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ABSTRACT 

 

Vibration and noise reduction are crucial in maintaining high performance level and 

prolonging the useful life of machinery, automobiles, aerodynamic and spacecraft structures. 

It is observed that damping in materials occur due to energy release due to micro-slips along 

frictional interfaces and due to varying strain regions and interaction between the metals. But 

it was found that the damping effect in metals is quite small that it can be neglected. Damping 

in metals is due to the micro-slips along frictional interfaces. Composites, however, have 

better damping properties than structural metals and cannot be neglected.  Typically, the 

range of composite damping begins where the best damped metal stops. 

In the present work, theoretical analysis was done on various polymer matrix composite 

(glass fibre polyesters) with riveted joints by varying initial conditions. Strain energy loss 

was calculated to calculate the damping in composites. Using FEA model, load variation w.r.t 

time was observed and the strain energy loss calculated was utilised in finding the material 

damping for Carbon fibre epoxy with riveted joints. Various simulations were performed in 

ANSYS and these results were utilised to calculate the loss factor, Rayleigh‘s damping 

constants and logarithmic decrement. 

These results can be used in designing machine tools, aircrafts, spacecraft‘s, satellites, missile 

systems and automobiles effectively to maximise the damping capacity and to improve their 

performances and the product life. 
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CHAPTER 1  

INTRODUCTION 

 

1.1 BACKGROUND 

Damping capacity is an extent of a material's ability to dissipate elastic-strain energy during 

mechanical vibration or wave propagation.  Complications involving vibration arise in many 

regions of mechanical, civil and aerospace engineering. The damping of a structural 

component or element is often a significantly overlooked criterion for good mechanical 

design. Numerous mechanical failures over a seemingly infinite multitude of structures 

occurred due to lack of damping in structural elements. For accounting the damping effects in 

a structural material, lots of researches and studies have been done in the field to suppress the 

vibration and to minimize the mechanical failures. 

 

Since it was found that damping materials can be utilised in treatment in passive damping 

technology to mechanical components and structures to increase the damping performance, 

there had been a commotion on the on-going research and studies over the last few periods to 

either alter the existing materials and components, or to develop an entirely new type of 

material to improve the structural dynamics of components for which damping concept could 

be applied. Composite structures are generally polymers, which give various ranges of 

different compositions which result in different material properties as well as behaviour. 

Hence, composite damping structures and materials can be developed and tailored quite 

efficiently for a specific purpose and application. 

 

Problems involving vibration and damping occur in many regions of mechanical, civil and 

aerospace engineering. Engineering composite structures and materials are generally 

fabricated using a variety of connections which include bolted, riveted, welded and bonded 

joints etc. The dynamics of mechanical joints is a topic of special importance due to their 

strong effect on the performance of the structural material. Moreover, the inclusion of the 
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above mentioned joints play a significant role in the overall system behaviour, particularly 

the damping level of the components and structures. However, determining damping either 

by analysis or by experiment is never easy and straightforward keeping in view of the 

complexity of the dynamic interaction of components. The estimation of damping in beam-

like structures using passive damping approach is very essential in problem solving addressed 

by the present research 

 

1.2 OBJECTIVE OF THE WORK 

 

This thesis provides a final summary of the progress made over the past year on the study of 

damping of composites with riveted joints, specifically applied to high stiffness and damping 

structural members. Composite materials are materials which dissipate strain energy when 

deformed in shear. This technology has a wide variety of engineering applications, including 

bridges, engine mounts, and machine components such as rotating shafts, component 

vibration isolation, novel spring designs which incorporate damping without the use of 

traditional dashpots or shock absorbers, and structural supports. 

