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Abstract
In this report, we defined hyperbolic system and given some examples. We study the behaviour of
hyperbolic system. Later, we revised the exact solution of the Riemann Problem for the non- linear
PDE, which in hyperbolic system of the general form of conservation laws which governs one-
dimensional isentropic magnetogasdynamics. Lastly, we find the solution using phase plane analysis

and interactions of elementary waves between the same families as well as different families.



INTRODUCTION
The Riemann problem is defined as the initial value problem for the system with two valued
piecewise constant initial data. The Riemann problem is a fundamental tool for studying the
interaction between waves. It has played a central role both in the theoretical analysis of
systems of hyperbolic conservation laws and in the development and implementation of
practical numerical solutions of such systems.

Basically, the Riemann problem gives the micro-wave structural of the flow.
One can think of the propagation of the flow as a set of small scale Riemann problem between

the wave arising from these Riemann problems.
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Chapter-1

Introduction to Hyperbolic Systems

1.1Definitions and Examples:

The general form of system of conservation laws in several space variables

S A=, (1

ot “=a
Here Q2 be an open subset of R”, f;:Q— R”;whereu : R” ><[0,+oo[ - Q,

uz(ul,u2 ......... ,up),Xz(xl,x2 ......... ,xd)eRd,t>O.

The set Q is called, the set of states and the functions, fj =( jeeeneeeeneny f )are called flux

functions, the system (1.1) is written in conservation form, the conservation of the p real quantities

UpUy,..ne. ,u .We have a simplest differential equation model for a fluid flow:

ou 0f(u’
—+—| — |=0.
ot ox\ 2

This equation is called inviscid Burger’s equation, which is also known as one- dimensional
conservation law.

ou 0 0

— ot flu)+——glu)=0,

ot Ox oy

which is a two dimensional equation. From this equation, we get following system of two

dimensional equations:

%_}_ of, (ul,u2)+ 0g, (”puz) —0

ot ox oy
Ou, 4 9% (“1:“2)+ 0g, (uy,u,) —0
ot ox oy
Let D be an arbitrary domain of R” and letn = (”1: ............ Ny, )T be the outward unit normal to the

boundary éD of D. Then, it follow from (1.1) that,

—J.udx+ZJ.f n; ds=

J=l 6D
This is conservation law in integral form. This equation has a physical meaning that the Variation of

Iu dx is equal to the losses through the boundary éD .
D



1.2 Hyperbolic System of Conservation Laws:
o, (w

Forall j=1,......, d,let Aj(u) = p 1 <4, k < p be an Jacobian matrix offj(u);
u

k

equation (1.1)is called a hyperbolic system .

If forany u € 2and w:[w1 ......... ,wd]eRd,w;tO,
d
the matrix A(u,w] = > w.A (u) has p real eigenvalues with Independent eigenvectors
Jj=1
rl (u w),r2 (u w) e rp (u, wj, ie.

A(u,w)rk(u,w) = /lk(u,w] rk(u,w), 1=<k=<

r

k
1 ww)A(w) =4, (w)l, (uw), 1<k<p.

(u,w)are right eigenvectors.

[, (u,w)are left eigenvectors.

If A(u,w) has p real eigenvalues and p corresponding linear independent eigenvectors, and if

A (u,w) real distinct eigenvalues, then the system is called strictly hyperbolic.

Example:

2
1) a_u_i_g Ll_ =(
ot ox\ 2

et f{u)= (“ﬂ then A= (le ~[u).,

u

Here the eigenvalue is 1 and eigenvector is u.

Example:
& ai a0
D5 570 5+§(p(v))=0
—u
uz(v u)f:{p(v)}
9 9%
_| v ou
%9 9%
ov ou

2 +p(v)=0
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2= p©

A=+ p'(v) Wp'(v)<o.

It is hyperbolic system. If the eigenvalues ﬂ,x (u, w)are all distinct. The system (1.1) is called strictly
hyperbolic.

1.3 Cauchy Problem:
Let

u +(f(w), =0, x(s)=s.1(s)=0
be the partial differential equation with initial data of the curve. We have the surface which contains

the curve is called Cauchy problem. u(x, t): R“ x[0,+0<[—>Q for t>0 and u, is the function of x

alone and which have initial value, : R — Q

u,x<0
u, =
u.,x>0

Whereu,; and u, are constants, then the Cauchy problem is called Riemann problem.

1.4 Riemann Problem:

The conservation laws is given,

ou 0
EJFa(f(“)):O-

Let u, and u, be two states of 2 R”;we have for piecewise smooth continuous function

u: (X, t) = u(x, t)solutions of (1.1) that connection u, and u, :with initial condition

u, x<0
u, =
u,x>0

is called Riemann problem.
3)Example:
The equation of gas dynamics in Eulerian coordinate:

In Eulerian coordinates, the Euler equations for a compressible inviscid fluid in the conservation form.
P + 3Z—a(p ) 0
e u. =
a Sal

3
%ui)+ Z?i(p”j”i +p5,»j): 0, 1=i=3,
Jj=1



) 3

+

Qﬁl

(e + pu, )=

Jj=1

p =density of thefluid u= (u, ,U,, U, )the velocity p = pressure,& = specific internal energy

2
[

e=¢&+ Y the specific totalenergy

S e e

5 ’”(f—l)j*%[pﬁ*p}‘:“
0

ap+yp—u+u—p 0

ot ox

P upOl p

u| +0 u — |lu| =0
p

b 0 » ymu Pl

11



up 0 1 0 0
0 u 1 A0 1 0(=0
r 0 0
10w u
[ -2 p 0
1
0 u-A — =0
p
10 y u-A
u—A 1
(-2 p |=0
woo u—4

eigenvalue s are 4 =u + /ﬁ,u - /2, u.
P P

for A=u,
(4-AI)x=0
“er 01 I 0 O0fx
0O u — [-40 1 O}x,|=0
1 lo o 1«
10w u
u-A p 01 X
0 u-4 — |x,|=0
Yo,
X3
10w u-4
px, =0
lx3—0
P
wx, =0

12



assume x, =1
x,=0

x;=0

The eigenvalue A =u with Corresponding eigenvector is (1,0,0).

2)

|
<5
Ao
()

(e}
S
|
SRR

—\/E x, +px,=0 (1.2)
P
w 1
- = x+—x= (1.3)
P P
}psz{—\/ExJ:O (1.4)
Yo,
1

13



puttingx,in equation (1.2)

_FH(:
_JZ,Q:_/_
P w
)
w

Y

w

@szr\/Ex:O
\/7[p\/7x2+x3] 0

P f—x2+ x;=0
P

o
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/Exz + lx3 =0
P P

assumex, =1

2 xzz_lx3
P P
x, ==t |2
P\

Theeigenvector is (X, zﬁ,x2 _d /ﬁ,x3 =1)
w PP

so, (2,21 |2 1
w o p\Nw

and its eigenvectors are (1,0,0),((£}l /ﬁ,l), ﬁ,—l ﬁ,l
w)pP\Nw wo PP

and it is a strictly hyperbolic

1.5 Weak solution:

Characteristics curve in one-dimensional case: Let f:R — R be a C' function. The conservation
laws, with initial data:

ou 0
5+§f(“)
u(x,0)=u,(x), xeR,

Here u be a smooth solution, which follows the above equations

=0, xeR, t>0, (1.8)
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u(x, t)eC'
Let u be smooth solution of Equation (1.1), then the non-conservation formu, + f’(u)ux =0.
We take a(u) =f(u)

