and 21 Rx x � With the initial data, we 

have two Riemann problem locally. The first Riemann problem of the elementary wave may interact the 
second Riemann problem of the elementary wave, and the time of interaction at formed a new Riemann 
problem at one dimensional Euler equation. It may be found of the interaction of the elementary waves. 
Here we like ,212 RSR 	 it means that a 2-rarefraction waves � �*  touul  ,R 2 of the first Riemann 

problem interacts with 1-shock, , S1 of the second Riemann problem rl uu   to .Then it interacts to new 

Riemann problem mrl uuu   via  to 21RS . In different families are possible to interaction of elementary 

waves and as well as the same family are respectively )SR,RR,RS,SS ( 12121212 and

),,,,,(S 222211111122 SRRSRSSRSSS . 
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5.1 Interaction of Elementary waves from different Families: 

(a) Collision of two shocks (S2S1): 

Let lU  is connection to *U  by the 2- shock 2S  is a first Riemann problem and * U  is connected to rU

by a 1-shock,  1S  of the second Riemann problem. For a given ,Ul  we consider *U  and rU  in such a  

way that ,ρρ l* $  from (2.5) we have � �*ll* ,ρρguu  �  in other way that ,* r)) $  then we have 

written .),ρg(ρuu r**r  �  

 

 

fig. 5.1(a). S2S1 collision 

 

Since, speed of 1-shock of the second Riemann problem is negative, 2S  and speed 2-shock of the first 

Riemann problem is positive,  S1 overtakes 2S . Then it shows that for any arbitrary state lU , the state 

 U r lies in the region IV (in fig.4 (b)). It in sufficient to prove that 

� � � � � � .  and for  0,,,g **** )))))))))) $$� lll gg  Let take in contrary that 

� � � � � � .0,,,g ** �� )))))) ll gg  If in this, then 

� � � � � �� � � �,,,,2,,g l
2

**l*
2

*l
2 )))))))))) ggg ���  

 Implying thereby that, 
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� � � � (5.2)                  0,,211
2

P11
2

P **l
*

22
*

*
*

22
*

* ����
�

�
��
�

�
 ��

�

�
��
�

�  
� ���

�

�
��
�

�
 ��

�

�
��
�

�  
� ))))

))-))-
ggBBPBBP l

l
l

 

The above equation (5.2), is strictly positive, which is a contradiction. Hence,  

� � � � � � 0,,,g **l �� )))))) lgg , i.e., the curve � �*1S U  are lies below the curves � �lU1S , therefore, 

 U r lies in the region IV. Thus, and it follows interaction results is 2112S SSS 	  interaction results, in 

case of illustrate in fig.5.1 (a).  

(b) Collision of a shock and rarefaction (S2R1):  

Here � �l* USU 2�  and � �*r URU 1�  i.e., for a given lU , Let *U  and rU  such that )) $*  from 

equation (2.5), we have � �  , and *r )) � � *ll* ,ρρguu from equation (2.15) we have  

� �dy.
y
ywuu

*

r

ρ

ρ
*r ��� Since 2-shock of the Riemann problem is positive and 1- rarefaction wave of the 

second Riemann problem is negative velocity, it follows that 1R overtakes 1S . Since, for any given lU , 

 
� � � � � � 0,ywyw *

*

� �� ))
)

)

)

)
lgdy

y
dy

y

l

 

for  ,* l))) $$ and can be follows that  the curve � �*UR1  lies below the curve � �lUR1 , hence rU  lies 

in the region III, subsequently 2112S SRR 	 . The compute results this case in fig.5.1 (b). 

 

 

fig. 5.1(b). S2R1 collision 
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(c) Collision of two rarefaction waves (R2R1): 

We consider � �l* URU 2� and � �*r URU 1� . In any other way, for a given lU , Let *U  and rU  such that

*,l )) �
� �  and  

*

* dy
y
ywuu

l

l ���
)

)
*)) �r , then

� � .       
*

* dy
y
ywuu

r

r ���
)

)

 Since, the trailing end of 2-

rarefaction wave has a positive velocity (bounded above) in � �tx, - plane and that 1-rarefaction wave 

has a negative velocity (bounded above), interaction will take place. Since *l )) $  and   

� � � � � � ,0  
***

� ��� dy
y
ywdy

y
ywdy

y
yw

l

)

)

)

)

)

)

 

It follows that the curve � � UR *l  lies above the curve � �lUR1 ; hence   rU lies in the region II and the 

interaction results II and the interaction result is  2112R RRR 	 . Then computed results, in fig.5.1 (c). 

