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                                                            ABSTRACT 

 

Modelling and optimization of EDM process is a highly demanding research area in the present 

scenario. Many attempts have been made to model performance parameters of EDM process 

using ANN. For modelling generally ANN architectures, learning/training algorithms and nos. of 

hidden neurons are varied to achieve minimum error, but the variation is made in random 

manner. So here a full factorial design has been implemented to achieve the optimal of above. 

From the main effect plots and with the help of ANOVA results the optimal process parameters 

for modeling were selected. After that optimal process modeling of MRR and TWR in EDM 

with  the  best  of    above  parameters  have  been  performed.  In  the  2nd phase  of  work  three  GA  

based multi-objective algorithms have been implemented to find out the best trade-ups between 

these two conflicting response parameters. ANN model equations of MRR and TWR were used 

in  the  fitness  functions  of  GA  based  multi-objective  algorithms.  A  comparison  between  the  

Pareto-optimal solutions obtained from these three algorithms has been made on the basis of 

diversity along the front and domination of solutions of one algorithm over others. At the end a 

post-optimality  analysis  was  performed  to  find  out  the  relationship  between  optimal  process  

parameters and optimal responses of SPEA2. 
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CHAPTER1 

INTRODUCTION                                                              

1.1 Introduction on EDM 

Electrical Discharge Machining (EDM) is a non-conventional machining process, where 

electrically conductive materials is machined by using precisely controlled sparks that occur 

between an electrode and a workpiece in the presence of a dielectric fluid[1]. It uses thermo-

electric energy sources for machining extremely low machinability materials; complicated 

intrinsic-extrinsic shaped jobs regardless of hardness have been its distinguishing characteristics. 

EDM founds its wide applicability in manufacturing of plastic moulds, forging dies, press tools, 

die castings, automotive, aerospace and surgical components. As EDM does not make direct 

contact (an inter electrode gap is maintained throughout the process) between the electrode and 

the workpiece it’s eradicate mechanical stresses, chatter and vibration problems during 

machining [2].Various types of EDM process are available, but here the concern is about die-

Sinking (also known as ram) type EDM machines which require the electrode to be machined in 

the exact opposite shape as the one in the workpiece [1]. 

1.1.1 Working principle of EDM 

Electric discharge machining process is carried out in presence of dielectric fluid which creates 

path for discharge. When potential difference is applied across the two surfaces of workpiece and 

tool, the dielectric gets ionized and an electric spark/discharge is generated across the two 

terminals. The potential difference is applied by an external direct current power supply 

connected  across  the  two  terminals.  The  polarity  of  the  tool  and  workpiece  can  be  

interchangeable but that will affect the various performance parameters of EDM process. For 
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more material removal rate workpiece is generally connected to positive terminal as two third of 

the total heat generated is generated near the positive terminal. The inter electrode gap has a 

significant role to the development of discharge. As the workpiece remain fixed by the fixture 

arrangement, tool helps in focusing the discharge or intensity of generated heat at the place of 

shape impartment. Application of focused heat raises the temperature of workpiece in the region 

of tool position, which subsequently melts and evaporates the metal. In this way the machining 

process removes small volumes of workpiece material by the mechanism of melting and 

vaporization during a discharge. The volume removed by a single spark is small, in the range of 

10-6-10-4mm3, but this basic process is repeated typically 10,000 times per second.Figure 1.1 

shows a layout of Electric Discharge Machining. 

                                     Figure 1.1:  Layout of Electric Discharge Machining 
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The erosion process due to a single electric spark in EDM generally passes through the following 

phases and Figue 1.2 and 1.3 shows these phases: 

(a) Pre-breakdown: In this phase the electrode moves close to the workpiece and voltage is 

applied between the electrodes i.e. open circuit voltage Vo. 

(b) Breakdown: When the applied voltage crosses the boundary limit of dielectric strength of 

used dielectric fluid, the breakdown of the dielectric is initiated.   Generally the dielectric starts 

to break near the closest point between tool and workpiece, but it will also depend on conductive 

particles between the gap if present any [3]. When the breakdown occurs the voltage falls and a 

current rises abruptly. In this phase the dielectric gets ionized and a plasma channel is introduced 

between the electrodes and also there is possibility of presence of current.         

(c) Discharge: 

In this phase the discharge current is maintained at constant level for a continuous bombardment 

of ions and electrons on the electrodes. This will cause strong heating of the work-piece material 

(and  also  of  the  electrode  material),  rapidly  creating  a  small  molten  metal  pool  at  the  surface.  

Also a small amount of metal can have directly vaporized due to the tremendous amount of heat. 

During the discharge phase, the plasma channel grows; therefore the radius of the molten metal 

pool also increases with time. In this phase some portion of the work-piece will be evaporated 

and some will be remain in molten state. The Inter Electrode Gap (IEG) is an important 

parameter throughout the discharge phase. It is estimated to be around 10 to 100 micrometers 

(IEG increases with the increase in discharge current).  
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(d) End of the discharge: 

At the end of the discharge, current and voltage supply is shut down. The plasma collapses (since 

current is supply is stopped, there will be no more spark) under the pressure enforced by the 

surrounding dielectric.  

(e) Post-discharge: 

There will be no plasma in this stage. Here a small portion of metal will be machined and a small 

thin layer will be deposited because of plasma is collapsing and cooling. This layer is (20 to 100 

microns) is known as white layer. Consequently, the molten metal pool is strongly sucked up 

into the dielectric, leaving a small crater on the work-piece surface (typically 1-500 micrometer 

in diameter, depending on the current). 

 

  Figure 1.2:  Variation of Ip and V in different phases of a spark 
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1.1.2 Liquid dielectric 

EDM dielectric fluid is act as an electrical insulator until the applied voltage is high enough to 

overcome the dielectric potential of the dielectric fluid to change it into an electrical conductor. 

Different EDM dielectric fluid can be paraffin, deionized water, kerosene, transformer oil etc.It 

helps  in  cooling  the  electrodes,  also  provides  a  high  plasma  pressure  and  therefore  a  high  

removing force on the molten metal, when the plasma downfalls and solidifies the molten metal 

shaped into small spherical particles, and it also helps in flushing away these eroded particles [3]. 

If the particles in the machining zone won't remove properly, then it will produce abnormal 

discharges in the subsequent discharges. This will be due to the particles present in the dielectric  

which will reduce the dielectric strength of the dielectric also it may lead to arcing tendency 

which will not desirable at all for the machining process. To enhance the flushing of particles, 

the dielectric generally flows through the gap.  

  Fig1.3 (a)    Fig1.3 (b)    Fig1.3 (c)    Fig1.3 (d)    Fig1.3 (e) 

Figure 1.3: (a) Pre-breakdown phase (b) Breakdown phase (c) Discharge phase (d) End of the 
discharge and (e) Post-discharge phase 
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1.1.3 Flushing 

Flushing is the process of supplying clean filtered dielectric fluid into the machining zone. When 

a dielectric is fresh, it is free from eroded particles and carbon residue resulting from dielectric 

cracking and its insulation strength is high, but with successive discharges the dielectric gets 

contaminated, reducing its insulation strength, and hence discharge can take place in an abrupt 

manner. If the concentration of the particles became high at certain points within the IEG, 

bridges are formed, which lead to abnormal discharges and damage the tool as well as the 

workpiece. 

        There are different types of flushing methods like; injection flushing, suction flushing, side-

flushing, motion flushing and impulse flushing. 

1.1.4 Machining parameters 

For optimizing a machining process or to perform efficient machining one should have to 

identify the process and performance measuring parameters. The machining parameter of EDM 

process can be categorized into 

(i) Input /process parameters: The input parameters of EDM process are voltage, discharge 

current, spark-on time, duty factor, flushing pressure, work piece material, tool material, 

inter-electrode gap, quill-up time, working time, and polarity which affects the 

performance of machining process. So suitable selection of process parameters are 

required for optimal machining condition. 

(ii) Response /performance parameters: Response or performance parameters are used to 

evaluate the machining process in both qualitative and quantitative terms namely 

Material  Removal  Rate  (MRR),  Surface  Roughness  (Ra  or  SR),  Over  Cut  (G  or  OC),  
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Tool Wear Rate (TWR), White Layer Thickness (WLT) and Surface Crack Density 

(SCD). 

1.2  Introduction on  Evolutionary Multi-Objective Optimization(MOO) 

A MOO generally deals with two or more objective functions which need to be optimized 

simultaneously. Recently the evolutionary algorithms (based on the theory of Natural 

Selection(NS) proposed by Darwin in 1859 and Population Genetics(PG) developed by 

Fischer in 1930) are getting more familiar among the researchers due to its various 

advantages like faster processing time, ability to deal with discontinuous search space, ability 

to handle multi-modality of objectives and constraints etc.. Many of the recently developed 

evolutionary algorithms have derived from the two original, independent concepts: the 

evolutionary strategy (ES) developed by Richenberg in 1973 and Genetic Algorithm (GA) 

proposed by Holland in 1975. Vector Evaluated Genetic Algorithm (VEGA) developed by 

Schaffer in 1985 considered to be the first multi-objective evolutionary algorithm (MOEA) 

which was a population based approach. Goldberg in1989 suggested the use of Pareto-based 

approach fitness assignment strategy, where he suggested the use of non-dominated ranking 

and selection to move the population towards the Pareto front. He also suggested about 

niching mechanisms for diversity maintenance. Fonesca and Fleming in 1993 develop multi-

objective genetic algorithm (MOGA), based on Goldberg’s idea, which can be considered as 

the first Pareto-based MOEA. The ranking method proposed by Fonesca and Fleming was 

different from Goldberg’s. Some of MOEAs are listed below with the year of development in 

Table 1.1.          
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 Table 1.1 Lists of some MOEAs 

Name of the MOEA Year of development  

Vector Evaluated GA (VEGA) 1985 

Lexicographic Ordering GA 1985 

Vector Optimized Evolution Strategy (VOES) 1991 

Weight-Based GA (WBGA) 1992 

Multiple Objective GA (MOGA) 1993 

Niched Pareto GA (NPGA, NPGA 2) 1993, 2001 

Non-dominated Sorting GA (NSGA, NSGA-II, Controlled NSGA-II) 1994, 2000, 2001 

Distance-based Pareto GA (DPGA) 1995 

Thermo-dynamical GA (TDGA) 1996 

Strength Pareto Evolutionary Algorithm (SPEA, SPEA2) 1999, 2001 

Multi-Objective Messy GA (MOMGA-I,II,III) 1999, 2001,2003 

Pareto Archived ES (PAES) 1999 

Pareto Envelope-based Selection Algorithm (PESA, PESA II) 2000 ,2001 

Micro GA-MOEA ( -GA, -GA2) 2001, 2003 

Multi-Objective Bayesian Optimization Algorithm (mBOA) 2002 

Neighborhood  Cultivation Genetic Algorithm (NCGA) 2002 

Intelligent Multi- Objective Evolutionary Algorithm (IMOEA) 2004 

- Multi- Objective Evolutionary Algorithm ( -MOEA) 2005 

Fast Pareto Genetic Algorithm (FPGA) 2007 

Omni-Optimizer (OmniOpt) 2008 

Archived-based Micro Genetic Algorithm (AMGA,AMGA2) 2008,2010 
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1.3 Introduction on Artificial Neural Network (ANN) 

ANN refers to the computing systems whose fundamental concept is taken from analogy of 

biological neural networks. Many day to day tasks involving intelligence or pattern recognition 

are extremely difficult to automate, but appear to be performed very easily by animals. The 

neural network of an animal is part of its nervous system, containing a network of specialized 

cells called neurons (nerve cells). Neurons are massively interconnected, where an 

interconnection is between the axon of one neuron and dendrite of another neuron. This 

connection is referred to as synapse. Signals propagate from the dendrites, through the cell body 

to the axon; from where the signals are propagate to all connected dendrites. A signal is 

transmitted to the axon of a neuron only when the cell ‘fires’. A neuron can either inhibit or 

excite a signal according to requirement.  

        Each artificial neuron receives signals from the environment, or other artificial neurons, 

gather these signals, and when fired transmits a signal to all connected artificial neurons. Input 

signals are inhibited or excited through negative and positive numerical weights associated with 

each connection to the artificial neuron. The firing of an artificial neuron and the strength of the 

exciting signal are controlled via. a function referred to as the activation function. The 

summation function of artificial neuron collects all incoming signals, and computes a net input 

signal as the function of the respective weights and biases. The net input signal serves as input to 

the transfer function which calculates the output signal of artificial neuron. 

        Figure 1.4 (a) and (b) shows the analogy between biological and artificial neurons and the 

analogy has been shown in parametric terms in Table 1.2.However ANN s are far too simple to 

serve as realistic brain models on the cell levels, but they might serve as very good models for 

the essential information processing tasks that organism perform.  
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                             Table1.2 Analogy between biological and artificial neurons 

Biological Neurons  Artificial Neurons 

Soma or Cell body Summation function+ Activation function 

Dendrite Input 
Axon Output 
Synapse Weight 

 

 

       Figure 1.4 (b) Connection of an artificial Neuron 

Figure 1.4 (a) Neuron-anatomy of living animals 
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CHAPTER 2  

LITERATURE REVIEW: 

Relationship between process parameters and response parameters in EDM process are very 

much stochastic, random and non-linear in nature. To establish a relation between input 

parameters and output parameters various approaches like empirical relation, non-linear 

regression, response surface methodology, neuro-fuzzy, neural network modeling etc. has been 

investigated. Here in the primary phase a literature review has been done on modeling the EDM 

process using ANN, to find out short comings if any and for investigating in the direction of 

improvising the efficiency in ANN modeling of the EDM process. In the 2nd phase of literature 

review, an investigation has been made on the implementation of ANN integrated GA based 

multi-objective optimization on EDM process. 