From above equation, we have non-conservation from

@m(u)a—”:o
ot ox )

The characteristics curve of above condition; it will be define as the solution is integral curve of the
differential equation

dx
o alu(x,1)). (1.9)

Theorem (1): Assume that u is a smooth of (1.1) the characteristic curve are straight lines along,
which u is constant.
Proof:

Consider a characteristic curve passing through the point (XO,O), a solution of the ordinary

differential equation is using the Method of characteristics,

dt __dv _du
1 f ) o
dx ,

SO, E—f(“)

withinitial value x(0)=x, =C

Along a curve, u is constant.

iu(x(t),t) = Z—L;(x(f),f)‘F 8_u(x(t)at)dx

dt ox dr
ou ou
ie, —+ f'lu)— |=0.
(81‘ f( )ax)

By above equation is using by chain rule,
d

SO, —ulx(r),t)=0
< olep)

Hence the characteristic curves are straight lines, whose constant slopes depends on the initial
value

dx ,

o /')

x(t)=f'lu)+C (in intergal curve)
x(t)= f'(u)+x,
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Example:
a) +a(ulu, =0 u(x,0)=u0(x)

Solution:
u, + a(u)ux =0
let f'(u)=alu)
the characteristic curves are
x(t) =at+x,
according toinitial data,
u(x(1) 1) =u(x(0)0) = (x,) = s (x — at)
u(x(t),t) =1U, (x - at)

i.e, u,issmooth function.

Non-smooth Solution: f"(u)>0 and f"(u)<0 are two cases for convex and concave
respectively.
Existences of non-smooth solution:

We consider convex case i.€, f"(u) >0

Let x,,x, € R suchthat x, > x,

ifu, (x) is decreasing function, then uo(xI )> u, (xz).
since, 1"(u)>0, then f"(u,(x,))> /"(u,(x,))
u(xl,tl)z uo(xl ), implies thatu,, (x2)< U, ()c1 )

So that characteristics intersect after finite time and form non smooth solution.

Example:

5) The Burgers’ equation (inviscid equation) is #, +uu =0, with initial condition

1, if x<0
u(x,0)=11-x, if 0<x <1
0, if x>1

Solution:

2
u, +(u_J =0
2 X

By solving characteristic curve we get.
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x{e)=of"(u)+x,
x(t) =tu(x)+x,
x(t): u, (xo )+ X,

In these means, the characteristics curve passes through the point (xO,O). Then we have

X, +1, ifx, <0
x=x(x,,t)=| x, +t(1-x,), f0<x, <1
X, if x,2=1
x—t ifx<t

X
we know that,x, = I ift <x<1

X, if x>1

1, if x<t<l1

u(x,t): )IC—_l , ift<x<1

0, ifx=lr<l

At t=1, the characteristic intersect

()= {1, zfx <1
0, ifx>1

Now, it is discontinuities may develop after a finite time if f is nonlinear, when u is smooth in

fig. (1).

]
Z

LAY
AN

%
AR
AR




19

Chapter-2

Riemann Problem for isentropic magnetogasdynamics

2.1 Shock and rarefaction waves:

When flow of an isentropic, inviscid and perfectly conducting compressible fluid is subjected to a
transverse magnetic field, then conservation form can be written as

%(p%aﬁ(pu):o

0 B’
at(pu)+ (p+ pu’ +—) 0,>0,xeR (2.1)

Where p>0 ,u, p>0, it may represent density, velocity, pressure, B >(transversal magnetic

field and & > 0 denote magnetic permeability, respectively; p and B are functions in which are
=k,p’and B=k,p where k, and k, are positive constants and } is the adiabatic constant

which lies in the range 1< <2 for most of the gases. The independent variables are t and x.

op O
—_—+— =0
o)
:>a—p+ 8_u+u8p_0
ot ox ox
0 0 ?
+—|p+ +—|=0

o)+ — (p pu’ j
pa—u+ 8_,0+8_p+ 28—'0+,o2u@+l288—3:0
ot ot 0Ox ox ox u ox
6_u+8_p+pu@+§8_8+u6_p+up8_u+u26_pzo

ot 0Ox ox u Ox ot ox ox
a_u_+_ au+a_p+2_Ba_B+u(ap pa_u 8'0):0

Poc P Tox max \ar Pax Yax
ou ou oOp 2BOB
p—+pu—+—+——=0

ot ox oOx u Ox

du op 2k’ op
—+ pu— ML T2 p =0
p@t pu ke ox Y7, p@x

— k y-1 ap

op
where k then —
p=hp’ 8x ox



B =k,p, it implies that

OB op
=k
Ox ox
2BB /u= 2(k2p)(k2px)
du du Lo 2k op
—+ pu—+ykp T+ 2 p =0,
p@t pu@x VP ox pax
2
p 8_u+u6_u+yklpy_26_p+_2k2 %» =0,
o  0Ox ox u Ox
2
a—”+ua—”+yk1py‘26—/)+—2k2 P _y
ot  0Ox Ox u Ox

above equation can be written as

8_p+p8_u+u8_pzo
ot ox ox

2k,’
a_u+ua_u+7klp}rza_p+_za_p:0

ot ox Ox Ui Ox

ol " P P
u t ;/klp + ILI u ux

for smooth solutions, system (2.1) can be written as

U +A4AU, =0 (2.2)
u P .
where the matrix A4 is defined as 4 =| 1,2 ,and w= <02 +b? )2 is the magneto-acoustic
— u
p

1

speed with ¢ = (p'(p))i is the local sound speed and b =(~—~*

U +4U_ =0
u p
A=|w?
- u
p

where, w= (02 +b? )5,

1
2 which is Alfven speed;



Hp
(4-11)=0
uz ' PR
Yooul o 1|
Lr
=2 p
2 =0
W u-A
L P

=2 —w*=0

(u—/l)2 =w’

(= 2)= il =2)+ wli=0
(u—/l)—w:O

—A=w—-u

by =u—w

(w—2)+w=0

— Ay ==W—u

Ay =u+w

The eigenvalues of 4 are A, =u—wand A, =u+w. Thus, the system (2.2) is strictly hyperbolic

- —

when w>0. Let 1, = (— yol w)tr and 72 = (— 0, w)[r are the right eigenvectors corresponding to the

eigenvalues A, and A, respectively. We have

VA.;: il'Jrij (+w P
" \op  ou w

. { B’(p) +pp"(p)j_

2uplp) - 2w(p)

when p”(p) >0, the first characteristic field is genuinely nonlinear. Similarly, it can be

shown that the second characteristic field is nonlinear when p”(p)Z 0.

21
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— -
The waves associated with 7, and 7, characteristic field will be either shock or rarefaction waves.

2.2 Shock: Let p,and p, the left and right hand states of either a shock or a rarefaction wave are

u, =u(p, ), p, = p(p, ) B, =B(p,) and u =u(,0),p =p(p),B =B(p)denotes respectively; the system
(2.1) are using in Rankine—Hugonist jump conditions, the given by

vlp]=[pu] (2.3)
vlpu]= {pwuz +§} (2.4)

dx
where [] denote the jump across a discontinuity curve x = x(t) and v = Z is the shock speed.

Lemma 2.1:
Let S, and S, respectively denote 1- shock and 2-shock associated with A, and A, characteristic fields.