 

 

fig. 5.1(c) R2R1 collision 

 

(d) Collision of a rarefaction wave and a shock (R2S1): 

Here � �l* URU 2� and � �*r USU 1 � , i.e., for given lU , we choose *U  and rU  such that *l )) � ,  

� �
rl dy

y
ywuu

l

))
)

)

$�� � **  and  
*

and � �.r**l ,ρρguu  �  Since, the second Riemann problem of 1-shock 

speed is less than 2-rarefaction wave of first Riemann problem of the speed of trailing end in 
 plane,-)(x,t and therefore 1S  penetrates 2R . For any given lU . It show that �rU I, then it, to show 

that  
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� � � � � �                            .0,, *

*

 �� ))))
)

)

ggdy
y
yw

l

l

        (5.3) 

Since � �)) ,lg  is a decreasing function with respect to the first variables l ) , then we will have  

� � � � *l* for  ,, )))))) $ gg l . Hence, the equalities (5.3), there imply that curves )(US *1  lies above 

the curve � �lU S1  and rU lies in the region I. Thus the interaction result is 2112R RSS 	 ; and its 

computed results in fig. 5.1(d).  

 

 

fig. 5.1(d) R2S1 collision. 

 

5.2. Interaction of Elementary waves from same family: 

(a) 2- shock wave overtakes another 2-shock wave (S2S2): 

 We consider the situation in which l U  is connection to * U  by a shock of the first Riemann problem 

and  *U  is connected to rU  by a 2- shock of the second Riemann problem. In other situation a given 

left state lU , the intermediate state *U , and the right state rU  are chose such that l)) $*  and 

� �*ll* .ρρguu  �  with Lax conditions satisfy 

� � � � � � � � � �  ,,    ,, *2*22*21 UUUUUUU llll 2��2� $$$                                             (5.4) 

and *r )) $ , and � �r**r ,ρρguu  �  with Lax stability conditions 

� � � � � � � � � �rr UUUUUUU ,      ,, *2*2*2*2*1 2��2� $$$                                            (5.5) 
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where � �*2 ,UUl2  is the speed of shock connection lU  to *U , and similarly, � �rUU ,*22  is the speed of 

shock connecting *U  to  .rU From (5.4) and (5.5), we obtained � � � �,,, *2*2 UUUU lr 22 $  i.e., the 

second Riemann problem of 2-shock  overtakes the first Riemann problem of 2-shock at a finite time, 
then its give rise to new Riemann problem with data   Ul and rU . To prove this problem. We must 

have to determine the region in which  rU  lies respect to lU . Let be claim that rU vary lies in region III 

so this have solution of the new Riemann problem consists of 1R and 2S . In any more way, to show that 

to our claim: we have to prove that � � S2 *U lies in entirely in the region III; to prove this required to 

show that for .* l))) $$  

� � � � � � .0,,g-, **  )))))) ll gg  We consider, on the contradiction that   

� � � � � �     .0,,g-, ** � )))))) ll gg for l))) $$ * . Then the follow that, if we take, then   

� � � � � �� � � �  ,,,,2,,g *
2

**l*
2

l
2 )))))))))) ggg l ���                                                    (5.6) 

Implying there by that, 

� � � � 0,,211
2

p11
2 *l

22
*

*
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����
�
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 ��
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))-))- l
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l
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l
l ggBBpBBpp  

Proving that  

 011
2

11
2

2222

,    
ρρμ

BBpp
ρρμ

BBpp
l

l*
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*l

l
l �
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 ��

�
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�

�  
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�
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��
�

�
 ��

�

�
��
�

�  
�                  (5.7) 

which is contradiction on as left hand of inequalities (5.7) is positive. Hence, 2122 R SS S	 ; and 

computed results in above situation fig.5.2(a). 

 

fig. 5.2(a) S2 overtakes S2. 
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(b) 1-shock wave overtakes another 1- shock wave (S1S1): 

Let rU  lies in a region I, so that 2111S RSS 	 , is similarly to the previous case and its above situation 

illustrate computer results. 