2.1 Literature review on ANN 

As modeling of a process reduces the effort, save money and time for optimal and efficient 

implementation  of  that  process,  it  has  a  significant  role  in  EDM process  modeling  also.  Many 

investigations already have been made in this direction using ANN modeling, but still its need 

more improvement. So to identify the direction of improvement a literature review has been 

made as follows: 

Tsai and Wang [4] took six neural networks and a neuro-fuzzy network model for modeling 

material removal rate (MRR) in EDM process and analyzed based on pertinent machine process 

parameters. The networks, namely the LOGMLP, the TANMLP, the RBFN, the Error TANMLP, 

the Adaptive TANMLP, the Adaptive RBFN, and the ANFIS have been trained and compared 

under the same experimental conditions for two different materials considering the change of 

polarity. The various neural network architectures that were used here for modelling were trained 
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with the same Gradient descent learning algorithm. For comparisons among the various models 

various performance parameters like training time, RMSE, R2 were  used.  On  the  basis  of  

comparisons they found ANFIS model to be more accurate than the other models.  

H. Juhr et. al [5] have made  a comparison between  NRF (nonlinear regression function )and 

ANN for the generation of continuous parameter technology, which is a continuous mapping or 

regression. They found ANN’s to much easier than NRF’s. For modeling with ANN’s, feed-

forward networks with three to five layers were used, which were trained with back-propagation 

with momentum term. For developing the continuous parameter generation technology they 

considered the input parameters as pulse current, discharge duration and duty cycle and response 

parameters as removal rate, wear ratio and arithmetic mean roughness. They used two major 

performance evaluation criteria sum of squared deviation and sum of relative deviation to 

evaluate the performance of the two mapping functions. Finally they conclude that ANN shows 

better prediction accuracy than nonlinear regression functions. 

Panda and Bhoi [6] has developed an ANN model (using feed forward neural architecture) 

using Levenberg-Marquardt learning algorithm and logistic sigmoid transfer function to predict 

the material removal rate. Here they have considered the process parameters gap voltage, pulse 

duration and pulse interval. To evaluate the performance of ANN model sum square error and R-

square coef cients were used and the validity of the neural network model was checked with the 

experimental data. In conclusion they concluded that a 3-7-1 feed forward neural model for 

EDM provides faster and more accurate results.  

Angelos P. Markopoulos et.  al  [7]   implemented  an  ANN  model  for  the  prediction  of  SR  in  

EDM. For this purpose they used Matlab® as well as Netlab®.The process parameter to the 

ANN model were work piece material, pulse current and pulse duration at 3,4 and 4 levels 
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respectively. They used back propagation algorithm for training with model assessment criteria 

as MSE and R. Finally they conclude that both Matlab® as well as Netlab® was found efficient 

for prediction of SR of EDM process. 

Assarzadeh and Ghoreishi [8] presented a research work on neural network modeling and 

multi-objective optimization of responses MRR and SR of EDM process with Augmented 

Lagrange Multiplier (ALM) algorithm. A 3–6–4–2-size back-propagation neural network was 

developed to predict these two responses efficiently. The current (I), period of pulses (T), and 

source voltage (V) were selected at 6, 4 and 4 levels respectively as network process parameters. 

Out of 96 experimental data sets 82 data sets were used for training and remaining 14 data sets 

were used for testing the network. The training model was trained with back propagation training 

algorithm with momentum term. Relative percentage error and total average percentage error 

were used to evaluate the models. From the results in terms of mean errors of 5.31% and 4.89% 

in predicting the MRR and Ra they conclude that the neural model can predict process 

performance with reasonable accuracy. Having established the process model, the augmented 

Lagrange multiplier (ALM) algorithm was implemented to optimize MRR subjected to three 

machining regimes of prescribed Ra constraints (i.e. finishing, semi-finishing and roughing) at 

appropriate operating conditions. 

Joshi and Pande [9] developed two models for the electric discharge machining (EDM) process 

using the finite - element method (FEM) and artificial neural network (ANN). A two-

dimensional  axisymmetric  thermal  (FEM)  model  of  single-spark  EDM  process  was  developed  

with the consideration of many thermo-physical characteristics to predict the shape of crater 

cavity, MRR, and TWR. A multilayered feed-forward neural network with leaning algorithms 

such as gradient descent (GD), GD with momentum (GDA), Levenberg – Marquardt (LM), 
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conjugate gradient (CG), scaled conjugate gradient (SCG) were employed to establish relation 

between input process conditions (discharge power, spark on time, and duty factor) and the 

process responses (crater geometry, material removal rate, and tool wear rate) for various 

work—tool work materials. The input parameters and targets of the ANN model was generated 

from the numerical (FEM) simulations. To evaluate the model they used prediction error(%) and 

mean error (ME) and to improve the efficiency of model  two BPNN architectures were tried out, 

viz. single-layered (4 –N – 4) and two-layered (4 – N1 – N2 – 4). They found optimal ANN 

model with network architecture 4 – 8 – 12 – 4 and SCG training algorithm to give very good 

prediction accuracies for MRR (1.53%), crater depth (1.78%), and crater radius (1.16%) and a 

reasonable one for TWR (17.34%). 

M K Pradhan et. al [10] compared the performance and efficiency of back propagation neural 

network (BPN) and radial basis function neural network (RBFN) for the prediction of SR in 

EDM. Three process parameters i.e. pulses current (Ip), the pulse duration (Ton) and duty cycle 

) were supplied to these two networks and corresponding experimental SR values were 

considered as target. Out of the 44 experimental data sets, 35 nos. were considered for training 

and remaining 9 data sets were considered for testing. They compared the performance of two 

networks  in  terms  of  mean absolute  error  (MAE).  MAE for  test  data  of  BPN and RBFN were 

found to be 0.297188 and 0.574888 respectively, which indicates BPN to be more accurate. They 

conclude that BPN is reasonably more accurate but RBFN is faster than the BPNs. 

Promod Kumar Patowari et. al [11] have  applied ANN to model material transfer rate (MTR) 

and layer thickness (LT) by EDM with tungsten–copper (W–Cu) P/M sintered electrodes. They 

have used input parameters to the ANN model such as compaction pressure (CP), sintering 

temperature (ST), peak current (Ip), pulse on time (Ton), pulse off time (Toff) with target 
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measures like MTR, and LT. A multilayer feed-forward neural network with gradient-descent 

learning algorithm with 5nos. of neuron in hidden layer has been used train the ANN model. 

Two activation functions tansig and purelin has been used in hidden and output layers, 

respectively. Two evaluate the ANN model two performance measures average error percentage 

and MSE have implemented. The performance measure MSE during training and testing of MRR 

were found to be 0.0014 and 0.0038, respectively. Another performance measure average error 

percentage during training and testing of MRR were found to be 3.3321 and 8.4365, respectively. 

While modeling LT, MSE during training and testing were found to be 0.0016 and 0.0020 

respectively and average error percentage during training and testing were calculated to be 

6.5732 and 3.1824 respectively. 

Md. Ashikur Rahman Khan et.  al  [12]  proposed  an  ANN model  with multi-layer perception 

neural architecture  for the prediction of SR on first commenced Ti-15-3 alloy in electrical 

discharge machining (EDM) process. The proposed models used process parameters such as 

peak current, pulse on time, pulse off time and servo voltage to develop a mapping with the 

target SR. Training of the ANN models was performed with LM learning algorithm using 

extensive data sets from experiments utilizing copper electrode as positive polarity. An average 

of 6.15% error was found between desired and ANN predicted SR which found to be in good 

agreement with the experimental results. 

Pushpendra S. Bharti et.  al  [13]  made  an  attempt  to  select  the  best  back  propagation  (BP)  

algorithm  from  the  list  of  training  algorithms  that  are  present  in  the  Matlab  Neural  Network  

Toolbox, for the  training of ANN model of EDM process. In this work, thirteen BP algorithms, 

which are available in MATLAB 7.1, Neural Network Toolbox, are compared on the basis of 

mean absolute percentage error and correlation coe cient. Some important specifications that 
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have been used for implementing the ANN modeling were data normalization which was 

performed in the range between 0.1 and 0.9, weight initialization which was done by Nguyen 

Widrow weight initialization technique, transfer functions used at hidden layers and output layer 

were hyperbolic tangent function (tansig) and logistic function (logsig) respectively. Out of 

thirteen BP algorithms investigated, Bayesian Regularization Algorithm found to facilitate the 

best results for efficient training of ANN model. 

Pradhan and Das [14] have used an Elman network for producing a mapping between 

machining parameter such as discharge current, pulse duration, duty cycle and voltage, and the 

response MRR in EDM process. Training and testing of ANN model were performed with 

extensive data sets from EDM experiments on AISI D2 tool steel from finishing, semi-finishing 

to roughening operations. The mean percentage error of the model was found to be 5.86 percent, 

which showed that the proposed model is in a satisfactory level to predict the MRR in EDM   

process. 

A.Thillaivannan [15] et. al. have explored a practical method of optimizing machining 

parameters for EDM process under the minimum total machining time based on Taguchi method 

and Artificial neural network.  Feed-forward back-propagation neural networks with two back-

propagation training algorithms:  gradient descent, and gradient descent with momentum were 

developed for establishing a relation between the target  parameters  current and feed with the 

process parameters required total machining time, oversize and taper of a hole . 

 Fenggou and Dayong [16] present a method that can be used to automatically determine the 

optimal nos. of hidden neuron and optimize the relation between process and response 

parameters of EDM process using GA and BP learning algorithm based ANN modelling. The 

ANN  modeling was implemented to establish relation between EDM process parameters such as 
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current peak value(A), pulse width on(µs) ,processing depth (mm) with the response parameters  

SR(µm), TWR(%), electrode zoom value(µm) and finish depth(mm).A three layer feed forward 

neural architecture was used to implement the ANN modeling in EDM process. The number of 

neurons at the middle layer was determined by GA and node deleting network structure 

optimization method. GA combined with node deleting network structure optimization method 

was implemented to find out the global optimal solution, since it is hard for GA based 

optimization method to find out the local optimal solution, a BP algorithm was nally 

implemented to converge on the global optimum solution. AS GA converged to global optimal 

solution quickly the training time is reduced now and as in the second phase BP algorithm was 

implemented the local optimal solution problem also solved now. Finally they conclude 8 nos. of 

hidden neuron were found to be optimal for ANN modeling with a desired processing precision 

and efficiency. 

Rao and Rao [17] presented a work aimed on the effect of various machining parameters on 

hardness. The various input parameters that have been considered here are different types of 

materials (namelyTi6Al4V, HE15, 15CDV6 and M250), current, voltage and machining time. To 

correlate the machining parameters and response parameter they used a multi-layer feed forward 

neural network with GA as a learning algorithm. For this purpose they used   Neuro Solutions 

software package.  They used a single hidden layer with sigmoid transfer function in both hidden 

and output layer. And they found a maximum prediction error of 5.42% and minimum prediction 

error of 1.53%. 

Deepak Kumar Panda [18] in this article, a new hybrid approach of neuro-grey modeling 

(NGM) technique has been investigated for modeling and multi-optimization of multiple 

processes attributes(SR, micro-hardness, thickness of heat affected zone, and MRR)of the electro 
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discharge machining (EDM) process. To establish an efficient relation between input parameters 

pulse current and pulse duration with the response parameters of EDM process they used a multi-

layer feed forward neural network with Levenberg–Marquardt learning algorithm. The logistic 

sigmoid transfer function was used in both hidden layer and output layer. For assessing the 

performance of ANN model they used R2 and MSE performance measures. 

Pradhan and Biswas [19] presented a research work, where two neuro-fuzzy models and a 

neural network model were utilized for modelling of MRR, TWR, and radial overcut (G) of 

EDM process for AISI D2 tool steel with copper electrode. The discharge current (Ip), pulse 

duration (Ton), duty cycle ( ), and voltage (V) were taken as machining parameters. A feed-

forward neural network with one hidden layer and Levenberg–Marquardt as training algorithm 

were used for implementing the ANN modeling. Weights were randomly initialized, and the 

training, validation and testing data proportionate were taken as 50:40:10 respectively. The 

performances of the developed models were measured in terms of Prediction error ( %) and 

found to be 5.42, 15.21 and 6.51 percentage for testing data set of MRR,TWR and G respectively 

which seems to   approximate the responses quite accurately. 

 2.2 Literature review on implementation of MOEA 

Development of MOEA has been started since last few decades and still it’s continuing in the 

developing stage. In recent years many researchers have shown keen interest in the 

implementation  of  MOEA,  but  till  now  it  has  not  get  wide  applicability.  Some  of  the  

implementation has been presented below as literature review: 

Kodali et. al [20] have shown an investigation on implementation of NSGA-II for optimizing 

two contradicting responses in rough  and  finish  grinding  processes. For rough grinding 
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process minimizing the total production cost (CT) and maximizing the work- piece removal 

parameter (WRP) were evaluated while for finish grinding process minimizing the total CT and 

minimizing the surface roughness (Ra) were considered subjected to three constraints thermal 

damage, wheel  wear  parameter  and  machine  tool  stiffness. 