 

The main focus of this dissertation is to study the complex behaviour of the composite 

(viscoelastic) materials, to predict damping effects using method of passive viscoelastic 

constrained layer damping technology and to show the nature of response of structures using 

finite element method. 
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CHAPTER 2 

LITERATURE REVIEW 

 
2.1 INTRODUCTION 

 

The widespread application of composite materials in the application of aerospace and 

sciences have inspired many scientists to study numerous aspects of their structural 

behaviour. These materials are chiefly utilised in circumstances where a huge strength-to-

load ratio is necessary. Likewise to isotropic materials, composite structures and materials are 

exposed to various types of damage, mostly cracking and de-lamination. The result in 

alteration of dynamic characteristics and consequently vary the toughness of elements. 

 

Many engineering assemblies are constructed by joining structural constituents through 

mechanical links. Such assembled structures need sufficient damping to limit excessive 

vibrations under dynamic loads. Damping in such structures mainly originates from two 

sources. One is the internal or material damping which is inherently low [1] and the other one 

is the structural damping due to joints [2]. 

 

The latter one offers an excellent source of energy release, thereby adequately compensating 

the low material damping of structures. But, this is only in case of metallic structures and not 

in composites.  It is estimated that metallic structures consisting of bolted or riveted members 

contribute about 90% of the damping through the joints [3]. The internal damping or material 

damping in case of composites is generally more, when compared to material damping in 

metallic structures. Often, damping in composites starts when the best damped metal stops. 

For this very reason, damping in composites is of recent interest and many researches are 

being done. 
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2.2 OVERVIEW ON DAMPING 

 

The 3 crucial factors that determine the dynamic responses of a structural material and its 

noise propagation features are mass, rigidity and damping. Mass and rigidity are associated 

with storage of energy. Damping results in the release of energy by a vibration system. For a 

linear system, when the forcing frequency is the equal to the natural frequency of the system, 

the response is very huge and can easily cause hazardous consequences. In the frequency 

domain, the response near the natural frequency is "controlled damping". Larger damping can 

help to decrease the amplitude of resonating structures. Increased damping also results in 

faster deterioration of free vibration, reduced dynamic stresses, smaller structural response to 

noise and sound, and increased noise propagation loss above the threshold frequency. A lot of 

literatures have been published on damping due to vibration. ASME published a collection of 

papers on structural damping in 1959 [6]. Lazan's book published in 1968 gave a very good 

idea on damping research work, discussed different mechanisms and forms of damping, and 

studied damping at both the microscopic and macroscopic levels [7]. Lazan conducted 

comprehensive studies into the general nature of material damping and presented damping 

results data for almost 2000 materials and test conditions. Lazan's results show that the 

logarithmic decrement values increase with dynamic stress, i.e., with vibration amplitude, 

where material damping is the dominant mechanism. This book is also valuable as a 

handbook because it contains more than 50 pages of data on damping properties of various 

materials, including metals, alloys polymers, composites, glass, stone, natural crystals, 

particle-type materials, and fluids. About 20 years later, Nashif, Jones and Henderson 

published another comprehensive book on vibration damping [8]. Jones himself wrote a 

handbook especially on viscoelastic damping 15 years later [9]. Sun and Lu's book published 

in 1995 presents recent research accomplishments on vibration damping in beams, plates, 

rings, and shells [10]. Finite element models on damping treatment are also summarized in 

this book. There is also other good literature available on vibration damping [11-

13].Damping in vibrating mechanical systems has been subdivided into two classes: Material 

damping and system damping, depending on the main routes of energy release. Coulomb 

(1784) postulated that material damping arises due to interfacial friction between the grain 

boundaries of the material under dynamic condition. Further studies on material damping 

have been made by Robertson and Yorgiadis (1946), Demer (1956), Lazan (1968) and 

Birchak (1977). System damping arises from slip and other boundary shear effects at mating 

surfaces, interfaces or joints between distinguishable parts. Murty (1971) established that the 
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energy released at the support is very small compared to material damping. 

 

2.3 REVIEW OF PAST RESEARCH ON DAMPING OF COMPOSITE MATERIALS 

 

Bert [14] and Nashif et al.[15] had done survey on the damping capacity of fibre reinforced 

composites and found out that composite materials generally exhibit higher damping than 

structural metallic materials. Chandra et al. [16] has done research on damping in fibre-

reinforced composite materials. 