Let the states U, and U satisfy the Rankine-Hugoniot jump conditions (2.4) and (2.3). Then the shock

curves satisfy,

u=u,—g(p,p) (2.5)

B’ B>\ p-p
Where g(p,.p)= \/£p+——p, ——j(—’
2p 2u N pp

such that for, 1<y <2, we have for p>p,u'<0and 4" >0 on S, whilst for p<p, we have

u'>0and u"<0on §,.

Proof: The U -elimination of
olp]=[pul
B 2

vlpul=| p+pu’ +—
2p

vlpl=[pu]

=

v[pu]=| p+pu* +—
i 2p




B 2 2
((P’/‘ piU;) ]:[p+pu2+3—}
P =P 2u

2

(pu—pyu;)* = {pﬂmz +2B;}(p—p,)
y7,

- 2 .
prut + plu =2pupu, =| p+put +——p,—pu,’ —==|(p-p,)
2u 2u

B’ ’
plu’ "‘pzz”/z —2pupu;, = p"‘ﬂ_p/ _ij(lo_p/)"'(puz —plulzkp—pl)

2 2

B
pu’ +pu” = 2pupu, = Pt —ij(p—plh (0% = pps® = ppu) + piu)

) 2 B’ B’
ppu” + ppu; =2pupu, =\ p+—-p,——— ((p—p,;)

2u 2u
B’ B/’
u’ +u —2uu, )= p+—-—p,——— (p-
/Opl( I 1) p 2 P 2 (p—p))
B’ B’ \(p—p)
(w—u) =| p+——p - F—
2u 2u ) pp

2u ) pp

B’ B \(p-p)
u=u,~ | pr———p, ——— |
2u 2u ) pp

Let W(p): gz(p, yo) ); on the differentiating (2.5) with respect to 0 we obtain

, 2BB'\ p-p, B? B?
p+ DU B 2Pl Tt
ou_ -1 2u PP 2u 2u

o 2 sz iz PP
p+ 2
2u 2u )\ ppy

oo o)
2J¥(p)

(u—u1)=\/(p+3—2—p, B—’JM
7,
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which is negative for p> p,. We can already show that i and w' are positive for p> py, and
W(p):lﬂ'(pl)zo,'further, 1< 7/ < 2’ l//” > 0’ Whilstl//m < 0 )

Let 1(p)=(("(0)) ~20(p"()

so that )((p,)z 0. Since ){'(p)z —21//(,0)1;/”'(/)), it follows forl <y < 2,)('(/)) >0. Hence, x(p)> x(p,)
for p> p, . Thus, forl <y <2, if we differentiate again, we get

v (') —2y(p)w"(p)

u' = 3 >0onS,.

Ay (p):

- du . - d’u
Similarly, for p < p, and 1<y <2, we have - > (0 on again differentiating, then T <0on §,.
p P

Now, these shock curves are satisfied the Lax entropy conditions.
Lemma(2.2):
If p satisfies p’' >0 and p" >0, then the Lax condition hold,
i.e., 1-shock satisfies
v<A,U,), 4U)<v<A,(U)(2.6)

Whilst the 2-shock satisfies

4(U)<v<A4L(U,), 4U)<v (2.7)
Proof:

Let us consider 1-shock curve to prove v < AI(U,). On apply 1-shock, we know that p > p,, since p' >0

and p">0, by Lagrange’s mean value theorem, there exist exists a fe(pl,p) such that
fla)=1(b)=f"(cNb-a). celab)

f=p a=p, b=p

plp)=plp)=p"ENp-p,)

()= %, celpp).



further, since p”" >0, we have p'>0,p" >0and p' is an increasing function & € (/0,/01 ), p, <&,

LN 1, p'(p,)< p'(¢)=c} and thus,
1

G <p@)<p @, psp. L1

P P

and it implies that,

P> p©)
Pi

(r—p,
(p_P/)

N—

2
¢ <

L (2.8)
P

+ P

Also, since p+ p, >2p, , we have p > p, itimplies that

k; k;
2 p+p) 21 P
kf(pz—pf)>ﬁp
!
2ulp-p,)  2u

Kl =pi) p K

This implies by that

(B°-8) p _(B-B) K

)

2ulp—p,) p,~ 2ulp=p,)) 2" 2u p,
(5°-8) p _(8°-8) B
2ulp—p,) p~ 2ulp—p,) " 2up,
(8°-8) p _(8°-8) B
2u(p—p,) o, 2ulp—p,)" 2up,
b} > B/

2up,

and therefore



26

(B -8) p

b’ < )
" 2ulp-p) A (2.9)

From equation (2.8) and (2.9), we have

(r-p) p + (Bz_Blz)ﬁ

(p=p,) pr 2ulp-p)p,
. _-p) p ,(B-B)p

2 2
¢y +b <

(p=p)) o, 2ulp=p,)pi
A P {@_W(Bz_ﬂ

(p—p,)p 2u
B’ —-B’
B {(p—pm(—f)}
p_pl)pl 2u

(
e _\/(p —Zz o, {(p P (322_;12 )}
|

%[@_MHM}
i e )
B e

il u,)< —w,,and hence v < A4, (U,)=u, —w,.
P =P

—w,>—

[S—

In (2.5), the above inequality holds that

In same manner another condition, since p">0 and P, <p on 1shock, we have

P'(’?) s ) < p’(p) forsome 7 € (pl,p),and hence

—Fi

2y r—pr) P
(:D_pl) P (2.10)
+
Further, since p > (%),
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(32 _Bzz) &,

b* >
2ulp—p,) p (2.11)

and hence from (2.10) and (2.11), we obtain

(32 —Blz)&+(]9_p1) &,

b*+c* >
2ulp=p,) p (p-p,) p (2.12)

It implies that

e \/(p o (Bzz_uBlZ )j p(Pp—] p)

From equation (2.3) and (2.5) imply that

u-w< LM ) and hence L(U)<w.
PP

Lastly, we show that v < XQ(U) In this way, the equation (2.12), which implying that,

oo [T e g
2ulp-p,) p (p—p,) p

U—u

For 1-shock curve, using (2.5) we have w > M , which implies thatv < ﬂz(U) .
P—P

Hence 1-shock satisfied Lax condition; as well as way satisfied by the lax condition for the

2-shock.

Now we will show that the density, pressure, velocity magnetic field vary across a shock.
Applying equation (2.1) for 1-shock the left and right states have to satisfies Lax conditions

(2.6). Letus define V' =v-u . thensincev <4 (U,), it follows that J/, <—w, implies that
V, <0, and hence v<u,.

