Neural Network Modelling and Multi-Objective

Optimization of EDM Process

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF

> Master of Technology In Production Engineering

> > Вy

SHIBA NARAYAN SAHU

(210ME2139)

Under the Supervision of

Prof. C.K BISWAS

Department of Mechanical Engineering

National Institute of Technology

Rourkela, Orissa

2012

National Institute of Technology

Rourkela

CERTIFICATE

This is to certify that thesis entitled, "NEURAL NETWORK MODELLING AND MULTI-OBJECTIVE OPTIMIZATION OF EDM PROCESS" submitted by Shiba Narayan Sahu bearing Roll No. 210ME2139 in partial fulfillment of the requirements for the award of Master of Technology Degree in Mechanical Engineering with "Production Engineering" Specialization during session 2011-12 at National Institute of Technology, Rourkela is an authentic work carried out by him under my supervision and guidance.

Date

Prof. C.K.BISWAS Dept. of Mechanical Engineering NIT, ROURKELA

ACKNOWLEDGEMENT

I express my deep sense of gratitude and indebtedness on the successful completion of my thesis work, which would be incomplete without the mention of the people who made it possible whose precious guidance, encouragement, supervision and helpful discussions made it possible.

I am grateful to the **Dept. of Mechanical Engineering, NIT ROURKELA,** for providing me the opportunity to execute this project work, which is an integral part of the curriculum in M.Tech programme at National Institute of Technology, Rourkela.

I would also like to express my gratefulness towards my project guide **Prof. C.K.BISWAS**, who has continuously supervised me, has showed the proper direction in the investigation of work and also has facilitate me helpful discussions, valuable inputs, encouragement at the critical stages of the execution of this project work. I would also like to take this opportunity to express my thankfulness towards Prof. K.P.Maity, Project Co-coordinator of M.E. course for his timely help during the course of work.

Date:....

Shiba Narayan Sahu Roll No. 210ME2139 Dept. of Mechanical Engg.

ABSTRACT

Modelling and optimization of EDM process is a highly demanding research area in the present scenario. Many attempts have been made to model performance parameters of EDM process using ANN. For modelling generally ANN architectures, learning/training algorithms and nos. of hidden neurons are varied to achieve minimum error, but the variation is made in random manner. So here a full factorial design has been implemented to achieve the optimal of above. From the main effect plots and with the help of ANOVA results the optimal process parameters for modeling were selected. After that optimal process modeling of MRR and TWR in EDM with the best of above parameters have been performed. In the 2^{nd} phase of work three GA based multi-objective algorithms have been implemented to find out the best trade-ups between these two conflicting response parameters. ANN model equations of MRR and TWR were used in the fitness functions of GA based multi-objective algorithms. A comparison between the Pareto-optimal solutions obtained from these three algorithms has been made on the basis of diversity along the front and domination of solutions of one algorithm over others. At the end a post-optimality analysis was performed to find out the relationship between optimal process parameters and optimal responses of SPEA2.

CONTENTS

CHAPTER	TITLE	PAGE No
	CERTIFICATE	ii
	ACKNOWLEDGEMENT	iii
	ABSTRACT	iv
	CONTENTS	v
	LIST OF FIGURES	viii
	LIST OF TABLES	Х
	NOMENCLATURE	xi
	ACRONYMS	xiii
1	Introduction	
	1.1 Introduction on EDM	1
	1.1.1 Working principle of EDM	1
	1.1.2 Liquid dielectric	5
	1.1.3 Flushing	6
	1.1.4 Machining parameters	6
	1.2 Introduction on EMOO	
	1.3 Introduction on Artificial Neural Network	7 9
2	Literature Review	
2	2.1 Literature review on ANN	
	2.2 Literature review on implementation of MOEA	11
	2.3 Objective of present work	18
	2.5 Objective of present work	23
3	ANN Performance Evaluation	
	3.1 Parameter setting	24
	3.2 About the parameters	25

CHAPTER TITLE

4.

3.2.1 Neural architecture	25
3.2.2 Learning algorithm	26
3.2.3 Nos. of hidden neuron	26
3.2.4 Mean squared error	27
3.2.5 Correlation coefficient	28
3.3 Data collection	29
3.4 Important specifications	34
3.4.1 Data normalization	34
3.4.2 Transfer /Activation function	35
3.5 Results and discussion from full factorial design	
3.5.1. Effect on training MSE	39
3.5.2 Effect on test MSE	41
3.5.3 Effect on training R	43
3.5.4 Effect on testing R	45
3.6 Results and discussion from modelling	47
3.7 Conclusions	53
Multi-Objective Optimization Comparison	54
4.1. Multi-objective optimization	54
4.1.2 MOO using NSGA-II	55
4.1.2 MOO using Controlled NSGA-II	56
4.1.3 MOO using SPEA2	56
4.1.4 Comparison among algorithms	59
4.2 Comparison	61
4.2.1. Diversity along the fronts	61
4.2.2. Domination of solutions	62
4.3 Results and discussion	62 62
4.3.1 Multi-objective optimization using	02
NSGA-II	62
	04

CHAPTER TITLE

PAGE No

	Controlled NSGA-II	65
	SPEA2	67
	4.3.2 Comparison	69
	4.3.3 Post-optimality analysis of Pareto-optimal solutions	73
	4.4 Conclusions	76
5.	Concluding Remarks	77
6.	Appendix	78
7.	Bibliography	81

LIST OF FIGURES

Figure No.	Figure Title	Page No.
Figure 1.1	Layout of Electric Discharge Machining	2
Figure 1.2:	Variation of Ip and V in different phases of a spark	4
Figure 1.3	(a) Pre-breakdown phase (b) Breakdown phase (c) Discharge phase (d) End	5
	of the discharge and (e) Post-discharge phase	
Figure1.4(a)	Neuron-anatomy of living animals	10
Figure1.4(b)	Connection of an artificial Neuron	10
Figure 3.1	A general Network topology of MLP architecture	26
Figure 3.2	Common network topology of a CF neural architecture	26
Figure 3.3	Updating weight using Learning algorithm	27
Figure 3.4	Main effect plots for training MSE	39
Figure 3.5	Interaction plot for training MSE	40
Figure 3.6	Main effect plots for test MSE	41
Figure 3.7	Interaction plot for test MSE	42
Figure 3.8	Main effect plots for training R	43
Figure 3.9	Interaction plot for training R	44
Figure 3.10	Main effect plots for test R	45
Figure 3.11	Interaction plot for test R	46
Figure 3.12	ANN network topology of selected model	48
Figure 3.13	Variation of MSE w.r.t. epoch	48
Figure 3.14	Correlation coefficients	49
Figure 3.15	Variation of MRR and MRR output of training data w.r.t. exemplar	50
Figure 3.16	Variation of MRR and MRR output of testing data w.r.t. exemplar	52
Figure 3.17	Variation of TWR and TWR output of training data set w.r.t exemplar	51
Figure 3.18	Variation of TWR and TWR output of testing data set w.r.t exemplar	52
Figure 4.1	Flow chart representation of NSGA-II	57
Figure 4.2	Flow chart representation of Controlled NSGA-II	58
Figure 4.3	Flow chart representation of SPEA2 algorithm	60

Figure No.	Figure Title	
		No.
Figure 4.4	Pareto-optimal front obtained from NSGA-II	64
Figure 4.5	Pareto-optimal front obtained from Controlled NSGA-II	67
Figure 4.6	Pareto-optimal front obtained from SPEA2	69
Figure 4.7	Pareto-optimal fronts of different Algorithms	70
Figure 4.8	Histogram of Cnm in NSGA-II	72
Figure 4.9	Histogram of Cnm in CNGA-II	72
Figure 4.10	Histogram of Cnm in SPEA2	72
Figure 4.11	Effect of optimal process parameters on optimal MRR	74
Figure 4.12	Effect of optimal process parameters on optimal TWR	75

LIST OF TABLES

Table	Table Title	Page
No.		No.
Table1.1	Lists of some MOEAs	8
Table1.2	Analogy between biological and artificial neurons	10
Table3.1	Parameters and their levels	24
Table3.2	Training data set	29
Table3.3	Validation data set	33
Table3.4	Test data set	33
Table 3.5	Important specification of parameters used in ANN modeling	34
Table3.6	Observation table for full factorial method	36
Table3.7	Analysis of Variance for training MSE	40
Table3.8	Analysis of Variance for test MSE	42
Table3.9	Analysis of Variance for Training R	44
Table3.10	Analysis of Variance for Test R	46
Table3.11	Weights and biases of optimal model (LM algorithm, 16 nos. of hidden	49
	neurons and MLP neural architecture)	
Table 4.1	Process parameter and functional setting of NSGA-II algorithm	56
Table 4.2	Optimal set of parameters obtained using NAGA-II	63
Table 4.3	Optimal sets of parameters obtained using Controlled NAGA-II	65
Table 4.4	Optimal sets of parameters obtained using SPEA2	67
Table 4.5	Maximum length factor values	70
Table 4.6	Mean of normalized c_{nm} values	73
Table 4.7	Domination of percentage of solutions	73

NOMENCLATURES

A_{sd}	Absolute deviation from standard mean
a^2	Output vector of second layer
a ^s l	Output of neurons at hidden layer
ā	Data mean of network output
a_n	Network output at a particular examplar
a_{nk}	Network output for exemplar n at neuron k of output layer
b^1	Bias vector of first layer
b^2	Bias vector of second layer respectively
C_{nm}	Distance between two consecutive solutions
\overline{d}	Data mean of desire output
d_n	Desire output at a particular exemplar
d_{nk}	Desired output for exemplar n at neuron k of output layer
d_{ij}	distances in objective space
E_{avg}	Average mean squared error function
Ε	Mean squared error
(<i>E^m</i>) _{<i>Tr</i>}	Mean squared error of training data set at epoch m
(<i>E^m</i>) _{<i>CV</i>}	Mean squared error of validation set error at epoch m
f	The transfer function
$H^m_{W_{kj}}$	Hessian matrix of average mean squared error function w.r.t. weights W_{kj}^m
$H^m_{U_{ji}}$	Hessian matrix of average mean squared error function w.r.t. weights U_{ji}^m
I_l	The output of net-input function of <i>l</i> neurons
Ip	Discharge current
$J_{W_{kj}^m}$	Jacobian matrix of average mean squared error function w.r.t. weights W_{kj}^m
$J_{U_{ji}^m}$	Jacobian matrix of average mean squared error function w.r.t. weights U_{ji}^m .
K	Total number of neurons in the output layer

Ν	Population size
Ν	Total number of exemplars in the data
N_{\min} and N_{\max}	Minimum and maximum scaled range respectively
n	Examplar or run number
р	The input vector
Pt	Parent population
Qt	Child population
R _t	Combined population
R_{\min} and R_{\max}	Minimum and maximum values of the real variable respectively
$s(W_{kj}^m)$	Search directions for updating weights between hidden and output layer at epoch m
$s(U_{ji}^m)$	Search directions for updating weights between input and hidden layer at epoch m
Ton	Spark on time
Tau	Duty cycle
U _{ji}	Weights between input and hidden layer
V	Open circuit voltage
\mathbf{W}^1	Weight matrix of hidden layer
W^2	Weight matrix of output layer

ACRONYMS

AMGA	Archived-based Micro Genetic Algorithm
ANN	Artificial Neural Network
CF	Cascade-forward network
CG	Conjugate gradient
CGB	Conjugate Gradient with Powell-BealeRestarts
DE	Dimensional Error
DPGA	Distance-based Pareto Genetic Algorithm
EDM	Electrical Discharge Machining
ES	Evolutionary strategy
FEM	Finite - element method
FPGA	Fast Pareto Genetic Algorithm
GA	Genetic Algorithm
GD	Gradient descent
GFNN	Generalized Feed forward Neural Network
IEG	Inter Electrode Gap
IMOEA	Intelligent Multi- Objective Evolutionary Algorithm
LM	Levenberg Marquardt
MAE	Mean absolute error
mBOA	Multi-Objective Bayesian Optimization Algorithm
ME	Mean error
MLP	Multi-Layer Perceptron
MOEA	Micro Genetic Algorithm
MOGA	Multiple Objective Genetic Algorithm
MOMGA	Multi-Objective Messy Genetic Algorithm
MOO	Multi-Objective Optimization
MRR	Material Removal Rate
MSE	Mean square error
NCGA	Neighborhood Cultivation Genetic Algorithm
NPGA	Niched Pareto Genetic Algorithm

NSGA	Non-dominated Sorting Genetic Algorithm
OC	Over Cut
PAES	Pareto Archived Evolutionary strategy
PESA	Pareto Envelope-based Selection Algorithm
PG	Population Genetics
SCG	Scaled conjugate gradient
SCGA	Scale Conjugate Gradient Algorithm
SPEA	Strength Pareto Evolutionary Algorithm
SR	Surface Roughness
SCD	Surface Crack Density
TDGA	Thermo-dynamical Genetic Algorithm
TWR	Tool Wear Rate
VEGA	Vector Evaluated Genetic Algorithm
VMRR	Volumetric Material Removal Rate
VOES	Vector Optimized Evolution Strategy
WLT	White Layer Thickness
WBGA	Weight-Based Genetic Algorithm
ε- MOEA	ε- Multi- Objective Evolutionary Algorithm

CHAPTER1

INTRODUCTION

1.1 Introduction on EDM

Electrical Discharge Machining (EDM) is a non-conventional machining process, where electrically conductive materials is machined by using precisely controlled sparks that occur between an electrode and a workpiece in the presence of a dielectric fluid[1]. It uses thermoelectric energy sources for machining extremely low machinability materials; complicated intrinsic-extrinsic shaped jobs regardless of hardness have been its distinguishing characteristics. EDM founds its wide applicability in manufacturing of plastic moulds, forging dies, press tools, die castings, automotive, aerospace and surgical components. As EDM does not make direct contact (an inter electrode gap is maintained throughout the process) between the electrode and the workpiece it's eradicate mechanical stresses, chatter and vibration problems during machining [2].Various types of EDM process are available, but here the concern is about die-Sinking (also known as ram) type EDM machines which require the electrode to be machined in the exact opposite shape as the one in the workpiece [1].

1.1.1 Working principle of EDM

Electric discharge machining process is carried out in presence of dielectric fluid which creates path for discharge. When potential difference is applied across the two surfaces of workpiece and tool, the dielectric gets ionized and an electric spark/discharge is generated across the two terminals. The potential difference is applied by an external direct current power supply connected across the two terminals. The polarity of the tool and workpiece can be interchangeable but that will affect the various performance parameters of EDM process. For more material removal rate workpiece is generally connected to positive terminal as two third of the total heat generated is generated near the positive terminal. The inter electrode gap has a significant role to the development of discharge. As the workpiece remain fixed by the fixture arrangement, tool helps in focusing the discharge or intensity of generated heat at the place of shape impartment. Application of focused heat raises the temperature of workpiece in the region of tool position, which subsequently melts and evaporates the metal. In this way the machining process removes small volumes of workpiece material by the mechanism of melting and vaporization during a discharge. The volume removed by a single spark is small, in the range of 10^{-6} - 10^{-4} mm³, but this basic process is repeated typically 10,000 times per second.Figure 1.1 shows a layout of Electric Discharge Machining.

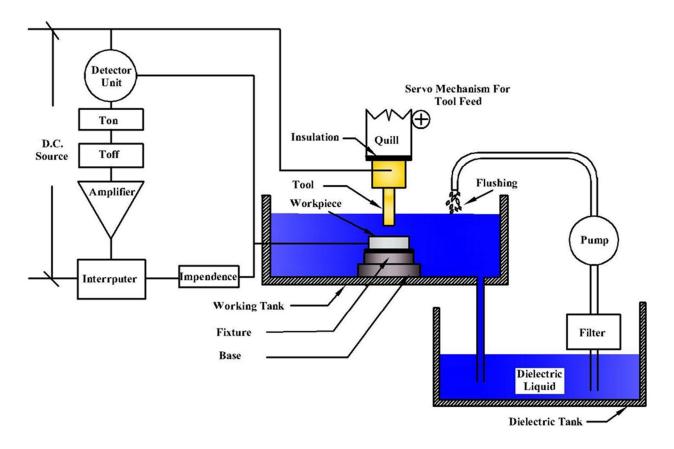


Figure 1.1: Layout of Electric Discharge Machining

The erosion process due to a single electric spark in EDM generally passes through the following phases and Figue 1.2 and 1.3 shows these phases:

(a) Pre-breakdown: In this phase the electrode moves close to the workpiece and voltage is applied between the electrodes i.e. open circuit voltage Vo.

(b) Breakdown: When the applied voltage crosses the boundary limit of dielectric strength of used dielectric fluid, the breakdown of the dielectric is initiated. Generally the dielectric starts to break near the closest point between tool and workpiece, but it will also depend on conductive particles between the gap if present any [3]. When the breakdown occurs the voltage falls and a current rises abruptly. In this phase the dielectric gets ionized and a plasma channel is introduced between the electrodes and also there is possibility of presence of current.

(c) Discharge:

In this phase the discharge current is maintained at constant level for a continuous bombardment of ions and electrons on the electrodes. This will cause strong heating of the work-piece material (and also of the electrode material), rapidly creating a small molten metal pool at the surface. Also a small amount of metal can have directly vaporized due to the tremendous amount of heat. During the discharge phase, the plasma channel grows; therefore the radius of the molten metal pool also increases with time. In this phase some portion of the work-piece will be evaporated and some will be remain in molten state. The Inter Electrode Gap (IEG) is an important parameter throughout the discharge phase. It is estimated to be around 10 to 100 micrometers (IEG increases with the increase in discharge current). (d) End of the discharge:

At the end of the discharge, current and voltage supply is shut down. The plasma collapses (since current is supply is stopped, there will be no more spark) under the pressure enforced by the surrounding dielectric.

(e) Post-discharge:

There will be no plasma in this stage. Here a small portion of metal will be machined and a small thin layer will be deposited because of plasma is collapsing and cooling. This layer is (20 to 100 microns) is known as white layer. Consequently, the molten metal pool is strongly sucked up into the dielectric, leaving a small crater on the work-piece surface (typically 1-500 micrometer in diameter, depending on the current).

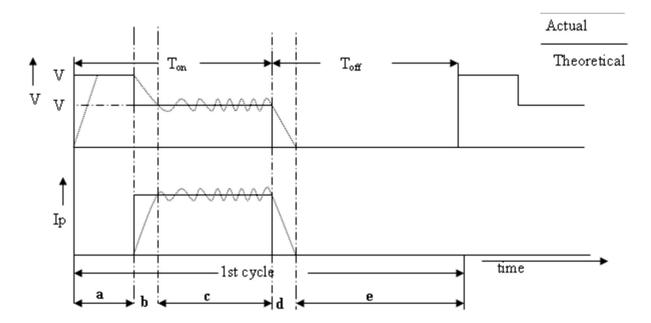


Figure 1.2: Variation of Ip and V in different phases of a spark

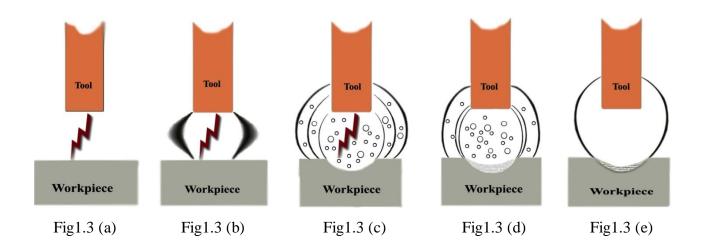


Figure 1.3: (a) Pre-breakdown phase (b) Breakdown phase (c) Discharge phase (d) End of the discharge and (e) Post-discharge phase

1.1.2 Liquid dielectric

EDM dielectric fluid is act as an electrical insulator until the applied voltage is high enough to overcome the dielectric potential of the dielectric fluid to change it into an electrical conductor. Different EDM dielectric fluid can be paraffin, deionized water, kerosene, transformer oil etc.It helps in cooling the electrodes, also provides a high plasma pressure and therefore a high removing force on the molten metal, when the plasma downfalls and solidifies the molten metal shaped into small spherical particles, and it also helps in flushing away these eroded particles [3]. If the particles in the machining zone won't remove properly, then it will produce abnormal discharges in the subsequent discharges. This will be due to the particles present in the dielectric which will reduce the dielectric strength of the dielectric also it may lead to arcing tendency which will not desirable at all for the machining process. To enhance the flushing of particles, the dielectric generally flows through the gap.

