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ABSTRACT 

The problem of distributed diagnosis in the presence of dynamic failures and 

repairs is considered. To address this problem, the notion of bounded correctness is 

defined. Bounded correctness is made up of three properties: bounded diagnostic 

latency, which ensures that information about state changes of nodes in the system 

reaches working nodes with a bounded delay, bounded start-up time, which 

guarantees that working nodes determine valid states for every other node in the 

system within bounded time after their recovery, and accuracy, which ensures that 

no spurious events are recorded by working nodes. It is shown that, in order to 

achieve bounded correctness, the rate at which nodes fail and are repaired must be 

limited. This requirement is quantified by defining a minimum state holding time 

in the system. Algorithm HeartbeatComplete is presented and it is proven that this 

algorithm achieves bounded correctness in fully-connected systems while 

simultaneously minimizing diagnostic latency, start-up time, and state holding 

time. A diagnosis algorithm for arbitrary topologies, known as Algorithm 

ForwardHeartbeat, is also presented.ForwardHeartbeat is shown to produce 

significantly shorter latency and state holding time than prior algorithms, which 

focusedprimarily on minimizing the number of tests at the expense of latency. 

 



LIST OF SYMBOLS 

Symbol                                Description 

Dsend_init                                                 Send initiation time 

Dsend_min                                                Minimum message delays 

Dsend_max                                               Maximum Message Delays 

Dmaxn                                                       Upper bound on communication delay 

K                                                                Connectivity of the Network 

N                                                                No of Nodes 

Treject                                                       Rejection time 

Ttimeout                                                   Timeout period 

Texist                                                        Time period for which a heartbit exit in                                                 

                                                                   the network. 

P                                                                Clock drift 

C                                                                Small Constant 

 



INTRODUCTION 

The problem of distributed diagnosis in the presence of dynamic failures and 

repairs is considered. To address this problem, the notion of bounded correctness is 

defined. Bounded correctness is made up of three properties: bounded diagnostic 

latency, which ensures that information about state changes of nodes in the system 

reaches working nodes with a bounded delay, bounded start-up time, which 

guarantees that working nodes determine valid states for every other node in the 

system within bounded time after their recovery, and accuracy, which ensures that 

no spurious events are recorded by working nodes. It is shown that, in order to 

achieve bounded correctness, the rate at which nodes fail and are repaired must be 

limited. This requirement is quantified by defining a minimum state holding time 

in the system. Algorithm HeartbeatComplete is presented and it is proven that this 

algorithm achieves bounded correctness in fully-connected systems while 

simultaneously minimizing diagnostic latency, start-up time, and state holding 

time. A diagnosis algorithm for arbitrary topologies, known as Algorithm 

ForwardHeartbeat, is also presented. ForwardHeartbeat is shown to produce 

significantly shorter latency and state holding time than prior algorithms, which 

focused primarily on minimizing the number of tests at the expense of latency. 



AN important problem in distributed systems that are subject to component failures 

is distributed diagnosis problem. In distributed diagnosis, every node must 

maintain the correct and timely information about the status (working or failed) of 

all the nodes in the system. In dynamic fault environment, the nodes may change 

their status during execution of the diagnosis procedure. 

 

The bulk of the work in system diagnosis has assumed a static fault situation, i.e., 

the statuses of nodes do not change during execution of the diagnosis procedure. 

Some works have considered the dynamic situations but with assumptions such as 

existence of centralized diagnosis entity and regular network topology. The 

relevant algorithm such as Hi-ADSD and its variants have latencies of at least 

(log22n) rounds. However, these algorithms do not allow both failure and recovery 

events in dynamic fault environment and assumes a fully connected network. 