Kesheng Wang et. al [21] have employed a hybrid artificial neural network and Genetic 

Algorithm methodology for modeling and optimization of two responses i.e. MRR and SR of  

electro-discharge machining. To perform the ANN modeling and multi-objective optimization 

they have implemented a two-phase hybridization process. In the first phase, they have used GA 

as learning algorithm in multilayer feed-forward neural network architecture. In the second 

phase, they used the model equations obtained from ANN modeling as the fitness functions for 

the  GA-based  optimization.  The  optimization  was  implemented  using  Gene-Hunter.  The  ANN 

model optimized error for MRR and SR were found to be 5.60% and 4.98% which laid a 

conclusions for these two responses to accept the model. 

J.  C.  Su et. al [22] have  proposed a ANN integrated GA-based multi-objective optimization 

system for  optimization of  machining performance parameters  in an EDM process. A neural-

network model with back-propagation learning algorithm was developed to establish a relation 

between the 8 process parameters such as pulse-on time (Ton), pulse-off time (Toff), high-voltage 

discharge current (Ihv), low-voltage discharge current (Ilv), gap size (Gap), servo-feed (Vf), 

jumping time (Tjump)  and  working  time  (Tw), and 3 response parameters Ra (the central-line 

average roughness of the machined surface), the TWR and the MRR .As one hidden layer is 

sufficient for ANN modeling of EDM process , they have used a 8-14-3 type feed- forward 

neural network for modeling. After ANN modeling GA-based multi-objective optimization was 

implemented   using a composite objective function formed by ANN model equations. In the 
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composite objective function weights were introduced to re ect the importance of Ra, TWR and 

MRR. From the verification and discussion they confirmed the successful applicability of GA-

based neural network for the optimization of the EDM process. 

Joshi and Pande [23] reported an intelligent approach for modeling and multi-objective 

optimization of EDM parameters of the model with less dependency on the experimental data. 

The EDM parameters data sets were generated from the numerical (FEM) simulations. The 

developed ANN process model was used in defining the fitness functions of non-dominated 

sorting  genetic  algorithm  II  (NSGA-II)  to  select  optimal  process  parameters  for  roughing  and  

finishing operations of EDM. While implementing NSGA-II for roughening operation only two 

contradicting objectives MRR and TWR were considered, while implementing for finishing 

operation best trade up was shared between 3 conflicting objective namely MRR, TWR and 

crater depth.  Finally they carried out a set of experiments to validate the process performance 

for the optimum machining conditions and they found to be successful implement their approach.  

Debabrata Mandal et. al [24] have presented a study attempts to model and optimize the EDM 

process using a back-propagation neural network which uses a gradient search technique and a 

GA based most familiar multi-objective  optimization technique NSGA-II respectively. The 

modeling has been established between 3 process parameters namely current, Ton and Toff with 

responses MRR (mm3/min) Absolute tool wear rate (mm3/min).To nd out the suitable 

architecture for an efficient ANN modeling of EDM process different architectures have been 

investigated. The model with 3-10-10-2 architecture was found to be most suitable for the 

modeling task with learning rate as 0.6 and momentum co-ef cient as 0.6. A total of 78nos. of 

experimental run was used, out of which 69 nos. of run were used for training, and remaining 9 

were used for testing the model. The maximum, minimum and mean prediction errors for this 
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model were found to be 9.47, 0.0137 and 3.06%, respectively. A multi-objective optimization 

method NSGA -II was used to optimize the two conflicting responses MRR and TWR. Finally a 

hundred nos. of Pareto-optimal solutions were successfully generated using NSGA-II.  

Kuriakose and Shunmugam [25] correlate the various machining parameters and performance 

parameters of wire-electro discharge machining using multiple linear regression model. The 

various process parameters that were considered were namely ignition pulse current (IAL), time 

between two pulses (TB), pulse duration (TA), servo-control reference voltage, maximum servo-

speed variation (S), wire speed (Ws), wire tension (Wb) and injection pressure (Inj).Two 

contradicting responses of Wire-electro discharge machining process namely  cutting velocity 

and surface nish were taken into consideration for multi-objective optimization with the help of 

Non-Dominated Sorting Genetic Algorithm (NSGA).The developed multiple linear regression 

model equations were used as fitness functions in NSGA for  performing the optimization task 

and successfully implemented. 

Kuruvila and Ravindra [26] developed a regression analysis method to correlate the machining 

parameters pulse-on duration, current, bed speed, pulse-off duration and flush rate with the 

response parameters Dimensional Error (DE), SR and Volumetric Material Removal Rate 

(VMRR). The multi-objective optimization was performed using genetic algorithm .As GA is 

basically implemented for single objective optimization; here a suitable modification was 

pursued to implement it for multi-objective optimization. The modification was, forming a 

composite objective function with consideration of weightage for different individual objectives, 

which acts as fitness function for GA. Finally they conclude with the successful implementation 

of this approach. 
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MahdaviNejad [27] has demonstrated the effective machining of Silicon Carbide (SiC) which is 

regarded as a harder material, in EDM. Using ANN with a multilayer-perceptron (3-5-5-2) 

architecture and back propagation algorithm the process parameters discharge current, pulse on  

time, pulse off time have been mapped with the two responses SR and MRR. For optimizing the 

process  parameters  simultaneously  w.r.t.  the  objectives  SR and  MRR,  NSGA-II  algorithm was  

applied and a set of non-dominated solutions were achieved. 

 

        From  the  literature  review  it  was  confirmed  that  efficiency  of  ANN  still  needs  to  be  

improvised. Many of the researchers have randomly selected the process parameters (and their 

value) of ANN for developing an efficient model for their particular purpose of implementations. 

So here, there is a high necessity of developing an orderly manner for selecting process 

parameters and their levels for improving the performance of ANN. 

        Through study of literature review reveals that many MOEAs have been implemented for 

MOO of EDM process, but still now no comparison has been made about the performance of 

various MOEAs. So an investigation is required on this to evaluate and compare various 

MOEAs, in qualitative and quantitative parametric terminologies. 
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2.3 Objective of present work 

 A three step frame work was prepared for conceptualizing the research direction as follows: 

1.  To study the performance of ANN process parameters ANN architectures, 

Learning/training algorithms and Nos. of hidden neurons with the help of full factorial 

design. 

2. Optimal  process  modeling  of  MRR  and  TWR  of  EDM  process  with  the  best  levels  of  

these above parameters. 

3. Multi-objective optimization of EDM  responses using three wide applied MOEAs, 

namely Non-dominated Sorting Genetic Algorithm-II (NSGA-II),Controlled NSGA-II 

and Strength Pareto Evolutionary Algorithm 2 (SPEA2) . 
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CHAPTER 3 

 

ANN Performance Evaluation and Modelling 

Many attempts have been made to model performance parameters of EDM process using 

ANN.To obtain an improved ANN model, generally ANN architectures, learning/training 

algorithms and  nos. of hidden neurons are varied, but the variation so far has been  made in a 

random manner. So here a full factorial design has been implemented to achieve the optimal 

of above for modelling.  

3.1 Parameter setting 

The most familiar process parameters that are varied to obtain an efficient ANN model are 

ANN architectures; learning/training algorithms and nos. of hidden neuron. These parameters 

have been chosen here as process parameters to a full factorial design. The process parameter 

ANN architecture at two levels, learning/training algorithm at three levels  and nos. of hidden 

neuron at four levels have been selected as shown in Table 3.1. The performance parameters 

for evaluating the ANN model are taken as training Mean squared error ( MSE), testing MSE, 

training  Correlation coefficient (R) and testing R, which are the default performances 

evaluating parameters assumed by MATLAB.  

Table 3.1 Parameters and their levels 

Process parameter Levels 

1 2 3 4 

Neural Architecture Multi-Layer 
Perceptron 
(MLP) 

Generalized Feed 
forward Neural 
Network (GFNN) 

  

Learning Algorithm Levenberg 
Marquardt 
(LM) 

Scale Conjugate 
Gradient Algorithm 
(SCGA) 

Conjugate 
Gradient with 
Powell-Beale 
Restarts (CGB) 

 

Nos. of hidden neuron 8 16 24 32 
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3.2 About the parameters 

3.2.1 Neural architecture 

A single neuron is not enough to solve real life problems (any linear or nonlinear 

computation) efficiently, and networks with more number of neurons arranged in particular 

sequences are frequently required. This particular ways /sequences of arrangement of neurons 

are coined as neural architecture. The sequences of arrangements of neurons determine how 

computations will proceed and also responsible for the effectiveness of the model. 

Multi-layer perceptron (MLP): 

A multilayer perceptron neural architecture has one or more layers of nodes/neurons (hidden 

layers) between the input and output layers. Here discharge current (Ip), spark on time (Ton), 

duty cycle (Tau) and voltage (V) are the processing parameters comprising the input layer. 

The output layer comprises of two neurons representing the two response parameters material 

removal rate (MRR) and tool wear rate (TWR). The hidden layers are so called because they 

are not exposed to the external environment (data) and it is not possible to examine and 

correct their values directly. A general network topology of MLP neural architecture has been 

shown in Figure 3.1. 

Cascade-forward network (CF) / Generalize feed-forward network (GFNN): 

Generalized feed-forward networks are a generalization of the MLP such that weight 

connection can jump over from the input to each layer and from each layer to the successive 

layers. The additional connections have been added in the hope of solving the problem much 

more efficiently and faster manner. Network topology of a general CF neural architecture has 

been shown in Figure 3.2. 
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Figure 3.1 A general Network topology of MLP architecture 

            Figure 3.2 Common network topology of a CF neural architecture 
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Figure 3.3 Updating weight using learning algorithm 

3.2.2 Learning algorithm 

Weight and bias matrix associate with the inputs of summer are adjusted /updated by using 

some learning rule or training algorithm which is non-linear, multi-variable optimization 

(minimization) of error function. Figure 3.3 shows an application of a training algorithm for 

updating the weights of a single neuron. 

 

 

        Three backpropagation training algorithms viz. Levenberg-Marquardt (LM), Scaled 

Conjugate Gradient (SCGA) and Conjugate Gradient with Powell-Beale Restarts (CGB) has 

been implemented for training the neural architectures. The line search function Hybrid 

Bisection-Cubic Search has been used with CGB to locate the minimum point. 

3.2.3 Nos. of hidden neuron 

Here a single hidden layer has been used throughout, as single hidden layer is sufficient for 

back-propagation neural network to define the input-output mapping. The nos. of neuron in 

the input layer and the output layer are fixed as the input parameters and response parameters 

of  EDM  process   are  fixed  for  this  particular  investigation  and  also   the  mapping  is  to  be  
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established between input and output parameters .So to investigate the effect of  nos. neuron 

on model performance nos. of hidden neuron has been varied at four levels. 

3.2.4 Mean squared error (MSE) 

The error function that has been used here for supervised training is average mean squared 

error function (Eavg ). Mathematically it can be expressed as: 

=
1
2

a )
(3.1)  

where  the desired output for exemplar at neuron k of output layer and  is the 

network output for exemplar  at neuron k of output layer (i.e. the predicted output of neural 

network); K is the number of neuron in the output layer and N is the number of exemplars in 

the data. Mean squared error (MSE) is two times of the average mean squared error 

function . The factor   is multiplied here with the mean squared error function to make 

the differentiation of this function easier. Lower value of MSE is preferable for a superior 

ANN model. 

3.2.5 Correlation coefficient (R) 

Correlation coefficient can be used to determine how well the network output fits the desired 

output. The correlation coefficient between a network output (a) and a desired output (d) can 

be mathematically defined as: 

=
( )( )

( ) ( )
(3.2) 
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   (continued on next page) 

where n = examplar or run number, an and dn are the network output and desire output 

respectively  at a particular examplar, and  are the data mean of network output and desire 

output respectively. Higher value of R is desirable for an effective ANN model. 

 3.3 Data (machining parameters) collection: 

The process parameters and response parameters data of the EDM process used here for 

modeling is referred with permission from Pradhan [28].   

        The total nos. of exemplar in the data set is 150.The whole data set was divided into 3 

sets viz. training,validation and test dataset.The training data set is used to fit the model or to 

establish the input-output mapping.The validation data set is used stop the training by early 

stopping criteria. Test data set is used to evaluate the performance and generalization error of 

fully trained neural network model. Generalization means how well the trained model 

response to the data set that does not belong to the training set. 

        The training, validation and test data set was respectively proportionate to 80:10:10. 

Table 3.2 ,3.3 and 3.4 shows the training, validation and tesing dataset respectivly. 