1.1.3 Flushing

Flushing is the process of supplying clean filtered dielectric fluid into the machining zone. When a dielectric is fresh, it is free from eroded particles and carbon residue resulting from dielectric cracking and its insulation strength is high, but with successive discharges the dielectric gets contaminated, reducing its insulation strength, and hence discharge can take place in an abrupt manner. If the concentration of the particles became high at certain points within the IEG, bridges are formed, which lead to abnormal discharges and damage the tool as well as the workpiece.

There are different types of flushing methods like; injection flushing, suction flushing, sideflushing, motion flushing and impulse flushing.

1.1.4 Machining parameters

For optimizing a machining process or to perform efficient machining one should have to identify the process and performance measuring parameters. The machining parameter of EDM process can be categorized into

- (i) Input /process parameters: The input parameters of EDM process are voltage, discharge current, spark-on time, duty factor, flushing pressure, work piece material, tool material, inter-electrode gap, quill-up time, working time, and polarity which affects the performance of machining process. So suitable selection of process parameters are required for optimal machining condition.
- (ii) Response /performance parameters: Response or performance parameters are used to evaluate the machining process in both qualitative and quantitative terms namely Material Removal Rate (MRR), Surface Roughness (Ra or SR), Over Cut (G or OC),

Tool Wear Rate (TWR), White Layer Thickness (WLT) and Surface Crack Density (SCD).

1.2 Introduction on Evolutionary Multi-Objective Optimization(MOO)

A MOO generally deals with two or more objective functions which need to be optimized simultaneously. Recently the evolutionary algorithms (based on the theory of Natural Selection(NS) proposed by Darwin in 1859 and Population Genetics(PG) developed by Fischer in 1930) are getting more familiar among the researchers due to its various advantages like faster processing time, ability to deal with discontinuous search space, ability to handle multi-modality of objectives and constraints etc.. Many of the recently developed evolutionary algorithms have derived from the two original, independent concepts: the evolutionary strategy (ES) developed by Richenberg in 1973 and Genetic Algorithm (GA) proposed by Holland in 1975. Vector Evaluated Genetic Algorithm (VEGA) developed by Schaffer in 1985 considered to be the first multi-objective evolutionary algorithm (MOEA) which was a population based approach. Goldberg in1989 suggested the use of Pareto-based approach fitness assignment strategy, where he suggested the use of non-dominated ranking and selection to move the population towards the Pareto front. He also suggested about niching mechanisms for diversity maintenance. Fonesca and Fleming in 1993 develop multiobjective genetic algorithm (MOGA), based on Goldberg's idea, which can be considered as the first Pareto-based MOEA. The ranking method proposed by Fonesca and Fleming was different from Goldberg's. Some of MOEAs are listed below with the year of development in Table 1.1.

Table 1.1 Lists of some MOEAs

Name of the MOEA	Year of development
Vector Evaluated GA (VEGA)	1985
Lexicographic Ordering GA	1985
Vector Optimized Evolution Strategy (VOES)	1991
Weight-Based GA (WBGA)	1992
Multiple Objective GA (MOGA)	1993
Niched Pareto GA (NPGA, NPGA 2)	1993, 2001
Non-dominated Sorting GA (NSGA, NSGA-II, Controlled NSGA-II)	1994, 2000, 2001
Distance-based Pareto GA (DPGA)	1995
Thermo-dynamical GA (TDGA)	1996
Strength Pareto Evolutionary Algorithm (SPEA, SPEA2)	1999, 2001
Multi-Objective Messy GA (MOMGA-I,II,III)	1999, 2001,2003
Pareto Archived ES (PAES)	1999
Pareto Envelope-based Selection Algorithm (PESA, PESA II)	2000 ,2001
Micro GA-MOEA (µ-GA, µ-GA2)	2001, 2003
Multi-Objective Bayesian Optimization Algorithm (mBOA)	2002
Neighborhood Cultivation Genetic Algorithm (NCGA)	2002
Intelligent Multi- Objective Evolutionary Algorithm (IMOEA)	2004
ε- Multi- Objective Evolutionary Algorithm (ε-MOEA)	2005
Fast Pareto Genetic Algorithm (FPGA)	2007
Omni-Optimizer (OmniOpt)	2008
Archived-based Micro Genetic Algorithm (AMGA,AMGA2)	2008,2010

1.3 Introduction on Artificial Neural Network (ANN)

ANN refers to the computing systems whose fundamental concept is taken from analogy of biological neural networks. Many day to day tasks involving intelligence or pattern recognition are extremely difficult to automate, but appear to be performed very easily by animals. The neural network of an animal is part of its nervous system, containing a network of specialized cells called neurons (nerve cells). Neurons are massively interconnected, where an interconnection is between the axon of one neuron and dendrite of another neuron. This connection is referred to as synapse. Signals propagate from the dendrites, through the cell body to the axon; from where the signals are propagate to all connected dendrites. A signal is transmitted to the axon of a neuron only when the cell 'fires'. A neuron can either inhibit or excite a signal according to requirement.

Each artificial neuron receives signals from the environment, or other artificial neurons, gather these signals, and when fired transmits a signal to all connected artificial neurons. Input signals are inhibited or excited through negative and positive numerical weights associated with each connection to the artificial neuron. The firing of an artificial neuron and the strength of the exciting signal are controlled via. a function referred to as the activation function. The summation function of artificial neuron collects all incoming signals, and computes a net input signal as the function of the respective weights and biases. The net input signal serves as input to the transfer function which calculates the output signal of artificial neuron.

Figure 1.4 (a) and (b) shows the analogy between biological and artificial neurons and the analogy has been shown in parametric terms in Table 1.2.However ANN s are far too simple to serve as realistic brain models on the cell levels, but they might serve as very good models for the essential information processing tasks that organism perform.

Page | 9

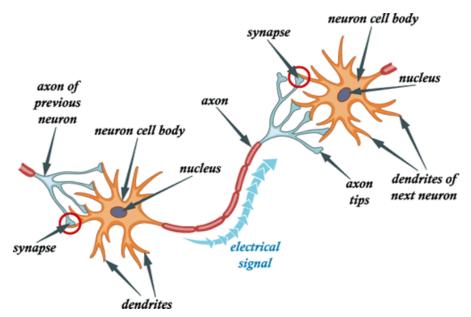


Figure 1.4 (a) Neuron-anatomy of living animals

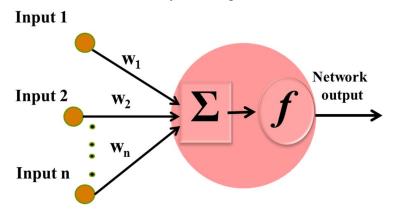


Figure 1.4 (b) Connection of an artificial Neuron

Table1.2 Analogy between biological and artificial neurons

Biological Neurons	Artificial Neurons
Soma or Cell body	Summation function+ Activation function
Dendrite	Input
Axon	Output
Synapse	Weight

CHAPTER 2

LITERATURE REVIEW:

Relationship between process parameters and response parameters in EDM process are very much stochastic, random and non-linear in nature. To establish a relation between input parameters and output parameters various approaches like empirical relation, non-linear regression, response surface methodology, neuro-fuzzy, neural network modeling etc. has been investigated. Here in the primary phase a literature review has been done on modeling the EDM process using ANN, to find out short comings if any and for investigating in the direction of improvising the efficiency in ANN modeling of the EDM process. In the 2nd phase of literature review, an investigation has been made on the implementation of ANN integrated GA based multi-objective optimization on EDM process.

2.1 Literature review on ANN

As modeling of a process reduces the effort, save money and time for optimal and efficient implementation of that process, it has a significant role in EDM process modeling also. Many investigations already have been made in this direction using ANN modeling, but still its need more improvement. So to identify the direction of improvement a literature review has been made as follows:

Tsai and Wang [4] took six neural networks and a neuro-fuzzy network model for modeling material removal rate (MRR) in EDM process and analyzed based on pertinent machine process parameters. The networks, namely the LOGMLP, the TANMLP, the RBFN, the Error TANMLP, the Adaptive TANMLP, the Adaptive RBFN, and the ANFIS have been trained and compared under the same experimental conditions for two different materials considering the change of polarity. The various neural network architectures that were used here for modelling were trained

with the same Gradient descent learning algorithm. For comparisons among the various models various performance parameters like training time, *RMSE*, R^2 were used. On the basis of comparisons they found ANFIS model to be more accurate than the other models.

H. Juhr et. al [5] have made a comparison between NRF (nonlinear regression function) and ANN for the generation of continuous parameter technology, which is a continuous mapping or regression. They found ANN's to much easier than NRF's. For modeling with ANN's, feed-forward networks with three to five layers were used, which were trained with back-propagation with momentum term. For developing the continuous parameter generation technology they considered the input parameters as pulse current, discharge duration and duty cycle and response parameters as removal rate, wear ratio and arithmetic mean roughness. They used two major performance evaluation criteria sum of squared deviation and sum of relative deviation to evaluate the performance of the two mapping functions. Finally they conclude that ANN shows better prediction accuracy than nonlinear regression functions.

Panda and Bhoi [6] has developed an ANN model (using feed forward neural architecture) using Levenberg-Marquardt learning algorithm and logistic sigmoid transfer function to predict the material removal rate. Here they have considered the process parameters gap voltage, pulse duration and pulse interval. To evaluate the performance of ANN model sum square error and R-square coefficients were used and the validity of the neural network model was checked with the experimental data. In conclusion they concluded that a 3-7-1 feed forward neural model for EDM provides faster and more accurate results.

Angelos P. Markopoulos et. al [7] implemented an ANN model for the prediction of SR in EDM. For this purpose they used Matlab® as well as Netlab®. The process parameter to the ANN model were work piece material, pulse current and pulse duration at 3,4 and 4 levels

respectively. They used back propagation algorithm for training with model assessment criteria as MSE and R. Finally they conclude that both Matlab® as well as Netlab® was found efficient for prediction of SR of EDM process.

Assarzadeh and Ghoreishi [8] presented a research work on neural network modeling and multi-objective optimization of responses MRR and SR of EDM process with Augmented Lagrange Multiplier (ALM) algorithm. A 3–6–4–2-size back-propagation neural network was developed to predict these two responses efficiently. The current (I), period of pulses (T), and source voltage (V) were selected at 6, 4 and 4 levels respectively as network process parameters. Out of 96 experimental data sets 82 data sets were used for training and remaining 14 data sets were used for testing the network. The training model was trained with back propagation training algorithm with momentum term. Relative percentage error and total average percentage error were used to evaluate the models. From the results in terms of mean errors of 5.31% and 4.89% in predicting the MRR and Ra they conclude that the neural model can predict process performance with reasonable accuracy. Having established the process model, the augmented Lagrange multiplier (ALM) algorithm was implemented to optimize MRR subjected to three machining regimes of prescribed Ra constraints (i.e. finishing, semi-finishing and roughing) at appropriate operating conditions.

Joshi and Pande [9] developed two models for the electric discharge machining (EDM) process using the finite - element method (FEM) and artificial neural network (ANN). A twodimensional axisymmetric thermal (FEM) model of single-spark EDM process was developed with the consideration of many thermo-physical characteristics to predict the shape of crater cavity, MRR, and TWR. A multilayered feed-forward neural network with leaning algorithms such as gradient descent (GD), GD with momentum (GDA), Levenberg – Marquardt (LM), conjugate gradient (CG), scaled conjugate gradient (SCG) were employed to establish relation between input process conditions (discharge power, spark on time, and duty factor) and the process responses (crater geometry, material removal rate, and tool wear rate) for various work—tool work materials. The input parameters and targets of the ANN model was generated from the numerical (FEM) simulations. To evaluate the model they used prediction error(%) and mean error (ME) and to improve the efficiency of model two BPNN architectures were tried out, viz. single-layered (4 -N - 4) and two-layered (4 - N1 - N2 - 4). They found optimal ANN model with network architecture 4 - 8 - 12 - 4 and SCG training algorithm to give very good prediction accuracies for MRR (1.53%), crater depth (1.78%), and crater radius (1.16%) and a reasonable one for TWR (17.34%).

M K Pradhan et. al [10] compared the performance and efficiency of back propagation neural network (BPN) and radial basis function neural network (RBFN) for the prediction of SR in EDM. Three process parameters i.e. pulses current (Ip), the pulse duration (Ton) and duty cycle (τ) were supplied to these two networks and corresponding experimental SR values were considered as target. Out of the 44 experimental data sets, 35 nos. were considered for training and remaining 9 data sets were considered for testing. They compared the performance of two networks in terms of mean absolute error (MAE). MAE for test data of BPN and RBFN were found to be 0.297188 and 0.574888 respectively, which indicates BPN to be more accurate. They conclude that BPN is reasonably more accurate but RBFN is faster than the BPNs.

Promod Kumar Patowari et. al [11] have applied ANN to model material transfer rate (MTR) and layer thickness (LT) by EDM with tungsten–copper (W–Cu) P/M sintered electrodes. They have used input parameters to the ANN model such as compaction pressure (CP), sintering temperature (ST), peak current (Ip), pulse on time (Ton), pulse off time (Toff) with target

measures like MTR, and LT. A multilayer feed-forward neural network with gradient-descent learning algorithm with 5nos. of neuron in hidden layer has been used train the ANN model. Two activation functions tansig and purelin has been used in hidden and output layers, respectively. Two evaluate the ANN model two performance measures average error percentage and MSE have implemented. The performance measure MSE during training and testing of MRR were found to be 0.0014 and 0.0038, respectively. Another performance measure average error percentage during training and testing of MRR were found to be 3.3321 and 8.4365, respectively. While modeling LT, MSE during training and testing were found to be 0.0016 and 0.0020 respectively and average error percentage during training and testing were found to be 0.0016 and 0.0020 respectively and average error percentage during training and testing were found to be 0.0016 and 0.0020 respectively.

Md. Ashikur Rahman Khan et. al [12] proposed an ANN model with multi-layer perception neural architecture for the prediction of SR on first commenced Ti-15-3 alloy in electrical discharge machining (EDM) process. The proposed models used process parameters such as peak current, pulse on time, pulse off time and servo voltage to develop a mapping with the target SR. Training of the ANN models was performed with LM learning algorithm using extensive data sets from experiments utilizing copper electrode as positive polarity. An average of 6.15% error was found between desired and ANN predicted SR which found to be in good agreement with the experimental results.

Pushpendra S. Bharti et. al [13] made an attempt to select the best back propagation (BP) algorithm from the list of training algorithms that are present in the Matlab Neural Network Toolbox, for the training of ANN model of EDM process. In this work, thirteen BP algorithms, which are available in MATLAB 7.1, Neural Network Toolbox, are compared on the basis of mean absolute percentage error and correlation coefficient. Some important specifications that

have been used for implementing the ANN modeling were data normalization which was performed in the range between 0.1 and 0.9, weight initialization which was done by Nguyen Widrow weight initialization technique, transfer functions used at hidden layers and output layer were hyperbolic tangent function (tansig) and logistic function (logsig) respectively. Out of thirteen BP algorithms investigated, Bayesian Regularization Algorithm found to facilitate the best results for efficient training of ANN model.

Pradhan and Das [14] have used an Elman network for producing a mapping between machining parameter such as discharge current, pulse duration, duty cycle and voltage, and the response MRR in EDM process. Training and testing of ANN model were performed with extensive data sets from EDM experiments on AISI D2 tool steel from finishing, semi-finishing to roughening operations. The mean percentage error of the model was found to be 5.86 percent, which showed that the proposed model is in a satisfactory level to predict the MRR in EDM process.

A.Thillaivannan [15] et. al. have explored a practical method of optimizing machining parameters for EDM process under the minimum total machining time based on Taguchi method and Artificial neural network. Feed-forward back-propagation neural networks with two back-propagation training algorithms: gradient descent, and gradient descent with momentum were developed for establishing a relation between the target parameters current and feed with the process parameters required total machining time, oversize and taper of a hole .

Fenggou and Dayong [16] present a method that can be used to automatically determine the optimal nos. of hidden neuron and optimize the relation between process and response parameters of EDM process using GA and BP learning algorithm based ANN modelling. The ANN modeling was implemented to establish relation between EDM process parameters such as

current peak value(A), pulse width $on(\mu s)$, processing depth (mm) with the response parameters SR(μ m), TWR(%), electrode zoom value(μ m) and finish depth(mm).A three layer feed forward neural architecture was used to implement the ANN modeling in EDM process. The number of neurons at the middle layer was determined by GA and node deleting network structure optimization method. GA combined with node deleting network structure optimization method was implemented to find out the global optimal solution, since it is hard for GA based optimization method to find out the local optimal solution, a BP algorithm was finally implemented to converge on the global optimum solution. AS GA converged to global optimal solution quickly the training time is reduced now and as in the second phase BP algorithm was implemented the local optimal solution problem also solved now. Finally they conclude 8 nos. of hidden neuron were found to be optimal for ANN modeling with a desired processing precision and efficiency.

Rao and Rao [17] presented a work aimed on the effect of various machining parameters on hardness. The various input parameters that have been considered here are different types of materials (namelyTi6Al4V, HE15, 15CDV6 and M250), current, voltage and machining time. To correlate the machining parameters and response parameter they used a multi-layer feed forward neural network with GA as a learning algorithm. For this purpose they used Neuro Solutions software package. They used a single hidden layer with sigmoid transfer function in both hidden and output layer. And they found a maximum prediction error of 5.42% and minimum prediction error of 1.53%.

Deepak Kumar Panda [18] in this article, a new hybrid approach of neuro-grey modeling (NGM) technique has been investigated for modeling and multi-optimization of multiple processes attributes(SR, micro-hardness, thickness of heat affected zone, and MRR)of the electro

discharge machining (EDM) process. To establish an efficient relation between input parameters pulse current and pulse duration with the response parameters of EDM process they used a multilayer feed forward neural network with Levenberg–Marquardt learning algorithm. The logistic sigmoid transfer function was used in both hidden layer and output layer. For assessing the performance of ANN model they used R^2 and *MSE* performance measures.

