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ABSTRACT 
 

 
Need for taller structure in construction and real estate industry is increasing all over the 

world. These structures are flexible and constructed as light as possible (as seismic load acts 

on a structure is a function of self-weight), which have low value of damping, makes them 

vulnerable to unwanted vibration. This vibration creates problem to serviceability 

requirement of the structure and also reduce structural integrity with possibilities of failure. 

Current trends use several techniques to reduce wind and earthquake induced structural 

vibration. Passive tuned mass damper (TMD) is widely used to control structural vibration 

under wind load but its effectiveness to reduce earthquake induced vibration is an emerging 

technique. Here a numerical study is proposed on the effectiveness of tuned mass damper to 

reduce translation structural vibration. Total three type of models, i.e., shear building with 

single TMD, 2D frame with single TMD and 2D frame with double TMD are considered. 

Total five numbers of loading conditions are considered named sinusoidal ground 

acceleration, EW component of 1940 El-Centro earthquake (PGA=0.2144g), compatible time 

history as per spectra of IS-1893 (Part -1):2002 for 5% damping at rocky soil (PGA=1.0g), 

Sakaria earthquake (PGA=1.238g), The Landers earthquake (1992) (PGA=1.029g) for time 

history analysis of considered model. 

The effectiveness of single TMD to reduce frame vibration is studied for variation of mass 

ratio of TMD to frame. Also the effect of double tuned mass damper on the frame response is 

studied for uniform, non uniform distribution of mass ratio and variation of damping ratio of 

damper. 

From the study it is found that effectiveness of TMD increases with increase in mass ratio. 

Use of double TMD is much more effective than single TMD of same mass ratio for vibration 

mitigation under earthquake as well as sinusoidal acceleration.  
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CHAPTER 1 
 

INTRODUCTION 
 
 

1.1  BACKGROUND 

Vibration means to mechanical oscillation about an equilibrium point. The oscillation may be 

periodic or non-periodic. Vibration control is essential for machinery, space shuttle, 

aeroplane, ship floating in water. With the modernisation of engineering the vibration 

mitigation technique has find a way to civil engineering and infrastructure field. 

Now-a-days innumerable high rise building has been constructed all over the world and the 

number is increasing day by day. This is not only due to concerned over high density of 

population in the cities, commercial zones and space saving but also to establish country land 

marks and to prove that their countries are up to the standards. As the seismic load acting on 

a structure is a function of the self-weight of the structure these structures are made 

comparatively light and flexible which have relatively low natural damping. Results make the 

structures more vibration prone under wind, earthquake loading. In many cases this type of 

large displacements may not be a threat to integrity of the structure but steady state of 

vibration can cause considerable discomfort and even illness to the building occupant. 

In every field in the world conservation of energy is followed. If the energy imposed on the 

structure by wind and earthquake load is fully dissipated in some way the structure will 

vibrate less. Every structure naturally releases some energy through various mechanisms such 

as internal stressing, rubbing, and plastic deformation. In large modern structures, the total 

damping is almost 5% of the critical. So new generation high rise building is equipped with 

artificial damping device for vibration control through energy dissipation. The various 

vibration control methods include passive, active, semi-active, hybrid. Various factors that 
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affect the selection of a particular type of vibration control device are efficiency, compactness 

and weight, capital cost, operating cost, maintenance requirements and safety. 

A Tuned mass damper (TMD) is a passive damping system which utilizes a secondary mass 

attached to a main structure normally through spring and dashpot to reduce the dynamic 

response of the structure. It is widely used for vibration control in mechanical engineering 

systems. Now a days TMD theory has been adopted to reduce vibrations of tall buildings and 

other civil engineering structures. The secondary mass system is designed to have the natural 

frequency, which is depended on its mass and stiffness, tuned to that of the primary structure. 

When that particular frequency of the structure gets excited the TMD will resonate out of 

phase with the structural motion and reduces its response. Then, the excess energy that is 

built up in the structure can be transferred to a secondary mass and is dissipated by the 

dashpot due to relative motion between them at a later time. Mass of the secondary system 

varies from 1-10% of the structural mass. As a particular earthquake contains a large number 

of frequency content now a days multiple tuned mass dampers (MTMD) has been used to 

control earthquake induced motion of high rise structure where the more than one TMD is 

tuned to different unfavourable structural frequency. 

1.2  METHODS OF CONTROL 

A large numbers of technique have been tried to produce better control against wind and 

earthquake excitation.These can be classified into four broad categories: passive control, 

active control, semi-active control and hybrid control. Each of these will be discussed in 

following section. 

1.2.1  Passive control 

The most mechanically simple set of control schemes is enclosed in the passive control 

category, which has been widely accepted for civil engineering application. 
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Definition 

Housner et al. have both provided brief overviews on structural control, including proper 

definitions for the various types of control practically implemented in structures. According 

to them a passive control system is one that does not require an external power source. All 

forces imposed by passive control devices develop as direct responses to the motion of the 

structure. Hence, sum of the energy of both the device and the primary system will be 

constant. 

The main purpose of these systems is to efficiently dissipate vibrational energy, and the 

various methods of achieving this can be categorized in two ways. The first method includes 

converting kinetic energy directly to heat, such as through the yielding of metals, the 

deformation of viscoelastic solids and fluids, or the implementation of friction sliders. The 

second method works on transferring energy among two or more of the vibrational modes of 

the building, generally achieved by adding a supplemental oscillator that absorbs the 

vibrations of the primary structure. 

Tune mass damper, tune liquid damper, base isolation are example of passive system. 

Advantages and limitations 

Passive control is the most widely-used method of controlling structural response under wind 

and earthquake loading, but it has some limitations. While it is reliable and relatively straight 

forward to design, passive control systems are generally only good for limited bandwidths of 

dynamics input. As a result, they are susceptible to the effects of off-tuning, de-tuning, or 

resonances of secondary modes. 
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1.2.2  Active control 

Active control is a relatively upcoming subfield of structural engineering. It assures improved 

response to passive systems at the cost of energy and more complex systems. 

Definition 

Active control system has been as any control system in which an external power source is 

required to provide additional forces to the structure in a prescribed manner, by the use of 

actuators. The signals are sent to control the actuators and determine the feedback from the 

sensors provided on or through the structure. Due to the presence of an external power 

source, the force applied may either add or dissipate energy from the structure. 

In order to maximize the performance of an active system, the actuator forces must be 

prescribed in real-time base on the inputs of the sensors. The direction and magnitude of 

these forces can be assigned in the variety of ways, all of which have their roots in the diverse 

and mathematically rich field of control engineering. 

Advantage and limitations   

The performance of active control is quite pronounced in some cases. Due to its capability to 

respond in real-time, active control eliminates most of the tuning drawbacks inherent in 

passive devices. However, active control has not been exuberantly embraced by the civil 

engineering community as a result of some significant limitations. 

Most significant advantage of active control method is diminishes by their heavy reliance on 

external power supplies. The power consumption and cost is comparatively large for output 

of certain magnitude forces necessary to control large civil structures by the actuator. 

Additionally, there may be situation at which the control forces are needed coincides with the 
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time when the power cut is the most likely, such as during an earthquake or large wind storm. 

This raises question on reliability concerns. 

Beyond the issue of energy supply, engineers also hesitate to embrace non-traditional 

technologies for structures. The placement of sensors and the design of feedback schemes are 

also beyond the scope of most practicing engineers, and poorly designed active system may 

lead to deleterious energy inputs and destabilization of the primary system. 

1.2.3  Semi-active control 

Semi active control performed on the benefits of active control and the reliability of passive 

control, which makes it a much more appealing alternative to traditional control scheme in 

civil structures. 

Definition 

Semi active control systems act on the same principle of active control system but they differ 

in that their external energy requirement is smaller. These devices have an inherent stability 

in terms of bounded-input and output as these do not add mechanical energy to the primary 

system. Therefore, it may be viewed as controllable passive device. 

Semi-active control relies on the reactive forces that develop due to variable stiffness or 

damping devices rather than application of actuator forces. That means, by changing the 

properties of these devices, using only nominal power the response of the system may be 

favourably modified. As a result, semi-active control methods appear to combine the best 

features of fully active and fully passive systems, leaving them as the best in term acceptance 

for structural control. 

Advantages and limitation 

The best advantage of semi-active systems is their ability to provide improved control forces 

with a low demand for power. As the power can be supplied by a battery, which ensures 
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continued functionality even at power failure, adding reliability to any semi-active control 

method. Because of these benefits that enthusiasm towards the semi-active structural control 

schemes has increased in recent years, making it a viable alternative to proven passive 

devices. 

While these advantages are in some case truly significant, semi-active control still has its 

detractors. Most relevant is the need for sensors technology and computer controlled 

feedback, which is as central to semi-active controls to active control.  