Similarly, by using second condition i.e., 4, (U) < v < 4,(U), we get
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U-w<ovo<v+w, so -w<lV<w,

hence|V| <w.From (2.3) we have pV = p,V,.Since p and p, are positive, both " and V,

must have same sign; since V, < 0, we have V' <0. For 1-shock, the gas speed on the both sides of
shock is greater than shock speed, and therefore the particles cross the from left to right.
In case of 2-shock, applying Lax conditions, (2.7) this implying |V,| <Ww; since ﬂ,Z(U) <V or
equivalently # +w =0, which follows that w<}", and hence V' > 0. In case of 2-shock particles
cross from right to left.
Let the states ahead of, and behind the shock be designated the 1- state and 2-state, respectively.
Then, for 1-shock/ =1, =2, and
hence V> > W, and V,” <W,";
for 2-shock/ =2 r=1, so V;> > W, and V;} <W,.
Thus, for both shocks we have
V?:>Ww?andV, <W, .
To this conditions satisfied the equation (2.4) holds that
2 2
p+pl +B;]_,u =p,+pVs +§_21uf
which implies that

B’ B’ B’ B’
Py +P1le+2'—<p1 +p Vi +——=p,+p VS + 2 < p,+pw; + 2
H 2p 2u 2u

3k,’ 3,7,

)p12 <p2+pzc§+( = )p; .
2u 2u

2
sop,+pc +(

the above inequalities follows that p, < p,, and

therefore p, < p, and B, < B,. and from (2.3) we have

’

|p1V1| = |p2V2
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Since p, > p,, it follows that|V1| > |V2| Since for 1-shock ¥, <0and p, < p,, and it follows that
V, >V, implies thatu, > u,. Similarly, for 2-shock V, >0and p, < p,, its implying thatV, >V,

andsou, <u,

2.3 Rarefaction waves:

X

The U(
t

] which are of the piecewise smooth continuous solutions of (2.2) such that

Uty =4U(5).4,(U,)<

(2.13)

If we take 7 :f, then the equation (2.2) is a system of ordinary differential equations and it can be
t

tr
e o

written as (A -nl) p,u| =0,

where [ is 2x2 identity matrix and the differentiating with respect to the variable 7 is denoted by

tr tr

dot. If| p,u | =(0,0), then p and u become constants. If| p,u ;t(0.0), then there exist a

eigenvector of the matrix 4 corresponding to the eigenvalue7. Since it has two real and distinct

eigenvalues A, < 4,, so it has two families of the rarefaction waves R, and R, which are 1-Rarefaction

waves and 2-Rarefaction waves respectively; Let us consider 1-rarefaction waves, since

ir
L] L]

(A-T][ pu| =0

and with 4, =u —w we have
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vor 1ool|e

w? —(u—w . |=0

— u 0 L5

LA i

N A

W— u-(u-w) 1; B

L P

w Yo, P

w? . (=0

L P

w;+p;—0

2. L]

—p+wu=0

yo)

Wd—’o+ d_u=0

dp ~ dn

Ed_p+d_u:0

pdn dn

10, :u+JMdy - 0. (2.14)
Y

Where II, 1-Riemann invariant is (2.14) represents R, curve. Similarly, I, 2-Riemann invariant of the

2-Rarefaction wave curve is represent R, curve

IT, =u—j%y)dy =0.
(2.15)

Theorem 2.1

On Rl(respectively Rz)the Riemann invariant I'T,(respectively I'l,) is constant.

Lemma2.3:Across1-rarefaction waves (respectively, 2-rarefaction waves), p=<p and u, <u

(respectively, p> p,and u, > u if and only if, characteristic speed increases from left hand state to

right hand state.
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Proof: Since, we know that

w=A+c>+b°
" 2
dwz(p_+ﬂj>0

% 2w 2uw

wis an increasing function of p; so it form for 1-rarefaction waves, w(p)ﬁ w(p,) or it can be written
as -w, <—w. These inequalities are #, <u and-w;, <—w show that 4 (U,)< A,(U). Similarly we can

prove 4, (U, )< A,(U) for 2-rarefaction waves. Then the conversely for 1-rarefaction waves,
since 4,(U,)< 4(U), we have
w-w, <u—u,.

(2.16)

In further, since 1-rarefaction wave region 11, is constant, then we get

u-u, = ! Wiy )dy —! Wyy )dy :

the equation (2.16) shows that

<o) ot
o Y o Y

which implies that p < p, and

p
u-u, =J‘Wy)dy—jw(y)dy20.
0 o Y

Hence p < p,andu; <u .Similarly, it can be shown that the 2-rarefaction waves, p > p,andu, 2 u.

Pr
P

Introducing a new parameter @, where @ = obtain from (2.5) the following formulas for shock

curves, for 1-shock curve & >1 and 2-shock curve @ < 1.(Respectively, rarefaction curves in the term of
parameterizations).

From equation (2.5),



B B\ p-p
u=u,—g(p,p) whereg(p,.p)= || p+=—-p, ==
2p 2u \ pp;

Pr _ 0, Pr_ g7 it implyingthereby p =k, p’
Pi P

B
—~=01implies that B=k,p, so that 5 :0:&,
B, B, P

u B’ B? -

U, 2u 2u N pp,

u B> B? -

U, 2p0 2u )\ ppy

u B’ -
e (e VRYe —“J[p pl)
u, P B, PP,

2

u p B 1
TS Y | <L | iy S (1——)
u \/ P B 0

”4:1_\/[/1(9? ~1)+ B(p? —1)(1—%). (2.17)

U

For 1-rarefaction waves (8 < 1), since 1-Riemann invariant is constant, we have

B, =0, so that ﬂ;ﬁ;&

Pr_g Pr_gr
P V4, B, B, P

if wesetd =t,df=dt, £:1+\/))Aty1 +231(1—é)dt

u,
u \yAt™ + 2Bt
L=~
U ! (2.18)

Similarly, for 2-rarefaction wave ((9 > l), we have

B
&:9’&:97, r—0
P D B,
then as well as we set B, :0:&

B, P

32
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Uy \/ yAr ™ + ZBt(I — ljdt
u, 0

u \yAt ™ + 2Bt it

t=1+
u, t

Thus, for 1-family, either shock or rarefaction wave, we have

\yAt" + 2Bt
1A T

if 0<1,
u t
u, _ (2.19)

Y- [l - 1)+ Bl 1) 1—% 01
J [-5)

In the similar way,

1—\/[A(9V 1)+ B(p? —1)(1—%) L if0<1

Y - (2.20)
U \yAt™ + 2Bt '
1+%dt, ifo>1,
kpl™ k3p
where 4 = % and B = 22 12 ; is as to expression in above equations (2.19) and (2.20).
U uu,

Theorem 3.1:

The R, curve is convex and monotonic decreasing while R, curve is concave and monotonic

increasing.
Proof: We know that, 1-rarefaction wave is

P
u=u/+fMdy Jdfp<p, (3.1)
y

p

On differentiating with respect to p, we have

@ w



au_w_w (3.2)

We know that w =~/c* +b>, since p = k,p’,B =k,p in the following equations

2 2
cz — yklpyil’bz — k;p
1p
2 2
w= \/yklpyl +k;p
up

W= (2bb" +2¢¢”)
2\e* +b°
, (BB +cc')

w =
w

Again, on differentiating with respect to p ,we have

du_w w
dp* p* p
d’u _ w (bb' +cc')
dp*  p*  wp
d*u _1_(bb'+cc )
dp* p*  wp
d’u  w —p(bb' +cc )
dp’ wp’
2
jplz =W’ —p(bb' +cc )
2 2

We know that b and c are differentiating, we have

k*> . k%
b*> =—= itimplies there bb =——
U 2u
and ¢ = yk,p’™" so that 2cc’ = y(y —1)k,p"”
Y=k

cc =
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Z_zl; ot 1K kzzzp yr=Dkyp™”
p uoo 2u
2 k22p+(3y—y2)k1p”‘l
Z’pZ =& e 2 >0
Kap (377"
d'u -_H# >0

d 2 , ’
p 25° /p , BB
U

Kap  Br=1" "
2
forl<y<2 hoIddL;: 2 >0

d ' '
p 2p% [P + 25
7]

and, therefore, u is convex with respect p forl-rarefaction waves. Similarly, we can show for

2-rarefaction waves.