Pradhan and Biswas [19] presented a research work, where two neuro-fuzzy models and a neural network model were utilized for modelling of MRR, TWR, and radial overcut (G) of EDM process for AISI D2 tool steel with copper electrode. The discharge current (Ip), pulse duration (Ton), duty cycle (τ), and voltage (V) were taken as machining parameters. A feed-forward neural network with one hidden layer and Levenberg–Marquardt as training algorithm were used for implementing the ANN modeling. Weights were randomly initialized, and the training, validation and testing data proportionate were taken as 50:40:10 respectively. The performances of the developed models were measured in terms of Prediction error (%) and found to be 5.42, 15.21 and 6.51 percentage for testing data set of MRR,TWR and G respectively which seems to approximate the responses quite accurately.

2.2 Literature review on implementation of MOEA

Development of MOEA has been started since last few decades and still it's continuing in the developing stage. In recent years many researchers have shown keen interest in the implementation of MOEA, but till now it has not get wide applicability. Some of the implementation has been presented below as literature review:

Kodali et. al [20] have shown an investigation on implementation of NSGA-II for optimizing two contradicting responses in rough and finish grinding processes. For rough grinding

process minimizing the total production cost (CT) and maximizing the work- piece removal parameter (WRP) were evaluated while for finish grinding process minimizing the total CT and minimizing the surface roughness (Ra) were considered subjected to three constraints thermal damage, wheel wear parameter and machine tool stiffness.

Kesheng Wang et. al [21] have employed a hybrid artificial neural network and Genetic Algorithm methodology for modeling and optimization of two responses i.e. MRR and SR of electro-discharge machining. To perform the ANN modeling and multi-objective optimization they have implemented a two-phase hybridization process. In the first phase, they have used GA as learning algorithm in multilayer feed-forward neural network architecture. In the second phase, they used the model equations obtained from ANN modeling as the fitness functions for the GA-based optimization. The optimization was implemented using Gene-Hunter. The ANN model optimized error for MRR and SR were found to be 5.60% and 4.98% which laid a conclusions for these two responses to accept the model.

J. C. Su et. al [22] have proposed a ANN integrated GA-based multi-objective optimization system for optimization of machining performance parameters in an EDM process. A neural-network model with back-propagation learning algorithm was developed to establish a relation between the 8 process parameters such as pulse-on time (Ton), pulse-off time (T_{off}), high-voltage discharge current (I_{hv}), low-voltage discharge current (I_{lv}), gap size (Gap), servo-feed (V_f), jumping time (T_{jump}) and working time (T_w), and 3 response parameters Ra (the central-line average roughness of the machined surface), the TWR and the MRR .As one hidden layer is sufficient for ANN modeling of EDM process , they have used a 8-14-3 type feed- forward neural network for modeling. After ANN modeling GA-based multi-objective optimization was implemented using a composite objective function formed by ANN model equations. In the

composite objective function weights were introduced to reflect the importance of Ra, TWR and MRR. From the verification and discussion they confirmed the successful applicability of GA-based neural network for the optimization of the EDM process.

Joshi and Pande [23] reported an intelligent approach for modeling and multi-objective optimization of EDM parameters of the model with less dependency on the experimental data. The EDM parameters data sets were generated from the numerical (FEM) simulations. The developed ANN process model was used in defining the fitness functions of non-dominated sorting genetic algorithm II (NSGA-II) to select optimal process parameters for roughing and finishing operations of EDM. While implementing NSGA-II for roughening operation only two contradicting objectives MRR and TWR were considered, while implementing for finishing operation best trade up was shared between 3 conflicting objective namely MRR, TWR and crater depth. Finally they carried out a set of experiments to validate the process performance for the optimum machining conditions and they found to be successful implement their approach.

Debabrata Mandal et. al [24] have presented a study attempts to model and optimize the EDM process using a back-propagation neural network which uses a gradient search technique and a GA based most familiar multi-objective optimization technique NSGA-II respectively. The modeling has been established between 3 process parameters namely current, T_{on} and T_{off} with responses MRR (mm³/min) Absolute tool wear rate (mm³/min).To find out the suitable architecture for an efficient ANN modeling of EDM process different architectures have been investigated. The model with 3-10-10-2 architecture was found to be most suitable for the modeling task with learning rate as 0.6 and momentum co-efficient as 0.6. A total of 78nos. of experimental run was used, out of which 69 nos. of run were used for training, and remaining 9 were used for testing the model. The maximum, minimum and mean prediction errors for this

model were found to be 9.47, 0.0137 and 3.06%, respectively. A multi-objective optimization method NSGA -II was used to optimize the two conflicting responses MRR and TWR. Finally a hundred nos. of Pareto-optimal solutions were successfully generated using NSGA-II.

Kuriakose and Shunmugam [25] correlate the various machining parameters and performance parameters of wire-electro discharge machining using multiple linear regression model. The various process parameters that were considered were namely ignition pulse current (IAL), time between two pulses (TB), pulse duration (TA), servo-control reference voltage, maximum servospeed variation (S), wire speed (Ws), wire tension (Wb) and injection pressure (Inj).Two contradicting responses of Wire-electro discharge machining process namely cutting velocity and surface finish were taken into consideration for multi-objective optimization with the help of Non-Dominated Sorting Genetic Algorithm (NSGA).The developed multiple linear regression model equations were used as fitness functions in NSGA for performing the optimization task and successfully implemented.

Kuruvila and Ravindra [26] developed a regression analysis method to correlate the machining parameters pulse-on duration, current, bed speed, pulse-off duration and flush rate with the response parameters Dimensional Error (DE), SR and Volumetric Material Removal Rate (VMRR). The multi-objective optimization was performed using genetic algorithm .As GA is basically implemented for single objective optimization; here a suitable modification was pursued to implement it for multi-objective optimization. The modification was, forming a composite objective function with consideration of weightage for different individual objectives, which acts as fitness function for GA. Finally they conclude with the successful implementation of this approach.

MahdaviNejad [27] has demonstrated the effective machining of Silicon Carbide (SiC) which is regarded as a harder material, in EDM. Using ANN with a multilayer-perceptron (3-5-5-2) architecture and back propagation algorithm the process parameters discharge current, pulse on time, pulse off time have been mapped with the two responses SR and MRR. For optimizing the process parameters simultaneously w.r.t. the objectives SR and MRR, NSGA-II algorithm was applied and a set of non-dominated solutions were achieved.

From the literature review it was confirmed that efficiency of ANN still needs to be improvised. Many of the researchers have randomly selected the process parameters (and their value) of ANN for developing an efficient model for their particular purpose of implementations. So here, there is a high necessity of developing an orderly manner for selecting process parameters and their levels for improving the performance of ANN.

Through study of literature review reveals that many MOEAs have been implemented for MOO of EDM process, but still now no comparison has been made about the performance of various MOEAs. So an investigation is required on this to evaluate and compare various MOEAs, in qualitative and quantitative parametric terminologies.

2.3 Objective of present work

A three step frame work was prepared for conceptualizing the research direction as follows:

- To study the performance of ANN process parameters ANN architectures, Learning/training algorithms and Nos. of hidden neurons with the help of full factorial design.
- 2. Optimal process modeling of MRR and TWR of EDM process with the best levels of these above parameters.
- Multi-objective optimization of EDM responses using three wide applied MOEAs, namely Non-dominated Sorting Genetic Algorithm-II (NSGA-II),Controlled NSGA-II and Strength Pareto Evolutionary Algorithm 2 (SPEA2).

CHAPTER 3

ANN Performance Evaluation and Modelling

Many attempts have been made to model performance parameters of EDM process using ANN.To obtain an improved ANN model, generally ANN architectures, learning/training algorithms and nos. of hidden neurons are varied, but the variation so far has been made in a random manner. So here a full factorial design has been implemented to achieve the optimal of above for modelling.

3.1 Parameter setting

The most familiar process parameters that are varied to obtain an efficient ANN model are ANN architectures; learning/training algorithms and nos. of hidden neuron. These parameters have been chosen here as process parameters to a full factorial design. The process parameter ANN architecture at two levels, learning/training algorithm at three levels and nos. of hidden neuron at four levels have been selected as shown in Table 3.1. The performance parameters for evaluating the ANN model are taken as training Mean squared error (MSE), testing MSE, training Correlation coefficient (R) and testing R, which are the default performances evaluating parameters assumed by MATLAB.

Process parameter		Levels							
	1	2	3	4					
Neural Architecture	Multi-Layer Perceptron (MLP)	Generalized Feed forward Neural Network (GFNN)							
Learning Algorithm	Levenberg Marquardt (LM)	Scale Conjugate Gradient Algorithm (SCGA)	Conjugate Gradient with Powell-Beale Restarts (CGB)						
Nos. of hidden neuron	8	16	24	32					

 Table 3.1 Parameters and their levels

3.2 About the parameters

3.2.1 Neural architecture

A single neuron is not enough to solve real life problems (any linear or nonlinear computation) efficiently, and networks with more number of neurons arranged in particular sequences are frequently required. This particular ways /sequences of arrangement of neurons are coined as neural architecture. The sequences of arrangements of neurons determine how computations will proceed and also responsible for the effectiveness of the model.

Multi-layer perceptron (MLP):

A multilayer perceptron neural architecture has one or more layers of nodes/neurons (hidden layers) between the input and output layers. Here discharge current (Ip), spark on time (Ton), duty cycle (Tau) and voltage (V) are the processing parameters comprising the input layer. The output layer comprises of two neurons representing the two response parameters material removal rate (MRR) and tool wear rate (TWR). The hidden layers are so called because they are not exposed to the external environment (data) and it is not possible to examine and correct their values directly. A general network topology of MLP neural architecture has been shown in Figure 3.1.

Cascade-forward network (CF) / Generalize feed-forward network (GFNN):

Generalized feed-forward networks are a generalization of the MLP such that weight connection can jump over from the input to each layer and from each layer to the successive layers. The additional connections have been added in the hope of solving the problem much more efficiently and faster manner. Network topology of a general CF neural architecture has been shown in Figure 3.2.

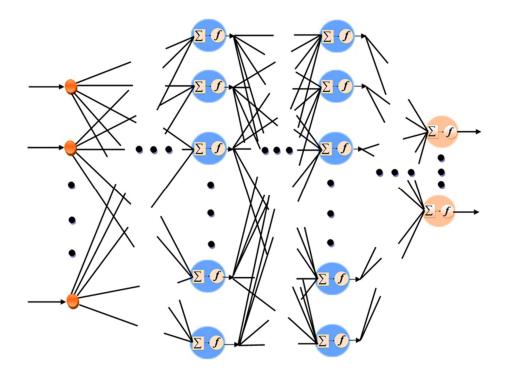


Figure 3.1 A general Network topology of MLP architecture

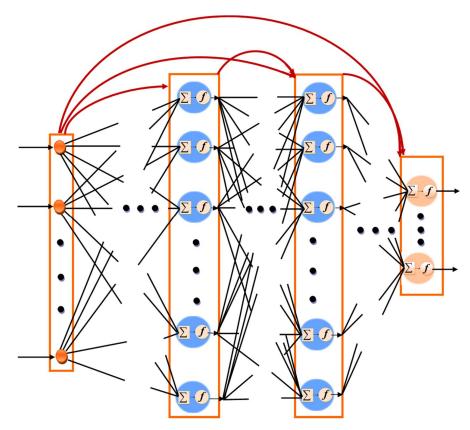


Figure 3.2 Common network topology of a CF neural architecture

3.2.2 Learning algorithm

Weight and bias matrix associate with the inputs of summer are adjusted /updated by using some learning rule or training algorithm which is non-linear, multi-variable optimization (minimization) of error function. Figure 3.3 shows an application of a training algorithm for updating the weights of a single neuron.

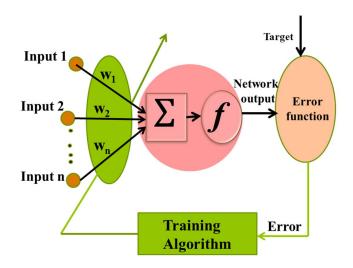


Figure 3.3 Updating weight using learning algorithm

Three backpropagation training algorithms viz. Levenberg-Marquardt (LM), Scaled Conjugate Gradient (SCGA) and Conjugate Gradient with Powell-Beale Restarts (CGB) has been implemented for training the neural architectures. The line search function Hybrid Bisection-Cubic Search has been used with CGB to locate the minimum point.

3.2.3 Nos. of hidden neuron

Here a single hidden layer has been used throughout, as single hidden layer is sufficient for back-propagation neural network to define the input-output mapping. The nos. of neuron in the input layer and the output layer are fixed as the input parameters and response parameters of EDM process are fixed for this particular investigation and also the mapping is to be established between input and output parameters .So to investigate the effect of nos. neuron on model performance nos. of hidden neuron has been varied at four levels.

3.2.4 Mean squared error (MSE)

The error function that has been used here for supervised training is average mean squared error function (E_{avg}). Mathematically it can be expressed as:

$$E_{avg} = \frac{1}{2} \frac{\sum_{n=1}^{N} \sum_{k=1}^{K} (d_{nk} - a_{nk})^2}{K \times N}$$
(3.1)

where d_{nk} the desired output for exemplar *n* at neuron *k* of output layer and a_{nk} is the network output for exemplar *n* at neuron *k* of output layer (i.e. the predicted output of neural network); *K* is the number of neuron in the output layer and *N* is the number of exemplars in the data. Mean squared error (MSE) is two times of the average mean squared error function(E_{avg}). The factor $\frac{1}{2}$ is multiplied here with the mean squared error function to make the differentiation of this function easier. Lower value of MSE is preferable for a superior ANN model.

3.2.5 Correlation coefficient (R)

Correlation coefficient can be used to determine how well the network output fits the desired output. The correlation coefficient between a network output (a) and a desired output (d) can be mathematically defined as:

$$R = \frac{\frac{\sum_{n=1}^{N} (a_n - \bar{a})(d_n - \bar{a})}{N}}{\sqrt{\frac{\sum_{n=1}^{N} (d_n - \bar{a})^2}{N}} \sqrt{\frac{\sum_{n=1}^{N} (a_n - \bar{a})^2}{N}}}$$
(3.2)

where n = examplar or run number, a_n and d_n are the network output and desire output respectively at a particular examplar, \bar{a} and \bar{d} are the data mean of network output and desire output respectively. Higher value of R is desirable for an effective ANN model.

3.3 Data (machining parameters) collection:

The process parameters and response parameters data of the EDM process used here for modeling is referred with permission from Pradhan [28].

The total nos. of exemplar in the data set is 150. The whole data set was divided into 3 sets viz. training, validation and test dataset. The training data set is used to fit the model or to establish the input-output mapping. The validation data set is used stop the training by early stopping criteria. Test data set is used to evaluate the performance and generalization error of fully trained neural network model. Generalization means how well the trained model response to the data set that does not belong to the training set.

The training, validation and test data set was respectively proportionate to 80:10:10. Table 3.2 ,3.3 and 3.4 shows the training, validation and tesing dataset respectivly.

S. No.	Ip	Ton	Tau	V	MRR	TWR
	(A)	(µs)	(%)	(volt)	$\left(\frac{mm^3}{min}\right)$	$\left(\frac{mm^3}{min}\right)$
1	10	500	55	60	17.50	-0.010
2	7	200	65	60	14.73	0.070
3	7	100	55	40	16.34	0.160
4	10	200	45	60	19.09	0.150
5	16	400	55	40	51.01	0.020
6	13	100	55	40	40.92	0.980
7	16	500	55	60	39.36	-0.110
8	16	300	65	60	47.96	0.170
9	4	300	55	60	4.23	0.020
10	4	400	55	40	4.74	0.020
11	16	300	55	60	40.90	0.080
12	10	300	65	60	24.90	0.060

Table 3.2 Training data set

(continued on next page)

S. No.	Ip	Ton	Tau	V	MRR	TWR
	(Å)	(µs)	(%)	(volt)	$\left(\frac{mm^3}{mm^3}\right)$	$\binom{mm^3}{mm^3}$
					$\left(\frac{\min}{}\right)$	(min)
13	10	400	65	40	29.07	0.010
14	16	500	45	60	31.13	0.010
15	10	100	65	60	26.66	0.650
16	7	300	45	60	9.08	0.040
17	7	400	55	60	8.79	0.030
18	16	400	65	40	57.68	0.090
19	7	200	45	40	13.57	0.080
20	10	500	65	40	28.27	-0.020
21	13	200	65	40	49.05	0.420
22	7	400	65	40	13.70	0.010
23	7	300	65	60	12.75	0.030
24	10	500	65	60	19.92	0.001
25	4	500	65	40	2.01	0.001
26	4	400	65	40	4.43	0.010
27	16	200	45	60	32.91	0.550
28	16	200	65	60	48.29	0.490
29	10	300	55	60	22.16	0.070
30	4	300	45	60	3.32	0.020
31	16	200	55	60	41.26	0.520
32	10	200	55	60	22.74	0.190
33	10	200	65	40	33.05	0.140
34	16	500	45	40	37.52	0.030
35	16	100	55	40	54.15	1.780
36	10	400	45	40	20.96	0.040
37	10	500	45	40	19.04	0.010
38	4	500	45	40	2.12	0.010
39	4	100	55	60	5.61	0.100
40	16	400	45	60	32.39	0.050
41	7	100	65	60	16.29	0.310
42	7	200	55	60	13.08	0.080
43	7	100	45	40	14.50	0.190
44	4	200	55	40	7.93	0.010
45	4	100	45	40	5.77	0.070
46	13	100	55	60	36.09	0.790
47	13	500	55	40	38.06	-0.100
48	10	400	65	60	22.25	0.020
49	16	300	55	40	53.06	0.200
50	16	400	65	60	47.38	0.080
51	16	500	65	40	56.57	0.060
52	13	100	45	40	32.96	1.020
53	4	500	45	60	1.70	0.001
54	10	400	45	60	16.43	0.020

(continued on next page)

S. No.	Ip	Ton	Tau	V	MRR	TWR
	(A)	(µs)	(%)	(volt)	$\left(\frac{mm^3}{mm^3}\right)$	$\left(\frac{mm^3}{mm^3}\right)$
					(min)	(min)
55	13	200	45	60	27.23	0.300
56	4	500	65	60	1.46	0.001
57	7	300	55	60	12.31	0.060
58	4	300	65	60	3.13	0.010
59	7	100	45	60	11.99	0.190
60	4	400	45	60	2.38	0.010
61	4	300	65	40	5.75	0.001
62	10	200	65	60	25.49	0.150
63	13	400	55	40	39.69	0.010
64	10	100	45	40	23.48	0.630
65	16	100	45	40	39.81	1.800
66	4	200	65	60	5.80	0.020
67	13	500	45	40	30.29	0.020
68	10	500	55	40	23.95	-0.060
69	4	500	55	60	1.34	0.010
70	10	100	45	60	19.36	0.420
71	13	100	65	40	49.27	1.040
72	7	300	45	40	12.81	0.040
73	4	200	55	60	5.04	0.040
74	7	400	45	40	11.03	0.020
75	13	400	45	60	26.90	0.020
76	10	400	55	40	25.55	0.030
77	13	300	45	40	31.82	0.120
78	7	500	45	40	9.03	0.010
79	10	400	55	60	20.36	0.020
80	4	400	45	40	2.83	0.010
81	16	300	45	60	32.66	0.090
82	13	300	65	40	48.33	0.170
83	7	200	45	60	10.75	0.090
84	16	500	55	40	49.40	-0.070
85	7	500	65	60	7.00	0.010
86	10	500	45	60	15.60	0.001
87	4	100	45	60	5.53	0.100
88	13	200	65	60	41.62	0.260
89	13	400	55	60	34.36	0.001
90	7	500	55	60	6.59	0.010
91	16	100	65	60	48.54	1.700
92	4	100	65	60	6.87	0.090
93	4	200	65	40	6.74	0.010
94	16	200	65	40	59.79	0.560
95	4	100	65	40	8.22	0.040
96	13	500	55	60	31.97	-0.090