1.2.4  Hybrid control 

Hybrid systems act on the combined use of passive and active control system. For example, a 

base isolated structure which is equipped with actuator which actively controls the 

enhancement of its performance. 

1.3  TUNED MASS DAMPER 

A TMD is an inertial mass attached to the building location with maximum motion (generally 

near the top), through a properly tuned spring and damping element. Generally viscous and 

viscoelastic dampersare used. TMDs provide a frequency dependent hysteresis which 

increases damping in the frame structure attached to it in order to reduce its motion. The 

robustness is determined by their dynamic characteristics, stroke and the amount of added 

mass they employ. The additional damping introduced by the TMD is also dependent on the 

ratio of the damper mass to the effective mass of the building in a particular mode vibration.  

TMDs weight is varied between 0.25%-1.0% of the building's weight in the fundamental 

mode (typically around one third).  

The frequency of a TMD is tuned to a particular structural frequency when that frequency is 

excited the TMD will resonate out of phase with frame motion and reduces its response. 
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Often for better response control multiple-damper configurations (MDCs) which consist of 

several dampers placed in parallel with distributed natural frequencies around the control 

tuning frequency is used. For the same total mass, a multiple mass damper can significantly 

increase the equivalent damping introduced to the system. 

. 

 

Fig. 1.1 Tuned mass damper in Taipei 101 

1.4  REAL LIFE STRUCTURES EQUIPPED WITH TUNED MASS DAMPER 

i) Citicrop Centre, New York 

The first full-scale structural tuned mass damper was installed in the Citicorp Centre building 

in New York City. The height of the building is 279 m with fundamental period of around 6.5 

s and damping ratio of 1% along both axes. It was finished in 1977 with a TMD placed on the 

sixty third floor in its crown having weight of 400 ton structure. That time the mass of the 

TMD was 250 times larger than any existing TMD. The damping of the overall building was 

increased from 1% to 4% of critical with a mass ratio of the TMD 2% of the first modal mass. 

Results in reduction of sway amplitude by a factor of 2. The TMD system consists of a large 
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block of concrete bearing on a thin film of oil, with pneumatic spring which provides the 

structural stiffness. 

ii) John Hancock Tower, Boston 

Two dampers each having weight of 2700kN was added to the 60-storey John Hancock 

Tower in Boston to reduce the response to wind loading. The dampers were placed at 

opposite ends of the fifty-eighth story of the building with a spacing of 67 m. Due to typical 

shape of the building the damper was designed to counteract the sway and twisting of the 

building. 

iii) CN Tower, Toronto 

Due to uniqueness in the design perspective of the Canadian National Tower in Toronto 

adding TMD was compulsory to suppress the wind induced motion of the building in second 

and fourth modes. It was required to suppress dynamic wind loading effects of the 102 meter 

steel antenna at the top of the tower. The first and third modes of the antenna had the same 

vibrational characteristic as the more heavily damped concrete structure. 

To reduce the vibrations, two doughnut-shaped steel rings with having mass of 9 tons were 

added at elevations corresponding to the peak vibration of the problematic modes. Each ring 

was mounted on a universal joint in such a way that could rotate in all directions and act as a 

tuned mass regardless of the direction of wind excitation. Four hydraulically activated 

dampers per ring were provided to dissipate the energy.  

iv) Chiba Port Tower, Japan 

Chiba Port Tower, a steel structure of 125 m in height 1950 tons weight and having a 

rhombus-shaped plan with a side length of 15 m (completed in 1986) was the first tower in 

Japan to be equipped with a TMD. The time period in the first and second mode of vibrations 

are 2.25 s and 0.51 s, respectively for the x direction and 2.7 sand 0.57 s for the y direction. 

Damping for the fundamental mode was computed at 0.5%. For higher mode of vibration 
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damping ratios proportional to frequencies were assumed in the analysis. The use of the TMD 

was to increase damping of the first mode for both the x and y directions. The mass ratio of 

the damper with respect to the modal mass of the first mode was about 1/120 in the x 

direction and 1/80 in the y direction; periods in the x and y directions of 2.24 s and 2.72 s, 

respectively; and a damper damping ratio of 15%.  

v) Taipei 101, Taiwan 

Taipei 101, a steel braced building is the 3rd tallest building in the world. Here the TMD was 

used for architectural purpose along with structural purpose. To reduce the vibration of the 

building sphere shaped TMD of weight 728 ton diameter 5.5 m between 88-92 floor is used. 

The enormous sphere was suspended by four set of cables, and the dynamic energy is 

dissipated by eight hydraulic pistons each having length of 2 m. The damper can reduce 40% 

of the tower movement. Another two tuned mass dampers, each weighing 6 metric tons sit at 

the tip of the spire. These prevent damage to the structure due to strong wind loads. 

In Japan, to mitigate traffic-induced vibration for two story steel buildings under an urban 

expressway viaduct TMDs were used (Inoue et al. 1994). TMDs with mass ratio of 

approximately 1% result in the reduction of the peak values of the acceleration response of 

the two buildings by 71% and 64%, respectively. 

In the world tallest high rise structure Burj Al Arab is equipped with 11 TMD at different 

storey to control wind induced vibration. 
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CHAPTER 2 
 

LITERATURE REVIEW AND AIM OF WORK 
 
 

2.1  REVIEW OF LITERATURE 

Till date numerous works has been done on single as well as multiple tuned mass damper. 

The concept of TMD was first used by Frahm [1909] to reduce the rolling motion of ships as 

well as ship hull vibrations. Later Hartog [1940] developed analytical model for vibration 

control capabilities of TMDs. Later he optimized TMDs parameter for harmonic excitations 

as well as wide band input.  

The main drawback of a single TMD is its sensitivity of the effectiveness to the error in the 

natural frequency of the structure and the damping ratio of the tuned mass damper. The 

effectiveness of a tuned mass damper is reduced significantly by mistuning. As a result of 

more than one TMD with different dynamic characteristics has been proposed to improve the 

effectiveness. Iwanami and Seto [1984] studied that two tuned mass dampers are more 

effective than a single tuned mass damper. Though the effectiveness is not that much 

significant. 

Clark [1988] studied the methodology for designing multiple tuned mass dampers for 

reducing building response. The method used was based on extending Den Hartog work from 

a single degree of freedom to multiple degrees of freedom system. A significant motion 

reduction was achieved for a structure by using simplified linear mathematical models and 

design technique under 1940 El Centro earthquake excitation. 

Manikanahally and Crocker [1991] considered MTMD system in which each TMD is 

tuned to different structural frequency.  
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Sun et al. [1992] investigated analytically as well as experimentally the effect of large 

number of liquid oscillator attached to a main structure in which the oscillators were tuned to 

structural natural frequency. 

Igusa and Xu [1994] examined the vibration control capability of multiple tuned mass 

dampers with natural frequency distributed over a certain frequency range for the structures 

subjected to wide band input. TMD’S design was optimize by using calculus of variations 

with a constraint on the total mass. Results showed that the optimal designed multiple TMD’s 

are more robust than a single TMD with equal total mass in vibration mitigation of main 

structure. 

Kareem and Kline [1995] studied the dynamic characteristics and effectiveness of multiple 

mass dampers (MMDs) (a collection of several mass dampers with distributed natural 

frequencies) under random loading. The random loads considered were narrow- and wide-

banded excitations represented by wind and seismic load. In this regard two different 

buildings were taken. A 31m by 31m square building in plan with 93m height, having natural 

frequency and damping ratio equal to 0.01 Hz and 0.4, respectively, was used for seismic 

analysis. For wind loading a rectangular building 31m by 155m in plan with height 186m was 

considered. Response under wind and earthquake loading was found by changing different 

parameters like effect of number of damper, damping, and non-uniform distribution of mass. 

Result showed that the MMDs configuration is more effective in controlling the motion of the 

primary structure. Due to smaller size of individual than a single TMD it is very easily 

portable and installable in old as well as retrofitted structure. 

Abe and Igusa [1995] studied the effectiveness of one or more TMDs to minimize the 

maximum structural response with closely spaced natural frequencies by analytical method. 

The input load considered was a harmonic load with a possible range of frequencies. 
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Perturbation theory was used with three sets of small parameters the ratio of TMD and 

structure modal masses, the damping of the system, and the differences between the structural 

and loading frequencies. Studies were carried for both lumped-mass and continuous 

structures (simply supported beam). It was concluded that the vibration mitigation of a 

structure depends upon correct placement of TMD along with the number of TMD, regardless 

of the spacing of the structures natural frequency. 