                  Table 3.2 Training data set 

S. No. Ip  
(A) 

Ton 
(µs) 

Tau 
(%) 

V 
(volt) 

MRR 
 

TWR 
 

1 10 500 55 60 17.50 -0.010 
2 7 200 65 60 14.73 0.070 
3 7 100 55 40 16.34 0.160 
4 10 200 45 60 19.09 0.150 
5 16 400 55 40 51.01 0.020 
6 13 100 55 40 40.92 0.980 
7 16 500 55 60 39.36 -0.110 
8 16 300 65 60 47.96 0.170 
9 4 300 55 60 4.23 0.020 
10 4 400 55 40 4.74 0.020 
11 16 300 55 60 40.90 0.080 
12 10 300 65 60 24.90 0.060 
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  (continued on next page) 

S. No. Ip  
(A) 

Ton 
(µs) 

Tau 
(%) 

V 
(volt) 

MRR 
 

TWR 
 

13 10 400 65 40 29.07 0.010 
14 16 500 45 60 31.13 0.010 
15 10 100 65 60 26.66 0.650 
16 7 300 45 60 9.08 0.040 
17 7 400 55 60 8.79 0.030 
18 16 400 65 40 57. 68 0.090 
19 7 200 45 40 13.57 0.080 
20 10 500 65 40 28.27 -0.020 
21 13 200 65 40 49.05 0.420 
22 7 400 65 40 13.70 0.010 
23 7 300 65 60 12.75 0.030 
24 10 500 65 60 19.92 0.001 
25 4 500 65 40 2.01 0.001 
26 4 400 65 40 4.43 0.010 
27 16 200 45 60 32.91 0.550 
28 16 200 65 60 48.29 0.490 
29 10 300 55 60 22.16 0.070 
30 4 300 45 60 3.32 0.020 
31 16 200 55 60 41.26 0.520 
32 10 200 55 60 22.74 0.190 
33 10 200 65 40 33.05 0.140 
34 16 500 45 40 37.52 0.030 
35 16 100 55 40 54.15 1.780 
36 10 400 45 40 20.96 0.040 
37 10 500 45 40 19.04 0.010 
38 4 500 45 40 2.12 0.010 
39 4 100 55 60 5.61 0.100 
40 16 400 45 60 32.39 0.050 
41 7 100 65 60 16.29 0.310 
42 7 200 55 60 13.08 0.080 
43 7 100 45 40 14.50 0.190 
44 4 200 55 40 7.93 0.010 
45 4 100 45 40 5.77 0.070 
46 13 100 55 60 36.09 0.790 
47 13 500 55 40 38.06 -0.100 
48 10 400 65 60 22.25 0.020 
49 16 300 55 40 53.06 0.200 
50 16 400 65 60 47.38 0.080 
51 16 500 65 40 56.57 0.060 
52 13 100 45 40 32.96 1.020 
53 4 500 45 60 1.70 0.001 
54 10 400 45 60 16.43 0.020 
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    (continued on next page) 

S. No. Ip  
(A) 

Ton 
(µs) 

Tau 
(%) 

V 
(volt) 

MRR 
 

TWR 
 

55 13 200 45 60 27.23 0.300 
56 4 500 65 60 1.46 0.001 
57 7 300 55 60 12.31 0.060 
58 4 300 65 60 3.13 0.010 
59 7 100 45 60 11.99 0.190 
60 4 400 45 60 2.38 0.010 
61 4 300 65 40 5.75 0.001 
62 10 200 65 60 25.49 0.150 
63 13 400 55 40 39.69 0.010 
64 10 100 45 40 23.48 0.630 
65 16 100 45 40 39.81 1.800 
66 4 200 65 60 5.80 0.020 
67 13 500 45 40 30.29 0.020 
68 10 500 55 40 23.95 -0.060 
69 4 500 55 60 1.34 0.010 
70 10 100 45 60 19.36 0.420 
71 13 100 65 40 49.27 1.040 
72 7 300 45 40 12.81 0.040 
73 4 200 55 60 5.04 0.040 
74 7 400 45 40 11.03 0.020 
75 13 400 45 60 26.90 0.020 
76 10 400 55 40 25.55 0.030 
77 13 300 45 40 31.82 0.120 
78 7 500 45 40 9.03 0.010 
79 10 400 55 60 20.36 0.020 
80 4 400 45 40 2.83 0.010 
81 16 300 45 60 32.66 0.090 
82 13 300 65 40 48.33 0.170 
83 7 200 45 60 10.75 0.090 
84 16 500 55 40 49.40 -0.070 
85 7 500 65 60 7.00 0.010 
86 10 500 45 60 15.60 0.001 
87 4 100 45 60 5.53 0.100 
88 13 200 65 60 41.62 0.260 
89 13 400 55 60 34.36 0.001 
90 7 500 55 60 6.59 0.010 
91 16 100 65 60 48.54 1.700 
92 4 100 65 60 6.87 0.090 
93 4 200 65 40 6.74 0.010 
94 16 200 65 40 59.79 0.560 
95 4 100 65 40 8.22 0.040 
96 13 500 55 60 31.97 -0.090 
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S. No. Ip  
(A) 

Ton 
(µs) 

Tau 
(%) 

V 
(volt) 

MRR 
 

TWR 
 

97 10 200 45 40 22.52 0.190 
98 10 100 55 40 28.08 0.570 
99 13 100 65 60 42.09 1.080 
100 10 100 55 60 23.05 0.440 
101 16 500 65 60 46.49 0.040 
102 7 500 45 60 5. 93 0.001 
103 7 400 65 60 9.78 0.020 
104 13 300 45 60 27.11 0.080 
105 4 300 45 40 3.53 0.020 
106 4 100 55 40 8.24 0.080 
107 13 500 65 60 38. 03 0.020 
108 7 400 45 60 7.23 0.010 
109 13 200 55 60 35.23 0.300 
110 13 200 45 40 32.79 0.310 
111 10 300 45 40 21.97 0.060 
112 10 300 65 40 31.25 0.030 
113 7 500 55 40 8.43 -0.010 
114 16 200 45 40 39.56 0.640 
115 4 200 45 60 4.60 0.070 
116 7 500 65 40 10.14 -0.020 
117 16 300 45 40 38.54 0.210 
118 7 300 55 40 15.20 0.040 
119 13 500 65 40 43.04 0.001 
120 4 200 45 40 4.91 0.040 
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                  Table 3.3 Validation data set 

S. No. Ip  
(A) 

Ton 
(µs) 

Tau 
(%) 

V 
(volt) 

MRR 
 

TWR 
 

1 13 400 45 40 30.83 0.060 
2 16 200 55 40 53.93 0.710 
3 4 400 65 60 1.91 0.020 
4 13 400 65 60 40.26 0.030 
5 10 200 55 40 27.78 0.270 
6 10 100 65 40 33.78 0.550 
7 16 300 65 40 59.12 0.250 
8 4 400 55 60 1.99 0.010 
9 7 100 55 60 13.20 0.180 
10 10 300 45 60 17.96 0.050 
11 10 300 55 40 26.81 0.060 
12 7 200 65 40 17.74 0.070 
13 16 100 55 60 41.58 1.510 
14 4 500 55 40 2.16 0.001 
15 7 100 65 40 19.01 0.260 

 

                  Table 3.4 Test data set 

S. No. Ip  
(A) 

Ton 
(µs) 

Tau 
(%) 

V 
(volt) 

MRR 
 

TWR 
 

136 16 100 65 40 59.98 1.890 
137 16 100 45 60 33.56 1.580 
138 13 300 55 40 40.42 0.090 
139 13 500 45 60 26.56 0.010 
140 16 400 45 40 38.38 0.090 
141 7 200 55 40 16.17 0.070 
142 4 300 55 40 7.42 0.020 
143 13 300 55 60 34.66 0.060 
144 13 100 45 60 27.49 0.900 
145 7 400 55 40 11.35 0.010 
146 7 300 65 40 15.86 0.023 
147 16 400 55 60 40.49 -0.120 
148 13 400 65 40 45.64 0.020 
149 13 300 65 60 41.11 0.110 
150 13 200 55 40 40.62 0.390 
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3.4 Important specifications used for ANN modelling  

Some of the important specifications of parameters that are frequently required throughout 

the modeling process have been shown in Table 3.5. 

 Table 3.5 Important specification of parameters used in ANN modelling 

S.N. Parameter Data/ 
Data range 

Technique used/ Type of  Parameter 
used 

1. Nos. of input neuron 4 ____________ 
2. Nos. of output neuron 2 ____________ 

3. Total nos. of exemplar 150 ____________ 
4. Proportion of training, 

validation & testing data 
80:10:10 ____________ 

5. Data normalization 0.05 to 0.95 Min-max data normalization technique 

6. Weight initialization -0.5 to 0.5 Random weight initialization technique  

7. Transfer function 0 and 1 Log-sigmoid function 
(for both hidden & output layer) 

8. Error function ___________ Mean squared error function  

9. Mode of training ___________ Batch mode  

10. Type of Learning rule ___________ Supervised learning rule 

11. Stopping criteria ___________ Early stopping 
 

Two important parameters, data normalization and transfer function also have been described 

below: 

3.4.1 Data normalization: 

Generally the inputs and targets that dealt with an ANN model are of various ranges. These 

input and targets are needed to be scaled in the same order of magnitude otherwise some 

variables may appear to have more significance than they actually do, which will lead to form 

error in the model.   Here the data of neural network model was scaled in the range of 0.05 to 
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0.95.The min-max data normalization technique was used for this purpose using the 

following equation: 

=
min) × ( max min)
( max min) min (3.3) 

        Where, N is the normalized value of the real variable, Nmin=0.05 and Nmax=0.95 are the 

minimum and maximum scaled range respectively, R is the real value of variable, and Rmin 

and Rmax are the minimum and maximum values of the real variable, respectively. 

3.4.2 Transfer /Activation function 

        The outcome of the summation function is supplied to an algorithmic process for further 

processing known as the transfer function. Here log-sigmoid function has been used in both 

hidden and output layer. Sigmoid function has output range between 0 and 1.The output of a 

neuron is given by: 

s
l =

1
(1 + l) (3.4)  

        Where as
l is the output of neurons at hidden layer (s=1) and output layer (s=2), l is the 

neuron number in that layer,  is a scaling factor known as sigmoidal gain (here taken as 1) 

and Il is the output of net-input function of l neurons. 

3.5 Results and discussion from full factorial design analysis 

Here the influence of input parameters i.e., ANN architectures, learning/training algorithms 

and nos. of hidden neuron on performance parameters training MSE, testing MSE, training  R 

and testing R have been investigated with the help of full factorial method. For  each  run  4  

nos. of replicate were created to consider the effect of variation in performance parameters, 

so each of the 24 runs was repeated for a total of 96 runs in the investigation as shown in 

Table 3.6. 
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  Table 3.6 Observation table for full factorial method 

Run 
Order 

Neural 
Arch. 

Learning 
Algorithm 

Nos. of 
Hidden 
Neuron 

Training  
MSE 

Test 
MSE 

Training 
R 

Test R 

1 MLP CGB 8 0.2815 0.5432 0.99946 0.99923 
2 MLP CGB 16 0.1016 0.3915 0.99981 0.99953 
3 MLP CGB 24 0.0846 0.4139 0.99984 0.99943 
4 MLP CGB 32 0.0762 0.2803 0.99985 0.99961 
5 MLP LM 8 0.1420 0.4390 0.99973 0.99940 
6 MLP LM 16 0.0241 0.1529 0.99995 0.99980 
7 MLP LM 24 0.0071 0.3597 0.99999 0.99955 
8 MLP LM 32 0.0031 0.4650 0.99999 0.99938 
9 MLP SCGA 8 0.3418 0.7741 0.99934 0.99891 
10 MLP SCGA 16 0.1157 0.3637 0.99978 0.99957 
11 MLP SCGA 24 0.1100 0.6763 0.99979 0.99932 
12 MLP SCGA 32 0.1017 0.7141 0.99980 0.99927 
13 CF CGB 8 0.2914 0.4753 0.99944 0.99943 
14 CF CGB 16 0.1243 0.4552 0.99976 0.99948 
15 CF CGB 24 0.1077 0.5426 0.99979 0.99943 
16 CF CGB 32 0.0891 0.4977 0.99983 0.99945 
17 CF LM 8 0.0850 0.3334 0.99984 0.99956 
18 CF LM 16 0.0196 0.2031 0.99996 0.99972 
19 CF LM 24 0.0030 0.8960 0.99999 0.99915 
20 CF LM 32 0.0018 0.5012 1.00000 0.99952 
21 CF SCGA 8 0.1782 0.6252 0.99966 0.99919 
22 CF SCGA 16 0.1011 0.3603 0.99981 0.99954 
23 CF SCGA 24 0.0977 0.3968 0.99981 0.99959 
24 CF SCGA 32 0.0887 0.7101 0.99983 0.99930 
25 MLP CGB 8 0.3236 0.4869 0.99938 0.99935 
26 MLP CGB 16 0.0982 0.2604 0.99981 0.99963 
27 MLP CGB 24 0.0548 0.3808 0.99989 0.99961 
28 MLP CGB 32 0.0599 0.4621 0.99988 0.99939 
29 MLP LM 8 0.1226 0.4955 0.99976 0.99934 
30 MLP LM 16 0.0236 0.2042 0.99995 0.99972 
31 MLP LM 24 0.0074 0.2503 0.99999 0.99966 
32 MLP LM 32 0.0009 0.6482 1.00000 0.99938 
33 MLP SCGA 8 0.3240 0.7849 0.99938 0.99889 
34 MLP SCGA 16 0.1235 0.2791 0.99976 0.99961 
35 MLP SCGA 24 0.1100 0.6763 0.99979 0.99932 
36 MLP SCGA 32 0.0690 0.5977 0.99987 0.99948 
37 CF CGB 8 0.3052 0.4736 0.99941 0.99938 
38 CF CGB 16 0.1438 0.2264 0.99972 0.99971 
39 CF CGB 24 0.1187 0.5340 0.99977 0.99948 
40 CF CGB 32 0.0819 0.6060 0.99984 0.99921 
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Run 
Order 

Neural 
Arch. 