Now we prove that the shock curves are starlike with respect to (p,,u,) for p and B, these has a good

geometry in Riemann invariant coordinates whenever p' >0 and p" > 0.
Theorem 3.2:

The 1-shock and 2-shock curve are starlike with respect to (pl,ul) when p=k,p” and B=k,p for

values of y lyingin the range (l <y< 2).
Proof:

We have to prove that any ray through the point (pl,u,) be intersected 1-shock curve in at atmost one
point for this is sufficient to prove the rays (pl,ul) through the two different points (,Ol,u1 ), (p2,u2) on
the 1-shock curve, and whose slope are different. The slope of the line joining (pl,u,)with

U, —u,

(plaul)a(pzauz) is "L and -
Pr— P Pr=P

For the 1-shock equation (2.5) are implies that
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(M’J = £(p)+ f2(p).
PP
P—DP B2_Bl2

where f(p)=—F"—= f(p)=——F—F—
1( ) pzp(p_pz) ’ 2/1,01,0(P—P1)

we prove that £/(p)<0 and fi(p)<0. When putting B=k,p in f,(p) and differentiating with
respect to p, and we have

2 2
B*-B; _ (kzp ) _(kzpz )

fZ(p)ZZyp,p(/)_pl) Zyp,p(p—p,)
(,0 _M

2upplp-p,)
_k(p=pNp+p)
A 2up,p(p-p,)
k2
(p)- e
fz(p)zlzc_z[i"'lj
U\ Py P

and its again differentiating with respect to p, we have

£o-1-L]

2ul p
’ __k22

= - <0
2pp

It also proved that, when fl(p) in p=k,p’ and differentiating with respect to o, and we obtain

1(P =L )
pp(p—p,)

(o _kp" —kip/
pplp=p,)
ko' —pl)
piplp=p)

on differentiating, we have
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akl(py _pl/)
o(p) _~ pplp-p)
op op
/ _1£k1y_k11y_1y_k11y£1 P
afl(p):(pp(p p))ap( p’ —kp] )~ (kp p)ap(pp(p p))
op (pplp—p,)f

() (pplp—p Vo ~llp” —kipi Nepp—p/)

op (p.p(p=p,))

(p) (puplo—p )lyp™ = 2pipkp’ —kp’ p? =2p,pkipi +kiplp.’)

op (o0(p=p,))

3(0) _(pp> = pt oYk )= (2pipkip” —kip? o7 =2p,pkipi +kiplp))

op (piplp=p,))

(p) (oo ke = plplleyp™ )~ oipkip’ —kip’ 02 =2p,0kp] +kipip.’)

p (p,p(p P ))2

(p) (p.p* =p2 oo™ )= Cppkp’ —kip’ 02 =2p,0kp} +kipip))

P (pplp—p,)f
o (p) _ pp” ley—kyp’p —2kp™ py +kip’ pi + 2pp] ke~ kip]
op (o.p(p=p,))

o (p) _ pip" ky=2kp™" p, +kip”p} —kyyp’ p} + 2pp]”ky — ki p
op (pip(p—p,)f

of(p) k(y=2)pp"" +k(1=y)pi p” +2k,p]" —k,p]”

op (o.0(p=p,))

Let g,(p)=k,(y=2)p,p"" +k,(1=y)p] p +2k,p]" ki p}™ then g,(p,)=0.
Then g (p)=k,(y=2)y+D)p,p" +ky(1—y)p; p’" + 2k, p]" —kip]™ . &1(p,)=0.

Since g, (p)= k,(y—=2Xy+1)yp,p"" +ky(1—y)1—y)p? p’ 2, if above condition are follows that the
values of yin1 <y <2, we have g;(p)< 0. The above equation to be held in 1-shock and then p, < p
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andg (p)<g (p,)=0, implying that g,(p) is a decreasing function of p; and this follows that
u-u,
PP
is starlike with respect to (plul), as usually in same way 2-shock curve and is also a starlike with respect

to (o).

g (p)< g (p,), it therefore £, < 0. Thus, is a decreasing function of p ; we hence 1-shock curve

Lemma 3.1

, " dll dll
With p (p)>0 and p >0, the inequalities 0<d—1<1 and 0< de <lhold along 1-shock and 2-
2 1
shock respectively, with

11, :qu])-M , (3.3)
y

1, =u—fw—y)dy. (3.4)
y

Proof: From (3.3) and (3.4), we have

dll, _du(p) A w(p)
dp  dp p
dit, _du(p) wip)
dp  dp p

and

+

We know that the above theorem as long a 1-shock curves.

di dll
M<0,ithasthat—2<0.
dp dp
1 dHZ 1
Further, as along 1-shock curves ——=|, we have —<1. In order to prove that
dp | |dp 2

11,

dp

d.
0< LI <1, in sufficiently part <0. For a condition 1-shock curve, equation (2.5) it imply that

2
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., BB . 2BB \ p—p, B’ Bl 1
pt—|-|lp+— ||+t |
du(p)  wlp) _ K 2u N\ pp, 2u 2u)p
dp p p B? B\ p-
2p 2u N pp,
- 2
2u " 2u)p? w \po p
2 2 _
2u 2u \ pp,

b

hence the above condition holds that

MJrM <0, and these implies thatﬂ <0.

dp p dp

dll

Similarly, we show that 0 < B 1 along 2-shock curves.

2

4. Riemann Problem:
The system (2.1) be the initial condition as

U, if x<x,,

, (4.1)
U.if x>x,

U(x,to):{

is called as Riemann problem. Where U, be the state to the left of x =x, and U, be the state to the
right of x = x, the constant states are separated by in both waves either a shock waves or rarefaction

wave. The Riemann invariant coordinates are

p p
11, =u+J-Mdy and 17, :u—J.Mdy.
Y Y

Lemma (4.1):

The mapping (pu)—) (171,172) is one to one and the Jacobian of this mapping is nonzero when p > 0.
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P P
Proof: Since, 11, =u+jMdy and /7, =u—IMdy
Y y

On differentiating with respect to p, we get

o, _w 8171:1
op p ou
oll, _w oll, 1
op p Ou ’

Thus, the Jacobian of the mapping (pu) - (171,172)

o, o, | w |
op ou | |p
oI, oI | | w |
op ou p
wow W
P P P

This is one-one and onto.

We consider Riemann invariants as coordinate system. Let us will take a plane (H],Hz)in that plane we
draw the curves S, S,, R and R, which divide the plane can into four distinct regions. I, I, lll, and IV.
Let U, are left state. Fixing U, and varying U . Let us consider U_belong to any of the four region as

fig.4 (a). For UeR>.

S, (U) = {(anz )"(anz ) €S, }:” =12.
R,(U)={(11,11,)(11,11,)e R, },n=12 and T,({U)=S,(U)UR,(U)n=12

In an above wave curves, the plane (pu) divides into a four region. To solve the Riemann problem,
consider the wave curve T2(Um) forU, e TI(U,). And we have to verify that two curves TZ(Um)and
Tz(Um*), whereU, ,U, . eTl(U,), so these a two curves are non-intersecting and the set of all such

curves to entire half space p >0 in the plane (H,,Hz)in one-one fashion.

If U, €I, draw a vertical line 11, =11, in fig.4 (a). Which will be intersects S, uniquely at a point Um1 .
The solution to Riemann problem is now obvious; we taking on constant state of U, by a 1-shock and

then from U, to the constant state U by a 2-rarefaction wave.