Joshi and Jangid [1997] investigated the effectiveness of optimally designed multiple tuned 

mass dampers (MTMD) for reducing the dynamic response of a base excited structure in a 

particular mode of vibration. The base excitation was modelled as a stationary white noise 

random process. The parameters like damping ratio, the tuning frequency ratio and the 

frequency bandwidth of the MTMD system were optimised based on the minimization of the 

root mean square (r.m.s.) displacement of the main structure. The stationary responseof the 

structure with MTMD was analysed for the optimum parameters of the MTMD system. It 

was concluded that the optimally designed MTMD system is more effective for vibration 

control than the single tuned mass damper for same mass ratio, damping of the main system 

does not have any influence on the optimum damping ratio of both the single TMD and the 

MTMD system, number of TMDs also does not have much influence on the optimum tuning 

frequency and the corresponding effectiveness of the MTMD system. 

Jangid and Datta [1997] conducted a parametric study to investigate the effectiveness of 

MTMDs for reducing the dynamic response of a simply torsionally coupled system subjected 

to lateral excitation, modelled as a broad-band stationary random process. MTMDs 

considered for this purpose having uniformly distributed frequencies and are arranged in a 

row covering the width of the system. The parameters considered were the eccentricity of the 

main system, its uncoupled torsional to lateral frequency ratio and the damping of MTMDs. It 
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was concluded that the effectiveness of MTMDs in controlling the lateral response of the 

torsionally coupled system decreases with the increase in the degree of asymmetry. 

Jangid [1999] investigated the optimum parameters of Multiple Tuned Mass Dampers 

(MTMD) for an undamped system under harmonic base excitation using a numerical 

searching technique. The criteria used for the optimality was the minimization of steady-state 

displacement response of the main system. Curve fitting technique was used to find the 

formulae for the optimum parameters of MTMD (i.e. damping ratio, bandwidth and tuning 

frequency) which can further be used for engineering applications. The optimum parameters 

of the MTMD system were calculated for different mass ratios and number of dampers. From 

numerical study it was concluded that the optimum damping ratio of MTMD system 

decreases with the increase of the number of MTMD and increases with the increase of mass 

ratio, optimum band-width of the MTMD system increases with the increase of both the mass 

and number of MTMD and optimum tuning frequency increases with the increase of the 

number of MTMD and decreases with the increases of the mass ratio. 

Li [2000] studied the robustness of multiple tuned mass dampers (MTMDs) having a uniform 

distribution of natural frequencies for decreasing unwanted vibration of a structure under 

ground acceleration. The MTMD was fabricated by keeping the stiffness and damping 

constant and changing the mass. The structure was represented by its mode-generalized 

system to control a particular mode of vibration using the mode reduced-order method. The 

optimum parameters of the MTMD like: the frequency spacing, average damping ratio, mass 

ratio and total number of dampers were investigated for steel structure (whose damping ratio 

is 0.02) by conducting a numerical searching technique in two directions. Optimization was 

done by the minimization of the maximum value of the dynamic magnification factor (DMF) 

of the structure with MTMD. It was concluded from the study that the optimum average 
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damping ratio of the MTMD decreases with the increase of the total number of the MTMD 

and increases with the increase of the mass ratio, the optimum frequency spacing of the 

MTMD increases with the increase of both the total number and mass ratio. It was also found 

that the optimum MTMD is more effective than the optimum MTMD (II) (mass constant and 

varying the stiffness and damping coefficient) and the optimum single TMD with equal mass. 

Wu and Chen [2000] investigated the optimal placement and the seismic performance of 

MTMD whose frequency is tuned to different structural frequency. Optimization objective of 

the MTMD was to decrease the acceleration of the main structure. Numerical simulation was 

performed on a six-story shear building having identical floor mass of 4x10^4kg and the 

identical stiffness of 4x10^7N/m for each floor for four optimal location of MTMD. The 1st to 

3rdmode frequencies were respectively 7.624, 22.43 and 35.93 rad/s. A damping ratio of 3% 

was assumed for all modes. It was concluded that the optimal MTMD showed great 

advantage over conventional single TMD in acceleration control as well as in efficient usage 

of building spare space. 

Chen and Wu [2001] studied the seismic ineffectiveness of a tuned mass damper on the 

modal response of a six storey shear building. Later he proposed multistage and multimode 

tuned mass dampers and its several optimal locations for practical design and placement of 

the dampers in seismically excited building structures to reduce its response. The 

effectiveness of the proposed procedure was checked under a stochastic seismic load and 13 

earthquake records for different MTMD location. Numerical results showed that the multiple 

dampers can effectively reduce the acceleration of the uncontrolled structure by 10–25% 

more than a single damper. From time-history analysis it was found that the multiple dampers 

weighing 3% of total structural weight can reduce the floor acceleration up to 40%. 
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Park and Reed [2001] numerically evaluated the performance of multiple dampers with 

uniformly and linearly distributed masses, under harmonic excitation. A linearly elastic single 

degree of freedom system with damping ratio 0.01; and the total mass ratio of the MMD 

system 0.01 was taken. An algorithm was developed to identify the optimum tuning of the 

individual dampers, which evaluate the performance by effectiveness, robustness and 

redundancy. It was concluded that the uniformly distributed system is effective in reducing 

the peak dynamic magnification factor also slightly more reliable when an individual damper 

fails. The linearly distributed system is also more robust under mistuning. It was also found 

that the 11 and 21 mass system is optimum for both configurations (uniformly and linearly 

distributed masses) for harmonic excitationand the El Centro earthquake simulation 

respectively. 

Li and Liu [2002] investigated the performance of active multiple tuned mass dampers 

(AMTMD) with a uniform distribution of natural frequencies to reduce the undesirable 

vibrations of structures under the ground acceleration. The multiple tuned mass dampers 

(MTMD) in the AMTMD were manufactured by keeping the stiffness and damping constant 

and varying the mass. The optimum parameters like frequency spacing, average damping 

ratio, tuning frequency ratio, total number and normalized acceleration feedback gain 

coefficient of the AMTMD were found by a numerical searching technique. The control 

forces in the AMTMD were generated through keeping the identical displacement and 

velocity feedback gain and varying the acceleration feedback gain. The structure was 

modelled as a single-degree-of-freedom (SDOF) system (the mode-generalized system for a 

particular mode to be controlled) using mode reduced-order method. It was concluded that 

the proposed AMTMD significantly reduce the oscillations of structures under the ground 

acceleration than MTMD as well as ATMD. Also the effectiveness increases with the 

increase in both the mass ratio and total number of ATMD. 
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Li [2002] studied and compared the performance of five number of TMD (MTMD-1 – 

MTMD-5) model, which comprise of various combinations of the stiffness, mass, damping 

coefficient and damping ratio with a uniform distribution of natural frequencies to reduce 

unenviable vibration of a single degree of freedom structure (having damping ratio 0.02) 

under the ground acceleration using a numerical searching technique. The structure was 

represented by its mode-generalized system in the specific vibration mode being controlled 

by adopting the mode reduced-order approach. The optimization was done by minimizing the 

maximum value of the displacement dynamic magnification factor (DDMF) and that of the 

acceleration dynamic magnification factor (ADMF) of the structure with the MTMD-1 – 

MTMD-5. It was concluded that the optimum MTMD-1 and MTMD-4 yield approximately 

the same control performance, and offer higher effectiveness and robustness than the 

optimum MTMD-2, MTMD-3, and MTMD-5 in reducing the displacement and acceleration 

responses of structures. It was further found that for both the best effectiveness and 

robustness and the simplest manufacturing, it is preferable to select the optimum MTMD-1. 

Li and Liu [2003] investigated and compared the control performance of eight new MTMD 

models (the UM-MTMD1~UM-MTMD3, US-MTMD1~US-MTMD3, UD-MTMD1 andUD-

MTMD2), with the system parameters (mass, stiffness and damping coefficient), uniformly 

distributed close to their average values for a single degree of freedom system. The structure 

was represented by the mode-generalized system corresponding to the specific vibration 

mode that needs to be controlled. The optimum parameters include the optimum mass 

spacing; stiffness spacing, damping coefficient spacing, frequency spacing, average damping 

ratio and tuning frequency ratio were calculated by numerical simulation. It was summarised 

that the average damping ratio, spacing of optimum frequency, mass, stiffness and damping 

coefficient as well as effectiveness of the six MTMD models increases with the increasing of 

the mass ratio. 
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Li [2003] studied the performance of multiple active–passive tuned mass dampers 

(MAPTMD) with a uniform distribution of natural frequencies to prevent oscillations of a 

single degree of freedom structures under the ground acceleration through numerical studies. 

The controlling forces in the MAPTMD are generated by keeping the identical displacement 

and velocity feedback gain and varying the acceleration feedback gain. To control a particular 

oscillation mode the structure was represented by the mode-generalized system. It was 

concluded that the optimum tuning frequency ratio of MAPTMD decreases with the increase 

of the mass ratio and it has better robustness and effectiveness than single APTMD which 

increases with the increase in mass ratio. 