 

Composite damping mechanisms and methodology applicable to damping analysis is 

described and had presented damping studies involving macro-mechanical, micromechanical 

and Viscoelastic approaches. Gibson et al.[17] and Sun et al.[18,19] assumed viscoelasticity 

to describe the behaviour of material damping of composites. 

 

The concept of specific damping capacity (SDC) was adopted in the damped vibration 

analysis by Adams and his co-workers [20-21], Morison [22] and Kinra et al [23].  

 

The concept of damping in terms of strain energy was apparently first introduced by Ungar 

et.al [24] and was later applied to finite element analysis by Johnson et.al [25]. Gibson et.al 

[26] has developed a technique for measuring material damping in specimens under forced 

flexural vibration. Suarez et al [27] has utilised Random and Impulse Techniques for 

Measurement of Damping in Composite Materials. The random and impulse techniques 

utilize the frequency-domain transfer function of a material specimen under random and 

impulsive excitation. Gibson et al [28] utilised the modal vibration response measurements to 

characterize, quickly and accurately the mechanical properties of fibre-reinforced composite 

materials and structures. 

 

Lin et al. [29] predicted SDC in composites under flexural vibration using finite element 

method based on modal strain energy (MSE) method considering only two inter laminar 

stresses and neglecting transverse stress. 

Koo KN et al. [30] studied the effects of transverse shear deformation on the modal loss 

factors as well as the natural frequencies of composite laminated plates by using the finite 

element method based on the shear deformable plate theory. 
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SINGH S. P et al. [31] analysed damped free vibrations of composite shells using a first order 

shear deformation theory in which one assumes a uniform distribution of the transverse shear 

across the thickness, compensated with a correction factor. 

 

Polymeric materials are widely utilised for sound and vibration damping. One of the more 

notable properties of these materials, besides the high damping ability, is the strong 

frequency dependence of dynamic properties; both the dynamic modulus of elasticity and the 

damping characterized by the loss factor [30-35].  

 

Mycklestad [32] was one of the pioneering scientists into the investigation of complex 

modulus behaviour of viscoelastic materials (Jones, 2001, Sun, 1995). Viscoelastic material 

properties are generally modelled in the complex domain because of the nature of visco-

elasticity. Viscoelastic materials possess both elastic and viscous properties. The typical 

behaviour is that the dynamic modulus increases monotonically with the increase of 

frequency and the loss factor exhibits a wide peak [8, 33]. 

 

It is rare that the loss factor peak, plotted against logarithmic frequency, is symmetrical with 

respect to the peak maximum, especially if a wide frequency range is considered. The 

experiments usually reveal that the peak broadens at high frequencies. In addition to this, the 

experimental data on some polymeric damping materials at very high frequencies, far from 

the peak centre, show that the loss factor–frequency curve ‗‗flattens‘‘ and seems to approach 

a limit value, while the dynamic modulus exhibits a weak monotonic increase at these 

frequencies [34-38]. These phenomena can be seen in the experimental data published by 

Madigosky and Lee [34], Rogers [35] and Capps [36] for polyurethanes, and moreover by 

Fowler [37], Nashif and Lewis [38] for other polymeric damping materials. 

 

The computerized methods of acoustical and vibration calculus require the mathematical 

form of frequency dependences of dynamic properties. A reasonable method of describing 

the frequency dependences is to find a good material model fitting the experimental data. 
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CHAPTER 3 

COMPOSITES 

 

Composite materials are naturally occurring materials or synthetically prepared from 2 or 

more constituent materials with considerably different physical or chemical properties or both 

which remain isolated and dissimilar at the macroscopic or microscopic scale within the 

completed structure. The elements are assorted in such a way so that they can retain their 

distinctive physical state and which are not solvable with each other nor a new chemical 

compound is formed. One element is known as reinforcing state which is embedded in 

another phase called matrix. The most visible applications are pavement in roadways in the 

form of either steel and aggregate reinforced Portland cement or asphalt concrete. 