(continued on next page)

S. No.	Ip	Ton	Tau	V	MRR	TWR
	(Å)	(µs)	(%)	(volt)	(mm^3)	(mm^3)
		-			$\left(\frac{\min}{1}\right)$	$\left(\min \right)$
97	10	200	45	40	22.52	0.190
98	10	100	55	40	28.08	0.570
99	13	100	65	60	42.09	1.080
100	10	100	55	60	23.05	0.440
101	16	500	65	60	46.49	0.040
102	7	500	45	60	5. 93	0.001
103	7	400	65	60	9.78	0.020
104	13	300	45	60	27.11	0.080
105	4	300	45	40	3.53	0.020
106	4	100	55	40	8.24	0.080
107	13	500	65	60	38.03	0.020
108	7	400	45	60	7.23	0.010
109	13	200	55	60	35.23	0.300
110	13	200	45	40	32.79	0.310
111	10	300	45	40	21.97	0.060
112	10	300	65	40	31.25	0.030
113	7	500	55	40	8.43	-0.010
114	16	200	45	40	39.56	0.640
115	4	200	45	60	4.60	0.070
116	7	500	65	40	10.14	-0.020
117	16	300	45	40	38.54	0.210
118	7	300	55	40	15.20	0.040
119	13	500	65	40	43.04	0.001
120	4	200	45	40	4.91	0.040

S. No.	Ip	Ton	Tau	V	MRR	TWR
	(A)	(µs)	(%)	(volt)	$\left(\frac{mm^3}{min}\right)$	$\left(\frac{mm^3}{min}\right)$
1	13	400	45	40	30.83	0.060
2	16	200	55	40	53.93	0.710
3	4	400	65	60	1.91	0.020
4	13	400	65	60	40.26	0.030
5	10	200	55	40	27.78	0.270
6	10	100	65	40	33.78	0.550
7	16	300	65	40	59.12	0.250
8	4	400	55	60	1.99	0.010
9	7	100	55	60	13.20	0.180
10	10	300	45	60	17.96	0.050
11	10	300	55	40	26.81	0.060
12	7	200	65	40	17.74	0.070
13	16	100	55	60	41.58	1.510
14	4	500	55	40	2.16	0.001
15	7	100	65	40	19.01	0.260

Table 3.3 Validation data set

Table 3.4 Test data set

S. No.	Ip	Ton	Tau	V	MRR	TWR
	(A)	(µs)	(%)	(volt)	$\left(\frac{mm^3}{min}\right)$	$\left(\frac{mm^3}{min}\right)$
136	16	100	65	40	59.98	1.890
137	16	100	45	60	33.56	1.580
138	13	300	55	40	40.42	0.090
139	13	500	45	60	26.56	0.010
140	16	400	45	40	38.38	0.090
141	7	200	55	40	16.17	0.070
142	4	300	55	40	7.42	0.020
143	13	300	55	60	34.66	0.060
144	13	100	45	60	27.49	0.900
145	7	400	55	40	11.35	0.010
146	7	300	65	40	15.86	0.023
147	16	400	55	60	40.49	-0.120
148	13	400	65	40	45.64	0.020
149	13	300	65	60	41.11	0.110
150	13	200	55	40	40.62	0.390

3.4 Important specifications used for ANN modelling

Some of the important specifications of parameters that are frequently required throughout the modeling process have been shown in Table 3.5.

S.N.	Parameter	Data/ Data range	Technique used/ Type of Parameter used				
1.	Nos. of input neuron	4					
2.	Nos. of output neuron	2					
3.	Total nos. of exemplar	150	·				
4.	Proportion of training, validation & testing data	80:10:10					
5.	Data normalization	0.05 to 0.95	Min-max data normalization technique				
6.	Weight initialization	-0.5 to 0.5	Random weight initialization technique				
7.	Transfer function	0 and 1	Log-sigmoid function (for both hidden & output layer)				
8.	Error function		Mean squared error function				
9.	Mode of training		Batch mode				
10.	Type of Learning rule		Supervised learning rule				
11.	Stopping criteria		Early stopping				

Table 3.5 Important specification of parameters used in ANN modelling

Two important parameters, data normalization and transfer function also have been described below:

3.4.1 Data normalization:

Generally the inputs and targets that dealt with an ANN model are of various ranges. These input and targets are needed to be scaled in the same order of magnitude otherwise some variables may appear to have more significance than they actually do, which will lead to form error in the model. Here the data of neural network model was scaled in the range of 0.05 to

0.95.The min-max data normalization technique was used for this purpose using the following equation:

$$N = \frac{(R - R_{\min}) \times (N_{\max} - N_{\min})}{(R_{\max} - R_{\min})} + N_{\min}$$
(3.3)

Where, *N* is the normalized value of the real variable, $N_{min}=0.05$ and $N_{max}=0.95$ are the minimum and maximum scaled range respectively, *R* is the real value of variable, and R_{min} and R_{max} are the minimum and maximum values of the real variable, respectively.

3.4.2 Transfer /Activation function

The outcome of the summation function is supplied to an algorithmic process for further processing known as the transfer function. Here log-sigmoid function has been used in both hidden and output layer. Sigmoid function has output range between 0 and 1. The output of a neuron is given by:

$$a_{l}^{s} = \frac{1}{(1 + e^{-\sigma I_{l}})}$$
 (3.4)

Where a_l^s is the output of neurons at hidden layer (s=1) and output layer (s=2), l is the neuron number in that layer, σ is a scaling factor known as sigmoidal gain (here taken as 1) and I_l is the output of net-input function of l neurons.

3.5 Results and discussion from full factorial design analysis

Here the influence of input parameters i.e., ANN architectures, learning/training algorithms and nos. of hidden neuron on performance parameters training MSE, testing MSE, training R and testing R have been investigated with the help of full factorial method. For each run 4 nos. of replicate were created to consider the effect of variation in performance parameters, so each of the 24 runs was repeated for a total of 96 runs in the investigation as shown in Table 3.6.

Run	Neural	Learning	Nos. of	Training	Test	Training	Test R
Order	Arch.	Algorithm	Hidden	MSE	MSE	R	
1	MLP	CGB	Neuron 8	0.2815	0.5432	0.99946	0.99923
2	MLP	CGB	16	0.1016	0.3915	0.99981	0.99953
3	MLP	CGB	24	0.0846	0.4139	0.99984	0.99943
4	MLP	CGB	32	0.0762	0.2803	0.99985	0.99961
5	MLP	LM	8	0.1420	0.4390	0.99973	0.99940
6	MLP	LM	16	0.0241	0.1529	0.99995	0.99980
7	MLP	LM	24	0.0071	0.3597	0.99999	0.99955
8	MLP	LM	32	0.0031	0.4650	0.99999	0.99938
9	MLP	SCGA	8	0.3418	0.7741	0.99934	0.99891
10	MLP	SCGA	16	0.1157	0.3637	0.99978	0.99957
11	MLP	SCGA	24	0.1100	0.6763	0.99979	0.99932
12	MLP	SCGA	32	0.1017	0.7141	0.99980	0.99927
13	CF	CGB	8	0.2914	0.4753	0.99944	0.99943
14	CF	CGB	16	0.1243	0.4552	0.99976	0.99948
15	CF	CGB	24	0.1077	0.5426	0.99979	0.99943
16	CF	CGB	32	0.0891	0.4977	0.99983	0.99945
17	CF	LM	8	0.0850	0.3334	0.99984	0.99956
18	CF	LM	16	0.0196	0.2031	0.99996	0.99972
19	CF	LM	24	0.0030	0.8960	0.99999	0.99915
20	CF	LM	32	0.0018	0.5012	1.00000	0.99952
21	CF	SCGA	8	0.1782	0.6252	0.99966	0.99919
22	CF	SCGA	16	0.1011	0.3603	0.99981	0.99954
23	CF	SCGA	24	0.0977	0.3968	0.99981	0.99959
24	CF	SCGA	32	0.0887	0.7101	0.99983	0.99930
25	MLP	CGB	8	0.3236	0.4869	0.99938	0.99935
26	MLP	CGB	16	0.0982	0.2604	0.99981	0.99963
27	MLP	CGB	24	0.0548	0.3808	0.99989	0.99961
28	MLP	CGB	32	0.0599	0.4621	0.99988	0.99939
29	MLP	LM	8	0.1226	0.4955	0.99976	0.99934
30	MLP	LM	16	0.0236	0.2042	0.99995	0.99972
31	MLP	LM	24	0.0074	0.2503	0.99999	0.99966
32	MLP	LM	32	0.0009	0.6482	1.00000	0.99938
33	MLP	SCGA	8	0.3240	0.7849	0.99938	0.99889
34	MLP	SCGA	16	0.1235	0.2791	0.99976	0.99961
35	MLP	SCGA	24	0.1100	0.6763	0.99979	0.99932
36	MLP	SCGA	32	0.0690	0.5977	0.99987	0.99948
37	CF	CGB	8	0.3052	0.4736	0.99941	0.99938
38	CF	CGB	16	0.1438	0.2264	0.99972	0.99971
39	CF	CGB	24	0.1187	0.5340	0.99977	0.99948
40	CF	CGB	32	0.0819	0.6060	0.99984	0.99921

Table 3.6 Observation table for full factorial method

Run Order	Neural Arch.	Learning Algorithm	Nos. of Hidden Neuron	Training MSE	Test MSE	Training R	Test R
41	CF	LM	8	0.1017	0.2025	0.99980	0.99972
42	CF	LM	16	0.0105	0.3858	0.99998	0.99952
43	CF	LM	24	0.0035	0.8005	0.99999	0.99914
44	CF	LM	32	0.0033	0.4612	1.00000	0.99958
45	CF	SCGA	8	0.1632	0.4960	0.99969	0.99934
46	CF	SCGA	16	0.1100	0.3412	0.99979	0.99954
47	CF	SCGA	24	0.0673	0.5468	0.99987	0.99944
48	CF	SCGA	32	0.0660	0.6247	0.99987	0.99918
49	MLP	CGB	8	0.2843	0.5215	0.99945	0.99931
50	MLP	CGB	16	0.0976	0.3323	0.99981	0.99958
51	MLP	CGB	24	0.0683	0.4742	0.99987	0.99939
52	MLP	CGB	32	0.0650	0.4749	0.99988	0.99940
53	MLP	LM	8	0.1207	0.3403	0.99977	0.99954
54	MLP	LM	16	0.0223	0.1946	0.99996	0.99972
55	MLP	LM	24	0.0029	0.3201	0.99999	0.99959
56	MLP	LM	32	0.0003	0.5428	1.00000	0.99946
57	MLP	SCGA	8	0.3251	0.7695	0.99938	0.99893
58	MLP	SCGA	16	0.1536	0.4952	0.99971	0.99949
59	MLP	SCGA	24	0.0726	0.4786	0.99986	0.99947
60	MLP	SCGA	32	0.0589	0.6425	0.99989	0.99937
61	CF	CGB	8	0.2968	0.5738	0.99943	0.99925
62	CF	CGB	16	0.1695	0.4845	0.99967	0.99959
63	CF	CGB	24	0.0954	0.4529	0.99982	0.99943
64	CF	CGB	32	0.0775	0.5932	0.99985	0.99923
65	CF	LM	8	0.1040	0.2852	0.99980	0.99962
66	CF	LM	16	0.0184	0.4988	0.99996	0.99952
67	CF	LM	24	0.0032	0.9699	0.99999	0.99908
68	CF	LM	32	0.0024	0.6140	1.00000	0.99937
69	CF	SCGA	8	0.1880	0.5374	0.99964	0.99926
70	CF	SCGA	16	0.0927	0.1613	0.99982	0.99978
71	CF	SCGA	24	0.1037	0.4336	0.99980	0.99940
72	CF	SCGA	32	0.0848	0.4811	0.99984	0.99939
73	MLP	CGB	8	0.3249	0.6884	0.99938	0.99930
74	MLP	CGB	16	0.1156	0.3324	0.99978	0.99958
75	MLP	CGB	24	0.0795	0.3719	0.99985	0.99952
76	MLP	CGB	32	0.0209	0.3649	0.99996	0.99948
77	MLP	LM	8	0.1348	0.4764	0.99974	0.99936
78	MLP	LM	16	0.0124	0.1714	0.99998	0.99976
79	MLP	LM	24	0.0059	0.1771	0.99999	0.99978
80	MLP	LM	32	0.0015	0.5497	1.00000	0.99927
81	MLP	SCGA	8	0.3036	0.6976	0.99942	0.99907
82	MLP	SCGA	16	0.1372	0.4899	0.99974	0.99950

Run	Neural	Learning	Nos. of	Training	Test	Training	Test R
Order	Arch.	Algorithm	Hidden	MSE	MSE	R	
			Neuron				
83	MLP	SCGA	24	0.0688	0.4997	0.99987	0.99942
84	MLP	SCGA	32	0.0584	0.7697	0.99989	0.99931
85	CF	CGB	8	0.3142	0.5747	0.99940	0.99921
86	CF	CGB	16	0.1099	0.3037	0.99979	0.99961
87	CF	CGB	24	0.0889	0.4886	0.99983	0.99970
88	CF	CGB	32	0.0651	0.5085	0.99988	0.99929
89	CF	LM	8	0.0842	0.2854	0.99984	0.99962
90	CF	LM	16	0.0137	0.3267	0.99997	0.99954
91	CF	LM	24	0.0062	0.7403	0.99999	0.99931
92	CF	LM	32	0.0041	0.5950	0.99999	0.99943
93	CF	SCGA	8	0.1728	0.4855	0.99967	0.99934
94	CF	SCGA	16	0.0937	0.3482	0.99982	0.99951
95	CF	SCGA	24	0.0621	0.4023	0.99988	0.99946
96	CF	SCGA	32	0.0912	0.7927	0.99982	0.99931

Figure 3.4 shows the main effect plot for training MSE. From the main effect plot the effect of individual parameters on training MSE has been defined subsequently. The two neural architecture used here, seems to have less effect on training MSE. Levenberg-Marquardt learning algorithm has clearly outperformed the other two algorithms. With the increase in nos. of hidden neuron, training MSE is reducing and minimum training MSE was achieved at 32 nos. of neuron. The interaction effects between input parameters are shown in Figure 3.5.

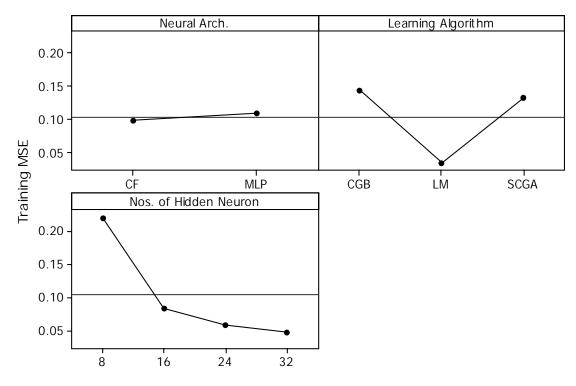


Figure 3.4 Main effect plots for training MSE

Analysis of Variance (ANOVA) for training MSE is shown in Table 3.6 .From p-values of corresponding input parameters and its interactions, it can be conclude that all individual parameters and their interactions are found to be significant for the response. And as nos. of hidden neuron is having highest contribution of 57.509 percentages towards training MSE, it is highly significant parameter.

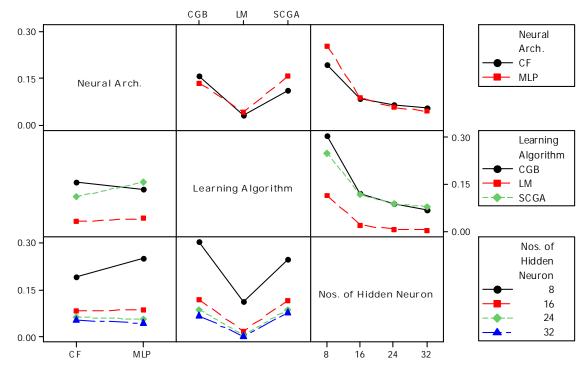


Figure 3.5 Interaction plot for training MSE

Source	DF	Seq SS	Adj	F	Р	% of
		_	MS			contribution
Neural Arch.	1	0.003014	0.003014	14.74	0.000	0.38
Learning Algorithm	2	0.233325	0.116663	570.57	0.000	29.15
Nos. of Hidden Neuron	3	0.460293	0.153431	750.39	0.000	57.51
Neural Arch.*Learning Algorithm	2	0.017418	0.008709	42.59	0.000	2.18
Neural Arch.*Nos. of Hidden Neuron	3	0.021186	0.007062	34.54	0.000	2.65
Learning Algorithm* Nos. of Hidden Neuron	6	0.037723	0.006287	30.75	0.000	4.71
Neural Arch.*Learning Algorithm* Nos. of Hidden Neuron	6	0.012698	0.002116	10.35	0.000	1.59
Error	72	0.014722	0.000204			1.84
Total	95	0.800379				100

Table 3.7 Analysis of Variance for training MSE

Figure 3.6 shows the main effect plot for test MSE. From the figure assessments drawn are; neural architecture has insignificant effect on test MSE, Levenberg-Marquardt training algorithm and 16 nos. of neuron at hidden layer are liable for the lowest test MSE. Interaction plot for test MSE has been shown in Figure 3.7.

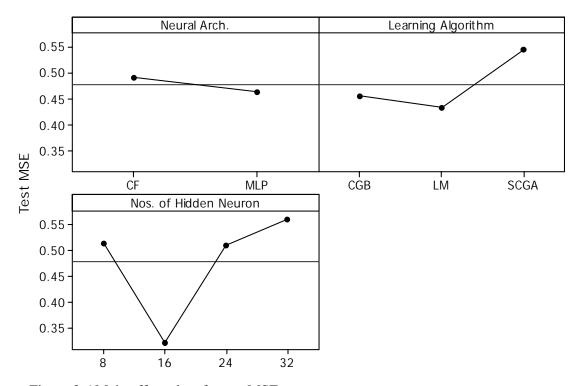


Figure 3.6 Main effect plots for test MSE

From the ANOVA for test MSE as shown in Table 3.7, it was found that all the individual parameters except neural architecture have significant effects on test MSE. All the interaction effects among the individual parameters also express significant effects towards the test MSE at a significance level of 0.05. A major 28.03 percentage of contribution effect was added to test MSE by nos. hidden neurons.