41

Let U, ell region, draw a vertical line I/, =11, in fig.4 (a) which is intersect R, uniquely at a point

U, - The solution is going from U, and U, , by R, andtofrom U, , to U byR,.

If U, €lll region, we define the concept of inverse shock curve. The inverse curve denote by SZ

consists of those states (Hl,Hz) which can be connected to the state (H 172,) on the right by S,

1r?

shock in fig.4 (a). These represented, from (2.5) by

Fig 4(a). Rarefaction curves (R; and R;,) and shock curves (S; and S,) in the plane (H],Hz)

2u "7 2u N opp,
.Therefore, U can be connected with U, by R, are followed by S, .

B’ B!\ p-
u:ur+\/[p+——p —’j(uj.The above curve intersect the R, uniquely a point U,

If U, e IV region (see fig.4(c)), (as from lemma 3.1) 6:;11772

>1onS,. It also defines in dit, <lonS;.
1 dHl

This mean that, the S,and S; will intersecting uniquely at the point UW , therefore, the solution consists
of 1-shock and 2-shock. Thus we have shown that set {Tz(Um).'Um GTI(U,)}, covers the entire half

space p >0, in the plane (H,Hz) in a one-one way.

When the vacuum state (p = 0) it’s not satisfied the same condition.
Lemma (4.2):

If 11, <II,,,the vacuum occurs.
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Proof:

Fromfig.4(a), 11, =1I,and I, =11, ;

if 1, <II,,,then I1,, —I1,, = I1,, — II,, <O0.

P
But it will be 11, —1I,, = ZIMdyy
0V

Which implying that that p, <0.Hence, vacuum occurs.

R, m
o ) e
: 2 1 To(U))
. \_v_.__-_ U R S R
g _'_____-_‘:—“—’—'—__’______-I_ T (U
11 (i T
{7 IV R
1/
1 |’I S —
J

Figd(b). wave curves in plane (p,u).

Theorem (4.1):

Assume that p >0,p" >0 and that we are given initial states U, and U, where p, >0, p, >0 for

the Riemann problem of system (2.1). Assume that//;, > I, . Then there exists a solution of the

Riemann problem for system (2.1). Moreover, the solution is given by 1- wave following by a 2-wave
satisfying o >0, and the solution is unique in the class of constant states separated by shock waves

and rarefaction waves.

7
“mg
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fig.4(c). 2-shock wave and 1-shock wave.

(M5, 11;,)

(Myy, M)

(M M)

> 11,

figd(d). vacuum curve

5. Interaction of Elementary waves:

The interaction of elementary waves, obtaining from the Riemann problem (4.1), gives rise to new
emerging elementary waves. And then two jump discontinuities at x, and x, , it as follows:

U, if —o<x<x,
U(xt,)=1U.,ifx, <x<x, (5.1)
U, ifx, <x<o

The choice of U, and U, in the terms of U, and an arbitrary x, and x, € R. With the initial data, we

have two Riemann problem locally. The first Riemann problem of the elementary wave may interact the
second Riemann problem of the elementary wave, and the time of interaction at formed a new Riemann
problem at one dimensional Euler equation. It may be found of the interaction of the elementary waves.

Here we like R,S, = R,,it means that a 2-rarefraction waves (u, tou*) R,, of the first Riemann
problem interacts with 1-shock, S, , of the second Riemann problem u, tou, .Then it interacts to new
Riemann problemu, tou, viau, SR, . In different families are possible to interaction of elementary

waves and as well as the same family are respectively (S,S,,S,R,,R,R,,R,S|) and

(SZSZ’ SISl 9R1S1 > SIRI > SZRZ’ R2S2) .
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5.1 Interaction of Elementary waves from different Families:
(a) Collision of two shocks (S,S,):

Let U, is connection to U, by the 2- shock S, is a first Riemann problem and U, is connected to U,

by a 1-shock, S, of the second Riemann problem. For a given U, we consider U, and U, insucha

way that p. <p,, from (2.5) we have u. =y, —g(p,,p*) in other way that p. < p_, then we have
written u, =u, — g(p..p, ).

[ 0.5 i 15 2 M

fig. 5.1(a). S,S; collision

Since, speed of 1-shock of the second Riemann problem is negative, S, and speed 2-shock of the first
Riemann problem is positive, S, overtakesS, . Then it shows that for any arbitrary stateU,, the state

U, liesin the region IV (in fig.4 (b)). It in sufficient to prove that
g( *,p)—g(p,,p)Jr g(p,,p*) >0for p. < p,and p, < p. Let take in contrary that
g(p..p)-g(p. p)+g(p1, p.)<O. Ifin this, then

g’ (o, p.)+ g (p.. p)+22(p1 2 N oo p) < 27 (010 P),

Implying thereby that,
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2 2 2 2
(P* —pe 28 J(L—LJ{P* —p+ 2 H J(l—L]Hg(pl,p*)g(p*,p)S 0 (5.2)
2u \p P 2u \p p.

The above equation (5.2), is strictly positive, which is a contradiction. Hence,

g(pl,p*)+ g( *,p)+g(p,,p)> 0,i.e., thecurveS, (U*) are lies below the curves S, (U,), therefore,
U, liesinthe region IV. Thus, and it follows interaction results is S, S, — S|, interaction results, in

case of illustrate in fig.5.1 (a).
(b) Collision of a shock and rarefaction (S;R;):

Here U, eSz(UZ) and U, eRl(U*) i.e., foragiven U,, Let U, and U, suchthat p, < p from

equation (2.5), we have u., =u, —g(p,,p*)and P, < p., from equation (2.15) we have

P
\%
U, =u,+ J.Mdy. Since 2-shock of the Riemann problem is positive and 1- rarefaction wave of the

PR

second Riemann problem is negative velocity, it follows that R overtakesS, . Since, for any givenU,,,

”J“ w(y)

wly), dy+ (. p.)>0
y

y_
Y P

for p < p. < p,, and can be follows that the curve R, (U*) lies below the curve R, (U,), hence U, lies

in the region IlI, subsequently S,R, — RS, . The compute results this case in fig.5.1 (b).

el
Py

fig. 5.1(b). S;R; collision
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(c) Collision of two rarefaction waves (R;R;):
We consider U, € R,(U,)and U, € R,(U.). In any other way, for a givenU, , Let U, and U, such that
PLS Pe U =1, +I )dy and p. < p., then u, —u*+_|. )dy Since, the trailing end of 2-
Pi y Pr y
rarefaction wave has a positive velocity (bounded above) in (x,t)— plane and that 1-rarefaction wave

has a negative velocity (bounded above), interaction will take place. Since p, < p. and

Twiy)dy‘IW( dy+j ; w0y, s,

P Pi

It follows that the curve R, (U*) lies above the curve R, (U,); hence U, liesin the region Il and the

interaction results Il and the interaction resultis R,R, — R R, . Then computed results, in fig.5.1 (c).