 

Most of the fibres are utilised as the reinforcing state and are even tougher than the matrix 

and this matrix is utilised in holding the fibres intact. Examples: Aluminium‘s matrix 

implanted in boron fibres and an epoxy matrix implanted with glass or carbon fibres. These 

fibres may be long or short, directionally aligned or randomly orientated, or some sort of 

mixture, depending on the intended use of the material. Commonly utilised materials for the 

matrix are polymers, metals, ceramics, carbon and fibres are carbon (graphite) fibres, aramid 

fibres and boron fibres. 

 

Fibre-reinforced composite materials are further classified into the following: 

a) Continuous reinforced fibre. 

b) Discontinuous reinforced aligned fibre. 

c) Discontinuous fibre-reinforced random oriented. 

 

Fig 3.1 Types of Fibre Reinforced Materials 
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Composites utilised in this work are Carbon epoxy fibre. 

 

Carbon fibre is made up of extremely thin fibres of carbon. It is utilised as an reinforcing 

agent for many polymer products; the resulting composite material is commonly known as 

Carbon fibre epoxy. Uses for regular carbon-fibre include applications in the fields of 

automotive engineering and also aerospace engineering, like Formula One. The toughest and 

most costly of these essences, carbon nanotubes, are enclosed in some principally polymer 

baseball bats, car parts and also golf clubs where economically they are available. 

 

Epoxy is a polymer used for thermosetting which is formed by reaction of an epoxide "resin" 

with polyamine "hardener". Epoxy has a widespread variety of applications, including fibre-

reinforced plastic materials and universal purpose adhesives. The uses for epoxy materials are 

for outer layers which include adhesives, coatings and materials using such composite as 

those using carbon fibre and fibreglass reinforcements (although polyester, vinyl ester, and 

other thermosetting resins are generally utilised for glass-reinforced plastic).  

 

The damping rising due to the interactions in-between fibres and matrix can be very huge and 

are very complex in nature because of many properties of composites which affect the 

interactions. For example, length, fibre orientation, and interface all affect the damping 

properties. But the effect of length on damping can be neglected, since it is very small. 

Damping is generally more when the orientation of fibres is off the axis by 5 to 30 degrees. 

 

 

 

  

http://en.wikipedia.org/wiki/Carbon_nanotube
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CHAPTER 4 

DAMPING 

 

4.1 DEFINITION OF DAMPING 

 

In physics, damping is a phenomenon in which the amplitude of an oscillation tends to reduce 

after every cycle in an oscillatory motion, particularly in case of harmonic oscillator. Friction 

is generally considered as one such damping effect. In engineering terms, damping can be 

mathematically modelled as any force which is in sync with the velocity of object and 

opposite in direction to it. If such a force is proportional to the speed or velocity, as for a 

simple mechanical gelatinous damper, the force F may be related to the velocity v given by 

F= -cv, where c is the viscous damping coefficient (N-s/m).  

 

Fig 4.1 Mass and spring damping system 

 

An ideal mass and spring damping system with mass m (kg), viscous damper of damping 

coefficient c (in N-s/ m or kg/s) and spring constant k (N/m) is subjected to an oscillatory 

vibration or force then the damping force is given by, 

 

                        Fs = -kx                              Fd = -cv = -c
  

  
 =-cẋ 

By applying the Newton's second law, the total force (Ftot) on the body is given by, 

                                            Ftot = ma = m
   

   
    

                                Since              Ftot = Fs + Fd, 

                                      then =>     m ̈  = -kx - cẋ 
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This differential equation can be rearranged as: 

 

 ̈  +   
 
ẋ + 

 
   , 

δ =
 

 √  
        ω0=√

 

 
 . 

where ωo, is the un-damped natural frequency of the vibratory system and  δ, is known as the 

damping ratio of the spring. 