Learning 
Algorithm 

Nos. of 
Hidden 
Neuron 

Training  
MSE 

Test 
MSE 

Training 
R 

Test R 

41 CF LM 8 0.1017 0.2025 0.99980 0.99972 
42 CF LM 16 0.0105 0.3858 0.99998 0.99952 
43 CF LM 24 0.0035 0.8005 0.99999 0.99914 
44 CF LM 32 0.0021 0.4612 1.00000 0.99958 
45 CF SCGA 8 0.1632 0.4960 0.99969 0.99934 
46 CF SCGA 16 0.1100 0.3412 0.99979 0.99954 
47 CF SCGA 24 0.0673 0.5468 0.99987 0.99944 
48 CF SCGA 32 0.0660 0.6247 0.99987 0.99918 
49 MLP CGB 8 0.2843 0.5215 0.99945 0.99931 
50 MLP CGB 16 0.0976 0.3323 0.99981 0.99958 
51 MLP CGB 24 0.0683 0.4742 0.99987 0.99939 
52 MLP CGB 32 0.0650 0.4749 0.99988 0.99940 
53 MLP LM 8 0.1207 0.3403 0.99977 0.99954 
54 MLP LM 16 0.0223 0.1946 0.99996 0.99972 
55 MLP LM 24 0.0029 0.3201 0.99999 0.99959 
56 MLP LM 32 0.0003 0.5428 1.00000 0.99946 
57 MLP SCGA 8 0.3251 0.7695 0.99938 0.99893 
58 MLP SCGA 16 0.1536 0.4952 0.99971 0.99949 
59 MLP SCGA 24 0.0726 0.4786 0.99986 0.99947 
60 MLP SCGA 32 0.0589 0.6425 0.99989 0.99937 
61 CF CGB 8 0.2968 0.5738 0.99943 0.99925 
62 CF CGB 16 0.1695 0.4845 0.99967 0.99959 
63 CF CGB 24 0.0954 0.4529 0.99982 0.99943 
64 CF CGB 32 0.0775 0.5932 0.99985 0.99923 
65 CF LM 8 0.1040 0.2852 0.99980 0.99962 
66 CF LM 16 0.0184 0.4988 0.99996 0.99952 
67 CF LM 24 0.0032 0.9699 0.99999 0.99908 
68 CF LM 32 0.0024 0.6140 1.00000 0.99937 
69 CF SCGA 8 0.1880 0.5374 0.99964 0.99926 
70 CF SCGA 16 0.0927 0.1613 0.99982 0.99978 
71 CF SCGA 24 0.1037 0.4336 0.99980 0.99940 
72 CF SCGA 32 0.0848 0.4811 0.99984 0.99939 
73 MLP CGB 8 0.3249 0.6884 0.99938 0.99930 
74 MLP CGB 16 0.1156 0.3324 0.99978 0.99958 
75 MLP CGB 24 0.0795 0.3719 0.99985 0.99952 
76 MLP CGB 32 0.0209 0.3649 0.99996 0.99948 
77 MLP LM 8 0.1348 0.4764 0.99974 0.99936 
78 MLP LM 16 0.0124 0.1714 0.99998 0.99976 
79 MLP LM 24 0.0059 0.1771 0.99999 0.99978 
80 MLP LM 32 0.0015 0.5497 1.00000 0.99927 
81 MLP SCGA 8 0.3036 0.6976 0.99942 0.99907 
82 MLP SCGA 16 0.1372 0.4899 0.99974 0.99950 
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Run 
Order 

Neural 
Arch. 

Learning 
Algorithm 

Nos. of 
Hidden 
Neuron 

Training  
MSE 

Test 
MSE 

Training 
R 

Test R 

83 MLP SCGA 24 0.0688 0.4997 0.99987 0.99942 
84 MLP SCGA 32 0.0584 0.7697 0.99989 0.99931 
85 CF CGB 8 0.3142 0.5747 0.99940 0.99921 
86 CF CGB 16 0.1099 0.3037 0.99979 0.99961 
87 CF CGB 24 0.0889 0.4886 0.99983 0.99970 
88 CF CGB 32 0.0651 0.5085 0.99988 0.99929 
89 CF LM 8 0.0842 0.2854 0.99984 0.99962 
90 CF LM 16 0.0137 0.3267 0.99997 0.99954 
91 CF LM 24 0.0062 0.7403 0.99999 0.99931 
92 CF LM 32 0.0041 0.5950 0.99999 0.99943 
93 CF SCGA 8 0.1728 0.4855 0.99967 0.99934 
94 CF SCGA 16 0.0937 0.3482 0.99982 0.99951 
95 CF SCGA 24 0.0621 0.4023 0.99988 0.99946 
96 CF SCGA 32 0.0912 0.7927 0.99982 0.99931 
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3.5.1 Effect on training MSE 

Figure 3.4 shows the main effect plot for training MSE. From the main effect plot the effect 

of individual parameters on training MSE has been defined subsequently. The two neural 

architecture used here, seems to have less effect on training MSE. Levenberg-Marquardt 

learning algorithm has clearly outperformed the other two algorithms. With the increase in 

nos. of hidden neuron, training MSE is reducing and minimum training MSE was achieved at 

32 nos. of neuron. The interaction effects between input parameters are shown in Figure 3.5. 
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        Analysis of Variance (ANOVA) for training MSE is shown in Table 3.6 .From p-values 

of corresponding input parameters and its interactions, it can be conclude that all individual 

parameters and their  interactions are found to be significant for the  response. And as nos. of 

hidden neuron is having highest contribution of 57.509 percentages towards training MSE, it 

is highly significant parameter. 

Figure 3.4 Main effect plots for training MSE 



Page | 40  
 

0.30

0.15

0.00

3224168

SC GALMC GB

0.30

0.15

0.00

MLPC F

0.30

0.15

0.00

Neural A rch.

Learning A lgorithm

Nos. of Hidden Neur on

CF
MLP

Arch.
Neural

CGB
LM
SCGA

Algorithm
Learning

8
16
24
32

Neuron
Hidden
Nos. of

 

Table 3.7 Analysis of Variance for training MSE 
 

Source DF Seq SS Adj 
MS 

F P %  of 
contribution 

Neural Arch. 1 0.003014 0.003014 14.74 0.000 0.38 
Learning Algorithm 2 0.233325 0.116663 570.57 0.000 29.15 
Nos. of Hidden Neuron 3 0.460293 0.153431 750.39 0.000 57.51 
Neural Arch.*Learning 
Algorithm 

2 0.017418 0.008709 42.59 0.000 2.18 

Neural Arch.*Nos. of Hidden 
Neuron 

3 0.021186 0.007062 34.54 0.000 2.65 

Learning Algorithm* 
  Nos. of Hidden Neuron 

6 0.037723 0.006287 30.75 0.000 4.71 

Neural Arch.*Learning 
Algorithm* 
  Nos. of Hidden Neuron 

6 0.012698 0.002116 10.35 0.000 
1.59 

Error 72 0.014722 0.000204   1.84 
Total 95 0.800379    100 
 
 

 

 

Figure 3.5 Interaction plot for training MSE 
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3.5.2 Effect on test MSE 

Figure 3.6 shows the main effect plot for test MSE. From the figure assessments drawn are; 

neural architecture has insignificant effect on test MSE, Levenberg-Marquardt training 

algorithm and 16 nos. of neuron at hidden layer are liable for the lowest test MSE. Interaction 

plot for test MSE has been shown in Figure 3.7. 
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        From  the  ANOVA  for  test  MSE  as  shown  in  Table  3.7,  it  was  found  that  all  the  

individual parameters except neural architecture have significant effects on test MSE. All the 

interaction effects among the individual parameters also express significant effects towards 

the test MSE at a significance level of 0.05. A major 28.03 percentage of contribution effect 

was added to test MSE by nos. hidden neurons. 

Figure 3.6 Main effect plots for test MSE 
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Table 3.8 Analysis of Variance for test MSE  
 

Source DF Seq SS Adj MS F P % of 
contribution 

Neural Arch. 1 0.01919 0.01919 2.85 0.096* 0.67 
Learning Algorithm 2 0.22384 0.11192 16.64 0.000 7.80 
Nos. of Hidden Neuron 3 0.80482 0.26827 39.88 0.000 28.03 
Neural Arch.*Learning 
Algorithm 

2 0.30051 0.15025 22.33 0.000 10.47 

Neural Arch.*Nos. of 
Hidden Neuron 

3 0.30211 0.10070 14.97 0.000 10.52 

Learning Algorithm* 
  Nos. of Hidden Neuron 

6 0.35498 0.05916 8.79 0.000 
12.36 

Neural Arch.*Learning 
Algorithm* 
Nos. of Hidden Neuron 

6 
 

0.38144 
 

0.06357 
 

9.45 
 

0.000 
 13.28 

Error 72 0.48439 0.00673   16.87 
Total 95 2.87128    100 
* insignificant 
 

 

Figure 3.7 Interaction plot for test MSE 
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3.5.3 Effect on training R 
 
Main  effect  plot  as  shown  in  Figure  3.8  shows  that  MLP  neural  architecture,  LM  learning  

algorithm and 32 nos. of hidden neuron as input parameters produce higher R value. With 

increase in nos. of hidden neuron training R value also increased. Interaction effect between 

parameters has been shown in Figure 3.9. 
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        ANOVA for training R is shown in Table 3.8, which indicates that all input parameters 

with their interaction effects are significant with in a confidence interval of 95 percentages. 

Major contribution effect of 58.62 and 31.03 percentages were added to training R by nos. of 

hidden neuron and learning algorithm respectively. So it can be indisputable conclude that 

nos. of hidden neuron is having highest significance towards training R.  

Figure 3.8 Main effect plots for training R 
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Table 3.9 Analysis of Variance for Training R 
 
Source DF Seq SS Adj 

MS 
F P % of 

contribution 
Neural Arch. 1 0.0000000 0.0000000 13.07 0.001 0.00 
Learning Algorithm 2 0.0000009 0.0000004 548.75 0.000 31.03 
Nos. of Hidden Neuron 3 0.0000017 0.0000006 722.05 0.000 58.62 
Neural Arch.*Learning 
Algorithm 

2 0.0000001 0.0000000 40.83 0.000 3.45 

Neural Arch.*Nos. of Hidden 
Neuron 

3 0.0000001 0.0000000 33.86 0.000 3.45 

Learning Algorithm* 
  Nos. of Hidden Neuron 

6 0.0000001 0.0000000 29.44 0.000 3.45 

Neural Arch.*Learning 
Algorithm* 
  Nos. of Hidden Neuron 

6 0.0000000 0.0000000 10.27 0.000 
0.00 

Error 72 0.0000001 0.0000000   3.45 
Total 95 0.0000029    100 
 
 

 

Figure 3.9 Interaction plot for training R 
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3.5.4 Effect on testing R 
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Main effect plot shown in Figure 3.10 signifies that neural architecture is insignificant 

towards test R. In the meanwhile LM algorithm and 16 nos. of hidden neuron are seems 

responsible for optimal test  R value.  Interaction effect  plot  for testing R is shown in Figure 

3.11. 

        ANOVA for test R is presented in Table 3.9. A maximum contribution effect of 32.35 

percentages has been added to test R by nos. of hidden neuron. Neural architecture is having 

a p-value of 0.872 which implies it has no significant effects on test R. All other individual 

parameters and their interactions are having p-value less than 0.05 hence identified as 

significant. 

Figure 3.10 Main effect plots for test R 
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Table 3.10 Analysis of Variance for Test R 
Source DF Seq SS Adj 

MS 
F P % of 

contribution 
Neural Arch. 1 0.0000000 0.0000000 0.03 0.872* 0.00 
Learning Algorithm 2 0.0000003 0.0000002 21.18 0.000 8.82 
Nos. of Hidden Neuron 3 0.0000011 0.0000004 47.74 0.000 32.35 
Neural Arch.*Learning 
Algorithm 

2 0.0000001 0.0000001 9.13 0.000 2.94 

Neural Arch.*Nos. of Hidden 
Neuron 

3 0.0000003 0.0000001 13.70 0.000 8.82 

Learning Algorithm* 
  Nos. of Hidden Neuron 

6 0.0000004 0.0000001 9.08 0.000 11.76 

Neural Arch.*Learning 
Algorithm* 
  Nos. of Hidden Neuron 

6 0.0000005 0.0000001 9.99 0.000 14.70 

Error 72 0.0000006 0.0000000   17.64 
Total 95 0.0000034    100 
*insignificant 
 
 
 
 

 

 Figure 3.11 Interaction plot for test R 
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3.6 Results and discussion from Modelling MRR and TWR of EDM Process 

The  best  process  parameter  setting  for  ANN  modelling  was  selected  with  the  help  of  full  

factorial method. The chosen optimal process parameters are Levenberg-Marquardt training 

algorithm, 16 nos. of hidden neurons and MLP neural architecture. From Table 3.6, minimum 

test  MSE  and  maximum  test  R  value  was  found  in  the  run  order   6,  so  weights  and  bias  

matrix of this run was consider for modelling MRR and TWR. ANN modelling of MRR and 

TWR with the optimal process parameter setting has been shown here. 