 

fig. 5.2(b) S1 overtakes R1. 

 

(C) 1-shock wave overtakes 1-Rarefaction wave (R1S1): 

In case, the Riemann problem of the  lU  is connected to *U  by 1- rarefaction wave and the second 

Riemann of the *U  is connected to rU  by 1-shock. i.e., a given lU , Let *U  and rU  in such a way that

, * l)) � � �dy
y
ywuu

l

l ���
)

)*

*  and � �., , *** rrr guu ))))  �$  So we show that � �*1S U  lies below of 

the � � R1 lU for l))) �$* , in other way, for l))) �$* , 

� � � � � �       0,
*

*  � �� dy
y
ywdy

y
ywg

ll )

)

)

)

))                               (5.8) 

Let us define, � � � � � � � �dy
y
ywdy

y
ywg

ll

��  ��
)

)

)

)

)))
*

,F *1 so that � � 0F *1 �) . On differentiating � �)1F  with 

respect to ,) we obtain � � 0, F1 * )  implying that � � � �)) 1*1 FF $ . i.e., � � , 0F1 ) and hence � �*1S U  lies 

below the curve � �lU1R for l))) �$* . In another   to show that it is sufficiently to � �lU1S  lies above 

the curve � �*1S U  for ; l )) �  the sufficiently part, the claim has 
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� � � � � � ))))))
)

)

�;  � l* ,0,,
*

dy
y
ywgg

l

l ;                (5.9) 

Let us define � � � � � � � �        ,,F
*

*2 dy
y
ywgg

l

ll �  �
)

)

)))))  

So that � � � � 0FF 12 � ll )) . 

Let us consider that � � � � � � ,for  ,,, *** ))))))))) $$� lll ggg  

implying that,   

� � � � � � � � � �,,,,2,, 2
***

2
*

2 )))))))))) lll ggggg �   

implying thereby that  

� � � �;,,2 11
2

P11
2

P **
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2
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or equivalently, 
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PBBP

))-))-
          (5.10) 

But the left hand side of inequality (5.10) is positive, which leaves us with a contradiction. 

Hence, � � � � � � ,for  ,g,g-,g **l* ))))))))) $$ ll implying that, 

� � � � � � � � � � � � 0,g ,, 2**

**

�   �� lll Fdy
y
ywdy

y
ywgg

ll

)))))))
)

)

)

)

 

We define a new function,  

� � � � � � � � .for  ,,F **3

*

ll dy
y
ywgg

l

))))))))
)

)

��  � �  

At some point � �11
~,~ u)  intersected in � �lU2S and � �,S *1 U for .~

1* l))) $$ Since, � � 0F3 ) and 

� � ,0F *3 $) it is intermediate value property, there exists a ,~
1) between *)  and ,l)  such that 

� � ,0~F 13 �) by virtue of monotonicity. Thus,  � �lU2S  and � �*1S U  is uniquely determined of the 
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intersection, and the computer results in fig. 5.2(b). We distinguished three cases to depending on the 
value of ,r)  

(a) If ,~
1r )) $ indeed 1-shock is weak as compared to 1- rarefaction wave, when �rU III and the 

interaction results is .R 2111 SRS 	  

(b) If 1r
~ )) � , indeed two waves of first family interact, they annihilate each other, and give rise to 

wave of second family, when rU  lies on � �lU2S  and the interaction result is 211R SS 	 . 

(c) If ,~
1r ))   and the interaction result is ,R 2111 SSS 	 on ;IVUr � indeed , the 1-rarefaction of 

the first Riemann problem is weak as compare to the 1-shock of second Riemann problem, 
which is stronger, overtakes and the trailing end of 1-rarefaction wave a reflected shock  

� �rm UU ,S2 , and a connection new connection constants state  mU on the left to rU on the right, is 

produced. The transmitted wave, after interaction, is the 1-shock that joins state lU  on the left and mU  

on the right.   

 

fig.5.2(c) R2 overtakes S2 

 

(d) 1- Rarefaction wave overtakes 1-shock wave (S1R1): 

Here for a given lU , we consider *U  and , rU such that � �l* USU 1� and � �*1rU UR� , i.e., l)) *  

from equation (2.5) we have � �*ll* ,ρρ-guu � and ,* l)) , from equation (2.5) we have 

� �dy
y
yw uu

l

*

ρ

ρ
*r ��� . In the plane (x,t) the speed of trailing end of, � �*1 U�  is less than 1-shock speed 

� �*1 ,UUl2  and therefore the 1-rarefaction wave from right overtakes 1-shock from left a finite time. 