TS 7 S F e g N gy

fig. 5.1(c) R,R; collision

(d) Collision of a rarefaction wave and a shock (R,S1):

Here U. ERZ(U,)and U, €8,(U.),i.e., for givenU,, we choose U. and U, such that p, < p.,

=u,+ J. dy and p, < p, andu, =u. —g(p*,pr ) Since, the second Riemann problem of 1-shock

speed is Iess than 2-rarefaction wave of first Riemann problem of the speed of trailing end in

(x,7)-plane, and therefore S, penetrates R, . Forany given U, . It show that U, €1, then it, to show
that
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P
| %y)dy+g(/01,p)—g(/o*,/0)> 0. (5.3)

Pi

Since g(p,,p) is a decreasing function with respect to the first variables p,, then we will have

g(p,,p)> g( *,p)for P, < p.. Hence, the equalities (5.3), there imply that curves S (U, ) lies above
the curve §, (U,) and U, lies in the region I. Thus the interaction result isR ,S, — S| R, ; and its

computed results in fig. 5.1(d).

fig. 5.1(d) R,S; collision.

5.2. Interaction of Elementary waves from same family:
(a) 2- shock wave overtakes another 2-shock wave (S,S;):

We consider the situation in which U, is connection to U, by a shock of the first Riemann problem
and U, is connected to U, by a 2- shock of the second Riemann problem. In other situation a given
left stateU,, the intermediate state U,, and the right state U, are chose such that p, < p, and

U, =U, —g(p,.p*) with Lax conditions satisfy

A(U/)< Uz(UlaU*)< ﬂz(Ul)a X‘Z(U*)< UZ(U,,U*), (5.4)

and p, < p.,and u, =u, —g(p*,pr) with Lax stability conditions

AU)<0,(ULU)<A0.). A4U)<0,(U.LU,) (5.5)
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where v, (U,,U*) is the speed of shock connection U, to U., and similarly, v, (U.,U, ) is the speed of
shock connecting U, to U,. From (5.4) and (5.5), we obtained UZ(U*,UF)< UZ(U,,U*), i.e., the

second Riemann problem of 2-shock overtakes the first Riemann problem of 2-shock at a finite time,
then its give rise to new Riemann problem with data U, and U, . To prove this problem. We must

have to determine the region in which U lies respect toU, . Let be claim that U, vary lies in region Il
so this have solution of the new Riemann problem consists of R andS, . In any more way, to show that
to our claim: we have to prove that Sz(U*) lies in entirely in the region lll; to prove this required to

show that for p < p. < p,.
g(p,,p)- g(p*,p)—g(p,,p*) > (. We consider, on the contradiction that
g(p,,p)- g( *,p)—g(p,,p*) <0. for p< p. < p,.Then the follow that, if we take, then

g’ (o p)+&%(p.. p)+28 (o P X, P) < 2% (P20 ), (5.6)

Implying there by that,

B*-B* Y1 1 B -B*\ 1 1
[p—pﬁT’](———j{p*—pﬁ—l P <2g(p,.p.)g(p.p)<0

P Px 2u P

Proving that

B*-B*Y 1 1 BI-B} (1 1
P‘P;"‘—l (___J-F(p*—pl—k—l —_— SO, (57)
2u Pr - P+ 2p PP

which is contradiction on as left hand of inequalities (5.7) is positive. Hence, S,S, - RS,; and

computed results in above situation fig.5.2(a).

fig. 5.2(a) S, overtakes S,.
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(b) 1-shock wave overtakes another 1- shock wave (S:5,):

Let U, lies in a region |, so that S,S; — SR, , is similarly to the previous case and its above situation

illustrate computer results.

u
u,

fig. 5.2(b) S; overtakes R;.

(C) 1-shock wave overtakes 1-Rarefaction wave (R;S;):

In case, the Riemann problem of the U, is connected to U, by 1- rarefaction wave and the second

Riemann of the U, is connected to U, by 1-shock. i.e., a givenU,, Let U, and U, in such a way that

w(y)

Py
P S Py, U = Uy + J.—dy and p.<p ,u, =u, —g(p*,pr). So we show that SI(U*) lies below of
Y
Ps

the RI(U,) for p. < p < p,, in other way, for p. < p< p,,

Py Py
g(p*,p)+.[w(y)dy—jw(y)dy >0 (5.8)
P p. Y
Pi Py
Let us define, F, (p): g(p*,p)+ I W(y)dy— J. W(y)dy so thatF,( *): 0. On differentiating F, (p) with
p o Y

respect to p, we obtain F]'(p)> 0, implying thatE( *)<Fl(p). i.e.,E(p)> 0,and hence S (U*) lies
below the curve RI(U,)for P <P =< p,. Inanother to show that it is sufficiently to S, (U,) lies above

the curve S, (U*) for p, < p; the sufficiently part, the claim has
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Py
g(p*,p)—g(p,,p)—I@dwoﬁm <p; (5.9)

P

Py
Let us define F,(p,)=g(p..p)-2(p. p)- | @dy

P

So that Fz(Pz):Fl(pz)> 0.
Let us consider that g(p*,p)—g(p*,pz)ﬁ g(p,,p) for p. < p, < p,
implying that,

g’ (p..p)-g’(p..p)-2g(p-. P)2(0-. £, )< &% (01, P),

implying thereby that

2 2 2 2
R (1 —iJ{P _p BT j(i—i]ﬂg( e 0)8 (00 )
2u P« P 2u P« P

or equivalently,

2
2_R? B* - B}
(PI—P*+B 5 j{l —L]— P-P+ (1 —LJ <0. (5.10)
2u P+ P 2u P P

But the left hand side of inequality (5.10) is positive, which leaves us with a contradiction.

Hence, g(p., p)-g(p1. p)> glp.. p,)for p. < p, < p,implying that,

g(p*a /O,, J. dy>g /0*,,0, J. >0

P P

We define a new function,

Tul)

F,(p)=g(p..p)-g(p;, p)— [ =y for p. < p< p,.

P
At some point (5,7 intersected in S,(U,)and S,(U.), for p. < p, <p,. Since, E(p)>0 and
F3(,0*)< 0, it is intermediate value property, there exists a p,, between p, and p,, such that
E,(5,)=0, by virtue of monotonicity. Thus, S,(U,) and S,(U.) is uniquely determined of the
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intersection, and the computer results in fig. 5.2(b). We distinguished three cases to depending on the
value of p_,

(@) If p, < p,,indeed 1-shock is weak as compared to 1- rarefaction wave, when U, €lll and the
interaction results is RS, = R,S,.

(b) If p. = p,, indeed two waves of first family interact, they annihilate each other, and give rise to
wave of second family, when U, lies on S, (U, ) and the interaction result isR,S, — S, .

(c) If p, > p,, and the interaction result is R S, — S,S,,0n U, € IV;indeed, the 1-rarefaction of

the first Riemann problem is weak as compare to the 1-shock of second Riemann problem,
which is stronger, overtakes and the trailing end of 1-rarefaction wave a reflected shock

Sz(Um,Ur), and a connection new connection constants state U/, on the left to U, on the right, is
produced. The transmitted wave, after interaction, is the 1-shock that joins state U, on the leftand U,

on the right.

u
U,

fig.5.2(c) R, overtakes S,

(d) 1- Rarefaction wave overtakes 1-shock wave (S;R;):

Here for a given U, we consider U, and U, ,such that U, ESI(U,)and U, eR(U.),ie, p.>p,

from equation (2.5) we have u, =u,-g(p,,p*)and P« 2 p,, from equation (2.5) we have

w(y)

P
U, =u,+ J.—dy. In the plane (x,?) the speed of trailing end of, A, (U*) is less than 1-shock speed
Y
P

v, (U,,U*) and therefore the 1-rarefaction wave from right overtakes 1-shock from left a finite time.