        MATLAB representation of ANN topology that has been utilized for modeling is shown 

in Figure 3. 12. Variation of MSE of training, validation and testing data set w.r.t. the epoch 

has been shown in Figure 3.13. Validation data set is used to stop the training process in early 

stopping criteria for providing better generalization. Figure 3.13 shows that the validation 

error is minimum at epoch 84. So the training was stopped at this point and the weights and 

biases were used to model MRR and TWR. Weights and biases used for generating the ANN 

outputs which will be further used in the fitness function of GA based multi-objective are 

shown in Table 3.10. For producing the ANN output with the help of weight and bias matrix 

following equation has been used: 

a = f (W f (W p + b ) + b (3.5) 

where a2 is output vector of second layer, f represents the transfer function, W1 and W2  are 

the weight matrix of hidden layer and output layer respectively, p is the input vector, b1 and 

b2 are the bias vector of first layer and second layer respectively. 

         Correlation coefficient between target (Experimental value) and output (ANN output) of 

training, validation and testing is shown in Figure 3.14. Figure 3.15 and 3.16 shows the 

variation of MRR (desired output/target) and MRR output (ANN output) of training and 

testing data set w.r.t. exemplar. The variation of TWR (target) and TWR output of training 

and testing data set w.r.t exemplar is shown in Figure 3.17 and 3.18. 
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Figure 3.12 ANN network topology of selected model 

 

 

Figure 3.13 Variation of MSE w.r.t. epoch 
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 Table 3.11 Weights and biases of optimal model (LM algorithm, 16 nos. of hidden neurons 
and MLP neural architecture) 

 

 

Figure 3.14 Correlation coefficients

Weights of Biases of 
layer 1 layer 2 layer 1 layer 2 

4.99478 1.78719 -1.6273 -2.3907 -0.1876 0.0623 -7.0429 0.34845 
-2.69237 -0.49197 -2.0950 -2.5831 -0.2302 -0.0436 5.8028 1.00158 
4.78143 0.54090 2.9619 -3.5766 0.1198 -0.0038 -5.2055 ------------ 
1.93964 -3.47921 0.0398 -0.0714 0.0009 0.8450 -1.7694 ------------ 
-3.35684 -3.64755 1.3872 1.4698 0.0364 0.0135 4.5022 ------------ 
-3.57710 1.35745 0.3374 -6.3451 -0.0886 -0.0015 6.1726 ------------ 
-0.87752 -3.50616 -6.8249 -0.1538 -0.0229 0.0094 3.6008 ------------ 
-2.49875 0.45652 -0.0019 4.7040 -1.0693 -0.0807 -0.9313 ------------ 
4.35388 0.98543 3.5351 -3.2301 -0.0788 -0.0296 -2.4009 ------------ 
10.43924 -0.30974 -6.4021 1.6958 0.0247 -0.0032 -0.7527 ------------ 
4.73861 5.33743 -1.6415 -0.2837 -0.0134 -0.0047 -4.0357 ------------ 
-6.84502 0.11444 0.8970 -1.1033 -0.0769 0.0048 4.5035 ------------ 
-6.00481 0.54338 -0.1424 8.5938 0.7737 0.0339 -1.1540 ------------ 
-4.19182 7.34314 2.6207 -2.1351 -0.0077 -0.0003 -3.3867 ------------ 
2.76555 0.92080 2.0577 2.7333 0.1725 0.0518 -1.7058 ------------ 
5.81663 -2.41776 -7.2895 2.7977 0.0277 0.0073 4.7543 ------------ 
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       Figure 3.15 Variation of MRR and MRR output of training data w.r.t. exemplar 
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 Figure 3.17 Variation of TWR and TWR output of training data set w.r.t exemplar 
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          Figure 3.16 Variation of MRR and MRR output of testing data w.r.t. exemplar 

 Figure 3.18 Variation of TWR and TWR output of testing data set w.r.t exemplar 
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3.7 Conclusions 

 
From the main effect plots it can be concluded that for training MSE and R, 32 nos. of hidden 

neuron found to give better result but in case of testing MSE and R, 16 nos. of hidden neuron 

found to be the best. As training data set is used to fit the model and testing data set is used to 

evaluate the model, here main effect plot and ANOVA of testing data set was considered for 

evaluation of best ANN model. From ANOVA it can be conclude that nos. of hidden neuron 

is having highest contribution towards MSE and R, no matter whether it is for training or 

testing. As the neural architecture was found insignificant for test MSE and test R, the 

conventional MLP neural architecture was selected for modeling. From the main effect plot 

of test MSE and test R, Levenberg-Marquardt training algorithm and 16 nos. of hidden 

neurons are found to be efficient for optimal values of responses and hence selected for 

efficient ANN modeling and results were demonstrated.  
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CHAPTER 4 

 

Multi-Objective Optimization and Comparison 

 
The real world engineering problems are usually conflicting in nature, preventing 

simultaneous optimization of each objective. Here two performance parameters of EDM 

process have been considered. One is MRR which is preferred in higher is better manner, 

another one is TWR that is preferred as lower the better. These two performance parameters 

are highly conflicting in nature. Till date many GA based multi-objective algorithm has been 

developed,  but  among  them  more  familiar  are  NSGA-II,  controlled  NSGA-II  and  SPEA2.  

Here an attempt has been made to optimize the two conflicting responses (MRR and TWR) 

of EDM process using these algorithms and to compare and evaluate the performance of 

these algorithms. 

4.1 Multi-objective optimization  

 Here, three Genetic Algorithm (GA) based multi-objective algorithm have been 

implemented, in search of set solutions, each of which satisfies the objectives at an acceptable 

level without being dominated by any other solution. 

         For implementing these algorithms a multi-objective minimization problem with 4 

parameters (decision variables) and 2 objectives were formulated as follows: 

Minimize y=f(x) = (f1(x), f2(x))                                                                       (4.1) 

Subjected  

Ip 16 

100 Ton 500 

45 Tau 65 

40 60 

Where x= (Ip, Ton, Tau, V) and y= (y1, y2). 
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        The multi-objective function y=f(x) formed by the ANN model equation is to be 

minimized but the individual objective MRR is to be maximized and TWR is to be 

minimized. So the individual objective MRR was suitably modified.  After modification the 

individual objective function are represented below as: 

( ) =
1

1 + (4.2)  

( ) (4.3)  

 

4.1.1 Multi-Objective Optimization using NSGA-II  

In this algorithm, initially a random initial population Pt of size N is created and for this 

generation, the population is sorted based on non-dominance. Then, the binary tournament 

selection, reproduction, crossover and mutation operations are performed to create child 

population Qt of size N. After the initial generation the procedure changes to preserve the 

elitism. 

        In the subsequent generations, the first step is to combine the child and parent 

population. This summed up the total population size to 2N. The combined population Rt 

(=Pt+Qt) is sorted on the basis of non-dominance, which generates number of non-dominated 

solution fronts. Then, based on crowded comparison criteria, a new parent population Pt+1 of 

size N is formed [29]. If any one of the termination criteria met at this stage, then the process 

is  terminated, otherwise it continues through the steps as shown in Figure 4.1 until the final 

state of non-dominated set of solutions are achieved. This algorithm was implemented in 

MATLAB code with the functions and parameters setting tabulated in Table 4.1. 
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                  Table 4.1 Process parameter and functional setting of NSGA-II algorithm 

Types of operation  and parameter  Functions or parameters value used  
Population 

a. size 
b. creation function 

 
60 
Feasible population 

Selection  Tournament 
Reproduction 

a. crossover fraction 
 
0.8 

Cross over  
a. crossover function 
b. crossover ratio 

 
Intermediate 
1.0 

Mutation Adaptive feasible  
Distance measure function Distance crowding 
Stopping criteria  

a. generation 800 
b. stall generation 100 
c. functional tolerance  1x10-6 

 

4.1.2 Multi-Objective Optimization using Controlled NSGA-II 

In this algorithm  an attempt has been made to form the new parent population Pt+1 of size N 

by adding solutions in a predefined distribution manner from each front [30]. The details 

about controlled NSGA-II algorithm is shown in Figure 4.2 in the form of a flow chart. All 

the functions and parameters setting are same as shown in Table 4.1, except Pareto-front 

population fraction (defines the distribution of fit population down to the specified fraction in 

order to maintain the diversity) and population size which were set to 0.35 and 171. 

 

4.1.3 Multi-Objective Optimization using SPEA2 

SPEA2 algorithm has been presented in the form of flow chart in Figure 4.3. In SPEA2 

algorithm for every generation an external set (or external archive) is used to store the newly 

formed parent population and the size of the external archive may be different from the initial 

population size. The raw fitness assignment of an individual in SPEA2 is decided by strength 

of its dominators (in both archive and population) and density (based on kth nearest neighbor 

method).The diversity among the solutions is maintained in this algorithm by density 
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Initialize a random initial 
population Pt of size N. 

Set generation= t=0.  

Sort the population on the basis of Non-
dominance. Assign a fitness (or rank) to 

each solution to its non-domination level. 

Perform selection  
(Use binary tournament selection operator) 

Reproduction  
(Set the crossover fraction)   

Perform crossover 
Perform selection (use crowded 

tournament selection operator on Pt+1)  

Set t= t+1 Child population Qt of 
size N is generated. 

Combine parent and child population 
Rt=Pt+Qt  

Sort population Rt according to non- 
dominance. This will generate different 
non-dominated fronts F1, F2, and so on. 

Form a new parent population Pt+1 of size 
N by adding solutions from first front and 

continuing to other fronts successively 
based on crowded comparison criteria. 

Is anyone of the 
termination criteria met? 

Set of decision vectors represented 
by non-dominated individuals in 

Pt+1 are the final solutions. 

Stop 

Perform mutation  

Start 

Yes 

No 

Figure 4.1 Flow chart representation of NSGA-II 
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Initialize a random initial 
population Pt of size N. 

Set generation= t=0.  

Sort the population on the basis of Non-
dominance. Assign a fitness (or rank) to 

each solution to its non-domination level. 

Perform selection  
(Use binary tournament selection operator) 

Reproduction  
(Set the crossover fraction)   

Perform crossover 
Perform selection (use crowded 

tournament selection operator on Pt+1)  

Set t= t+1 Child population Qt of 
size N is generated. 

Combine parent and child population 
Rt=Pt+Qt  

Sort population Rt according to non- 
dominance. This will generate different 
non-dominated fronts F1, F2, and so on. 

Form a new parent population Pt+1 of size 
N by adding solutions in a predefined 

distribution manner from each front based 
on crowed comparison criteria.  

Is anyone of the 
termination criteria met? 

Set of decision vectors represented 
by non-dominated individuals in 

Pt+1 are the final solutions. 

Stop 

Perform mutation  

Start 

Yes 

No 

Figure 4.2 Flow chart representation of Controlled NSGA-II 
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estimation (based on kth nearest neighbor method) [31]. For implementing this algorithm, a 

MATLAB code was used with initial population size and archive size of 60. Parameters and 

functions used for reproduction, crossover and mutation were set as shown in Table 4.1. 

 4.1.4 Comparison among algorithms 

 In  NSGA-II  a  new  parent  population  is  formed  by  adding  solutions  from  first  front  and  

continuing to other fronts successively based on crowded comparison criteria till the 

population size exceed N. In this process for a particular generation, most of the decision 

vectors from combined population (Rt) lie on the non-dominated front of rank one. So almost 

all individual of the other front will be deleted to preserve elitism. In this way NSGA-II 

ensure diversity along the current non-dominated front. But this leads to loss of lateral 

diversity resulting slowdown of search and poor convergence. To avoid this NSGA-II was 

slightly modified in the step of formation of a new parent population by adding solutions in a 

predefined distribution manner from each front.  

     If a comparison will be made between NSGA-II and SPEA2 then following outline of 

comparison will come out.  In case of NSGA-II and controlled NSGA-II, no external 

archived is used, but the external set of SPEA2 can be compared with the parent population 

of NSGA-II and controlled NSGA-II. In NSGA-II fitness assignment is performed on the 

basis of non-dominance and density estimation based on crowding comparison approach.  

The diversity among population members of NSGA-II is preserved by crowded comparison 

criteria.  

.
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Start 

Calculate fitness values of 
individuals in Pt and At.  

Initialize a random initial population Pt 
of size N and an empty archive 
(External set) At of size N. Set 

generation = t=0. 

Copy all non-dominated individuals in Pt and At to At+1. 
Maintain the size of At+1 to N (Either using truncation 

operator or filling with dominated individuals in Pt and At 
according to the requirement.) 

Is any one of the 
termination criteria met? 

Set of decision vectors represented 
by non-dominated individuals in 

At+1 are the final solutions. 

Perform section operation.  
(Use binary tournament section with 

replacement on At+1). 

Reproduction 
(Set the crossover fraction) 

Perform crossover  

The resulting population 
Pt+1 of size N is formed.  

Stop 

At+1 is the 
external archive. 