Chen and Wu [2003] studied the performance of MTMD systems and compared the result 

with the TMD systems numerically as well as through shake table tests on a 1/4-scale three-

storey building structure under the white noise excitation (the scaled 1940 El-Centro 

earthquake and the scaled 1952 Taft earthquake). Experimental results showed that the 

multiple damper systems are better than a single tuned mass damper in reducing the floor 

accelerations. It was also found that the numerical and experimental results are in good 

agreement to validate the dynamic properties of the structure. 

Wang and Lin [2005] investigated the influence of soil–structure interaction (SSI) effect on 

the robustness of multiple tuned mass dampers (MTMD) for vibration control of irregular 

buildings modelled as torsionally coupled structures (single storey building) due to ground 

motions by an efficient modal analysis methodology. The performance index of MTMD was 

established based on the foundation-induced building floor motions with and without the 

installation of MTMDs. It was concluded from numerical verifications that the increase in 

height–base ratio of an irregular building and the decrease in relative stiffness of soil to 
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structure generally amplify both SSI and MTMD detuning effect, mainly for a building with 

highly torsionally coupled effect. Also detuning effect can be reduced with proper increase of 

the frequency spacing of the optimal MTMDs. Result also showed that if the SSI effect is 

significant, the MTMD is more effective than single TMD. 

Hoang and Warnitchai [2005] developed a new method to design multiple tuned mass 

dampers (multiple TMDs) to reduce excessive vibration of structures using a numerical 

optimizer that follows the Davidon–Fletcher–Powell algorithm which can handle large 

number of design variables without any restriction before the analysis. The method was used 

to design multiple TMDs for SDOF lumped-mass structures subjected to wide-band 

excitation. It showed that the optimally designed multiple TMDs have distributed natural 

frequencies and distinct damping ratios at low damping level. It was concluded that, in case 

of uncertainties in the structural properties; increasing the TMD damping ratios along with 

enlarging the TMD frequency range make the system more robust. It is also mandatory to 

design TMDs for higher damping ratios and a narrower frequency range if TMD parameters 

themselves are uncertain. 

Li and Qu [2006] studied the effectiveness of multiple tuned mass dampers (MTMD) with 

identical stiffness and damping coefficient but different mass to reduce translational and 

torsional responses for two-degree-of-freedom (2DOF) structure (which represents the 

dynamic characteristic of a general asymmetric structure) using numerical simulation. The 

2DOF structure was a modelled as a 2DOF system of an asymmetric structure with prevalent 

translational and torsional responses under earthquake excitations using the mode reduced-

order method. From the study it was concluded that MTMD is capable of reducing the 

torsional response of the torsionally flexible structures and the translational and torsional 

responses of the torsionally stiff structures. 
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Han and Li [2006] investigated the vibration control capacity of active multiple tuned mass 

damper (AMTMD) with identical stiffness and damping coefficient but varying mass and 

control force. A three storey steel structure model with three ATMDs which was subjected to 

several historical earthquakes implemented in SIMULINK. During numerical simulation, a 

stiffness uncertainty of 15% of its initial stiffness of the structure was considered. The 

optimization ATMD parameters were done in frequency domain by minimization of the 

minimum value of the maximum dynamic magnification factor for general structure. From 

numerical result it was concluded that AMTMD has better effectiveness than a single ATMD 

for structure subjected to historical earthquake and also in structure where there is a stiffness 

uncertainties of 15%. 

Li and Ni [2007] studied a gradient-based method for optimizing non-uniformly distributed 

multiple tuned mass dampers (MTMD) and their effectiveness on a single degree of freedom 

of system. The main objective of optimization was to reduce the maximum displacement or 

frequency response of the main rather than the root-mean-square response. It was concluded 

that the effectiveness of optimal non-uniformly distributed MTMD is better than the optimal 

uniformly distributed MTMDs whose frequency spacing, stiffness or mass and damping 

sometimes has restrictions for simplicity. Due to the flexibility of the proposed method, other 

errors of estimate can be taken into account easily. 

Guo and Chen [2007] speculated the reverberation matrix method (RMM) to perform 

dynamic analysis of space structures with multiple tuned mass dampers (MTMD). Theory of 

generalized inverse matrix was used to find the frequency of structures with and without 

damping along with the resonant frequency. To evaluate the medium and long time response 

of structures, the artificial damping technique was utilised. The proposed method was used 
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for finding free vibration, frequency response, and transient response of structures (a 

continuous beam and a two storey space frame) with MTMD under harmonic load. To 

validate the proposed method both the example were solved numerically by ANSYS 

software. Numerical results showed that the use of MTMD can effectively modify the 

distribution of natural frequencies as well as decrease the frequency/transient responses of the 

structure. It was also found that as the element numbers in the structure increases the FEM 

(ANSYS) results approach to that of the RMM result. 

Han and Li [2008] estimated the performance of general linearly distributed parameter-

based multiple-tuned mass dampers (LDP-MTMD) with respect to the MTMD with identical 

damping coefficient and damping ratio but unequal stiffness and uniform distribution of 

masses (UM-MTMD3) on single degree freedom system. The optimization criterion was 

considered to minimize the minimum values of the maximum dynamic magnification factors 

of structures with four LDP-MTMD models. It was concluded that it is preferable to select 

the optimum UM-MTMD3 or the optimum MTMD with identical stiffness and damping 

coefficient but unequal mass and uniform distribution of natural frequencies. It was also 

found that optimum tuning frequency ratios of both general LDP-MTMD and UM-MTMD3 

are close to each other. 

Zuo [2009] studied the characteristics and optimization of a new type of TMD system, in 

which multiple TMDs are connected in series to the main structure. The parameters of spring 

stiffness and damping coefficients were optimized for mitigation of random and harmonic 

vibration. It was concluded that series multiple TMDs are more effective, robust and less 

sensitive to the parametric variation of the main structure than all the other types of parallel 

MTMDs and single TMD of the same mass ratio. It was also found that a series of two TMDs 
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of total mass ratio of 5% can appear to have 31–66% more mass than the classical TMD, and 

it performs better than the ten TMDs in optimal parallel of the same total mass ratio. 

 

2.2  AIM AND SCOPE OF THE PRESENT WORK 

The aim of the present work is to study numerically the effect of TMD either single or 

multiple on the dynamic response of multi-storey frame structures. 

It is proposed to model a 3D frame building as multi degree of freedom shear building (1D) 

as well as frame building (2D). TMD is modelled as 1D which will respond to horizontal 

translation only. Finite element method has been used as numerical tool to study the dynamic 

response of frame-TMD system. Linear time history analysis of multi-storey frame with and 

without TMD under sinusoidal and four past earthquake ground accelerations is carried out. 
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CHAPTER 3 

FINITE ELEMENT FORMULATIONS 

 

3.1  ELEMENT MATRIX OF PLANE FRAME IN LOCAL COORDINATE SYSTEM  

3.1.1  Mass matrix 

The mass matrix of individual elements is formed in local direction then it is transformed to 

global direction and finally it is substituted into main equation. The inertial property or mass 

of a structure in dynamic analysis can be taken by two methods. 

i) Lumped mass 

This is the simplest method for considering the inertial properties of the structure, where it is 

assumed that the mass of the structure is lumped at the nodal coordinate corresponding 

translation displacement. In this method inertial component associated with any rotational 

degree of freedom is considered as zero. This type of mass matrix is generally taken if the 

given structure is modelled as shear building. The lumped mass matrix is diagonal. The 

lumped mass matrix for a beam element is given below. 

 

Fig. 3.1 Lumped mass for beam element 
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                                                                                      (3.1) 

 

ii) Consistent mass 

      In this method inertial component associated with any rotational degree of freedom is 

considered. The mass matrix is symmetric but not diagonal. The consistent mass matrix for a 

beam element is given below. 

 

           [me]=   ρ  A L
420

⎣
⎢
⎢
⎢
⎢
⎡
140 0 0 70 0 0

0 156 22L 0 54 −13L
0 22L 4L2 0 13L −3L2

70 0 0 140 0 0
0 54 13L 0 156 −22L
0 −13L −3L2 0 −22L 4L2 ⎦

⎥
⎥
⎥
⎥
⎤

                                      (3.2) 

Where 

ρ = Density of the beam material 

 

3.1.2  Stiffness matrix 

The stiffness matrix is also symmetric matrix. The elemental stiffness matrix for a beam or a 

frame element considering axial deformation is given below. 