We show that the curve RI(U*) lies below the curve S, (U,) for p, < p < p.; for this we have to that
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wy)

Ps
g(pl,p* ,0], dey >0 for p, < p < p.. Let us a new function Gl(p), to show that
P

Gl(p)z g(pl,p*)—g(p,, p y)dy > 0 for p, < p < p,, then in this way it define the for w(p)

bt—.‘b

and g(p,,p) to hold that on G,(p) differentiating, we have that

-1 (, Y1 1)
R P G P
Gl(/?)z l <0

2g(/0,,,0)

Implying thereby that G, (0)> G, (. ), since G,(0.)=0,we have G,(p)> 0, then we prove that,
R,(U*) lies below the curve R (Ul) for p< p, < p.,then

Pi

g(pl,p*)+ I W( dy — J. ) dy >0 for p < p, < p.. Since the left hand side of this inequalities, for

P

L= p <p., tobe Gl(pl ), which is Gl(p, )is positive, so the conclusion above. So, we show that to

R, (U*) and SZ(U,) intersect into uniquely at some points (,52,52); to show that, for this

P
g(pl,p*)—g(p,,p)— J.Mdy =0 a uniquely root has p, such that p, < p,. To show a new function,
y
yel

we define Gz(p), there implying that Gz(p) 0, g(pl,p* pl, I dy and we know,

o)

Gz(p) <0 it takes negative as close to zero, then Gz(p, ) > 0. The curves are interest uniquely at the

R, (U*) and Sz(Uz) it follows that the intermediate value property, and in view of monotonically; here

three cases the value of p. on depending, we distinguish like,

(i) when p, > p,,and U, € IV ;the interaction resultis SR, —S,S, ; indeed in sufficient

case the both curves are interaction and then the 1-rarefaction wave is weak compared to
the 1-shock is stronger, which is produced a new elementary wave.

(ii) when p. =p,,and U, €5, (U, ) the interaction result is S, R, — S, i.e., interaction of the

first family of elementary waves. Gives rise to a second family of a new elementary wave.
(iii) when p, < p,,and U, € Il the interaction resultis SR, = R,S,.
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Fig.5.1(d) R, overtakes S,.

(e) 2-Rarefaction wave overtakes 2- shock wave (S;R;):

When U, eSz(U,) and U, ERZ(U*) of the S,R, interaction takes place, in any another word, in a

given U,, we have consider U,and U_are in a such way that p.<p,, from (2.5), we have

Py
U, =, —g(p,,p*) and p.<p,, from (2.15) we have u, =u,+ IMdy . We show that for
y
P

P<p=p, SZ(U,) lies above the curve RZ(U*), ie.,

%

Mdy>0 Vpe(p*,,O;) (5.11)

y

glp.p.)-glp.p)-

A — ]

T wl(y)

We define, to show that M, (p), M, (p)z g(pl,p*)—g(pl,p)— j—dy. Since there implying by that

Ps
SZ(U,) lies above RZ(U*),On differentiation M, (,0), since M (,0)> 0, we have M, (,0)> M, (p*),
since M, ( *):O, it follows that M, (p)> 0, we prove that the RZ(U]) lies above the curve RZ(U*)

P P
for p. < p < p,;to show that for this it is enough M, (p,)z g(pl,p*)— I W(y)dy— I W(y)dy >0 for
P+ y Pi y

P« < p, < pand the curve RZ(UI)Iies above the curve RZ(UI) for p.<p < p,Ml(p,)> 0; the left
hand side of this inequalities is Ml(p,) which to positive, we show that RZ(U*) of the intersect

uniquely  S,(U,)  at point (p,.1,)  for P<pP <P - We define

el
Mz(p)z g(p,,p)-g(pl,p*)— I%y)dy,for P <p < p so that Mz(p)< 0, and we consider a

P
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constant K >0, such that M,(p)>0 for allp> K. Then there exists a p, such that Mz(,53)=0.
Thus, R, (U.) and SI(U,) are intersect uniquely at (,53,53) as R,(U.) and SI(U,) in a terms of

monotone, and the computed results shown in fig.5.2(c). Here three cases are following,

(i) If p, <p;, U, €IV the interaction result isS,R, — S,S,, indeed, the strength of R, is
small compared to the elementary wave S,,and S, annihilatesR, in a finite time. The
strength of the reflected S, is small compared to the incident waves S, and R, .

(ii) When p, = p, and U_€S,(U,) the interaction result isS,R, — S, indeed S, is weaker
than R, compared to the incident waves R, andS, .

(iii) If p. > p;, the interaction results isS,R, — SR, ; indeed, R, is stronger thanS, .

(f) 2-Shock waves overtakes 2-Rarefaction(R,S,):

Foragiven U,, we have U, and U_, here U, ERZ(U,) and U, eSl(Ul) such that p, < p.,

=u,+ J. dy and p, < p.,u, =u. —g(p*,pr). We prove that RZ(U,) lies above the curve

S, (U )for p<p<p..

P P
g(p*,p)+ J. Ma’y— I Mdy >0, Vp <p<p. (5.12)

o R

To show that, we have a new function

N,(p)=g(p..p)+ I d I dy for p, < p< p.;sothat N,(p)=0.

Prx

This, in view of the expression for W(p) and g( *,p), yields

, BB'Y1 1 1 Bl - B’
P Y7, ;_; _? p-=p 2u
N(p)=-

2¢(p.. p)

<0

There implying by that,. Hence this result Nl(p)>Nl( *):0we show that Sz(U,) lies above the

curve Sz(U*)for L = p, < p.; toshow, itis sufficient for this
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e
glp..p)-glp.p)- I@dy >0for p< p < p..1f glp., p)-g(p.p)> glp., o, )then

Pi

P P
2(p.,p)-2(p,,0)- I%y)dy >g(p*,p,)—j@dy=N] (p,)>0 . We consider, which is

Pi Pi

contradiction that g(p*, p)—g(p,,p) < g(p*,P;)- Thus, it we have that (p*,p)—g(p*,,oz)ﬁ g(p, ,0).

There implies by that, gz( *,p)—gz(p*,p,)-Zg( *,p)g(p*,,ol)ﬁ gz(p,,p); this expression, in
terms of g(0..p).g(p..p,) and g(p;, p) yields

B’-B}\ 1 1 B*-B}\ 1 1
(p;—pﬁ’ )( ——J{p—pw J( ——)SZg(p*,p)g(p*,p;):

2u \p. p 2u \p. p

or equivalently

B -BY 1 1 oY1 1)
P, — Pst+— ———|+| p—p.+ ———1] <0. (5.13)
2u N\p. p 2u \p. p

Which is contraction, the above equation (5.13) is positive for p<p <p. hence,

g(p..p)-g(p.p)>glp.. o) for p<p <p. we proved that, a point (5,.i,) at S,(U.)and
SI(U,) intersect uniquely for p, < p, < p.. Here again we distinguish three cases depending on the

value of p, .

(i) If p,>p,,U, €1, the interaction results is R,S, — S|R,, indeed, the elementary wave
R, is stronger compared to S,, the strength of reflected S, is small compared to the
incident waves S, and R, .

(ii) If p.=p,,andU_e€ SI(U,) the interaction resultisR,S, — S, .

(iii) If p, <p,,and U, €V the interaction result isR,S, = S,S,; indeed, S, is stronger

than compared to the elementary wave R, is weaker.
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