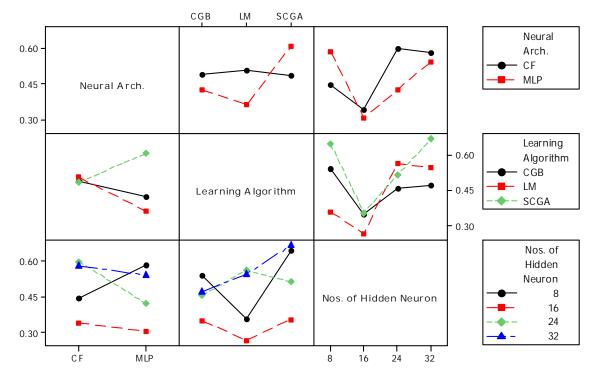


Figure 3.7 Interaction plot for test MSE

Source	DF	Seq SS	Adj MS	F	Р	% of
		•	U			contribution
Neural Arch.	1	0.01919	0.01919	2.85	0.096*	0.67
Learning Algorithm	2	0.22384	0.11192	16.64	0.000	7.80
Nos. of Hidden Neuron	3	0.80482	0.26827	39.88	0.000	28.03
Neural Arch.*Learning Algorithm	2	0.30051	0.15025	22.33	0.000	10.47
Neural Arch.*Nos. of Hidden Neuron	3	0.30211	0.10070	14.97	0.000	10.52
Learning Algorithm* Nos. of Hidden Neuron	6	0.35498	0.05916	8.79	0.000	12.36
Neural Arch.*Learning Algorithm* Nos. of Hidden Neuron	6	0.38144	0.06357	9.45	0.000	13.28
Error	72	0.48439	0.00673			16.87
Total	95	2.87128				100
* insignificant					L	

Table 3.8 Analysis of Variance for test MSE

3.5.3 Effect on training R

Main effect plot as shown in Figure 3.8 shows that MLP neural architecture, LM learning algorithm and 32 nos. of hidden neuron as input parameters produce higher R value. With increase in nos. of hidden neuron training R value also increased. Interaction effect between parameters has been shown in Figure 3.9.

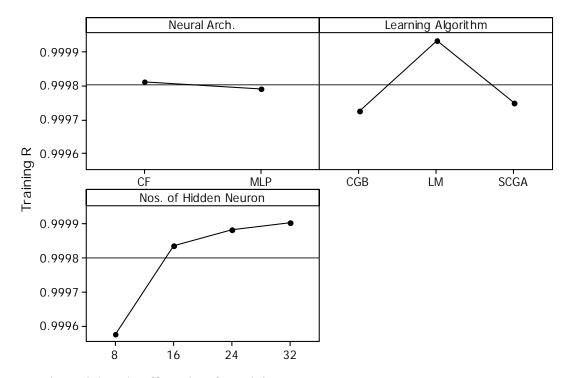


Figure 3.8 Main effect plots for training R

ANOVA for training R is shown in Table 3.8, which indicates that all input parameters with their interaction effects are significant with in a confidence interval of 95 percentages. Major contribution effect of 58.62 and 31.03 percentages were added to training R by nos. of hidden neuron and learning algorithm respectively. So it can be indisputable conclude that nos. of hidden neuron is having highest significance towards training R.

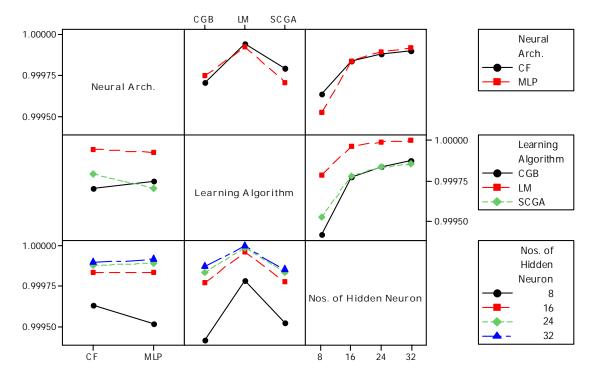


Figure 3.9 Interaction plot for training R

Source	DF	Seq SS	Adj	F	Р	% of
		_	MS			contribution
Neural Arch.	1	0.0000000	0.0000000	13.07	0.001	0.00
Learning Algorithm	2	0.0000009	0.0000004	548.75	0.000	31.03
Nos. of Hidden Neuron	3	0.0000017	0.0000006	722.05	0.000	58.62
Neural Arch.*Learning	2	0.0000001	0.0000000	40.83	0.000	3.45
Algorithm						5.10
Neural Arch.*Nos. of Hidden	3	0.0000001	0.0000000	33.86	0.000	3.45
Neuron						5.45
Learning Algorithm*	6	0.0000001	0.0000000	29.44	0.000	3.45
Nos. of Hidden Neuron						5.45
Neural Arch.*Learning	6	0.0000000	0.0000000	10.27	0.000	
Algorithm*						0.00
Nos. of Hidden Neuron						
Error	72	0.0000001	0.0000000			3.45
Total	95	0.0000029				100

3.5.4 Effect on testing R

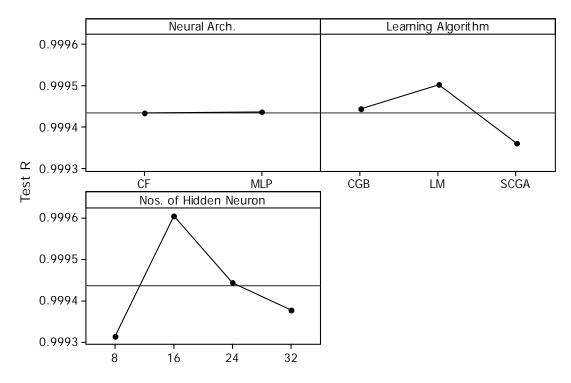


Figure 3.10 Main effect plots for test R

Main effect plot shown in Figure 3.10 signifies that neural architecture is insignificant towards test R. In the meanwhile LM algorithm and 16 nos. of hidden neuron are seems responsible for optimal test R value. Interaction effect plot for testing R is shown in Figure 3.11.

ANOVA for test R is presented in Table 3.9. A maximum contribution effect of 32.35 percentages has been added to test R by nos. of hidden neuron. Neural architecture is having a p-value of 0.872 which implies it has no significant effects on test R. All other individual parameters and their interactions are having p-value less than 0.05 hence identified as significant.

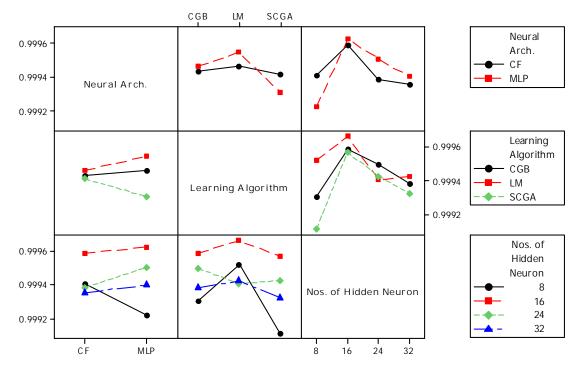


Figure 3.11 Interaction plot for test R

Source	DF	Seq SS	Adj	F	Р	% of
		-	MŠ			contribution
Neural Arch.	1	0.0000000	0.0000000	0.03	0.872*	0.00
Learning Algorithm	2	0.0000003	0.0000002	21.18	0.000	8.82
Nos. of Hidden Neuron	3	0.0000011	0.0000004	47.74	0.000	32.35
Neural Arch.*Learning	2	0.0000001	0.0000001	9.13	0.000	2.94
Algorithm						
Neural Arch.*Nos. of Hidden	3	0.0000003	0.0000001	13.70	0.000	8.82
Neuron						
Learning Algorithm*	6	0.0000004	0.0000001	9.08	0.000	11.76
Nos. of Hidden Neuron						
Neural Arch.*Learning	6	0.0000005	0.0000001	9.99	0.000	14.70
Algorithm*						
Nos. of Hidden Neuron						
Error	72	0.0000006	0.0000000			17.64
Total	95	0.0000034				100
*insignificant						

Table 3.10	Analysis	of	Variance	for	Test R
------------	----------	----	----------	-----	--------

3.6 Results and discussion from Modelling MRR and TWR of EDM Process

The best process parameter setting for ANN modelling was selected with the help of full factorial method. The chosen optimal process parameters are Levenberg-Marquardt training algorithm, 16 nos. of hidden neurons and MLP neural architecture. From Table 3.6, minimum test MSE and maximum test R value was found in the run order 6, so weights and bias matrix of this run was consider for modelling MRR and TWR. ANN modelling of MRR and TWR with the optimal process parameter setting has been shown here.

MATLAB representation of ANN topology that has been utilized for modeling is shown in Figure 3. 12. Variation of MSE of training, validation and testing data set w.r.t. the epoch has been shown in Figure 3.13. Validation data set is used to stop the training process in early stopping criteria for providing better generalization. Figure 3.13 shows that the validation error is minimum at epoch 84. So the training was stopped at this point and the weights and biases were used to model MRR and TWR. Weights and biases used for generating the ANN outputs which will be further used in the fitness function of GA based multi-objective are shown in Table 3.10. For producing the ANN output with the help of weight and bias matrix following equation has been used:

$$a^{2} = f^{2}(W^{2}f^{1}(W^{1}p + b^{1}) + b^{2})$$
 (3.5)

where a^2 is output vector of second layer, f represents the transfer function, W^1 and W^2 are the weight matrix of hidden layer and output layer respectively, p is the input vector, b^1 and b^2 are the bias vector of first layer and second layer respectively.

Correlation coefficient between target (Experimental value) and output (ANN output) of training, validation and testing is shown in Figure 3.14. Figure 3.15 and 3.16 shows the variation of MRR (desired output/target) and MRR output (ANN output) of training and testing data set w.r.t. exemplar. The variation of TWR (target) and TWR output of training and testing data set w.r.t exemplar is shown in Figure 3.17 and 3.18.

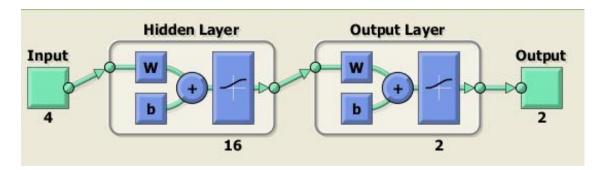


Figure 3.12 ANN network topology of selected model

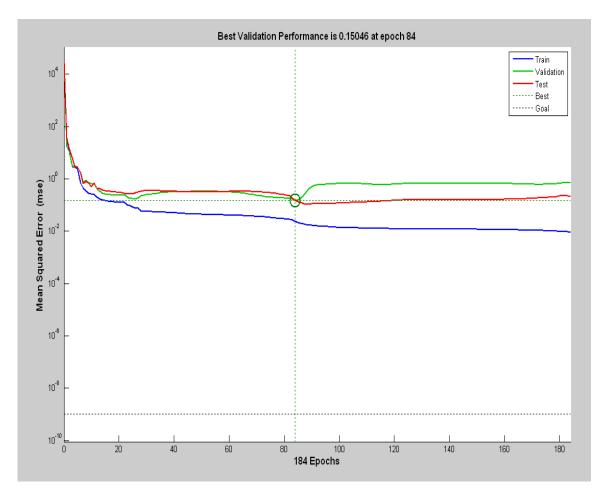
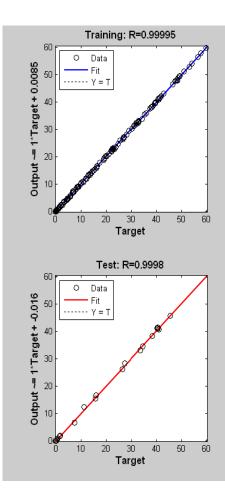



Figure 3.13 Variation of MSE w.r.t. epoch

Weights of						Biases of	
layer 1			layer 2		layer 1	layer 2	
4.99478	1.78719	-1.6273	-2.3907	-0.1876	0.0623	-7.0429	0.34845
-2.69237	-0.49197	-2.0950	-2.5831	-0.2302	-0.0436	5.8028	1.00158
4.78143	0.54090	2.9619	-3.5766	0.1198	-0.0038	-5.2055	
1.93964	-3.47921	0.0398	-0.0714	0.0009	0.8450	-1.7694	
-3.35684	-3.64755	1.3872	1.4698	0.0364	0.0135	4.5022	
-3.57710	1.35745	0.3374	-6.3451	-0.0886	-0.0015	6.1726	
-0.87752	-3.50616	-6.8249	-0.1538	-0.0229	0.0094	3.6008	
-2.49875	0.45652	-0.0019	4.7040	-1.0693	-0.0807	-0.9313	
4.35388	0.98543	3.5351	-3.2301	-0.0788	-0.0296	-2.4009	
10.43924	-0.30974	-6.4021	1.6958	0.0247	-0.0032	-0.7527	
4.73861	5.33743	-1.6415	-0.2837	-0.0134	-0.0047	-4.0357	
-6.84502	0.11444	0.8970	-1.1033	-0.0769	0.0048	4.5035	
-6.00481	0.54338	-0.1424	8.5938	0.7737	0.0339	-1.1540	
-4.19182	7.34314	2.6207	-2.1351	-0.0077	-0.0003	-3.3867	
2.76555	0.92080	2.0577	2.7333	0.1725	0.0518	-1.7058	
5.81663	-2.41776	-7.2895	2.7977	0.0277	0.0073	4.7543	

Table 3.11 Weights and biases of optimal model (LM algorithm, 16 nos. of hidden neurons and MLP neural architecture)

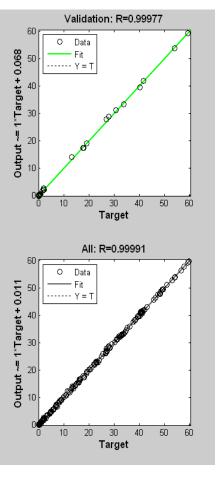
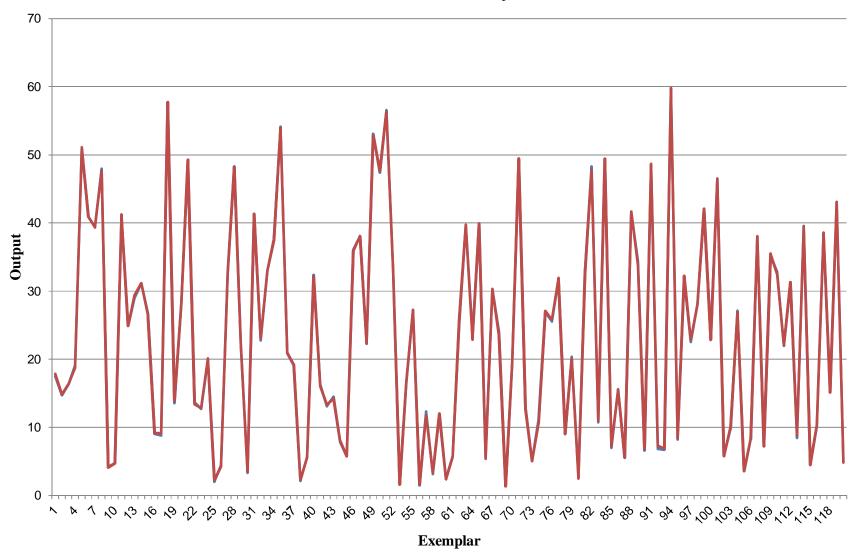



Figure 3.14 Correlation coefficients

—MRR —MRR Output

Figure 3.15 Variation of MRR and MRR output of training data w.r.t. exemplar

Page | 50

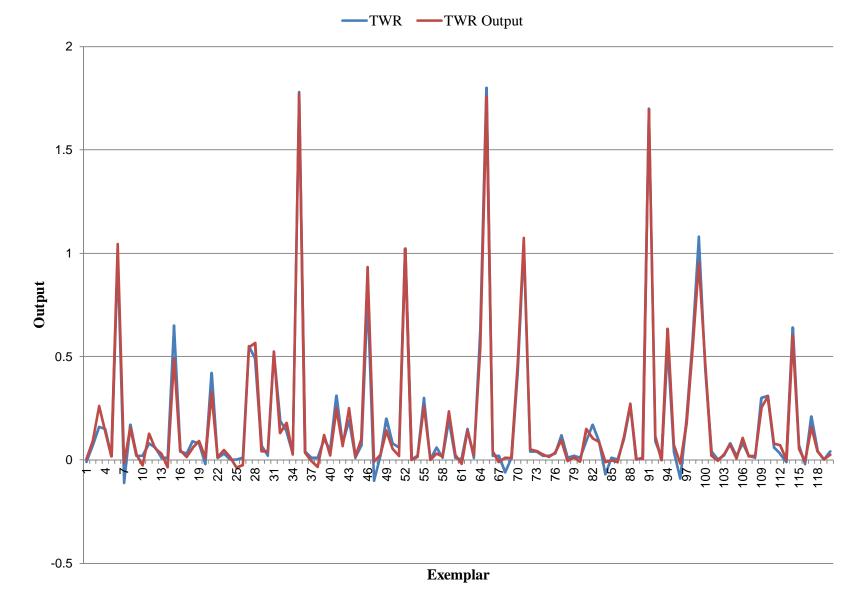


Figure 3.17 Variation of TWR and TWR output of training data set w.r.t exemplar

Page | 51

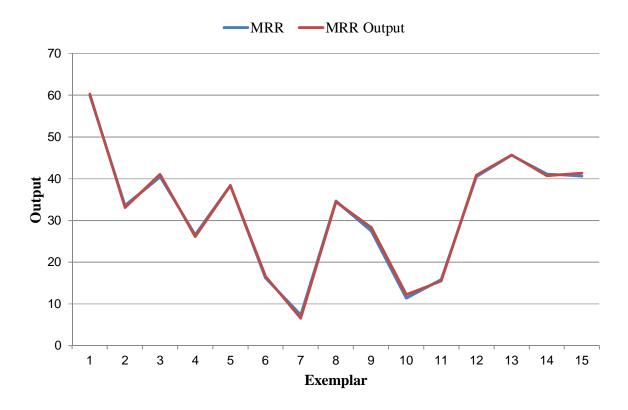


Figure 3.16 Variation of MRR and MRR output of testing data w.r.t. exemplar

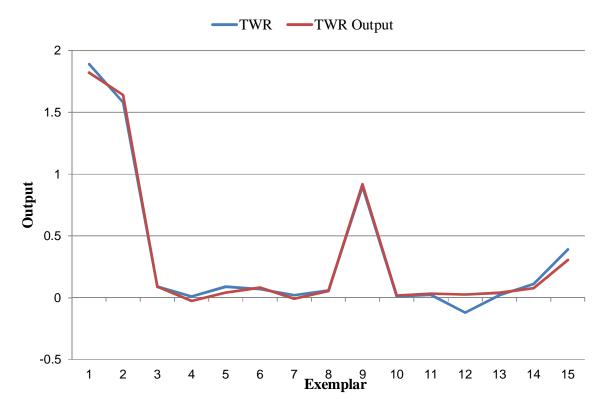


Figure 3.18 Variation of TWR and TWR output of testing data set w.r.t exemplar

3.7 Conclusions

From the main effect plots it can be concluded that for training MSE and R, 32 nos. of hidden neuron found to give better result but in case of testing MSE and R, 16 nos. of hidden neuron found to be the best. As training data set is used to fit the model and testing data set is used to evaluate the model, here main effect plot and ANOVA of testing data set was considered for evaluation of best ANN model. From ANOVA it can be conclude that nos. of hidden neuron is having highest contribution towards MSE and R, no matter whether it is for training or testing. As the neural architecture was found insignificant for test MSE and test R, the conventional MLP neural architecture was selected for modeling. From the main effect plot of test MSE and test R, Levenberg-Marquardt training algorithm and 16 nos. of hidden neurons are found to be efficient for optimal values of responses and hence selected for efficient ANN modeling and results were demonstrated.