 

 

                        [ke] =       

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡

EA
L

0 0 −EA
L

0 0

0 12EI
L3

6EI
L2 0 −12EI

L3
6EI
L2

0 6EI
L2

4EI
L

0 6EI
L2

2EI
L

−EA
L

0 0 EA
L

0 0

0 −12EI
L3

6EI
L2 0 12EI

L3
6EI
L2

0 6EI
L2

2EI
L

0 6EI
L2

4EI
L ⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

                        (3.3)   
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Where, 

E = Young’s Modulus of the frame material. 

A = Cross sectional area of the element. 

L = Length of the element. 

 

3.2  ELEMENT MATRIX OF PLANE FRAME IN GLOBAL COORDINATE 

SYSTEM 

The matrices formulated in the above section are for a particular element in local coordinate 

system (along the length of each element). A frame element consists of number of node and 

element. Hence each element matrix will vary according to its local axes orientation. To 

assemble the matrices each element matrix is transformed to global coordinate system. It is 

clear that the plane frame element has six degree of freedom – three at each node (two 

displacements and a rotation). The sign convention used is that displacements are positive if 

they point upwards and rotations are positive if they are counter clockwise. Consequently for 

a structure with n nodes, the global stiffness and mass matrix ([K], [M]) will be 3n X 3n 

(since it has three degrees of freedom at each node). The global stiffness and mass matrix 

([K], [M]) is formed by assembling the transformed elemental stiffness and mass matrix 

([Ke], [Me]) by making calls to the MATLAB function PlaneFrameAssemble which is written 

specially for this purpose. 



25 
 

Fig.3.2. Co-ordinate transformation for 2D frame elements 

In the fig.the local and global nodes are 1,2and i, j respectively. Similarly local and global 

axes are x, y and X, Y respectively. 

Let T be the transformation matrix and C=Cosα, S=Sinα for the frame element, which is 

given by 

          [T] =       

⎣
⎢
⎢
⎢
⎢
⎡
𝐶𝐶 𝑆𝑆 0 0 0 0
−𝑆𝑆 𝐶𝐶 0 0 0 0
0 0 1 0 0 0
0 0 0 𝐶𝐶 𝑆𝑆 0
0 0 0 −𝑆𝑆 𝐶𝐶 0
0 0 0 0 0 1⎦

⎥
⎥
⎥
⎥
⎤

                                                                 (3.4)  

Using the transformation matrix, [T] the matrices for the frame element in the global 

coordinate system become 

 

                                              [Ke] = [TT][ke][T]                                                             (3.5) 

 

                                              [Me] = [TT][me][T]                                                             (3.6) 
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3.3  DYNAMIC EQUILIBRIUM EQUATION OF STRUCTURE  

The dynamic response of a structure at any instant of time t under an excitation force is 

defined by its displacement u(t), velocity u̇(t) and acceleration ü(t). The total force acting on 

a structure is resisted by its inertia F(t)I, damping F(t)D and stiffness F(t)S component of 

reactive force. The force equilibrium equation of a structure at any instant of time of t, 

subjected to dynamic load F(t) can be expressed by the following equation 

                                          F(t)I + F(t)D + F(t)S = F(t)                                                           (3.7) 

Where,                                 F(t)I = m.ü(t)                                                                             (3.8) 

                                            F(t)D= c.u̇(t)                                                                              (3.9) 

                                             F(t)S = k. u(t)                                                                          (3.10) 

Where,     m= mass of the system. 

                  c = damping of the system 

                 k= stiffness of the system 

For multi degree of freedom system corresponding equation of motion become 

                                                [M] )(tU +  [C] )(tU + [K]U(t) = {F(t)}                           (3.11) 

Where,  [M] = The global mass matrix of structure. 

              [C] = The global damping matrix of the structure. 

              [K] = The global stiffness matrix of the structure. 

              U(t) = Absolute nodal displacement. 

   U̇(t) = Absolute nodal velocity. 



27 
 

 Ü(t) = Absolute nodal acceleration. 

            F(t) = Force vector. (For earthquake loading F(t)= -[M].Üg(t) ) 

            Üg(t)  = Ground acceleration due to earthquake. 

The effect of TMD can be considered by adding extra opposite nature force to forcing 

function. 

3.4  DYNAMIC ANALYSIS OF STRUCTURE 

The main three factors that govern the particular type of analysis process to be applied to 

structural depend upon the type of externally applied loads, the behaviour of the structure/or 

structural materials and the type of structural model selected. Dynamic analysis is two types, 

linear and nonlinear analysis. The building frame has been analysed by linear time history 

analysis.  

If non-linear behaviour is not involved in structure, the linear time history analysis is the best 

method to find out the response of a structure than any other method. In this method the 

response of a structure is find out at discrete time interval which require a great 

computational effort. Another interesting advantage of this method is that the relative values 

of response quantities are saved in the response histories. 

3.4.1  Steps for the dynamic analysis of 2D frame 

1. Discretising the domain: Dividing the each element into number of small part connected 

by nodes and numbering them globally. 

2. Formulation of the Element matrices: The element or local stiffness and mass matrix is 

found for all elements, which is symmetric of size 6×6. 
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3. Assembling the global stiffness matrices: The element stiffness matrices are then 

transformed to global coordinate system and combined globally based on their degrees of 

freedom values. 

4. Applying the boundary condition: The boundary condition is applied by suitably deleting 

the rows and columns of the mass and stiffness matrix corresponding zero force or 

displacements. 

5. Solving the equation: The equation is solved in MATLAB to get the value of U by using 

Newmark’s Beta method. 

3.5  SOLUTION OF DYNAMIC EQUILIBRIUM EQUATION BY NUMERICAL 

INTEGRATION 

The analytical solution of the dynamic equilibrium equation of the structure is not possible if 

the applied force F(t) or ground acceleration Üg(t) varies arbitrarily with time or the system is 

nonlinear. The most general approach to tackle such problem is the direct numerical 

integration of the dynamic equilibrium equations for each time step. There are various 

numerical integration methods for solution of differential equation. All approaches can 

fundamentally be classified as either explicit or implicit integration methods. Most methods 

use equal time intervals at Dt, 2Dt, 3Dt........NDt.  

3.5.1   Newmark’s Beta method 

Here Newmark’s Beta method has been used for solution of differential equations. Because 

of its general versatility, it has been adopted into numerous commercially available computer 

programs for purposes of structural dynamics analysis. Newmark’s equations are given by 

�̇�𝑑𝑖𝑖+1 = �̇�𝑑𝑖𝑖 + (𝛥𝛥𝛥𝛥)�(1− 𝛾𝛾)�̈�𝑑𝑖𝑖 + 𝛾𝛾�̈�𝑑𝑖𝑖+1�                                                                               (3.12) 

�̇�𝑑𝑖𝑖+1 = �̇�𝑑𝑖𝑖 + (𝛥𝛥𝛥𝛥)�̇�𝑑𝑖𝑖+(𝛥𝛥𝛥𝛥)2 ��1
2
− 𝛽𝛽� �̈�𝑑𝑖𝑖 + 𝛽𝛽�̈�𝑑𝑖𝑖+1�                                                             (3.13) 
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Where, β and γ are parameters chosen by the user. The parameter β is generally chosen 

between 0 and ¼, and γ is often taken to be ½. For instance, choosing γ = ½ and β = 1/6, are 

chosen, eq. 3.12 and eq. 3.13 correspond to those for which a linear acceleration assumption 

is valid within each time interval. For γ = ½ and β = ¼, it has been shown that the numerical 

analysis is stable; that is, computed quantities such as displacement and velocities do not 

become unbounded regardless of the time step chosen. 

To find 𝑑𝑑𝑖𝑖+1, first multiply eq. 3.13 by the mass matrix [M] and then substitute the value of 

�̈�𝑑𝑖𝑖+1 into this eq. to obtain 

[M] �̈�𝑑𝑖𝑖+1 = [M] 𝑑𝑑𝑖𝑖 + (Δ𝛥𝛥)[M] �̇�𝑑𝑖𝑖 + (Δ𝛥𝛥)2[M] �1
2
− 𝛽𝛽� �̈�𝑑𝑖𝑖 + 𝛽𝛽(Δ𝛥𝛥)2 �𝐹𝐹𝑖𝑖+1 − [K] 𝑑𝑑𝑖𝑖+1�    (3.14) 

 

Combining the like terms of eq. 3.14 we obtain 

�[M] + 𝛽𝛽(Δt)2[K] �𝑑𝑑𝑖𝑖+1 = 𝛽𝛽(Δ𝛥𝛥)2𝐹𝐹𝑖𝑖+1 + [M]𝑑𝑑𝑖𝑖 + (Δ𝛥𝛥)[M]�̇�𝑑𝑖𝑖 + (Δ𝛥𝛥)2[M] �1
2
− 𝛽𝛽� �̈�𝑑𝑖𝑖   (3.15) 

Finally, dividing above eq. by 𝛽𝛽(Δ𝛥𝛥)2, it is obtained 

𝐾𝐾′𝑑𝑑𝑖𝑖+1 = 𝐹𝐹′𝑖𝑖+1                                                                                                                    (3.16) 

 𝐾𝐾′ = [K] + 1
𝛽𝛽 (∆𝛥𝛥)2 [M]                                                                                                       (3.17) 

𝐹𝐹′𝑖𝑖+1 = 𝐹𝐹𝑖𝑖+1 +
[M]

𝛽𝛽 (∆𝛥𝛥)2 �𝑑𝑑𝑖𝑖  + (∆𝛥𝛥)�̇�𝑑𝑖𝑖 + �1
2
− 𝛽𝛽� (∆𝛥𝛥)2�̈�𝑑𝑖𝑖�                                                   (3.18) 

The solution procedure using Newmark’s method is as follows: 

1. Starting at time t=0, 𝑑𝑑0  is known from the given boundary conditions on 

displacement, and �̇�𝑑0 is known from the initial velocity conditions. 