Depending upon the value of δ, the motion of mass shown in the above Figure can be divided 

into the following three cases given below: 

(1) Oscillatory motion when 0.1<δ;  

(2) Non Oscillatory motion when 0.1>δ and  

(3) Critical damped motion when 0.1=δ. In last case, the general solution of the system is 

 

Viscous damping can be utilised whatever may be the form of the excitation. The viscous 

damping is the Rayleigh-type damping given by 

 

 

4.2 TYPES OF DAMPING 

Three main types of damping are present in any mechanical system: 

1) Internal damping (Damping due to material properties) 

2) Structural damping (Damping at joints and interfaces) 

3) Fluid damping (Damping through fluid and structure interactions) 

 

4.2.1 MATERIAL (Internal) DAMPING 

Material or internal damping of materials generally originates from the energy release 

associated with microstructure defects, such as grain boundaries and impurities; thermo 

elastic properties and effects can be utilised by local temperature gradients resulting from the 

non-uniform stresses, as in vibrating beams; eddy current effects in ferromagnetic materials; 

displacement motion in metals; and chain motion in polymers. Several simulations have been 

employed to represent energy release can be utilised by internal damping. This variety of 
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models is primarily a result of the vast range of engineering materials; no single model can 

satisfactorily represent the internal damping characteristics of all materials. 

 

4.2.1.1 ENERGY BALANCE APPROACH [50] 

The loss factor ε is commonly utilised to characterize energy release, due to inelastic 

behaviour, in a material subjected to cyclic loading. Assuming linear damping behaviour, ε is 

defined by Vantomme [50] as; 

                          ε = 
 

   
 
  

 
  

where    is the amount of energy released during the loading cycle and W is the strain 

energy stored during the cycle. 
 

Now considering ε1, ε2 and ε12 : 
ε1 – normal loading in fibre direction of UD lamina (longitudinal loss factor) 
ε2 – normal loading perpendicular to fibres (transverse loss factor) 

ε12—in plane shear loading (shear loss factor) 
 

 
 
 

 

Two phase model 

 

 
 

Fig.4.2 RVE loaded in 1-direction, Voigt model: matrix (m) and fibres (f) are connected in parallel 

           

The longitudinal loss factor (ε1) can be calculated by the following method: (loading in 
direction 1) the total energy released comprises the sum of that lost in the fibres and matrix. 
These amounts are proportional to the fraction of elastic strain energy stored in the fibres and 

matrix respectively; 
 

i.e., 
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εfE and εmE are the loss factors for fibres and matrix, associated with ζ – ε tensile loading.  

 
Using the expressions for the strain energy,  

 

 
with                              

 
gives:       

 
 

                                       
 
Introduction of (4) into (2), with W = Wf + Wm, gives: 

 
  

Transverse loss factor (ε2) is calculated: (loading in direction 2) 
As before, ε2 is expressed as 

 

                     
 
The strain energy contributions are derived in an analogous manner as for ε1, but now with 

the assumption that the same transverse stress ζ2 is applied to both the fibres and the matrix. 
This development leads to 
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Shear loss factor (ε12) is calculated: (loading in shear direction ) 

  

 
where εfG and εmG are the loss factors for fibres and matrix associated with shear loading. 

The strain energy fractions are worked out in the same way as for ε2, as it is assumed that the 
shear stresses on the fibres and matrix are the same. This leads to: 

 
Equation (9) indicates that damping for a UD lamina, for shear loading, is again matrix-

dominated, because the stiffness Gf is usually much larger than Gm. The similarity of 
equations (9) and (7), combined with the fact that εmE = εmG, leads to the conclusion that 

ε2and ε12 should be very similar. 
 

4.2.2 FLUID DAMPING 

When a material is immersed in a fluid and there is relative motion between the fluid and the 

material, as a result the latter is subjected to a drag force. This force causes an energy release 

that is known as fluid damping. 

 

The damping phenomenon can be applied to the machine tool systems in two ways: 

1. Passive damping 

2. Active damping 

 

Passive damping refers to energy release within the structure by add on damping devices such 

as isolator, by structural joints and supports, or by structural member's internal damping.  