Set t=t+1  

Perform mutation 

Yes 

No 

Figure 4.3 Flow chart representation of SPEA2 algorithm 
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4.2 Comparison 

The solutions obtained from different algorithms in the form of Pareto-optimal fronts have 

been compared on the basis of diversity along the fronts and domination of solutions of one 

algorithm over others.  

4.2.1. Diversity along the fronts 

The diversity is defined by two parameters viz. the optimal length of the Pareto-optimal front 

and the pattern of distribution of solutions along the front. In a Pareto-optimal front, for each 

individual i the difference between solutions value (distances in objective space) to all 

individual j was calculated and was represented by 

= + (4.4 ) 

Where i and j=1, 2, 3…n and n=total nos. of solutions in that Pareto-optimal front, 

 (xi, yi), (xj, yj) are the simultaneous optimal set of solutions. The dij values for each Pareto-

optimal  front  were  normalized  to  a  common  scaling  range  of  0-1,  using  min-max  data  

normalization technique. The superiority can be decided by the maximum length factor (max 

(dij)) which is obtained from each algorithm.  

        However, only the maximum length factor should not be used for evaluating the 

superiority of a Pareto-optimal front in terms of diversity because little can be revealed about 

the pattern of distribution of solutions from the length factor. For investigating about the 

pattern of distribution of solutions, a term cnm is introduced. The better distribution of 

solutions were analyzed in both quantitative and qualitative languages. For qualitative 

analysis, the histogram plots for corresponds to distance between two consecutive 

points/solutions cnm values of Pareto-optimal front of different algorithms were studied.  

Where n is any point and   m=n+1= 2, 3, 4… N and N=total nos. of solution in a Pareto-



Page | 62  
 

optimal front. Pareto-optimal responses are scaled to individual normalization range of 0-1. 

The mean value of   cnm for each Pareto-optimal front will be another deciding factor for the 

superiority selection. As, Pareto-optimal solutions of each algorithm has been scaled in the 

range  of  0-1,  for  better  distribution  of  solutions  along  each  front  the  average   cnm value 

should approach to 0.016949153 (=((max (dij) - min (dij))  /(N-1))),  which  can  be  coined  as  

standard  mean.  So  absolute  deviations  from  standard  mean  (Asd) was also consider to be 

another decision making factor for better distribution of solutions along a front. In overall, it 

can be said that cnm and Asd were castoff for investigating quantitative study about uniform 

distribution of solution along Pareto-optimal front. 

4.2.2. Domination of solutions  

The domination of non-dominated solutions of one algorithm over another is certainly an 

important factor while deciding the superiority of a Pareto-optimal front. 

4.3 Results and discussion 

4.3.1 Multi-objective optimization 

Multi-objective optimization using NSGA-II  

Pareto-optimal decision vectors are tabulated in Table 4.2 and plotted as Pareto-optimal front, 

which are shown in Figure 4.4. MRR and TWR in Table 4.2 are the neural network predicted 

values for corresponding process parameter setting. The solutions denoted by region AB and 

CD are responsible for higher MRR with comparison to corresponding TWR. However, the 

solutions in the region EF are relatively having higher TWR without much increase in MRR. 
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    Table 4.2 Optimal set of parameters obtained using NAGA-II  
 

S. 
No. 

Ip  
(A) 

Ton (µs) Tau (%) V 
(volt) 

MRR 
  

TWR 
  

1 15.9 497.1 56.3 59.9 41.02 -0.11858 
2 16.0 496.0 64.1 41.8 55.33 -0.04952 
3 16.0 401.4 64.9 40.3 58.33 0.10790 
4 5.4 311.9 57.1 40.6 10.33 -0.12796 
5 4.0 309.7 57.8 40.2 5.15 -0.13958 
6 15.6 497.2 55.1 59.8 39.10 -0.12210 
7 15.7 496.1 63.3 44.2 52.18 -0.06314 
8 15.9 496.6 59.6 58.7 43.85 -0.10672 
9 16.0 491.9 65.0 41.1 56.47 -0.03977 
10 15.4 498.4 54.6 59.9 38.04 -0.12431 
11 4.9 312.2 57.8 41.1 8.46 -0.13228 
12 15.5 494.9 61.1 56.1 44.74 -0.09685 
13 15.9 497.1 56.6 59.8 41.48 -0.11740 
14 15.9 497.1 59.3 53.9 45.84 -0.09650 
15 16.0 350.6 65.0 40.2 59.15 0.24112 
16 15.8 493.2 63.2 44.6 52.79 -0.05916 
17 15.9 496.9 61.5 50.5 49.04 -0.08085 
18 15.9 432.0 64.9 40.2 57.73 0.04460 
19 15.9 497.1 59.5 52.8 46.54 -0.09302 
20 15.9 495.7 60.5 43.7 51.61 -0.06704 
21 16.0 463.0 64.9 40.2 57.35 -0.00409 
22 16.0 376.4 65.0 40.4 58.71 0.16895 
23 15.9 495.7 59.3 48.9 48.25 -0.08287 
24 16.0 406.4 64.8 40.2 58.15 0.09615 
25 16.0 385.1 64.9 40.2 58.58 0.14644 
26 15.9 495.9 60.3 48.4 49.11 -0.07946 
27 16.0 428.8 65.0 40.2 57.99 0.05204 
28 16.0 491.4 64.2 41.0 55.94 -0.04289 
29 15.8 498.2 55.6 59.9 40.23 -0.12090 
30 16.0 393.2 64.9 40.2 58.50 0.12723 
31 16.0 496.6 62.0 41.9 53.62 -0.05900 
32 15.9 461.7 64.7 40.2 57.01 -0.00448 
33 16.0 362.1 64.9 40.3 58.88 0.20723 
34 15.7 494.4 62.6 47.5 50.64 -0.06984 
35 4.3 310.9 57.0 40.8 6.19 -0.13703 
36 15.8 494.7 59.8 57.6 44.46 -0.10210 
37 15.9 496.8 57.9 59.1 42.48 -0.11304 
38 14.8 498.4 51.9 60.0 33.69 -0.12599 
39 16.0 416.4 65.0 40.2 58.15 0.07615 
40 16.0 446.9 65.0 40.2 57.67 0.02040 
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    Figure 4.4 Pareto-optimal front obtained from NSGA-II 
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41 4.2 309.2 57.0 40.7 5.59 -0.13826 
42 16.0 489.4 62.0 41.6 54.04 -0.05092 
43 16.0 356.5 64.9 40.2 58.99 0.22318 
44 15.0 497.1 55.3 60.0 37.01 -0.12448 
45 4.7 310.5 57.1 40.7 7.49 -0.13505 
46 5.2 310.2 57.7 40.3 9.69 -0.13038 
47 14.8 498.4 51.9 60.0 33.69 -0.12599 
48 5.2 310.0 57.1 40.7 9.43 -0.13045 
49 4.6 310.6 57.3 40.5 7.09 -0.13609 
50 15.8 497.4 54.7 60.0 39.66 -0.12154 
51 15.9 494.6 62.1 50.1 49.78 -0.07556 
52 15.9 495.1 62.1 53.7 47.91 -0.08441 
53 15.4 497.3 55.0 59.9 38.35 -0.12336 
54 14.9 497.5 54.2 60.0 35.98 -0.12572 
55 16.0 416.4 64.8 40.2 58.10 0.07592 
56 16.0 348.8 65.0 40.3 59.17 0.24692 
57 16.0 490.5 64.9 40.3 56.92 -0.03670 
58 14.9 496.9 53.3 60.0 35.09 -0.12596 
59 5.7 312.6 57.1 40.1 11.19 -0.12608 
60 16.0 372.2 65.0 40.3 58.82 0.18013 
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 Multi-Objective Optimization using Controlled NSGA-II 

       A set of Pareto-optimal solutions obtained using controlled NSGA-II is shown in Figure 

4.5 in the form of Pareto-optimal front and the same are tabulated in Table 4.3. Here also the 

effect  of various regions AB, CD and EF of Pareto-optimal front have approximately same 

effect on the optimal responses MRR  and TWR as in NSGA-II. But in NSGA-II the 

maximum value of TWR that can be achieved with its optimal process parameter setting was 

up to 0.241 (mm3/min) meanwhile in controlled NSGA-II it was extended up to 1.343 

(mm3/min). This indicates that controlled NSGA-II expanded the band of optimal process 

parameter setting. 

         Table 4.3 Optimal sets of parameters obtained using Controlled NAGA-II 

S. No. Ip  
(A) 

Ton  
(µs) 

Tau 
 (%) 

V 
(volt) 

MRR 
  

TWR 
  

1 5.8 331.0 59.9 40.2 11.87 -0.12389 
2 15.9 489.9 62.8 41.9 54.23 -0.05032 
3 15.9 473.7 64.4 42.3 55.33 -0.02756 
4 4.9 312.9 59.8 40.2 8.37 -0.13235 
5 5.8 331.0 59.9 40.2 11.87 -0.12389 
6 16.0 331.7 65.0 40.1 59.50 0.30093 
7 16.0 124.9 65.0 40.0 61.28 1.26833 
8 16.0 213.3 65.0 40.0 60.73 0.78189 
9 16.0 426.5 65.0 40.2 58.06 0.05674 
10 16.0 349.8 65.0 40.2 59.21 0.24432 
11 16.0 193.3 65.0 40.1 60.82 0.88173 
12 16.0 479.1 64.9 40.5 56.95 -0.02517 
13 15.6 490.9 62.0 43.1 51.65 -0.06224 
14 16.0 378.3 65.0 40.2 58.81 0.16509 
15 15.1 489.4 58.7 55.4 41.87 -0.10343 
16 14.7 492.1 57.3 57.9 38.34 -0.11537 
17 4.2 303.3 59.4 40.2 6.05 -0.13858 
18 15.4 491.8 57.5 57.7 41.18 -0.11068 
19 16.0 112.8 65.0 40.0 61.34 1.34351 
20 16.0 233.2 65.0 40.2 60.49 0.68635 
21 15.5 491.5 61.0 44.8 49.51 -0.07187 
22 16.0 154.0 65.0 40.0 61.12 1.09608 
23 5.5 325.2 59.4 40.2 10.61 -0.12732 
24 14.5 491.5 54.6 59.3 35.04 -0.12239 



Page | 66  
 

 

 

 

 

 

 

 

 

  

25 15.4 485.3 59.5 40.2 50.08 -0.06225 
26 15.8 490.6 60.9 56.0 45.77 -0.09199 
27 16.0 124.9 65.0 40.0 61.28 1.26835 
28 16.0 112.8 65.0 40.0 61.34 1.34354 
29 15.8 491.2 60.2 57.2 44.69 -0.09803 
30 15.4 489.8 55.7 58.2 39.68 -0.11405 
31 15.9 473.7 64.4 42.3 55.31 -0.02766 
32 16.0 367.5 65.0 40.2 59.00 0.19402 
33 4.8 307.7 59.6 40.2 7.99 -0.13380 
34 15.5 490.4 60.6 50.7 46.94 -0.08391 
35 16.0 308.8 65.0 40.3 59.67 0.37760 
36 5.2 323.5 59.9 40.2 9.31 -0.12941 
37 15.6 486.8 58.1 55.5 43.36 -0.09874 
38 15.6 489.2 63.7 43.3 52.61 -0.05532 
39 15.9 488.9 57.5 56.9 43.31 -0.10230 
40 16.0 184.5 64.9 40.1 60.88 0.92792 
41 16.0 294.1 65.0 40.1 59.95 0.43256 
42 16.0 404.6 65.0 40.2 58.44 0.10215 
43 16.0 282.1 65.0 40.1 60.08 0.47841 
44 15.3 490.8 59.9 44.2 48.24 -0.07554 
45 16.0 164.4 65.0 40.0 61.08 1.03764 
46 16.0 174.7 65.0 40.0 61.00 0.98075 
47 16.0 203.1 65.0 40.1 60.79 0.83217 
48 16.0 218.3 65.0 40.1 60.65 0.75711 
49 16.0 249.3 65.0 40.1 60.41 0.61503 
50 16.0 442.1 64.9 40.3 57.60 0.02726 
51 16.0 320.8 65.0 40.1 59.61 0.33695 
52 16.0 151.1 65.0 40.1 61.13 1.11252 
53 14.4 492.5 53.4 59.6 33.85 -0.12389 
54 16.0 450.2 64.9 40.6 57.36 0.01373 
55 14.9 492.2 54.7 58.9 36.92 -0.12080 
56 16.0 134.6 65.0 40.0 61.22 1.20951 
57 15.0 492.4 58.5 58.3 39.79 -0.11271 
58 16.0 143.5 65.0 40.0 61.20 1.15693 
59 16.0 134.6 65.0 40.0 61.21 1.20935 
60 14.7 492.1 57.3 57.9 38.34 -0.11536 
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Figure 4.5 Pareto-optimal front obtained from Controlled NSGA-II 

Multi-Objective Optimization using SPEA2 

Final non-dominated set of solutions are tabulated in Table 4.4 and has been represented in 

the form of graph in Figure 4.6. The non-dominated decision vectors of region AB and CD of 

the Pareto-optimal front of SPEA2 algorithm will generate more MRR as compared to 

respective TWR. And final  non-dominated solutions corresponding to region DE will  act  in 

the reverse manner as that of region AB and CD.  