2. Solve eq. at t=0 for �̈�𝑑0  (unless �̈�𝑑0  is known from an initial acceleration condition); 

that is,  
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�̈�𝑑0 = [M]−1�𝐹𝐹0 −𝐾𝐾𝑑𝑑0� 

3. Solve eq. 3.16 for 𝑑𝑑1, because  𝐹𝐹′𝑖𝑖+1 is known for all time steps and  , 𝑑𝑑0 , �̇�𝑑0, �̈�𝑑0  

are known from steps 1 and 2. 

4. Use eq. 3.13 to solve for �̈�𝑑1 as 

�̈�𝑑1 =
1

𝛽𝛽(∆𝛥𝛥)2 �𝑑𝑑1 − 𝑑𝑑0 − (∆𝛥𝛥)�̇�𝑑0 − (∆𝛥𝛥)2 �
1
2− 𝛽𝛽� �̈�𝑑0� 

5. Solve eq. 3.12 directly for �̇�𝑑1 

6. Using the results of steps 4 and 5, go back to step 3 to solve for𝑑𝑑2 and then to steps 4 

and 5 to solve for �̈�𝑑2and �̇�𝑑2. Use steps 3-5 repeatedly to solve for𝑑𝑑𝑖𝑖+1,�̇�𝑑𝑖𝑖+1and �̈�𝑑𝑖𝑖+1. 

 

 

 



31 
 

CHAPTER-4 

RESULTS AND DISCUSSION 

4.1  RANDOM EARTHQUAKE GROUND ACCELEROGRAM 

Total four numbers of past random accelerogram named EW component of 1940 El-Centro 

earthquake (PGA=0.2144g) fig. 4.4.(a), compatible time history as per spectra of IS-1893 

(Part -1):2002 for 5% damping at rocky soil (PGA=1.0g) fig. 4.4.(b), Sakaria earthquake 

(PGA=1.238g) fig. 4.4.(c), The Landers earthquake (1992) (PGA=1.029g) fig. 4.4.(d) are 

taken into consideration for time history analysis of the proposed 1D shear building and 2D 

frame building model with and without Single and multiple TMD . 

Fig. 4.1.(a): EW component of El-Centro earthquake accelerogram (1940) 
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Fig. 4.1.(b): Compatible Earthquake ground acceleration time history as per spectra of IS-

1893 (Part -1):2002 for 5% damping atrocky soil 

 

Fig. 4.1.(c): Sakaria earthquake accelerogram
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Fig. 4.1.(d): The Landers earthquake accelerogram (1992) 

4.2  1D SHEAR BUILDING MODEL 

 

Fig.4.2.(a): Actual building frame                              Fig. 4.2.(b): Idealized shear building  

Plane concrete building frame can be idealized as shear building, which is modeled as one 

dimensional multi-degree of freedom system with one degree of freedom at each node. It is 

assumed that the axial stiffness of the beam at the floor level is very high so there will be no 

rotation at the floor level between any beam column joint. The nomenclature came from the 

reason of presence of constant shear force across the height of the column. Whole the shear 
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building is discretised as 50 number of element. The preliminary dimension of the frame, 

member size and material properties are given below. 

Total height of the building = 175 m 

Height of each floor = 3.5 m 

Each bay width = 5 m 

Number of storey =50 

Number of bay =2 

Size of beam = (0.25×0.35) m 

Size of column = (0.3×0.5) m 

Grade of concrete = M20 

Modulus of elasticity = 22360.6×106 N/m2 

Total mass of shear building = 304280 kg 

First natural frequency = 3.0637 rad/s 

 

4.3  LINEAR TIME HISTORY ANALYSIS OF SHEAR BUILDING WITH AND 

WITHOUT SINGLE TMD 

A comparison study is done on the effectiveness of single tuned mass damper for vibration 

control by linear time history analysis of shear building under a sinusoidal load and the above 

mentioned four numbers past earthquake data. The response is calculated in term of 

displacement at the top floor with and without single TMD. The damping ratio of the shear 

building as well as damper is taken as 0.05 for every mode. In each case fundamental 

frequency of the building without TMD is tuned to the frequency of the damper.  
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Fig. 4.3: Idealized shear building with TMD 

 

4.3.1  Effect of TMD mass ratio variation on the response of the shear building 

Two different mass ratios of 0.05 and 0.1 are taken in analysis. 

(a) Sinusoidal acceleration 

First case the shear building is subjected to sinusoidal acceleration Ä=Amax sin(ω.t) at ground. 

Where, Amax and ω are the maximum amplitude of acceleration and frequency of the 

sinusoidal acceleration respectively. The parameters Amax and ω are 0.1 m/s2 and 3.0637 rad/s 

(considering resonance condition) respectively. 
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(a) 

 

(b) 

Fig. 4.4: Displacement of the shear building with and without single TMD at 50th floor under 

sinusoidal ground acceleration. For (a) Mass ratio 0.05, (b) Mass ratio 0.1 
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(b) Random earthquake ground acceleration 

 

(a) 

 

(b) 

Fig. 4.5: Displacement of the shear building with and without single TMD at 50th floor under 

EW component of 1940 El-Centro earthquake. For (a) Mass ratio 0.05, (b) Mass ratio 0.1 

0 10 20 30 40 50 60 70
-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

Time(sec)

D
is

pl
ac

em
en

t(m
)

 

 

disp without TMD
disp with TMD

Mass ratio = 0.05

0 10 20 30 40 50 60 70
-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

Time(sec)

D
is

pl
ac

em
en

t(m
)

 

 

disp without TMD
disp with TMD

Mass ratio = 0.1



38 
 

 

(a) 

 

 

(b) 

Fig. 4.6: Displacement of the shear building with and without single TMD at 50th floor under 

Compatible time history as per spectra of IS-1893 (Part -1):2002 for 5% damping at rocky 

soil. For (a) Mass ratio 0.05, (b) Mass ratio 0.1 

0 5 10 15 20 25 30 35 40
-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

Time(sec)

D
is

pl
ac

em
en

t(
m

)

 

 

disp without TMD
disp with TMD

Mass ratio = 0.05

0 5 10 15 20 25 30 35 40
-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

Time(sec)

D
is

pl
ac

em
en

t(m
)

 

 

disp without TMD
disp with TMD

Mass ratio = 0.1



39 
 

 

(a) 

 

(b) 

Fig. 4.7: Displacement of the shear building with and without single TMD at 50th floor under 

Sakaria earthquake. For (a) Mass ratio 0.05, (b) Mass ratio 0.1 
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(a) 

 

(b) 

Fig. 4.8: Displacement of the shear building with and without single TMD at 50th floor under 

the Landers earthquake 1992. For (a) Mass ratio 0.05, (b) Mass ratio 0.1 
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Table 4.1 

Comparison study on the Maximum displacement (m) at the top floor of the shear building with and without single TMD (with variation 

of mass ratio) 

Type of loading without 
single 
TMD 
(A) 

with TMD 
of mass 

ratio 0.05 
(B) 

with TMD 
of mass 
ratio 0.1 

(C) 

(A-B) (A-B)×100/A (A-C) (A-C)×100/A (B-C) (B-C)×100/B 

Sinusoidal 
acceleration 

0.1288 0.0394 0.0313 0.0894 69.4099 0.0975 75.6988 0.0081 20.5584 

El-Centro 
earthquake 

accelerogram 1940 
0.7001 0.4402 0.4057 0.2599 37.1233 0.2944 42.0511 0.0345 7.8373 

spectra of IS-1893 
(Part -1):2002 for 

5% damping at 
rocky soil 

0.3487 0.2240 0.2376 0.1247 35.7614 0.1111 31.8612 -0.0136 -6.0714 

Sakaria earthquake 
accelerogram 0.4428 0.3503 0.3618 0.0925 20.8898 0.0810 18.2927 -0.0115 -3.2829 

The Landers 
earthquake 

accelerogram (1992) 
0.4988 0.4137 0.4184 0.0851 17.0609 0.0804 16.1187 -0.0047 -1.1361 
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From the table 4.1 it can be concluded that the effectiveness of a single TMD for vibration 

suppression of a shear building increases with the increase in mass ratio of the TMD to 

structure. Maximum percentage of displacement reduction for TMD mass ratio of 0.05 and 

0.1 under sinusoidal acceleration is 69.41 and 75.7. As the considered sinusoidal load contain 

single known frequency it is very easy to tune with the frequency of single TMD. Maximum 

percentage of displacement reduction for same TMD under earthquake loading is found for 

El-Centro earthquake 1940. Again maximum increase in percentage of displacement 

reduction is higher for sinusoidal acceleration than earthquake ground acceleration. But under 

some earthquake acceleration maximum displacement of the shear building increases in 

certain amount with increase in TMD mass ratio as shown in table 4.1. 