Active damping refers to energy release from the system by external means, such as 

controlled actuator. 
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4.2.3 STRUCTURAL DAMPING 

 

Rubbing friction or contact among different elements in a mechanical system causes 

structural damping [49]. Since the release of energy depends on the particular characteristics 

of the mechanical system, it is very difficult to define a model that represents perfectly 

structural damping. Coulomb-friction model is an imperative utilised to describe energy 

released due to friction. Regarding structural damping (energy released by contact or impacts 

at joints), energy release is determined by means of the coefficient of restitution of the two 

components that are in contact. Assuming an ideal Coulomb friction, the damping force at a 

join can be expressed through the following expression: 

 

f = c.sgn ( ̇) 

where: 

f = damping force,  ̇= relative displacement at the joint, c= friction parameter 

and the signum function is defined by: 

                              

sgn (x) = 1 for x ≥ 0 

sgn (x) = -1 for x < 0 

 

4.3 DAMPING MECHANISMS IN COMPOSITE MATERIALS 

 

Damping mechanisms in composite materials differ entirely from those in conventional 

metals and alloys [23]. The different sources of energy release in fibre-reinforced composites 

are: 

a) Viscoelastic nature of matrix and/or fibre materials 

(b) Damping due to interphase 

(c) Damping due to damage which is of two types: 

     (i) Frictional damping due to slip in the unbound regions between fibre and matrix. 

     (ii) Damping due to energy release in the areas of matrix cracks and broken fibres etc. 

(d) Damping in Viscoelastic materials. 

(e) Damping in Thermo elastic materials. 
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CHAPTER 5 

VISCOELASTIC DAMPING 

 

5.1 FACTORS AFFECTING VISCO ELASTIC DAMPING: 

Important viscoelastic behaviours that affect in damping are: 

¶ Creep under constant stress 

¶ Relaxation under constant strain 

¶ Hysteresis loop due to cyclical stress 

¶ Strain rate dependency on strain rate curve 

These behaviours are discussed in the later sections of the chapter. This paper describes the 

damping behavior of carbon epoxy composite with riveted joint. The rivets utilised are mode 

of structural steel. 

 

5.2 MATERIALS UTILISED 

The composite material utilised in the analysis Carbon Fibre Composite Materials, Fibre / 

Epoxy resin (120°C Cure). 

MECHANICAL PROPERTIES: 

¶ Fibres @ 0° (UD), 0/90° (fabric) to loading axis, Dry, Room Temperature, Vf = 60% 

(UD), 50% (fabric) 

¶ Epoxy resin and Standard CF Fabric 
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Table 1: Properties of CARBON-FIBRE EPOXY Composite 
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CHAPTER 6 

MATHEMATICAL MODELLING 

 

6.1 STRUCTURAL DAMPING FACTOR (γ): 

The viscous damping coefficient c, hysteretic damping coefficient h and the damping ratio δ 

are considered to be the 3 important factors in damping of structures. But, there is another 

very vital factor, structural damping factor γ, to describe the property of the damping 

material. 

The forced motion equation of a single spring mass system with a hysteretic damper is 

 

For a harmonic problem, it becomes  

                    

For the modal damping,  , therefore, we have 

 

where, is known as the structural damping factor or modal damping ratio. 

For the viscous damping, similarly, the viscous damping factor is γ=2δ. 

 

6.2 COMPLEX STIFFNESS 

The damping of the whole structure can be influenced by the polymer material due to its 

material stiffness as well as by its damping. These 2 properties are conveniently quantified by 

the complex Young‘s modulus or the complex shear modulus and    are usually assumed to 

be equal for a given material. 