Recently, in the authors have proposed an algorithm in dynamic fault environment 

but assumes crash fault model. However, the authors have not considered more 

realistic fault model of value faults in nodes which may frequently occur in 

runtime due to incorrect computations while executing the distributed workload 

such as clock monitoring process, load balancing process etc. Here, in this paper, 

the problem of distributed diagnosis for not completely connected networks 

(DDNCN) in dynamic fault environment under more realistic fault models such as 



crash and value fault has been investigated. The algorithm works for any number 

of nodes can change their state during the execution of the algorithm provided the 

network remains connected and also there is a limit on how frequently an 

individual node can change state. 

  

 

SYSTEM AND FAULT MODEL 

We consider not-completely connected networks where intermediate nodes relay 

messages between some sourcedestination pairs. The number of node failures is 

limited such that the network remains connected at all times. Diagnosis algorithm 

can use either unicast or multicast communication.We assume the generic 

parameters to support this type of communication. We also assume a synchronous 

system in which the communication delay is bounded. This is an implicit 

assumption in all prior work on distributed diagnosis. Nodes directly connected by 

a communication link are called neighbors. 

 

Definition 1. The send initiation time dsend init, is the time between a node 

initiating a communication and the last bit of the message being injected into the 

network. 

 



Definition 2. The minimum and maximum message delays, dsend min and dsend 

mcax, are the minimum and maximum times, respectively, between the last bit of a 

message being injected into the network and the message being completely 

delivered at a working neighboring node. 

 

 

FAULT MODEL 

We consider crash and value faults in nodes. Links are assumed to be fault free. 

The network delivers messages reliably. A faulty node perform it's computation 

like a nonfaulty node but it may fail to send its value (crash fault) or it may send an 

erroneous value to another node (value fault). The heartbeat based testing 

mechanism is followed to detect the faults in nodes. The node whether crash or 

value faulty will not be used for relaying the heartbeats. The status of a node is 

modeled by a state machine with two states, failed and working (i.e., 1 or 0). 

Working nodes execute the normal workload and diagnosis procedure. 

 

Definition 3. The state holding time is the minimum time that a node remains in 

one state before transitioning to the other state. 

 



Definition 4. We define the connectivity of the network k is the minimum number 

of nodes, the removal of which can cause the network to become disconnected. 

 

ALGORITHM ASSUMPTION 

A restricted case is considered where fewer than k nodes are in the failed state at 

any given instant of time so that the network remains connected. Each node 

periodically executes the normal workload and initiates a round of message 

transmissions to other nodes in order to indicate that it is working. Assume an 

arbitrary node X initiates a round of heartbeat transmissions at real time t and 

remains in the working state indefinitely afterward. X will initiate another round of 

heartbeat transmissions no later than real time t+(l+p)2t, where 21 is the heartbeat 

period and p is the maximum drift rate of the clock with p << 1. 

 

TIMES AND CLOCK MODELS 

We consider the notion of time as we are interested in dynamic failure situations in 

which failure and recovery timing is critical. 

 

Definition 5: Time that is measured in an assumed Newtonian time frame (which 

is not directly observable) is referred to as real time. 



 

Definition 6: Time that is directly observable on a node's clock is referred to as 

clock time. The clock time of node X at real time t is denoted by Tx(t). 

 

Definition 7: While a node is in the working state, it's clock experiences bounded 

drift. This means that if a node X is in the working state continuously during a real-

time interval[t1,t2], then for all real-time intervals [u1,u2] c [t1,t2] 

I[Tx(u2)- Tx(ul)]- (u2 - u1) < p(u2 - u1), where p << 1 is the maximum drift of a 

clock per unit time. 

 

 

ALGORITHM 

Each node X executes one frame of the workload arriving at some value Val(X). 