 

4.4  2D FRAME MODEL 

 

Fig. 4.9: 2D frame model 

The frame is now modelled as two dimensional multi degree of freedom systems with each 

node having three degree of freedom. Whole the frame is discretised into 100 number of 

element. Basic data of the problem is given below. 

Total height of the building = 35 m 
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Height of each floor = 3.5 m 

Each bay width = 5 m 

Number of storey = 10 

Number of bay =2 

Size of beam = (0.25×0.35) m 

Size of column = (0.3×0.5) m 

Grade of concrete = M20 

Modulus of elasticity = 22360.6×106 N/m2 

Live load on slab = 3500 N/m2 

Total mass of 2D frame = 61250 kg 

First and second natural frequency = 5.5349 rad/s and 17.5789 rad/s 

4.5  LINEAR TIME HISTORY ANALYSIS OF 2D FRAME WITH AND WITHOUT 

SINGLE TMD 

The effectiveness of single tuned mass damper for vibration control is studied by linear time 

history analysis of the frame building under a sinusoidal load and the four numbers past 

earthquake data. The damping ratio of the frame building as well as damper is taken as 0.05 

for every mode. In each case fundamental frequency of the building without TMD is tuned to 

the frequency of the damper. The response is calculated in term of displacement at the 10th 

floor.  
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Fig. 4.10:2D frame model with single TMD 

 

4.5.1 Response of the 2D frame with variation of TMD mass ratio 

     (a)  Sinusoidal acceleration 

Two different mass ratios of 0.05 and 0.1 are taken in analysis. Frame building is subjected to 

sinusoidal acceleration Ä=Amaxsin(ω.t) at ground. Where, Amax and ω are the maximum 

amplitude of acceleration and frequency of the sinusoidal acceleration respectively. The 

parameters Amax and ω are 0.1 m/s2 and 5.5349 rad/s (considering resonance condition) 

respectively. 
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(a) 

 

(b) 

Fig. 4.11: Displacement of the 2D frame with and without single TMD at 10th floor under 

sinusoidal ground acceleration. For (a) Mass ratio 0.05, (b) Mass ratio 0.1 

(b) Random earthquake ground acceleration  

Here response of the 2D frame (in term of displacement) calculated with two different mass 

ratio of 0.05 and 0.1 for the TMD under the above mentioned random earthquake ground 

acceleration. 
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(a) 

 

(b) 

Fig. 4.12: Displacement of the 2D frame with and without single TMD at 10th floor under 

EW component of 1940 El-Centro earthquake. For (a) Mass ratio 0.05, (b) Mass ratio 0.1 
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(a) 

 

(b) 

Fig. 4.13: Displacement of the 2D frame with and without single TMD at 10th floor under 

Compatible time history as per spectra of IS-1893 (Part -1):2002 for 5% damping at rocky 

soil. For (a) Mass ratio 0.05, (b) Mass ratio 0.1. 
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(a) 

 

(b) 

Fig. 4.14: Displacement of the 2D frame with and without single TMD at 10th floor under 

Sakaria earthquake. For (a) Mass ratio 0.05, (b) Mass ratio 0.1 
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(a) 

 

(b) 

Fig. 4.15: Displacement of the 2D frame with and without single TMD at 10th floor under 

The Landers earthquake 1992. For (a) Mass ratio 0.05, (b) Mass ratio 0.1 
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Table 4.2 

Comparison study on the Maximum displacement (m) at the top floor of the 2D frame with and without single TMD (with variation of 

mass ratio) 

Type of loading Without 
TMD 
(D) 

With 
TMD of 

mass ratio 
0.05 (E) 

With 
TMD of 

mass ratio 
0.1 (F) 

(D-E) (D-E)×100/D (D-F) (D-F)×100/D (E-F) (E-F)×100/E 

Sinusoidal 
acceleration 0.0426 0.0293 0.0202 0.0133 31.2207 0.0224 52.5822 0.0091 31.0580 

El-Centro 
earthquake 

accelerogram 1940 
0.2542 0.2540 0.2358 0.0002 0.0787 0.0184 7.2384 0.0182 7.1654 

spectra of IS-1893 
(Part -1):2002 for 
5% damping at 

rocky soil 
0.1757 0.1658 0.1633 0.0099 5.6346 0.0124 7.0575 0.0025 1.5078 

Sakaria earthquake 
accelerogram 0.2305 0.2158 0.1876 0.0147 6.3774 0.0429 18.6117 0.0282 13.0677 

The Landers 
earthquake 

accelerogram (1992) 
0.4011 0.3877 0.3676 0.0134 3.3408 0.0335 8.3520 0.0201 5.1844 
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It can be concluded from table 4.2, that like shear building the response of 2D frame 

decreases with the increase in mass ratio of the TMD. The maximum response reduction 

under earthquake loading is very insignificant than under sinusoidal loading. The maximum 

percentage of response reduction takes place under Sakaria earthquake for both mass ratio of 

0.05 and 0.1. 

 

4.6  LINEAR TIME HISTORY ANALYSIS OF 2D FRAME WITH AND WITHOUT 

DOUBLE TMD 

The effectiveness of double tuned mass damper for vibration control is studied by linear time 

history analysis of the 2D frame under a sinusoidal load and the four numbers past 

earthquake data. The damping ratio of the 2D frame is taken as 0.05 for every mode. First and 

second frequency of the frame without TMD is tuned to the frequency of the first and second 

damper respectively. The response is calculated in term of displacement at the 10th floor.  

 

 

Fig. 4.16: 2D frame model with double TMD 
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4.6.1   Effect of non-uniform mass ratio of both TMD on the response of the 2D frame 

Here response of the 2D frame (in term of displacement) is calculated with mass ratio of 

0.075 and 0.025 for first and second TMD under sinusoidal acceleration and the above 

mentioned four random earthquake ground acceleration. The damping ratio of the damper is 

taken as 0.05.  

(a) Sinusoidal acceleration 

2D frame is subjected to sinusoidal acceleration ü=Amax(sin(ω1.t)+sin(ω2.t)) at ground. 

Where, Amax and ω are the maximum amplitude of acceleration and frequency of the 

sinusoidal acceleration respectively. The parameters Amax, ω1 and ω2 are 0.1m/s2, 5.5349 

rad/s and 17.5789 rad/s respectively (considering resonance condition) respectively. 

 

Fig. 4.17: Displacement of the 2D frame with and without double TMD (non-uniform TMD 

mass ratio as 0.075 and 0.025) at 10th floor under sinusoidal ground acceleration. 