CHAPTER 4

Multi-Objective Optimization and Comparison

The real world engineering problems are usually conflicting in nature, preventing simultaneous optimization of each objective. Here two performance parameters of EDM process have been considered. One is MRR which is preferred in higher is better manner, another one is TWR that is preferred as lower the better. These two performance parameters are highly conflicting in nature. Till date many GA based multi-objective algorithm has been developed, but among them more familiar are NSGA-II, controlled NSGA-II and SPEA2. Here an attempt has been made to optimize the two conflicting responses (MRR and TWR) of EDM process using these algorithms and to compare and evaluate the performance of these algorithms.

4.1 Multi-objective optimization

Here, three Genetic Algorithm (GA) based multi-objective algorithm have been implemented, in search of set solutions, each of which satisfies the objectives at an acceptable level without being dominated by any other solution.

For implementing these algorithms a multi-objective minimization problem with 4 parameters (decision variables) and 2 objectives were formulated as follows:

 $Minimize \mathbf{y} = f(\mathbf{x}) = (f_1(\mathbf{x}), f_2(\mathbf{x}))$ (4.1)

Subjected

4≤Ip≤16 100≤Ton≤500 45≤Tau≤65 40≤V≤60

Where $\mathbf{x} = (Ip, Ton, Tau, V)$ and $\mathbf{y} = (y1, y2)$.

The multi-objective function $\mathbf{y}=f(\mathbf{x})$ formed by the ANN model equation is to be minimized but the individual objective MRR is to be maximized and TWR is to be minimized. So the individual objective MRR was suitably modified. After modification the individual objective function are represented below as:

$$f_1(\mathbf{x}) = \frac{1}{1 + MRR}$$
 (4.2)

$$f_2(\mathbf{x}) = TWR \tag{4.3}$$

4.1.1 Multi-Objective Optimization using NSGA-II

In this algorithm, initially a random initial population P_t of size N is created and for this generation, the population is sorted based on non-dominance. Then, the binary tournament selection, reproduction, crossover and mutation operations are performed to create child population Q_t of size N. After the initial generation the procedure changes to preserve the elitism.

In the subsequent generations, the first step is to combine the child and parent population. This summed up the total population size to 2N. The combined population R_t (= P_t + Q_t) is sorted on the basis of non-dominance, which generates number of non-dominated solution fronts. Then, based on crowded comparison criteria, a new parent population P_{t+1} of size N is formed [29]. If any one of the termination criteria met at this stage, then the process is terminated, otherwise it continues through the steps as shown in Figure 4.1 until the final state of non-dominated set of solutions are achieved. This algorithm was implemented in MATLAB code with the functions and parameters setting tabulated in Table 4.1.

Types of operation and parameter	Functions or parameters value used
Population	
a. size	60
b. creation function	Feasible population
Selection	Tournament
Reproduction	
a. crossover fraction	0.8
Cross over	
a. crossover function	Intermediate
b. crossover ratio	1.0
Mutation	Adaptive feasible
Distance measure function	Distance crowding
Stopping criteria	
a. generation	800
b. stall generation	100
c. functional tolerance	1x10 ⁻⁶

Table 4.1 Process parameter and functional setting of NSGA-II algorithm

4.1.2 Multi-Objective Optimization using Controlled NSGA-II

In this algorithm an attempt has been made to form the new parent population P_{t+1} of size N by adding solutions in a predefined distribution manner from each front [30]. The details about controlled NSGA-II algorithm is shown in Figure 4.2 in the form of a flow chart. All the functions and parameters setting are same as shown in Table 4.1, except Pareto-front population fraction (defines the distribution of fit population down to the specified fraction in order to maintain the diversity) and population size which were set to 0.35 and 171.

4.1.3 Multi-Objective Optimization using SPEA2

SPEA2 algorithm has been presented in the form of flow chart in Figure 4.3. In SPEA2 algorithm for every generation an external set (or external archive) is used to store the newly formed parent population and the size of the external archive may be different from the initial population size. The raw fitness assignment of an individual in SPEA2 is decided by strength of its dominators (in both archive and population) and density (based on kth nearest neighbor method). The diversity among the solutions is maintained in this algorithm by density

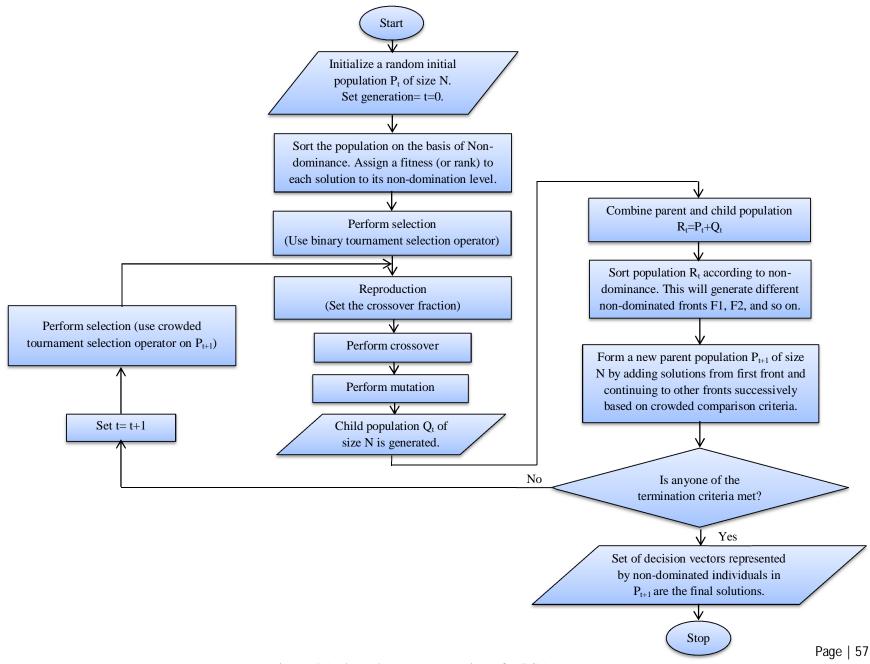
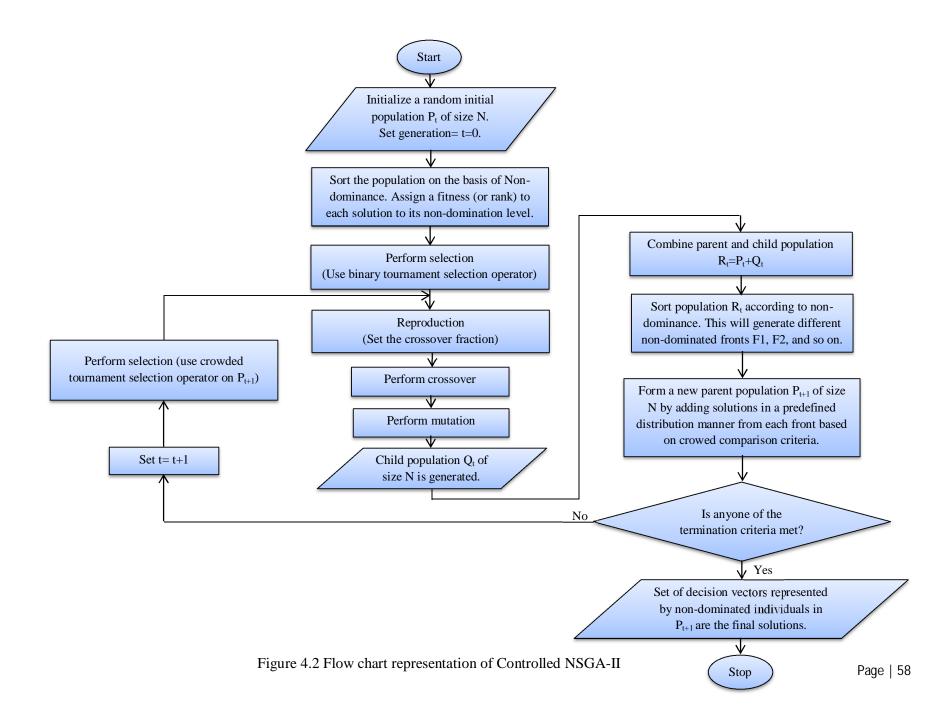



Figure 4.1 Flow chart representation of NSGA-II

estimation (based on kth nearest neighbor method) [31]. For implementing this algorithm, a MATLAB code was used with initial population size and archive size of 60. Parameters and functions used for reproduction, crossover and mutation were set as shown in Table 4.1.

4.1.4 Comparison among algorithms

In NSGA-II a new parent population is formed by adding solutions from first front and continuing to other fronts successively based on crowded comparison criteria till the population size exceed N. In this process for a particular generation, most of the decision vectors from combined population (R_t) lie on the non-dominated front of rank one. So almost all individual of the other front will be deleted to preserve elitism. In this way NSGA-II ensure diversity along the current non-dominated front. But this leads to loss of lateral diversity resulting slowdown of search and poor convergence. To avoid this NSGA-II was slightly modified in the step of formation of a new parent population by adding solutions in a predefined distribution manner from each front.

If a comparison will be made between NSGA-II and SPEA2 then following outline of comparison will come out. In case of NSGA-II and controlled NSGA-II, no external archived is used, but the external set of SPEA2 can be compared with the parent population of NSGA-II and controlled NSGA-II. In NSGA-II fitness assignment is performed on the basis of non-dominance and density estimation based on crowding comparison approach. The diversity among population members of NSGA-II is preserved by crowded comparison criteria.

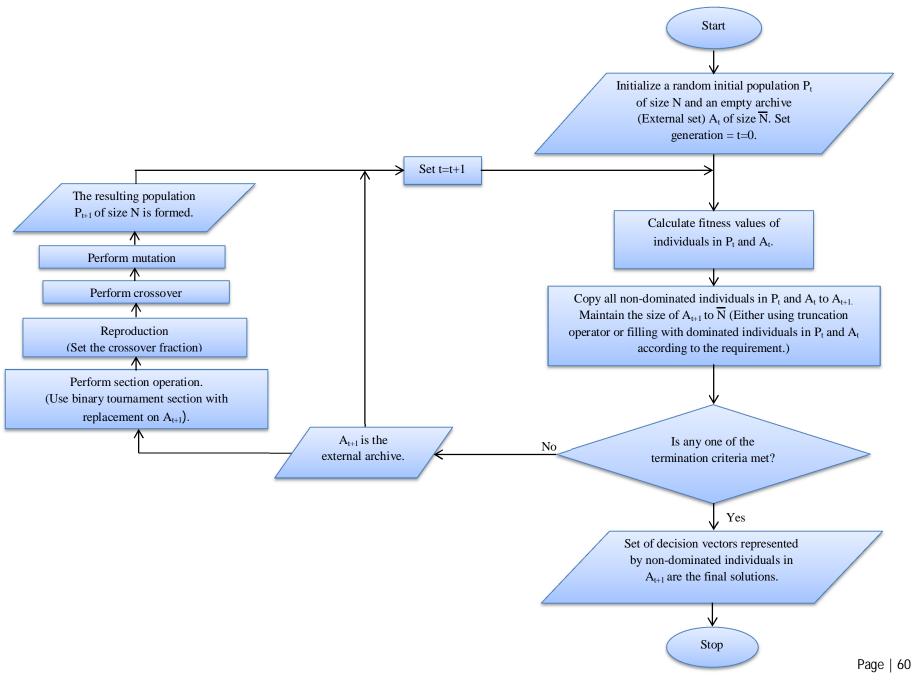


Figure 4.3 Flow chart representation of SPEA2 algorithm

4.2 Comparison

The solutions obtained from different algorithms in the form of Pareto-optimal fronts have been compared on the basis of diversity along the fronts and domination of solutions of one algorithm over others.

4.2.1. Diversity along the fronts

The diversity is defined by two parameters viz. the optimal length of the Pareto-optimal front and the pattern of distribution of solutions along the front. In a Pareto-optimal front, for each individual i the difference between solutions value (distances in objective space) to all individual j was calculated and was represented by

$$d_{ij} = \sqrt{(y_i - y_j)^2 + (x_i - x_j)^2}$$
(4.4)

Where *i* and j=1, 2, 3...n and n=total nos. of solutions in that Pareto-optimal front,

 $(x_i, y_i), (x_j, y_j)$ are the simultaneous optimal set of solutions. The d_{ij} values for each Paretooptimal front were normalized to a common scaling range of 0-1, using min-max data normalization technique. The superiority can be decided by the maximum length factor (max (d_{ij})) which is obtained from each algorithm.

However, only the maximum length factor should not be used for evaluating the superiority of a Pareto-optimal front in terms of diversity because little can be revealed about the pattern of distribution of solutions from the length factor. For investigating about the pattern of distribution of solutions, a term C_{nm} is introduced. The better distribution of solutions were analyzed in both quantitative and qualitative languages. For qualitative analysis, the histogram plots for corresponds to distance between two consecutive points/solutions c_{nm} values of Pareto-optimal front of different algorithms were studied. Where n is any point and m=n+1= 2, 3, 4... N and N=total nos. of solution in a Pareto-

optimal front. Pareto-optimal responses are scaled to individual normalization range of 0-1. The mean value of c_{nm} for each Pareto-optimal front will be another deciding factor for the superiority selection. As, Pareto-optimal solutions of each algorithm has been scaled in the range of 0-1, for better distribution of solutions along each front the average c_{nm} value should approach to 0.016949153 (=((max $(d_{ij}) - \min (d_{ij})) /(N-1)))$), which can be coined as standard mean. So absolute deviations from standard mean (A_{sd}) was also consider to be another decision making factor for better distribution of solutions along a front. In overall, it can be said that c_{nm} and A_{sd} were castoff for investigating quantitative study about uniform distribution of solution along Pareto-optimal front.

4.2.2. Domination of solutions

The domination of non-dominated solutions of one algorithm over another is certainly an important factor while deciding the superiority of a Pareto-optimal front.

4.3 Results and discussion

4.3.1 Multi-objective optimization

Multi-objective optimization using NSGA-II

Pareto-optimal decision vectors are tabulated in Table 4.2 and plotted as Pareto-optimal front, which are shown in Figure 4.4. MRR and TWR in Table 4.2 are the neural network predicted values for corresponding process parameter setting. The solutions denoted by region AB and CD are responsible for higher MRR with comparison to corresponding TWR. However, the solutions in the region EF are relatively having higher TWR without much increase in MRR.

C	La	$\mathbf{T}_{a} \mathbf{r}_{a} (\mathbf{u}_{a})$	$T_{av}(0/)$	V		
S. No.	Ip (A)	Ton (µs)	Tau (%)	v (volt)	MRR (mm ³)	TWR (mm ³)
140.	(A)			(voit)	$\left(\frac{min}{min}\right)$	$\left(\frac{min}{min}\right)$
1	15.9	497.1	56.3	59.9	41.02	-0.11858
2	16.0	496.0	64.1	41.8	55.33	-0.04952
3	16.0	401.4	64.9	40.3	58.33	0.10790
4	5.4	311.9	57.1	40.6	10.33	-0.12796
5	4.0	309.7	57.8	40.2	5.15	-0.13958
6	15.6	497.2	55.1	59.8	39.10	-0.12210
7	15.7	496.1	63.3	44.2	52.18	-0.06314
8	15.9	496.6	59.6	58.7	43.85	-0.10672
9	16.0	491.9	65.0	41.1	56.47	-0.03977
10	15.4	498.4	54.6	59.9	38.04	-0.12431
11	4.9	312.2	57.8	41.1	8.46	-0.13228
12	15.5	494.9	61.1	56.1	44.74	-0.09685
13	15.9	497.1	56.6	59.8	41.48	-0.11740
14	15.9	497.1	59.3	53.9	45.84	-0.09650
15	16.0	350.6	65.0	40.2	59.15	0.24112
16	15.8	493.2	63.2	44.6	52.79	-0.05916
17	15.9	496.9	61.5	50.5	49.04	-0.08085
18	15.9	432.0	64.9	40.2	57.73	0.04460
19	15.9	497.1	59.5	52.8	46.54	-0.09302
20	15.9	495.7	60.5	43.7	51.61	-0.06704
21	16.0	463.0	64.9	40.2	57.35	-0.00409
22	16.0	376.4	65.0	40.4	58.71	0.16895
23	15.9	495.7	59.3	48.9	48.25	-0.08287
24	16.0	406.4	64.8	40.2	58.15	0.09615
25	16.0	385.1	64.9	40.2	58.58	0.14644
26	15.9	495.9	60.3	48.4	49.11	-0.07946
27	16.0	428.8	65.0	40.2	57.99	0.05204
28	16.0	491.4	64.2	41.0	55.94	-0.04289
29	15.8	498.2	55.6	59.9	40.23	-0.12090
30	16.0	393.2	64.9	40.2	58.50	0.12723
31	16.0	496.6	62.0	41.9	53.62	-0.05900
32	15.9	461.7	64.7	40.2	57.01	-0.00448
33	16.0	362.1	64.9	40.3	58.88	0.20723
34	15.7	494.4	62.6	47.5	50.64	-0.06984
35	4.3	310.9	57.0	40.8	6.19	-0.13703
36	15.8	494.7	59.8	57.6	44.46	-0.10210
37	15.9	496.8	57.9	59.1	42.48	-0.11304
38	14.8	498.4	51.9	60.0	33.69	-0.12599
39	16.0	416.4	65.0	40.2	58.15	0.07615
40	16.0	446.9	65.0	40.2	57.67	0.02040