Each node broadcasts Val(X) to all working neighboring nodes using a heartbeat; 

Each working neighboring node rebroadcasts and so on 

 

If (node[an intermediate node].status == working) 

 

Relay the heartbeats; 

Replaces old Seq_no by Latest Seq_no 



received; 

 

heartbeat delay= 

 

buffered delay + (dsend init +dsend_min + c); 

 

A working node keeps the minimum time the heartbeats stored in it's buffer; 

 

Otherwise, 

 

Will not relay the heartbeats; 

 

Each node X receives incoming messages from every other node Y and compares 

with its computed value: 

 

If (Val(X) <> Val(Y) or times-out) 

Record node[Y].status= 1; 

Removes the heartbeat from it's buffer; 

Discard any stale heartbeats coming 

through different paths for a period of time 



Treject (heartbeat rejection time); 

 

Otherwise, 

 

Record node[Y].status = 0; 

Record the last sequence number; 

 

If (a node is a newly-recovered node) 

 

Seq_no & heartbeat.delay = 0 (during initiation); 

Sends a heartbeat message to neighboring nodes; 

Collect the buffered heartbeats from it's neighboring node; 

 

//this ensures propagation of heartbeats in a dynamic fault environment; 

 

DESCRIPTION OF ALGORITHM 

The pseudo-code for the algorithm DDNCN is given above. Each node 

periodically executes a workload and sends the resultant value using a heartbeat 

message to a subset of neighboring nodes. The neighboring nodes in turn send 

heartbeats to their neighbors and so on. 



A heartbeat message consists of the following fields: 

Node_id: The ID of the node that initiated the heartbeat. 

 

Seq_no: The physical sequence number of the heartbeat. 

 

Val : Value associated with the message. 

 

Delay: The minimum time the heartbeat message was in the network before being 

received. 

 

The heartbeats are propagated throughout the network. When node X receives a 

new heartbeat from node Y, node X stores the heartbeat in a buffer replacing any 

older heartbeats from node Y. If node X times out waiting for node Y's next 

heartbeat, then node Y's heartbeat is removed from node X's buffer and node Y is 

diagnosed as faulty by node X. Hence, the presence of node Y's heartbeat in node 

X's buffer indicates node X believes that node Y is working. If a neighbor of node 

X recovers, then node X sends the newly recovered neighboring node all heartbeats 

stored in its buffer. This ensures propagation of heartbeats in a dynamic fault 

environment. 

 



When a node Y initiates a new heartbeat, it initializes the delay field to the 

minimum delay that will be encountered before the heartbeat messages could reach 

its neighboring nodes and then sends them out. Also, at the same time, node Y 

stores this new heartbeat in its local buffer with the delay field set to zero. Nodes 

keep track of the amount of time each heartbeat is stored in their buffers. For a 

heartbeat stored locally in the originating node, the delay field will always be 0. 

When a node retransmits or relays a heartbeat, it adds to the delay field the length 

of time the heartbeat was stored in its buffer and the minimum time it takes to 

traverse the next hop to reach the neighboring node before sending it out. Thus, a 

node keeps track of the minimum length of time the heartbeats stored in its buffer 

have existed in the network. 

 

 

ANALYSIS OF ALGORITHM 

First we compute the maximum time between a node initiating a heartbeat and a 

heartbeat with the same or a higher sequence number from the same node being 

received by all other nodes that are working since heartbeat initiation, denoted by 

Dmaxn. This is derived by taking a particular sequence of events considering the 

worst case network scenario. Dmaxn is the upper bound on the communication 

delay and is d(k-1)(n-I)dsend init + (n+k-2)(d send-init + d send-max + c) - (k-1)C, 



if the failed state holding time, SHTf is at least Dmaxn Where, d is the maximum 

number of neighbors of any node, k is connectivity of the network, n is number of 

nodes, £ = is a small positive constant and is the smallest time such that a heartbeat 

send in dsend-init - , time is an invalid heartbeat and c is the comparison time 

between value associated with the heartbeat message and the node's own computed 

value. 