We show that the curve � �*1R U  lies below the curve � � S1 lU for *l ))) $� ; for this we have to that    
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� � � � � �
*l*l for  0,,g

*

)))))))
)

)

$�  � dy
y
ywg l . Let us a new function � �,G1 ) to show that

� � � � � � � �
*l*l1 for  0,,gG

*

))))))))
)

)

$�  � � dy
y
ywg l , then in this way it define the for � �)w

and � �,,))lg  to hold that on � �)1G  differentiating, we have that  
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Implying thereby that � � � �*11 GG ))  , since � � ,0G *1 �) we have � �  ,0G1 ) then we prove that, 

� �*1R U  lies below the curve � �lUlR  for ,*l ))) $� then  

� � � � � � .for  0,g *l*l

*

)))))
)

)

)

)

$� � �� dy
y
ywdy

y
ywl

 Since the left hand side of this inequalities, for 

*l ))) $� , to be � �,Gl l) which is � �l)lG is positive, so the conclusion above. So, we show that to 

� �*1R U  and � �lU2S  intersect into uniquely at some points � �22
~,~ u) ; to show that, for this

� � � � � � 0,g,g
*

l*l �  � dy
y
yw)

)

)))) a uniquely root has 2
~) such that l)) $2

~ . To show a new function, 

we define � �)2G , there implying that � � � � � � � �dy
y
yw

�  �
*

,g,g ,0G l*l2

)

)

))))) ; and we know, 

� � 0G 2 �)  it takes negative as close to zero, then � � 0G2 l) . The curves are interest uniquely at the  

� �*1R U  and � �lU2S  it follows that the intermediate value property, and in view of monotonically; here 

three cases the value of  r) on depending, we distinguish like,  

(i) when 2r
~))  , and IVUr � ; the interaction result is 2111 S RS S	 ; indeed in sufficient 

case the both curves are interaction and then the 1-rarefaction wave is weak compared to 
the 1-shock is stronger, which is produced a new elementary wave.  

(ii) when 2r
~ )) � , and � �,USU lr 2�  the interaction result is 211S SR 	 i.e., interaction of the 

first family of elementary waves. Gives rise to a second family of a new elementary wave. 
(iii) when 2r

~)) $ , and IIIUr � the interaction result is 2111S SRR 	 . 
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Fig.5.1(d) R2 overtakes S2. 

 

(e) 2-Rarefaction wave overtakes 2- shock wave (S2R2): 

When � �lUS2*U �  and � �*2rU UR�  of the 22S R  interaction takes place, in any another word, in a 

given lU , we have consider *U and r U  are in a such way that l)) $* , from (2.5), we have 

� �** ,u ))ll gu  � and l)) �* , from (2.15) we have 
� �dy
y
ywu

r

���
)

)*

*ru . We show that for

l))) �$* , � �lU2S  lies above the curve � �*2 UR , i.e., 

� � � � � � � �ldy
y
yw )))))))

)

)

,   0,g,g *l*l

*

�;  �                                                                  (5.11) 

We define, to show that � �) M1 , � � � � � � � �dy
y
yw

�  �
)

)

)))))
*

,g,g M l*l1 . Since there implying by that

� �l2 US  lies above � �*2 UR ,On differentiation � �) M1 , since � � ,0 M1 * ) we have � � � �*11  M M ))  , 

since � � ,0 M *1 �) it follows that � � ,0 M1 )  we prove that the � �l2 UR  lies above the curve � �*2 UR  

for ;* l))) �$ to show that for this it is enough � � � � � � � � 0,g M
*

*l1   � �� dy
y
ywdy

y
yw

l

l

)

)

)

)

)))  for 

))) �$ l* and the curve � �l2 UR lies above the curve � �l2 UR  for ))) �$ l* , � � ; 0M1 l) the left 

hand side of this inequalities is � �l)1M  which to positive, we show that � �*2 UR  of the intersect 

uniquely � �l1 US  at point � �33
~,~ u)  for 3l*

~))) $$ . We define   

� � � � � � � �  or , ,g-,M l**l2

*

))))))))
)

)

�$ � � fdy
y
ywg l so that � � ,0M2 $)  and we consider a 
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constant ,K 0  such that � � 0M2 )  for all Kρ  . Then there exists a 3
~)  such that � � 0~M 32 �) . 