Table 4.2 Optimal set of parameters obtained using NAGA-II

4.2	309.2	57.0	40.7	5.59	-0.13826
16.0	489.4	62.0	41.6	54.04	-0.05092
16.0	356.5	64.9	40.2	58.99	0.22318
15.0	497.1	55.3	60.0	37.01	-0.12448
4.7	310.5	57.1	40.7	7.49	-0.13505
5.2	310.2	57.7	40.3	9.69	-0.13038
14.8	498.4	51.9	60.0	33.69	-0.12599
5.2	310.0	57.1	40.7	9.43	-0.13045
4.6	310.6	57.3	40.5	7.09	-0.13609
15.8	497.4	54.7	60.0	39.66	-0.12154
15.9	494.6	62.1	50.1	49.78	-0.07556
15.9	495.1	62.1	53.7	47.91	-0.08441
15.4	497.3	55.0	59.9	38.35	-0.12336
14.9	497.5	54.2	60.0	35.98	-0.12572
16.0	416.4	64.8	40.2	58.10	0.07592
16.0	348.8	65.0	40.3	59.17	0.24692
16.0	490.5	64.9	40.3	56.92	-0.03670
14.9	496.9	53.3	60.0	35.09	-0.12596
5.7	312.6	57.1	40.1	11.19	-0.12608
16.0	372.2	65.0	40.3	58.82	0.18013
	16.0 16.0 15.0 4.7 5.2 14.8 5.2 4.6 15.8 15.9 15.4 14.9 16.0 16.0 16.0 16.0 5.7	16.0489.416.0356.515.0497.14.7310.55.2310.214.8498.45.2310.04.6310.615.8497.415.9494.615.9495.115.4497.314.9497.516.0416.416.0348.816.0490.514.9496.95.7312.6	16.0 489.4 62.0 16.0 356.5 64.9 15.0 497.1 55.3 4.7 310.5 57.1 5.2 310.2 57.7 14.8 498.4 51.9 5.2 310.0 57.1 4.6 310.6 57.3 15.8 497.4 54.7 15.9 494.6 62.1 15.9 495.1 62.1 15.9 497.5 54.2 16.0 416.4 64.8 16.0 348.8 65.0 16.0 490.5 64.9 14.9 496.9 53.3 5.7 312.6 57.1	16.0 489.4 62.0 41.6 16.0 356.5 64.9 40.2 15.0 497.1 55.3 60.0 4.7 310.5 57.1 40.7 5.2 310.2 57.7 40.3 14.8 498.4 51.9 60.0 5.2 310.0 57.1 40.7 4.6 310.6 57.3 40.5 15.8 497.4 54.7 60.0 15.9 494.6 62.1 50.1 15.9 495.1 62.1 53.7 15.4 497.3 55.0 59.9 14.9 497.5 54.2 60.0 16.0 416.4 64.8 40.2 16.0 348.8 65.0 40.3 14.9 496.9 53.3 60.0 5.7 312.6 57.1 40.1	16.0 489.4 62.0 41.6 54.04 16.0 356.5 64.9 40.2 58.99 15.0 497.1 55.3 60.0 37.01 4.7 310.5 57.1 40.7 7.49 5.2 310.2 57.7 40.3 9.69 14.8 498.4 51.9 60.0 33.69 5.2 310.0 57.1 40.7 9.43 4.6 310.6 57.3 40.5 7.09 15.8 497.4 54.7 60.0 39.66 15.9 494.6 62.1 50.1 49.78 15.9 495.1 62.1 53.7 47.91 15.4 497.3 55.0 59.9 38.35 14.9 497.5 54.2 60.0 35.98 16.0 416.4 64.8 40.2 58.10 16.0 348.8 65.0 40.3 59.17 16.0 490.5 64.9 40.3 56.92 14.9 496.9 53.3 60.0 35.09 5.7 312.6 57.1 40.1 11.19

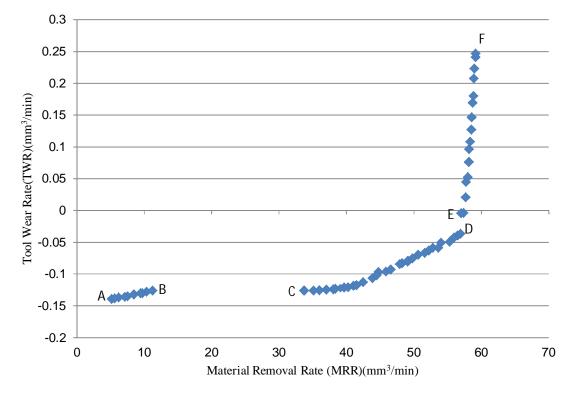


Figure 4.4 Pareto-optimal front obtained from NSGA-II

Multi-Objective Optimization using Controlled NSGA-II

A set of Pareto-optimal solutions obtained using controlled NSGA-II is shown in Figure 4.5 in the form of Pareto-optimal front and the same are tabulated in Table 4.3. Here also the effect of various regions AB, CD and EF of Pareto-optimal front have approximately same effect on the optimal responses MRR and TWR as in NSGA-II. But in NSGA-II the maximum value of TWR that can be achieved with its optimal process parameter setting was up to 0.241 (mm³/min) meanwhile in controlled NSGA-II it was extended up to 1.343 (mm³/min). This indicates that controlled NSGA-II expanded the band of optimal process parameter setting.

S. No.	Ip	Ton	Tau	V	MRR	TWR
	(A)	(µs)	(%)	(volt)	$\left(\frac{mm^3}{mm^3}\right)$	$\left(\frac{mm^3}{mm^3}\right)$
1	5.8	331.0	59.9	40.2	(_{min}) 11.87	-0.12389
2	15.9	489.9	62.8	41.9	54.23	-0.05032
3	15.9	473.7	64.4	42.3	55.33	-0.02756
4	4.9	312.9	59.8	40.2	8.37	-0.13235
5	5.8	331.0	59.9	40.2	11.87	-0.12389
6	16.0	331.7	65.0	40.1	59.50	0.30093
7	16.0	124.9	65.0	40.0	61.28	1.26833
8	16.0	213.3	65.0	40.0	60.73	0.78189
9	16.0	426.5	65.0	40.2	58.06	0.05674
10	16.0	349.8	65.0	40.2	59.21	0.24432
11	16.0	193.3	65.0	40.1	60.82	0.88173
12	16.0	479.1	64.9	40.5	56.95	-0.02517
13	15.6	490.9	62.0	43.1	51.65	-0.06224
14	16.0	378.3	65.0	40.2	58.81	0.16509
15	15.1	489.4	58.7	55.4	41.87	-0.10343
16	14.7	492.1	57.3	57.9	38.34	-0.11537
17	4.2	303.3	59.4	40.2	6.05	-0.13858
18	15.4	491.8	57.5	57.7	41.18	-0.11068
19	16.0	112.8	65.0	40.0	61.34	1.34351
20	16.0	233.2	65.0	40.2	60.49	0.68635
21	15.5	491.5	61.0	44.8	49.51	-0.07187
22	16.0	154.0	65.0	40.0	61.12	1.09608
23	5.5	325.2	59.4	40.2	10.61	-0.12732
24	14.5	491.5	54.6	59.3	35.04	-0.12239

Table 4.3 Optimal sets of parameters obtained using Controlled NAGA-II

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.08 5.77 1.28 1.34 4.69 9.68 5.31 9.00 7.99 6.94 9.67 9.31 3.36	-0.06225 -0.09199 1.26835 1.34354 -0.09803 -0.11405 -0.02766 0.19402 -0.13380 -0.08391 0.37760 -0.12941
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1.28 1.34 4.69 9.68 5.31 9.00 7.99 6.94 9.67 9.31 3.36	1.26835 1.34354 -0.09803 -0.11405 -0.02766 0.19402 -0.13380 -0.08391 0.37760 -0.12941
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1.34 4.69 9.68 5.31 9.00 7.99 6.94 9.67 9.31 3.36	1.34354 -0.09803 -0.11405 -0.02766 0.19402 -0.13380 -0.08391 0.37760 -0.12941
29 15.8 491.2 60.2 57.2 44 30 15.4 489.8 55.7 58.2 38 31 15.9 473.7 64.4 42.3 58 32 16.0 367.5 65.0 40.2 58 33 4.8 307.7 59.6 40.2 58 34 15.5 490.4 60.6 50.7 46 35 16.0 308.8 65.0 40.3 58 36 5.2 323.5 59.9 40.2 59 37 15.6 486.8 58.1 55.5 43	4.69 9.68 5.31 9.00 7.99 6.94 9.67 9.31 3.36	-0.09803 -0.11405 -0.02766 0.19402 -0.13380 -0.08391 0.37760 -0.12941
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	9.68 5.31 9.00 7.99 6.94 9.67 9.31 3.36	-0.11405 -0.02766 0.19402 -0.13380 -0.08391 0.37760 -0.12941
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	5.31 9.00 7.99 6.94 9.67 9.31 3.36	-0.02766 0.19402 -0.13380 -0.08391 0.37760 -0.12941
32 16.0 367.5 65.0 40.2 59 33 4.8 307.7 59.6 40.2 59 34 15.5 490.4 60.6 50.7 40 35 16.0 308.8 65.0 40.3 59 36 5.2 323.5 59.9 40.2 59 37 15.6 486.8 58.1 55.5 43	9.00 7.99 6.94 9.67 9.31 3.36	0.19402 -0.13380 -0.08391 0.37760 -0.12941
33 4.8 307.7 59.6 40.2 3000000000000000000000000000000000000	7.99 6.94 9.67 9.31 3.36	-0.13380 -0.08391 0.37760 -0.12941
34 15.5 490.4 60.6 50.7 40 35 16.0 308.8 65.0 40.3 59 36 5.2 323.5 59.9 40.2 9 37 15.6 486.8 58.1 55.5 43	6.94 9.67 9.31 3.36	-0.08391 0.37760 -0.12941
35 16.0 308.8 65.0 40.3 59 36 5.2 323.5 59.9 40.2 9 37 15.6 486.8 58.1 55.5 43	9.67 9.31 3.36	0.37760 -0.12941
36 5.2 323.5 59.9 40.2 9 37 15.6 486.8 58.1 55.5 43	9.31 3.36	-0.12941
37 15.6 486.8 58.1 55.5 43	3.36	
38 15.6 489.2 63.7 43.3 52		-0.09874
	2.61	-0.05532
39 15.9 488.9 57.5 56.9 43	3.31	-0.10230
40 16.0 184.5 64.9 40.1 60	0.88	0.92792
41 16.0 294.1 65.0 40.1 59	9.95	0.43256
42 16.0 404.6 65.0 40.2 58	8.44	0.10215
43 16.0 282.1 65.0 40.1 66	0.08	0.47841
44 15.3 490.8 59.9 44.2 48	8.24	-0.07554
45 16.0 164.4 65.0 40.0 6	1.08	1.03764
46 16.0 174.7 65.0 40.0 6	1.00	0.98075
47 16.0 203.1 65.0 40.1 66	0.79	0.83217
48 16.0 218.3 65.0 40.1 60	0.65	0.75711
49 16.0 249.3 65.0 40.1 60	0.41	0.61503
50 16.0 442.1 64.9 40.3 57	7.60	0.02726
51 16.0 320.8 65.0 40.1 59	9.61	0.33695
52 16.0 151.1 65.0 40.1 6	1.13	1.11252
53 14.4 492.5 53.4 59.6 33	3.85	-0.12389
54 16.0 450.2 64.9 40.6 57	7.36	0.01373
55 14.9 492.2 54.7 58.9 30	6.92	-0.12080
56 16.0 134.6 65.0 40.0 6	1.22	1.20951
57 15.0 492.4 58.5 58.3 39	9.79	-0.11271
	1.20	1.15693
59 16.0 134.6 65.0 40.0 6	1.21	1.20935
	8.34	-0.11536

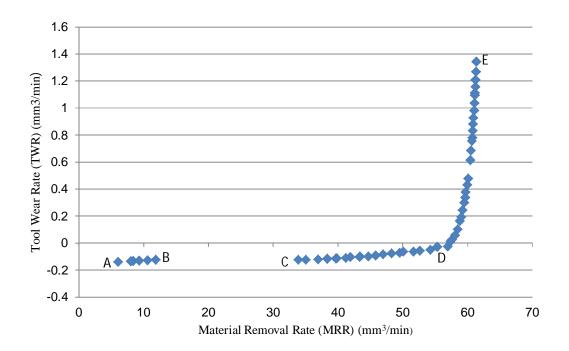


Figure 4.5 Pareto-optimal front obtained from Controlled NSGA-II

Multi-Objective Optimization using SPEA2

Final non-dominated set of solutions are tabulated in Table 4.4 and has been represented in the form of graph in Figure 4.6. The non-dominated decision vectors of region AB and CD of the Pareto-optimal front of SPEA2 algorithm will generate more MRR as compared to respective TWR. And final non-dominated solutions corresponding to region DE will act in the reverse manner as that of region AB and CD.

S. No. Tau V MRR TWR Ip Ton ′mm³ (A) (volt) mm^3 (μs) (%) min min 1 16.0 498.8 64.9 40.2 56.88 -0.04415 2 16.0 499.9 61.9 40.8 54.30 -0.05853 3 472.2 57.30 -0.01585 16.0 64.8 40.0 4 5.2 319.8 59.2 40.0 9.42 -0.13073 5 16.0 500.0 61.3 58.6 45.50 -0.10107 6 4.3 293.9 57.8 40.0 6.52 -0.13949 7 16.0 500.0 58.9 59.8 43.30 -0.11300 8 322.8 5.7 58.1 40.0 11.21 -0.12705 9 -0.12669 15.2 500.0 53.3 60.0 36.10

Table 4.4 Optimal sets of parameters obtained using SPEA2

S. No.	Ip	Ton	Tau	V	MRR	TWR
	(A)	(µs)	(%)	(volt)	$\binom{mm^3}{2}$	$\binom{mm^3}{mm^3}$
10		•		<u>`</u>	$\left(\frac{1}{min}\right)$	$\left(\frac{1}{min}\right)$
10	15.0	500.0	53.0	60.0	35.47	-0.12687
	15.0	500.0	54.6	60.0	36.53	-0.12623
12	16.0	500.0	56.7	59.9	41.63	-0.11908
13	14.9	500.0	52.9	60.0	34.93	-0.12692
14	15.9	500.0	61.1	55.9	46.41	-0.09635
15	4.5	297.6	58.9	40.0	7.12	-0.13723
16	16.0	500.0	65.0	41.4	56.28	-0.04745
17	16.0	500.0	60.6	54.5	46.93	-0.09451
18	16.0	319.9	65.0	40.1	59.68	0.34041
19	16.0	100.3	65.0	40.0	61.40	1.42315
20	16.0	417.8	64.9	40.1	58.25	0.07438
21	16.0	500.0	60.6	52.0	48.08	-0.08866
22	16.0	500.0	57.7	58.7	42.87	-0.11378
23	16.0	499.0	61.1	50.1	49.31	-0.08191
24	15.2	500.0	54.3	59.9	36.99	-0.12606
25	16.0	355.7	65.0	40.1	59.23	0.22767
26	16.0	500.0	61.1	59.7	44.92	-0.10451
27	16.0	293.1	65.0	40.0	60.03	0.43685
28	16.0	500.0	55.4	60.0	40.49	-0.12175
29	16.0	500.0	61.4	57.8	45.96	-0.09894
30	5.0	298.2	57.8	40.0	8.84	-0.13241
31	16.0	187.8	64.9	40.0	60.90	0.91101
32	16.0	498.2	61.0	40.4	53.70	-0.05931
33	15.5	500.0	54.1	60.0	37.81	-0.12554
34	16.0	500.0	60.4	59.8	44.33	-0.10759
35	15.6	500.0	54.4	59.9	38.55	-0.12461
36	4.7	314.3	57.3	40.5	7.70	-0.13455
37	16.0	500.0	60.5	50.3	48.77	-0.08516
38	4.2	289.2	56.8	40.1	6.00	-0.14077
39	16.0	499.8	60.5	46.5	50.56	-0.07588
40	16.0	499.2	62.0	50.1	49.98	-0.07856
41	16.0	500.0	55.9	59.9	41.10	-0.12046
42	15.6	500.0	55.6	59.9	39.46	-0.12323
43	5.5	307.7	58.0	40.1	10.65	-0.12731
44	16.0	500.0	63.3	46.6	52.57	-0.06598
45	16.0	500.0	62.6	48.7	51.13	-0.07330
46	16.0	399.2	65.0	40.0	58.64	0.11501
47	16.0	500.0	60.3	52.7	47.54	-0.09127
48	4.0	288.8	57.5	40.0	5.38	-0.14282
49	16.0	500.0	59.4	59.6	43.81	-0.11068
50	16.0	249.4	65.0	40.0	60.46	0.61477
51	16.0	500.0	63.1	41.5	54.87	-0.05589

S. No.	Ip	Ton	Tau	V	MRR	TWR
	(A)	(µs)	(%)	(volt)	$\left(\frac{mm^3}{min}\right)$	$\left(\frac{mm^3}{min}\right)$
52	4.9	309.9	57.1	40.0	8.29	-0.13446
53	16.0	430.7	64.5	40.1	57.74	0.04724
54	16.0	499.8	63.2	40.8	55.23	-0.05411
55	5.3	311.8	58.6	40.0	10.00	-0.12970
56	16.0	499.9	62.5	46.8	51.94	-0.06953
57	16.0	500.0	54.7	60.0	40.10	-0.12232
58	16.0	500.0	62.6	44.4	53.11	-0.06419
59	16.0	500.0	57.6	60.0	42.34	-0.11702
60	16.0	499.9	63.5	40.7	55.58	-0.05232

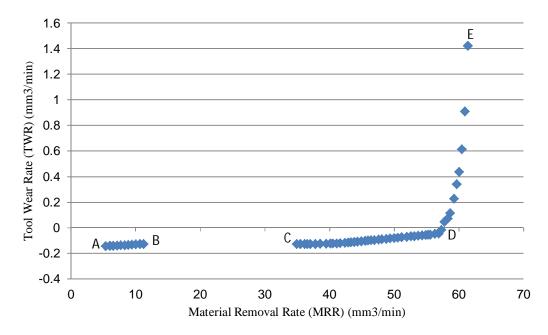


Figure 4.6 Pareto-optimal front obtained from SPEA2

4.3.2 Comparison

Pareto-optimal front obtained from these three algorithms have been shown in Figure 4.7 for comparison purpose.

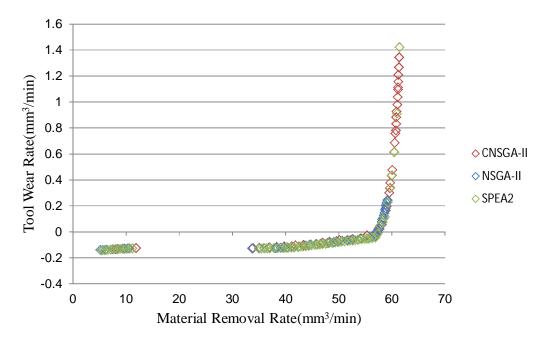


Figure 4.7 Pareto-optimal fronts of different Algorithms

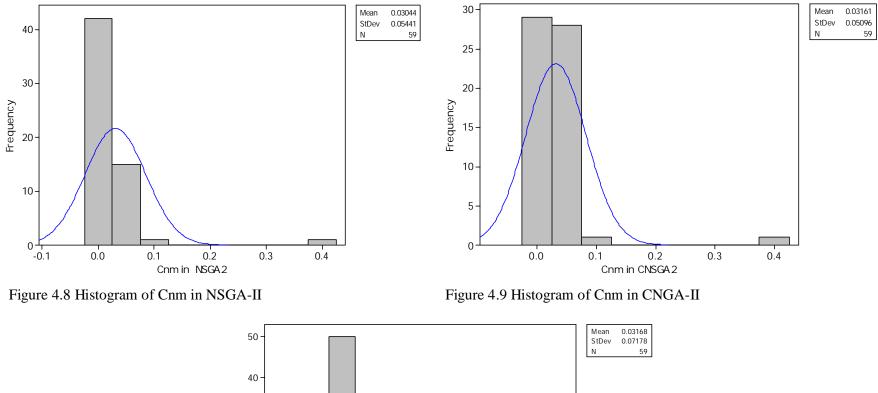
Diversity along the fronts:

The maximum length factor (for all *i* belongs to1, 2, 3..., n) has been tabulated in Table 4.5.

Table 4.5 Maximum length factor values

Optimization Algorithm	maximum length factor, $(max(d_{ij}))$ value	
NSGA-II		0.9915
CNSGA-II		1.3645
SPEA2		1.4113

From Table 4.5, it can be conclude that Pareto-optimal front obtained from SPEA2 is having maximum length factor as compared to other two, and front obtained from NSGA-II is having lowest span length.