 

Due to the existence of multiple paths between nodes, it is possible that a node 

times out thereby detecting a fault event and then receives a stale heartbeat. Arrival 

of this stale heartbeat does not indicate a recovery event. Hence, when nodes time 

out, they discard any heartbeats they may receive from the node just diagnosed to 

be faulty for a predetermined amount of time called the heartbeat rejection time 

(Treject). As a result, for a genuine recovery event to be detected, the failed state 

holding time should be made sufficiently large to guarantee that no new heartbeat 

message arrives during the rejection time. In order to compute failed state holding 

time, it is necessary to find the maximum possible time a heartbeat can exist in the 

network. 

 



Using Dmaxn we derive time out period (Ttime-out), maximum possible time a 

heartbeat can exist in the network (Texist), heartbeat rejection time (Treject) and 

failed state holding time (SHTf) as follows: 

Lemma 1. Upon receipt of a new heartbeat, the period of time a node that is 

continuously in the working state waits for the next new heartbeat before detecting 

a fault event, called the timeout period Ttimeout is (1+2p)n + (l+p)(Dmaxn -

heartbeat.delay) where heartbeat.delay is the value in the delay field of the last 

heartbeat received. 

Lemma 2. The maximum possible time a heartbeat can exist in the network, 

denoted by Texist, is (1+2p)n + (l+p) Dmaxn + n(dsend-max - dsend-min + c). A 

heartbeat is said to exist in the network if either the heartbeat is propagating in the 

network or the heartbeat is stored in some node's buffer. 

Lemma 3. The heartbeat rejection time, denoted by Treject, is the period of time a 

node X discards heartbeats from a node Y after diagnosing node Y to be faulty. 

The heartbeat rejection time (Treject ) = 2pm + 2pDmaxn + n(l+p)(dsend-

maxdsend-min + c). 

Lemma 4. The failed state holding time, denoted by SHTf, is the minimum time a 

node remains in the failed state before transitioning to the working state. The failed 

state holding time (SHTf ) is Texist + (l+p)Treject - dsend-init. 

 



The algorithm DDNCN maintains a data structure containing fields such as node 

id, heartbeat delay, the status and the value of all nodes and propagates the 

heartbeats by flooding to all nodes via intermediate nodes. The maximum time 

between a node initiating a message and a message with the same or a higher 

sequence number from the same node being received by all nodes that are working 

since message initiation, denoted by Dmaxn is d (k-1)(n-1) d send_init + (n +k– 

2)(dsend_init + dsend_max + c) – (k-1) ε, where ε is anarbitrary small positive 

constant, if the failed state holding time, SHTf, is at least Dmaxn and c is the 

comparison time between the value associated with heartbeat and the node’s own 

computed value. Dmaxn is the upper bound on the communication delay and is the 

worst-case latency in detecting recovery event. When nodes time out, they discard 

the arrival of any stale heartbeats they may receive from the node just diagnosed to 

be faulty for a predetermined amount of time called the heartbeat rejection time 

(Treject). As a result, for a genuine recovery event to be detected, the failed state 

holding time should be made sufficiently large to guarantee that no new heartbeat 

message arrives during the rejection time and depends on maximum possible time 

a heartbeat can exist in the network. Using Dmaxn we derive time out period 

(Ttime-out), maximum possible time a heartbeat can exist in the network (Texist), 

heartbeat rejection time (Treject) and failed state holding time (SHTf). Upon 

receipt of a new heartbeat, the period of time a node that is continuously in the 



working state waits for the next new heartbeat before detecting a fault event, called 

the timeout period Ttimeout is (1+2ρ)π + (1+ ρ)(Dmaxn – heartbeat.delay) where 

heartbeat. delay is the value in the delay field of the last heartbeat received. Using 

Ttimeout we derive Texist, Treject and SHTf. It can be seen that Texist is the 

worst-case latency in detecting failure event. The algorithm DDNCN achieves 

bounded correctness with a diagnostic latency of Texist – dsend_init. 