When the material is subjected to cyclic stress and strain with amplitude    and   , the 

maximum energy stored and released per cycle in a unit volume are as 
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A physical description of the loss factor can be found as follows. The energy released per 

cycle for a structural damped system is, 

 

Where,    is the maximum strain energy stored. Therefore, we have energy strain maximum 

cycle per released energy 

 

From the equation, it is found that the loss factor is a way to compare the damping of one 

material to another. It is a ratio of the amount of energy released by the system at a certain 

frequency to the amount of the energy that remains in this system at the same frequency. The 

more damping a material has, the higher the loss factor will be. The method of representing 

the structural damping should only be utilised for frequency domain analysis (modal) where 

the excitation is harmonic. 
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CHAPTER 7  

MODELING AND ANALYSIS OF  

THE COMPOSITE WITH RIVETS 

 

7.1 MODELLING: 

 

As discussed earlier, the geometry and the structure of the composite material play an 

effective role in the reduction in damping. In this paper, a model was prepared using CATIA 

V5R17.The model prepared was a standard case in which 2 composite laminates were joined 

using a riveted joint and was discussed thoroughly. An assembled view of this model is 

shown below. 

 

Figure 7.1: Model designed on CATIA V5R17 
 

 

Figure 7.2: Various views of drafted models 
 (a) Front View, (b) Top View and (c) Side View of the drafted model. 

(a) 

(b) 

(c) 
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7.2 ANALYSIS OF THE MODEL IN ANSYS 

 

In this paper, using ANSYS software harmonic and modal analysis along with transient 

response and dynamic explicit modelling have been done for vibration damping. Several key 

points were deduced after the analysis of the model prepared. 

 

7.2.1 GENERAL OVERVIEW OF DAMPING IN ANSYS 

 

The damping matrix C in ANSYS may be utilised in harmonic, damped modal and transient 

analysis as well as substructure generation. In its most general form, it is:  

 

Where,  

α        constant mass matrix multiplier  

β        constant stiffness matrix multiplier  

βj       constant stiffness matrix multiplier  

βc        variable stiffness matrix multiplier  

  

δ  constant damping ratio, the damping ratio δ should be 2ε where ε is the loss factor.  

f  frequency in the range between fb (beginning frequency) and fe (end frequency);  

[Cδ]  frequency-dependent damping matrix  

[Cδ] may be calculated from the stated δr (damping ratio for mode shape r) and is 

never clearly computed.  

 

    is the rth mode shape 

fr  frequency associated with mode shape r  
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δ  constant damping ratio  

δ mr modal damping ratio for mode shape r  

[Ck]  element damping matrix  

7.2.2 RAYLEIGH DAMPING (α AND β): 

The most common form of damping is the Rayleigh type damping. 

 [C] = α[M] + β[K].  

In this representation, the matrix becomes the modal coordinates which is the major 

advantage of using this model. 

 

C’ is the diagonal, so for the rth mode, the equation of motion can be uncoupled. Each one is 

of the form  

 

Let                  

The equation reduces to  

 

Where, δmr is the r
th

 modal damping ratio.  

The values of α and β are not known directly, but are calculated from modal damping ratios, 

δmr. It is the ratio of actual damping to critical damping for a particular mode of vibration, r. 

From the above equation, we have  

 

In many practical structural problems, the mass proportional damping α, represents frictional 

damping and may be ignored when (α = 0). In such case, the β damping can be estimated 
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from known values of δmr and ωr which represents material structural damping. It is noted 

that only one value of β can be input in a load step, so we should select the most dominant 

frequency active in that load step to compute β.  

 

Figure 7.3: RAYLEIGH α and β DAMPING 
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CHAPTER 8 

FINITE ELEMENTAL ANALYSIS OF THE MODEL 

 

In this paper, various structural analyses have been done for the previously prepared model 

which was prepared in CATIA and then imported to ANSYS. 

 

8.1 MODAL ANALYSIS  

Modal analysis determines the natural frequency and mode shape of a structure. The natural 

frequency and mode shape are important parameters in the design of a structure for dynamic 

loading conditions and can be utilised in spectrum analysis or a mode superposition harmonic 

or transient analysis. 

 

Figure 8.1: ANSYS Modal 
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Mode Frequency [Hz] 

1. 591.87 

2. 1640.5 

3. 1820.2 

4. 3214.4 

5. 3477.5 

6. 4647. 