Table 4.4 Optimal sets of parameters obtained using SPEA2 

S. No. Ip  
(A) 

Ton  
(µs) 

Tau 
 (%) 

V 
(volt) 

MRR 
  

TWR 
  

1 16.0 498.8 64.9 40.2 56.88 -0.04415 
2 16.0 499.9 61.9 40.8 54.30 -0.05853 
3 16.0 472.2 64.8 40.0 57.30 -0.01585 
4 5.2 319.8 59.2 40.0 9.42 -0.13073 
5 16.0 500.0 61.3 58.6 45.50 -0.10107 
6 4.3 293.9 57.8 40.0 6.52 -0.13949 
7 16.0 500.0 58.9 59.8 43.30 -0.11300 
8 5.7 322.8 58.1 40.0 11.21 -0.12705 
9 15.2 500.0 53.3 60.0 36.10 -0.12669 
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S. No. Ip  
(A) 

Ton  
(µs) 

Tau 
 (%) 

V 
(volt) 

MRR 
  

TWR 
  

10 15.0 500.0 53.0 60.0 35.47 -0.12687 
11 15.0 500.0 54.6 60.0 36.53 -0.12623 
12 16.0 500.0 56.7 59.9 41.63 -0.11908 
13 14.9 500.0 52.9 60.0 34.93 -0.12692 
14 15.9 500.0 61.1 55.9 46.41 -0.09635 
15 4.5 297.6 58.9 40.0 7.12 -0.13723 
16 16.0 500.0 65.0 41.4 56.28 -0.04745 
17 16.0 500.0 60.6 54.5 46.93 -0.09451 
18 16.0 319.9 65.0 40.1 59.68 0.34041 
19 16.0 100.3 65.0 40.0 61.40 1.42315 
20 16.0 417.8 64.9 40.1 58.25 0.07438 
21 16.0 500.0 60.6 52.0 48.08 -0.08866 
22 16.0 500.0 57.7 58.7 42.87 -0.11378 
23 16.0 499.0 61.1 50.1 49.31 -0.08191 
24 15.2 500.0 54.3 59.9 36.99 -0.12606 
25 16.0 355.7 65.0 40.1 59.23 0.22767 
26 16.0 500.0 61.1 59.7 44.92 -0.10451 
27 16.0 293.1 65.0 40.0 60.03 0.43685 
28 16.0 500.0 55.4 60.0 40.49 -0.12175 
29 16.0 500.0 61.4 57.8 45.96 -0.09894 
30 5.0 298.2 57.8 40.0 8.84 -0.13241 
31 16.0 187.8 64.9 40.0 60.90 0.91101 
32 16.0 498.2 61.0 40.4 53.70 -0.05931 
33 15.5 500.0 54.1 60.0 37.81 -0.12554 
34 16.0 500.0 60.4 59.8 44.33 -0.10759 
35 15.6 500.0 54.4 59.9 38.55 -0.12461 
36 4.7 314.3 57.3 40.5 7.70 -0.13455 
37 16.0 500.0 60.5 50.3 48.77 -0.08516 
38 4.2 289.2 56.8 40.1 6.00 -0.14077 
39 16.0 499.8 60.5 46.5 50.56 -0.07588 
40 16.0 499.2 62.0 50.1 49.98 -0.07856 
41 16.0 500.0 55.9 59.9 41.10 -0.12046 
42 15.6 500.0 55.6 59.9 39.46 -0.12323 
43 5.5 307.7 58.0 40.1 10.65 -0.12731 
44 16.0 500.0 63.3 46.6 52.57 -0.06598 
45 16.0 500.0 62.6 48.7 51.13 -0.07330 
46 16.0 399.2 65.0 40.0 58.64 0.11501 
47 16.0 500.0 60.3 52.7 47.54 -0.09127 
48 4.0 288.8 57.5 40.0 5.38 -0.14282 
49 16.0 500.0 59.4 59.6 43.81 -0.11068 
50 16.0 249.4 65.0 40.0 60.46 0.61477 
51 16.0 500.0 63.1 41.5 54.87 -0.05589 
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S. No. Ip  
(A) 

Ton  
(µs) 

Tau 
 (%) 

V 
(volt) 

MRR 
  

TWR 
  

52 4.9 309.9 57.1 40.0 8.29 -0.13446 
53 16.0 430.7 64.5 40.1 57.74 0.04724 
54 16.0 499.8 63.2 40.8 55.23 -0.05411 
55 5.3 311.8 58.6 40.0 10.00 -0.12970 
56 16.0 499.9 62.5 46.8 51.94 -0.06953 
57 16.0 500.0 54.7 60.0 40.10 -0.12232 
58 16.0 500.0 62.6 44.4 53.11 -0.06419 
59 16.0 500.0 57.6 60.0 42.34 -0.11702 
60 16.0 499.9 63.5 40.7 55.58 -0.05232 

 

Figure 4.6 Pareto-optimal front obtained from SPEA2 

4.3.2 Comparison 

Pareto-optimal front obtained from these three algorithms have been shown in Figure 4.7 for 

comparison purpose. 
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         Figure 4.7 Pareto-optimal fronts of different Algorithms 

 

Diversity along the fronts: 

The maximum length factor (for all i belongs to1, 2, 3…, n) has been tabulated in Table 4.5.  

 Table 4.5 Maximum length factor values   

Optimization Algorithm maximum length factor, (max(dij)) )  value 

NSGA-II 0.9915 

CNSGA-II 1.3645 

SPEA2 1.4113 

      

        From Table 4.5,   it  can be conclude that  Pareto-optimal front obtained from SPEA2 is 

having maximum length factor as compared to other two, and front obtained from NSGA-II 

is having lowest span length. 

        A qualitative analysis on distribution of solutions along the Pareto optimal front can be 

performed using histogram plot of normalized cnm values of different algorithms as shown in 

Figure 4.8-4.10. The cnm for  NSGA-II  is  having  an  exponential  distribution  with  an  outiler  
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(cnm = 0.4)  on  the  extreme  right  side  of  Fig.  4.8.   The  same  for  CNSGA-II  is  having  a  

uniform distribution between 0.0 to 0.1 and with an outlier at 0.4 (Figure 4.9). The 

distribution for SPEA2 is having exponential nature as shown in Figure 4.10; with three 

solutions are having much higher cnm values in comparison with the rest of distribution.  The 

histogram plots do not reveal any quantitative analysis, so for better understanding of the 

distributions, the quantitative analysis has been followed up next. The normalized mean 

distances between two consecutive points/solutions (cnm) and absolute deviations from 

standard mean in the Pareto-optimal front of different algorithms have  been tabulated below 

in Table 4.6. 

        The lower average value of   cnm and Asd   indicates better distribution of solutions along 

the front. The normalized average value of cnm and Asd in Table 4.6 indicates that the solutions 

of Pareto-optimal front obtained from NSGA-II are distributed in a better manner as 

compared to the solutions of the other two algorithms. Pareto-optimal front obtained from 

SPEA2 is having poor distribution of solution along the front.  

Domination of solutions:  

 The domination of non-dominated solutions of one algorithm over another has been shown 

in Table 4.7 in a comparative manner. It shows that non-dominated solution set achieved by 

NSGA –II dominates about 53% and 5% of the non-dominated solutions found by CNSGA-II 

and SPEA2, respectively. CNSGA-II dominates about 13% of the non-dominated solutions of 

Pareto-optimal front obtained from NSGA-II. the SPEA2 Pareto-optimal front dominates on 

an average 85% and 100% of the solutions of NSGA-II and CNSGA-II, respectively.  

The SPEA2 algorithm is generating a superior optimal set of solutions based on the 

domination of solutions and the length of the Pareto-optimal front.  
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   Figure 4.10 Histogram of Cnm in SPEA2 

 Figure 4.8 Histogram of Cnm in NSGA-II   Figure 4.9 Histogram of Cnm in CNGA-II 
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Table 4.6 Mean of normalized cnm values 

Optimization 

Algorithm 
Mean normalized cnm value Absolute deviations from 

standard mean (Asd)  

NSGA-II 0.030438 0.013489 

CNSGA-II 0.031606 0.014657 

SPEA2 0.031679 0.01473 

 

Table 4.7 Domination of percentage of solutions 

Algorithm dominates “non-dominated solutions” found by 

NSGA-II with a 

percentage of 

CNSGA-II with a 

percentage of 

SPEA2 with a 

percentage of 

NSGA-II ------------------------ 53% 5% 

CNSGA-II 13% -------------------------- 0% 

SPEA2 85% 100% -------------------------- 

 

4.3.3 Post-optimality analysis of Pareto-optimal solutions 

The post-optimality analysis of SPEA2 Pareto-optimal front has been performed in this 

section. This analysis is mainly concerned with whether the optimal set of solution is affected 

by optimal setting of the machining parameters or not. The individual effect of optimal 

process parameters Ip, Ton, Tau and V on MRR has been represented in Figure 4.11. 

Similarly, the effects on TWR have been plotted in Figure 4.12. From Figure 4.11, it can be 

observed that the maximum MRR is achieved for the parameters setting Ip and Tau towards 

their upper bounds and the parameters Ton and V towards their lower bounds. Similarly, 

from Figure 4.12, it can be conclude that the optimum TWR can be achieved by the 

parameters setting of Ip and Tau towards their lower bounds, V towards its upper bound, and 

Ton in the middle of the machining range. 
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    Figure 4.11 Effect of optimal process parameters on optimal MRR 
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Figure 4.12 Effect of optimal process parameters on optimal TWR 
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4.4 Conclusions: 

Three widely used MOEAs, namely, NSGA-II, CNSGA-II and SPEA2 were successfully 

implemented for MOO of responses MRR and TWR of EDM process. From each algorithm, 

the  Pareto-optimal  front  consisting  of  60  optimal  set  of  solutions  was  obtained  with  their  

process parameter setting. A comparison was made between the solutions of these three 

algorithms to find out the best  among them. The comparison was made based on two basic 

parameters, the diversity along the fronts in terms of maximum Pareto-optimal front span and 

better distribution of solutions, and the domination of solutions of one algorithm over 

another. SPEA2 outperformed the other two algorithms on the basis of domination of 

solutions. However, NSGA-II was found to be the best while consideration of better 

distribution of solutions. Finally, a post-optimality analysis was performed, which showed the 

effect of optimal process parameters on optimal responses MRR and TWR for SPEA2.  
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CHAPTER 5 

Concluding Remarks 

The primary objective of this investigation was to develop an optimal ANN modeling (as 

modelling save the time, effort and money) and to optimize the two contradicting responses 

MRR and TWR of EDM process using reliable and efficient MOEAs. 

      An efficient modeling of EDM response parameters MRR and TWR was successfully 

executed. The modelling was accomplished using MLP neural architecture with 16 hidden 

layer neurons, trained by Levenberg-Marquardt algorithm. The ANOVA revealed that 

number of hidden layer neurons has highest significance towards the performance of an ANN 

modeling, and followed by the learning algorithm. 

Each of the three MOEAs (NSGA-II, CNSGA-II and SPEA2) has fruitfully generated a set of 

60 optimal solutions. The optimal solutions generated by SPEA2 was found to be superlative 

compare to the same by the other two algorithms for this particular assigned task. 
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APPENDIX A 

 

Levenberg-Marquardt Training/Learning Algorithm 

Below an attempt has been made to give shape to Levenberg-Marquardt optimization 

(minimization) technique so that it can be used for training ANN (to update the weight matrix of 

output layer and one hidden layer respectively in batch mode of training) using cross-validation 

as stopping criteria (in every100 epochs): 

Levenberg-Marquardt algorithm: 

Step 1: 

 Define  and   

(Here the weight matrixes are decided by random weight initialization technique.) 

             M = maximum number of iterations allowed 

             m=running iteration number 

Step 2: 

Set m=0, = 10  

Find ( )  and( )  

Step 3: 

Is %100 0? 

Yes:  Then set = ( )  

        Check, is … … … … … … < ? 

        Yes: Go to step 12. 

         No: continue 

No: continue 
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Step 4:  

Is m M?  

Yes: Go to step 12. 

No: continue 

Step 5: 

Calculate  and . 

Step 6: 

Calculate ]  

         and  ]  

Step 7: 

         Set    

         and   

Step 8: 

Find ( )  and( )  

Step 9: 

Is( ) < ( ) ? 

Yes: Go to step 10. 

No:  Go to step 11. 

Step 10: 

Set =  and set m=m+1.Go to step 3. 

Step 11: 

Set = 10  .Go to step 6. 
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Step 12: 

Stop the training and print the result at the minimum of the validation set error. 

Where, 

weights  are connection strengths between hidden and output layer. Weights  are 

connection strengths between input and hidden layer. Where k and j indicates the neuron number 

of output and hidden layer respectively and i indicate input unit number. 

( )  and ( )  are the mean squared error of training data set and cross-validation data set 

respectively at iteration m. 

 is Jacobian matrix of average mean squared error function w.r.t. weights . 

 is Jacobian matrix of average mean squared error function w.r.t. weights . 

  and   are the Hessian matrix. 

Here  and  are the identity matrix, that is, it contains zeros except for the diagonal 

elements, which are +1. 

 and   are the search directions. 

In the similar manner the biases of an ANN can also be optimized to achieve minimum MSE. 
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