A qualitative analysis on distribution of solutions along the Pareto optimal front can be performed using histogram plot of normalized c_{nm} values of different algorithms as shown in Figure 4.8-4.10. The c_{nm} for NSGA-II is having an exponential distribution with an outiler $(c_{nm} = 0.4)$ on the extreme right side of Fig. 4.8. The same for CNSGA-II is having a uniform distribution between 0.0 to 0.1 and with an outlier at 0.4 (Figure 4.9). The distribution for SPEA2 is having exponential nature as shown in Figure 4.10; with three solutions are having much higher c_{nm} values in comparison with the rest of distribution. The histogram plots do not reveal any quantitative analysis, so for better understanding of the distributions, the quantitative analysis has been followed up next. The normalized mean distances between two consecutive points/solutions (c_{nm}) and absolute deviations from standard mean in the Pareto-optimal front of different algorithms have been tabulated below in Table 4.6.

The lower average value of c_{nm} and A_{sd} indicates better distribution of solutions along the front. The normalized average value of $c_{nm \text{ and}}A_{sd}$ in Table 4.6 indicates that the solutions of Pareto-optimal front obtained from NSGA-II are distributed in a better manner as compared to the solutions of the other two algorithms. Pareto-optimal front obtained from SPEA2 is having poor distribution of solution along the front.

Domination of solutions:

The domination of non-dominated solutions of one algorithm over another has been shown in Table 4.7 in a comparative manner. It shows that non-dominated solution set achieved by NSGA –II dominates about 53% and 5% of the non-dominated solutions found by CNSGA-II and SPEA2, respectively. CNSGA-II dominates about 13% of the non-dominated solutions of Pareto-optimal front obtained from NSGA-II. the SPEA2 Pareto-optimal front dominates on an average 85% and 100% of the solutions of NSGA-II and CNSGA-II, respectively.

The SPEA2 algorithm is generating a superior optimal set of solutions based on the domination of solutions and the length of the Pareto-optimal front.

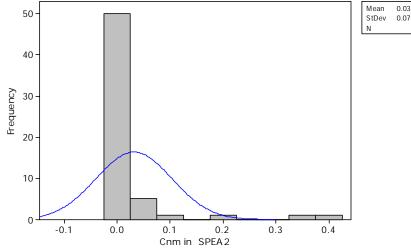


Figure 4.10 Histogram of Cnm in SPEA2

Optimization	Mean normalized C_{nm} value	Absolute deviations from	
Algorithm		standard mean (A_{sd})	
NSGA-II	0.030438	0.013489	
CNSGA-II	0.031606	0.014657	
SPEA2	0.031679	0.01473	

Table 4.7 Domination of percentage of solutions

Algorithm	dominates "non-dominated solutions" found by				
	NSGA-II with a	NSGA-II with a CNSGA-II with a S			
	percentage of	percentage of	percentage of		
NSGA-II		53%	5%		
CNSGA-II	13%		0%		
SPEA2	85%	100%			

4.3.3 Post-optimality analysis of Pareto-optimal solutions

The post-optimality analysis of SPEA2 Pareto-optimal front has been performed in this section. This analysis is mainly concerned with whether the optimal set of solution is affected by optimal setting of the machining parameters or not. The individual effect of optimal process parameters Ip, Ton, Tau and V on MRR has been represented in Figure 4.11. Similarly, the effects on TWR have been plotted in Figure 4.12. From Figure 4.11, it can be observed that the maximum MRR is achieved for the parameters setting Ip and Tau towards their upper bounds and the parameters Ton and V towards their lower bounds. Similarly, from Figure 4.12, it can be conclude that the optimum TWR can be achieved by the parameters setting of Ip and Tau towards their lower bounds, V towards its upper bound, and Ton in the middle of the machining range.

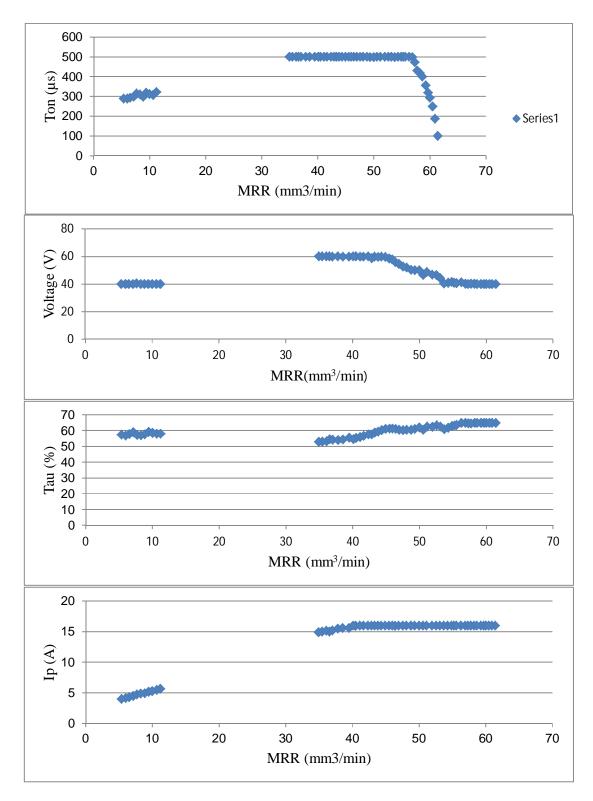


Figure 4.11 Effect of optimal process parameters on optimal MRR

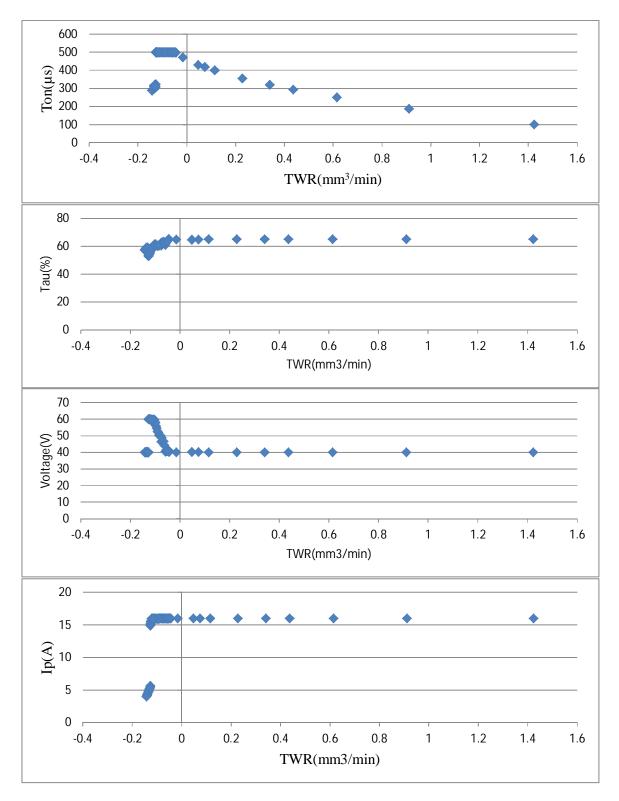


Figure 4.12 Effect of optimal process parameters on optimal TWR

4.4 Conclusions:

Three widely used MOEAs, namely, NSGA-II, CNSGA-II and SPEA2 were successfully implemented for MOO of responses MRR and TWR of EDM process. From each algorithm, the Pareto-optimal front consisting of 60 optimal set of solutions was obtained with their process parameter setting. A comparison was made between the solutions of these three algorithms to find out the best among them. The comparison was made based on two basic parameters, the diversity along the fronts in terms of maximum Pareto-optimal front span and better distribution of solutions, and the domination of solutions of one algorithm over another. SPEA2 outperformed the other two algorithms on the basis of domination of solutions. However, NSGA-II was found to be the best while consideration of better distribution of solutions. Finally, a post-optimality analysis was performed, which showed the effect of optimal process parameters on optimal responses MRR and TWR for SPEA2.

CHAPTER 5

Concluding Remarks

The primary objective of this investigation was to develop an optimal ANN modeling (as modelling save the time, effort and money) and to optimize the two contradicting responses MRR and TWR of EDM process using reliable and efficient MOEAs.

An efficient modeling of EDM response parameters MRR and TWR was successfully executed. The modelling was accomplished using MLP neural architecture with 16 hidden layer neurons, trained by Levenberg-Marquardt algorithm. The ANOVA revealed that number of hidden layer neurons has highest significance towards the performance of an ANN modeling, and followed by the learning algorithm.

Each of the three MOEAs (NSGA-II, CNSGA-II and SPEA2) has fruitfully generated a set of 60 optimal solutions. The optimal solutions generated by SPEA2 was found to be superlative compare to the same by the other two algorithms for this particular assigned task.

APPENDIX A

Levenberg-Marquardt Training/Learning Algorithm

Below an attempt has been made to give shape to Levenberg-Marquardt optimization (minimization) technique so that it can be used for training ANN (to update the weight matrix of output layer and one hidden layer respectively in batch mode of training) using cross-validation as stopping criteria (in every100 epochs):

Levenberg-Marquardt algorithm:

Step 1:

Define W_{kj}^0 and U_{ji}^0

(Here the weight matrixes are decided by random weight initialization technique.)

M = maximum number of iterations allowed

m=running iteration number

Step 2:

Set *m*=0, $\lambda^0 = 10^2$

Find $(E^m)_{Tr}$ and $(E^m)_{CV}$

Step 3:

Is *m*%100 ≤ 0?

Yes: Then set $\mu_m = (E^m)_{CV}$

Check, is $\mu_{m-99} < \mu_{m-98} < \mu_{m-97} < \mu_{m-96} \dots \dots \dots \dots < \mu_m$?

Yes: Go to step 12.

No: continue

No: continue

Step 4:

Is $m \ge M$?

Yes: Go to step 12.

No: continue

Step 5:

Calculate
$$\left(\frac{\partial E_{avg}}{\partial W_{kj}^m}\right)$$
 and $\left(\frac{\partial E_{avg}}{\partial U_{ji}^m}\right)$.

Step 6:

Calculate
$$s(W_{kj}^m) = -[H_{W_{kj}}^m + \lambda^m I_{W_{kj}}]^{-1} \left(\frac{\partial E_{avg}}{\partial W_{kj}^m}\right)$$

and $s(U_{ji}^m) = -[H_{U_{ji}}^m + \lambda^m I_{U_{ji}}]^{-1} \left(\frac{\partial E_{avg}}{\partial U_{ji}^m}\right)$

Step 7:

Set
$$W_{kj}^{m+1} = W_{kj}^m + s(W_{jk}^m)$$

and $U_{ji}^{m+1} = U_{ji}^m + s(U_{ji}^m)$

Step 8:

Find $(E^{m+1})_{Tr}$ and $(E^{m+1})_{CV}$

Step 9:

 $\mathrm{Is}(E^{m+1})_{Tr} < (E^m)_{Tr}?$

Yes: Go to step 10.

No: Go to step 11.

Step 10:

Set $\lambda^{m+1} = \frac{1}{10} \lambda^m$ and set m=m+1.Go to step 3.

Step 11:

Set $\lambda^m = \mathbf{10}\lambda^m$.Go to step 6.

Step 12:

Stop the training and print the result at the minimum of the validation set error.

Where,

weights W_{kj} are connection strengths between hidden and output layer. Weights U_{ji} are connection strengths between input and hidden layer. Where k and j indicates the neuron number of output and hidden layer respectively and i indicate input unit number.

 $(E^m)_{Tr}$ and $(E^m)_{CV}$ are the mean squared error of training data set and cross-validation data set respectively at iteration *m*.

 $\left(\frac{\partial E_{avg}}{\partial W_{kj}^m}\right) = J_{W_{kj}^m}$ is Jacobian matrix of average mean squared error function w.r.t. weights W_{kj}^m .

 $\left(\frac{\partial E_{avg}}{\partial U_{ji}^m}\right) = J_{U_{ji}^m}$ is Jacobian matrix of average mean squared error function w.r.t. weights U_{ji}^m .

 $H_{W_{kj}}^m \left(= \boldsymbol{J}_{W_{kj}}^T \boldsymbol{J}_{W_{kj}}^m \right)$ and $H_{U_{ji}}^m \left(= \boldsymbol{J}_{U_{ji}}^T \boldsymbol{J}_{U_{ji}}^m \right)$ are the Hessian matrix.

Here $I_{W_{kj}^m}$ and $I_{U_{ji}^m}$ are the identity matrix, that is, it contains zeros except for the diagonal elements, which are +1.

 $s(W_{kj}^m)$ and $s(U_{ji}^m)$ are the search directions.

In the similar manner the biases of an ANN can also be optimized to achieve minimum MSE.

BIBLIOGRAPHY:

- 1. Elman C. Jameson, *Electrical Discharge Machining*, Society of Manufacturing Engineers (2001), p.1.
- 2. K.H. Ho, S.T. Newman, State of the art electrical discharge machining (EDM), International Journal of Machine Tools & Manufacture (2003), 43, 1287–1300.
- 3. Antoine Descoeudres, *Characterization of electrical discharge machining plasmas*, Ph.D. Thesis (2006), School Polytechnique Federale de Lausanne, Thèse EPFL, no 3542.
- 4. Kuo-Ming Tsai, Pei-Jen Wang, Comparison of neural network models on material removal rate in electric discharge machining, Journal of Materials Processing Technology (2001), 117,111-124.
- 5. H. Juhr, K. Künanz, A. Nestler, G. Leitte, Generation of parameter technologies for EDM die sinking with artificial neural networks (ANN) and nonlinear regression functions (NRF), Forschungsergebnis bericht, 2004.
- Deepak Kumar Panda, Rajat Kumar Bhoi, Artificial Neural Network Prediction of Material Removal Rate in Electro Discharge Machining, Materials and Manufacturing Processes (2005), 20: 4, 645 — 672.
- 7. Angelos P. Markopoulos, Dimitrios E. Manolakos, Nikolaos M. Vaxevanidis, Artificial neural network models for the prediction of surface roughness in electrical discharge machining, J Intell Manuf (2008), 19:283–292.
- 8. S. Assarzadeh & M. Ghoreishi, Neural-network-based modeling and optimization of the electro-discharge machining process, Int J Adv Manuf Technol (2008), 39:488–500.
- 9. S. N. Joshi & S. S. Pande, Development of an intelligent process model for EDM, Int J Adv Manuf Technol (2009), 45:300–317.
- M K Pradhan, R Das, and C K Biswas, Comparisons of neural network models on surface roughness in electrical discharge machining, J. Engineering Manufacture (2009), Vol. 223, Part B, 801-808.
- 11. Promod Kumar Patowari & Partha Saha & P. K. Mishra, Artificial neural network model in surface modification by EDM using tungsten–copper powder metallurgy sintered electrodes, Int J Adv Manuf Technol (2010), 51:627–638.

- Md. Ashikur Rahman Khan, M. M. Rahman, K. Kadirgama, M.A. Maleque and Rosli A. Bakar, Artificial Intelligence Model to Predict Surface Roughness of Ti-15-3 Alloy in EDM Process, World Academy of Science, Engineering and Technology (2011), 74.
- 13. Pushpendra S. Bharti, S. Maheshwari, C. Sharma, A comparative study of Artificial Neural Network training algorithms for modeling of Electric Discharge Machining process, Strojnicka Casopis(2010), 61, c. 5-6.
- 14. M K Pradhan, R Das, Recurrent neural network estimation of material removal rate in electrical discharge machining of AISI D2 tool steel, Proc. IMechE (2010), Vol. 225 Part B: J.Engineering Manufacturing.
- 15. A.Thillaivanan, P. Asokan, K.N.Srinivasan, R.Saravanan, Optimization of operating parameters for EDM process based on the Taguchi Method and Artificial Neural Network, International Journal of Engineering Science and Technology (2010), Vol. 2(12), 6880-6888.
- Cao Fenggou, Yang Dayong, The study of high efficiency and intelligent optimization system in EDM sinking process, Journal of Materials Processing Technology (2004), 149 83–87.
- 17. G. Krishna Mohana Rao and D. Hanumantha Rao, Hybrid modeling and optimization of hardness of surface produced by electric discharge machining using artificial neural networks and genetic algorithm, Asian Research Publishing Network (ARPN) (2010), Vol. 5, No. 5, 72-81.
- 18. Deepak Kumar Panda, Modelling and Optimization of Multiple Process Attributes of Electro discharge Machining Process by Using a New Hybrid Approach of Neuro-Grey Modeling, Materials and Manufacturing Processes(2010), 25: 6, 450 — 461.
- 19. Mohan Kumar Pradhan, Chandan Kumar Biswas, Neuro-fuzzy and neural network-based prediction of various responses in electrical discharge machining of AISI D2 steel, Int J Adv Manuf Technol (2010), 50:591–610.
- 20. Shyam P. Kodali, Rajesh Kudikala and K. Deb, Multi-Objective Optimization of Surface Grinding Process Using NSGA II, First International Conference on Emerging Trends in Engineering and Technology(2008), IEEE.
- 21. Kesheng Wang, Hirpa L. Gelgele, Yi Wang, Qingfeng Yuan, Minglung Fang, A hybrid intelligent method for modelling the EDM process, International Journal of Machine Tools & Manufacture (2003), 43, 995–999.

- 22. J. C. Su , J. Y. Kao , Y. S. Tarng, Optimisation of the electrical discharge machining process using a GA-based neural network , Int J Adv Manuf Technol (2004) 24: 81–90.
- 23. S.N. Joshi, S.S. Pande, Intelligent process modeling and optimization of die-sinking electric discharge machining, Applied Soft Computing (2011), 11, 2743–2755.
- 24. Debabrata Mandal, Surjya K. Pal , Partha Saha, Modeling of electrical discharge machining process using back propagation neural network and multi-objective optimization using non-dominating sorting genetic algorithm-II, Journal of Materials Processing Technology (2007), 186,154–162.
- 25. Shajan Kuriakose and M.S. Shunmugam, Multi-objective optimization of wire-electro discharge machining process by Non-Dominated Sorting Genetic Algorithm, Journal of Materials Processing Technology (2005), 170, 133–141.
- 26. Nixon Kuruvila and H. V. Ravindra, Parametric influence and optimization of wire EDM of hot die steel, Machining Science and Technology (2011), 15:47–7.
- 27. Ramezan Ali MahdaviNejad, Modeling and Optimization of Electrical Discharge Machining of SiC Parameters, Using Neural Network and Non-dominating Sorting Genetic Algorithm (NSGA II), Materials Sciences and Applications (2011), 2, 669-675.
- 28. Mohan Kumar Pradhan, *Experimental Investigation and Modelling of Surface Integrity, Accuracy and Productivity Aspects in EDM of AISI D2 Steel*, PhD Dissertation(2010), National Institute of Technology, Rourkela,pp.158-164.
- 29. Kalyanmoy Deb, Amrit Pratap, Sameer Agarwal, and T. Meyarivan, A Fast and Elitist Multiobjective Genetic Algorithm: NSGA-II, IEEE transactions on Evolutionary Computation (2002), Vol. 6, No. 2,182-197.
- 30. Kalyanmoy Deb and Tushar Goel, Controlled Elitist Non-dominated Sorting Genetic Algorithms for Better Convergence, Evolutionary Multi-Criterion Optimization, Lecture Notes in Computer Science (2001), Volume 1993/2001, 67-81,
- 31. E. Zitzler, M. Laumanns, and L. Thiele. SPEA2: Improving the Strength Pareto Evolutionary Algorithm. Technical report 103, Computer Engineering and Networks Laboratory (TIK), ETH Zurich, Zurich, Switzerland, 2001.