Table 2: Frequency Output of modal analysis 

 

 

Figure 8.2: Mode Vs. Frequency graph 
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Figure 8.3: Modal analysis 

 

8.2 HARMONIC RESPONSE ANALYSIS 

It is a technique utilised to determine the steady state response of a linear structure to loads 

that varies sinusoidal with time. The mode superposition method calculations factored mode 

shapes (eigenvectors) from modal analysis to calculate the structures response. Hence it is 

known as harmonic response analysis. 

 

Figure 8.4: Harmonic response analysis of ANSYS model 
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Figure 8.5: Amplitude vs. Frequency graph 

 

Figure 8.6: Phase Angle vs. Frequency graph 



Page | 27  
 

8.3 TRANSIENT DYNAMIC ANALYSIS 

It is also called time history analysis. It is the technique utilised to determine the dynamic 

response of a system under the action of any time dependent load. 

The basic equation of motion solved by a transient dynamic analysis is 

(M){u‖}+(C){u‘}+(K){u}={f(t)} 

Impulsive Load Input 

 

The above graph shows how the impulse load is given to the structure. At time t=0.5 sec, an 

impulsive load of 100N is given to the structure. Analysis has been done to study the 

deformation of the structure and a graph is plotted between the min. deformation vs. time and 

maximum Deformation vs. Time. The tabular form of the table is given below: 

Directional deformation along z axis in tabular form 

2.4 Time [s] Minimum [m] Maximum [m] 

2.5 0.1 -2.7126e-005 0. 

2.6 0.2 -5.1285e-005  

2.7 0.3 -7.7733e-005  

2.8 0.4 -1.0366e-004  

2.9 0.5 -1.2941e-004  

3. 0.6 -1.0887e-004  

 0.7 -8.3124e-005  

 0.8 -5.6634e-005  

 0.9 -3.0069e-005  

 1. -9.3384e-006  

 1.1 -7.9197e-006 9.7737e-010 

 1.2 -7.9214e-006 9.0392e-010 

 1.3 -7.9291e-006 9.9199e-010 

 1.4 -7.9263e-006 9.0744e-010 

 1.5 -7.9233e-006 9.8623e-010 

 1.6 -7.9261e-006 9.132e-010 

 1.7 -7.9235e-006 9.808e-010 

 1.8 -7.9258e-006 9.2032e-010 

 1.9 -7.9238e-006 9.7423e-010 

 2. -7.9256e-006 9.2631e-010 

 2.1 -7.924e-006 9.6904e-010 

 2.2 -7.9254e-006 9.3162e-010 

Table 3: Maximum and Minimum deformation with time  2.3 -7.9242e-006 9.6432e-010 

 

Steps Time [s] Force [N] 

1 

0. 0. 

0.5 -100. 

1. 

0. 2. 

3. 
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Figure 8.7: Maximum deformation vs. Time graph 

 

Figure 8.8: Minimum deformation vs. Time graph 
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CHAPTER 9 

RESULTS AND CONCLUSIONS 

 

¶ From modal analysis reported modal frequency = 591.87 Hz 

¶ From harmonic response model, Maximum strain energy = 8.68 X 10-5 J. 

¶ In transient analysis, the directional deformation along z axis with an impulsive force 

of 100 N applied, the values of maximum deformation fluctuate and tend to converges 

to 9.42X 10-10. 

¶ ω = 2πf = 3718.82 rad/sec. 

¶ logarithmic decrement, δ, as follows: 

 

X1 and X2 are two consecutive displacements one cycle apart 

δ = ln(x1/x2) = 6.3 X 10-3, X1 and X2 are taken from the values of the table 

¶  

 

ζ = 1.04X 10-3. 

¶ α = 2δω = 7.471 s-1      and    β = 2δ/ω = 5.59 x 10-7 s 

¶ Energy released = πcωx2 =1.95 x 10-5 J.  

¶ Loss factor (ε) =1/2π (energy released per cycle / maximum strain energy) = 0.0358 
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