 

SIMULATION RESULT 

Algorithm was simulated on randomly generated networks. dsend init, dsend min, 

dsend mcax, c, Poisson mean, p ,k and z were kept fixed at 0.002, 0.008, 0.08, 

0.05, 1, 0.001,3 and 60 seconds, respectively, for all simulations. Simulations were 

performed on networks of sizes 8, 16, 32, 64, 128, and 256. Simulations were done 

using discrete event simulation techniques. The dynamic nature of the system was 

modeled using a Poisson process. When an event occurs on a node, the time at 

which the next event occurs on the same node is the state holding time for the 

current state plus an additional time as given by the Poisson process. If a failure 

event is not possible to occur because the number of failed nodes is greater than (k-

1), then the failure event is rescheduled to a later time again according to a Poisson 

process. In all simulations, the minimum state holding times for both failed and 

working states were set to the failed state holding time. 



 

Graphs were randomly generated for a given n and k. Since every node must have 

k neighbors, links were randomly introduced such that every node has at least k 

neighbors. If the connectivity of the network is less than k, then n links are 

randomly introduced into the network. This process is continued until the resulting 

connectivity of the network is at least k. All graphs generated this way had a 

connectivity exactly equal to k. Simulations were carried for different values of k. 

To investigate the suitability of the networks, five different networks were 

generated for every value of (n, k). 

 

LATENCY IN DETECTING FAILURE/RECOVERY EVENT 

Figure 1 and 2 shows the latency in detecting failure and recovery events for 

algorithm DDNCN. The latency in detecting a failure event is variable due to the 

difference in the actual propagation time of the last heartbeatand the delay tracked 

by the intermediate nodes. Hence, the more links that are traversed by the last 

heartbeat that is sent by a node before it could fail, the more varied the latency will 

be. The average latency in detecting a failure event for DDNCN is lower. This is 

because the latency is lower for value fault than crash fault. 
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ALGORITHM  FOR RANDOM  NETWORK GENERATION

1.  Generate two random numbers(provided both are not same) for a predefined no 

of times ,where 1
st
 random number act as Source Node and the 2

as Destination Node. Mark the edge value between source and destination node as 

1(i.e. connection is there). 

2. Check the Connectivity of the network designed in step

satisfied it is a k-connected  network and exit. If con

continue step1 for a predefined no of times.

 

ALGORITHM  FOR RANDOM  NETWORK GENERATION

Generate two random numbers(provided both are not same) for a predefined no 

random number act as Source Node and the 2
nd

 

as Destination Node. Mark the edge value between source and destination node as 

Check the Connectivity of the network designed in step-1. If connectivity 

connected  network and exit. If connectivity does not satisfied  

continue step1 for a predefined no of times. 

ALGORITHM  FOR RANDOM  NETWORK GENERATION 

Generate two random numbers(provided both are not same) for a predefined no 

 random no act 

as Destination Node. Mark the edge value between source and destination node as 

1. If connectivity 

nectivity does not satisfied  

 



NETWORK  WITH N=8 AND K=3

 

 

 

 

 

 

NETWORK  WITH N=8 AND K=3 

 



LATENCY IN DETECTING FAILURE AND IN RECOVERY 

 

 

 

 

 

 



CONCLUSION AND FUTURE WORK 

The algorithm propagates status information as quickly and through as many 

redundant paths as possible to allow it to effectively handle dynamic situations. All 

nodes can change state at the same time or a cascade of status changes can occur, 

while maintaining a notion of correctness at all times.The algorithm DDNCN has 

been able to handle these behaviors effectively in not-completely-connected 

networkswith diagnostic latency of O(1). 

 

The work presented here can be extended in many possible ways mainly based on 

the variant workload types under consideration, the types of distributed diagnosis 

algorithm whether on-line or off-line monitoring and with respect to different fault 

models. As a first step to use the distributed diagnosis algorithm particularly for 

performance and monitoring of actuators, we develop a generalized framework for 

on-line diagnosis for safety-critical applications such as fly-by-wire, drive-by-wire, 

steer-by-wire, neuclear reactor,etc. 
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