Thus, � �*2R U  and � �lU1S  are intersect uniquely at � �33
~,~ u)  as � �*2R U  and � �lU1S  in a terms of 

monotone, and the computed results shown in fig.5.2(c). Here three cases are following,  

(i) If ,~
3r )) $ IVUr � the interaction result is 2122S SSR 	 , indeed, the strength of 2R  is 

small compared to the elementary wave ,S 2 and 2S  annihilates  2R  in a finite time. The 

strength of the reflected  1S is small compared to the incident waves 2S  and 2R . 

(ii) When 3r
~)) �  and )(S  U 1r lU�  the interaction result is 122 SRS 	  indeed 1S  is weaker 

than 2R  compared to the incident waves 2R  and 2S . 

(iii) If ,~
3r ))   the interaction results is 2122 SRS R	 ; indeed, 2R  is stronger than 2S . 

 

(f) 2-Shock waves overtakes 2-Rarefaction(R2S2): 

For a given lU , we have *U  and rU , here � �lUR2*U �  and � �lUS1rU �  such that *l )) � ,  

� �dy
y
ywu

l

l ���
*

*u
)

)

and � �rrr guu )))) , , ***  �� . We prove that � �lU2R  lies above the curve  

� �*2S U for *l ))) $� . 

� � � � � �
*l*      ,0,g 

*

**

)))))
)

)

)

)

$�; � �� dy
y
ywdy

y
yw

ll

         (5.12) 

To show that, we have a new function  

� � � � � � � �
*l*1 for   ,g

*

**

))))))
)

)

)

)

�� �� �� dy
y
ywdy

y
ywN

ll

; so that � � 0 1 �)N . 

This , in view of the expression for � �)w  and � �,,g * )) yields 

� � � � 0
,2

2
111

*

22
*

*2
*

1 $
�
�

�
�
�

�
��
�

�
��
�

�  
�  ��

�

�
��
�

�
 ��

�

�
��
�

� *
�*

 �*
))

-)))-
)

g

BBppBBp
N  

There implying by that,. Hence this result � � � � 0NN *11 � )) we show that � �lU2S  lies above the 

curve � �*2S U for *l ))) $� ; to show, it is sufficient for this  
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� � � � � �
*l* for  0,,

*

)))))))
)

)

$�  � dy
y
ywgg

l

l . If � � � � � �ll ggg )))))) ,,, **  then  

� � � � � � � � � � � � 0N,,, 1**

**

�   �� lll dy
y
ywgdy

y
ywgg

ll

)))))))
)

)

)

)

. We consider, which is 

contradiction that � � � � � �ll ggg )))))) ,,, ** � . Thus, it we have that � � � � � �)))))) ,,, ** ll gg � .  

There implies by that, � � � � � � � � � �)))))))))) ,,,2- ,, 2
***

2
*

2
lll ggggg � ; this expression, in 

terms of � � � �lgg )))) ,,, **  and � �)) ,lg  yields  

� � � �l
l

l ggBBppBBpp ))))
))-))-

,,211
2

11
2 **
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2
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 ��
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or equivalently 
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))-))-
BBppBBpp l

l .                           (5.13) 

Which is contraction, the above equation (5.13) is positive for *,l ))) $�  hence,  

� � � � � �ll ggg )))))) ,,, **  for *,l ))) $� we proved that, a point  )~,~( 44 u) at � �*2S U and

� �lU1S  intersect uniquely for *4
~ ))) $$l . Here again we distinguish three cases depending on the 

value of r ) .  

(i) If , U,~
r4r I� ))  the interaction results is 2122R RSS 	 , indeed, the elementary wave 

2R is stronger compared to 2S , the strength of reflected 1S  is small compared to the 

incident waves 2S  and 2R . 

(ii) If � �lUS1r4r  Uand ,~ �� ))  the interaction result is 122R SS 	 . 

(iii) If IV�$ r4r  Uand, ~ ))  the interaction result is 2122R SSS 	 ; indeed, 2S  is stronger 

than compared to the elementary wave  2R  is weaker. 
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