 

 

 

0 2 4 6 8 10 12 14 16 18 20
-0.05

-0.04

-0.03

-0.02

-0.01

0

0.01

0.02

0.03

0.04

0.05

Time(sec)

D
is

pl
ac

em
en

t(m
)

 

 

disp without TMD
disp with TMD

Mass ratio = 0.075 & 0.025



53 
 

(b) Random earthquake ground acceleration 

 

Fig. 4.18: Displacement of the 2D frame with and without double TMD (non-uniform TMD 

mass ratio as 0.075 and 0.025) at 10th floor under EW component of 1940 El-Centro 

earthquake 

 

 

Fig. 4.19: Displacement of the 2D frame with and without double TMD (non-uniform TMD 

mass ratio as 0.075 and 0.025) at 10th floor under Compatible time history as per spectra of 

IS-1893 (Part -1):2002 for 5% damping at rocky soil 
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Fig. 4.20: Displacement of the 2D frame with and without double TMD (non-uniform TMD 

mass ratio as 0.075 and 0.025) at 10th floor under Sakaria earthquake 

 

Fig. 4.21: Displacement of the 2D frame with and without double TMD (non-uniform TMD 

mass ratio as 0.075 and 0.025) at 10th floor under The Landers earthquake 1992 
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Table 4.3 

Comparison Study on the maximum displacement (m) of the 2D frame without and with single or double TMD (for non-uniform mass 

ratio) 

Type of loading Without 
TMD  (G) 

with single 
TMD  for 
mass ratio 

0.1 (H) 

with double 
TMD for 
mass ratio 
0.075  and 
0.025(I) 

(G-H) (G-H)×100/G (G-I) (G-I)×100/G (H-I) (H-I)×100/H 

Sinusoidal 
acceleration 0.0438 0.0202 0.0078 0.0236 53.8813 0.0360 82.1918 0.0124 61.3861 

El-Centro 
earthquake 

accelerogram 1940 
0.2542 0.2358 0.1832 0.0184 7.2384 0.0710 27.9308 0.0526 22.3070 

spectra of IS-1893 
(Part -1):2002 for 
5% damping at 

rocky soil 
0.1757 0.1633 0.1327 0.0124 7.0575 0.0430 24.4735 0.0306 18.7385 

Sakaria earthquake 
accelerogram 0.2305 0.1876 0.1219 0.0429 18.6117 0.1086 47.1150 0.0657 35.0213 

The Landers 
earthquake 

accelerogram(1992) 0.4011 0.3676 0.1927 0.0335 8.3520 0.2084 51.9571 0.1749 47.5789 
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Here two different cases are taken response of the 2-D frame with single TMD and double 

TMD with different mass ratio (ratio of first TMD and second TMD mass to total structural 

mass is kept as 0.075, 0.025). But the sum of the total mass ratio of double TMD is kept 

constant as single TMD. It is found from the table 4.3 that for random earthquake 

acceleration, the maximum percentage of response reduction (51.96%) takes place under The 

Landers earthquake 1992. Also the difference in response reduction is higher for Landers 

earthquake. Percentage of response reduction for sinusoidal acceleration is 82.2%.  

 

4.6.2  Effect of uniform mass ratio of both TMD on the response of the 2D frame 

Here response of the 2D frame (in term of displacement) calculated with equal mass ratio of 

0.05 for each TMD under sinusoidal acceleration andrandom earthquake ground acceleration. 

The damping ratio of the damper is taken as 0.05.  

(a) Sinusoidal acceleration 

Loading condition considered same as given in section 4.6.1 (a) 

 

Fig. 4.22: Displacement of the 2D frame with and without double TMD at 10th floor under 

sinusoidal ground acceleration with uniform mass ratio of 0.05 
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(b) Random earthquake ground acceleration 

 

Fig. 4.23: Displacement of the 2D frame with and without double TMD at 10th floor under 

EW component of 1940 El-Centro earthquake with uniform mass ratio of 0.05 

 

Fig. 4.24: Displacement of the 2D frame with and without double TMD at 10th floor under 

Compatible time history as per spectra of IS-1893 (Part -1):2002 for 5% damping at rocky 

soil with uniform mass ratio of 0.05 
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Fig. 4.25: Displacement of the 2D frame with and without double TMD at 10th floor under 

Sakaria earthquake with uniform mass ratio of 0.05 

 

 

Fig. 4.26: Displacement of the 2D frame with and without double TMD at 10th floor under 

The Landers earthquake 1992 with uniform mass ratio of 0.05 
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Table 4.4 

Comparison study on the maximum displacement (m) of the 2D frame without and with single or double TMD (uniform mass ratio of 

0.05 for each damper) 

Type of loading without 
TMD (J) 

with single 
TMD  for mass 

ratio 0.1 (K) 

with 
double 

TMD for 
each mass 
ratio 0.05 

(L) 

(J-K) (J-K)×100 /J (J-L) (J-L)×100/J  (K-L) (K-L)×100/K 

Sinusoidal 
acceleration 0.0438 0.0202 0.0046 0.0236 53.8813 0.0392 89.4977 0.0156 77.2277 

El-Centro 
earthquake 

accelerogram 1940 
0.2542 0.2358 0.1732 0.0184 7.2384 0.0810 31.8647 0.0626 26.5479 

Time history spectra 
of IS-1893 (Part -
1):2002 for 5% 

damping at rocky 
soil 

0.1757 0.1633 0.1132 0.0124 7.0575 0.0625 35.5720 0.0501 30.6797 

Sakaria earthquake 
accelerogram 0.2305 0.1876 0.0910 0.0429 18.6117 0.1395 60.5206 0.0966 51.4925 

The Landers 
earthquake 

accelerogram(1992) 
0.4011 0.3676 0.1394 0.0335 8.3520 0.2617 65.2456 0.2282 62.0783 
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Effectiveness of double TMD with uniform TMD to structural mass ratio is considered here. 

From table 4.4 it is found that double TMD with uniform mass ratio are much more effective 

in vibration control than a single TMD of same mass ratio or double TMD with non-uniform 

mass ratio. Maximum response reduction of the 2D frame is also increase with increase in 

TMD mass to structural mass ratio. Here under almost all earthquake significant response 

reduction takes place but not at that much rate as in case of sinusoidal load. The maximum 

response reduction is 89.55 % for sinusoidal ground acceleration and 65.25% for the Landers 

earthquake acceleration. 

 

4.6.3  Effect of damping ratio variation of both TMD on response of the 2D frame for 

uniform mass ratio 

The effect of variation of damping ratio of both TMD is studied through the response of the 

2D frame (in term of displacement). Equal mass ratio of 0.05 for each TMD is considered 

under sinusoidal acceleration and random earthquake ground acceleration. 

(a) Sinusoidal acceleration 

Loading condition considered same as section 4.6.1 (a) 
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(b) 

Fig. 4.27: Displacement of the 2D frame with and without double TMD at 10th floor under 

sinusoidal ground acceleration with uniform mass ratio of 0.05. For both TMD damping ratio 

(a) 0, (b) 0.1
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(b) 

Fig. 4.28: Displacement of the 2D frame with and without double TMD at 10th floor under 

EW component of 1940 El-Centro earthquakewith uniform mass ratio of 0.05. For both TMD 

damping ratio (a) 0, (b) 0.1 
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(b) 

Fig. 4.29: Displacement of the 2D frame with and without double TMD at 10th floor under 

Compatible time history as per spectra of IS-1893 (Part -1):2002 for 5% damping at rocky 

soilwith uniform mass ratio of 0.05. For both TMD damping ratio (a) 0, (b) 0.1 
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(b) 

Fig. 4.30: Displacement of the 2D frame with and without double TMD at 10th floor under 

Sakaria earthquake with uniform mass ratio of 0.05. For both TMD damping ratio (a) 0, (b) 

0.1 
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(b) 

Fig. 4.31: Displacement of the 2D frame with and without double TMD at 10th floor under 

The Landers earthquake 1992 with uniform mass ratio of 0.05. For both TMD damping ratio 

(a) 0, (b) 0.1 

From the fig.4.27 to fig 4.31 it is found that the response of the 2D frame does not change 

with change in damping ratio of the damper and even maximum values of response remain 

constant. Hence damping ratio of the damper has no or zero effect on the response of the 2D 

frame under sinusoidal as well as random ground acceleration. 
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CHAPTER 5 
 

CONCLUSION AND FUTURE SCOPE OF STUDY 
 

5.1  CONCLUSION 

Present study focused on the ability of MTMD to reduce earthquake induced structural 

vibration. The frame is discretised using finite element technique. Linear time history 

analysis of the frame has been done at each time step by using Newmarks Beta method. 

Numerical simulation has been performed to compare the frame response with effect of 

uniform, non-uniform variation of mass ratio and variation of damping ratio of MTMD. From 

study it can be concluded that. 

1) Response of the frame building reduces with the increase in mass ratio of the single 

TMD. 

2) TMDs are much more effective to reduce structural vibration when subjected to 

sinusoidal ground acceleration. 

3) The MTMD with non-uniform distribution of mass ratio is more effective than single 

TMD same mass ratio. 

4) The MTMD with uniform distribution of mass ratio is most effective in vibration 

control in the present study. 

5) The frame has same response with single and multiple TMD if multiple TMD with 

uniform or non-uniform distribution of mass ratio is tuned to same structural 

frequency. 

6) The response of the frame building has no effect on the variation of damping ratio of 

the damper.  
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5.2  FUTURE SCOPE OF STUDY 

1) The frame model considered here is as one and two-dimensional. A further study can be 

done including three-dimensional structure model. 

2) In current study both the frame and Damper has been modelled as linear one.Thus a further 

study of this problem can be carried out using a nonlinear model for frame or TMDs or both. 

3) A further study includes using MTMD tuned with all the unfavourable structural frequency 

as well as placing them in different level of the frame.  

4) A future study can be done with active multiple tuned mass dampers. 

5) Optimal MTMD can also be designed considering unfavourable frequency of past earth 

data. 
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