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ABSTRACT 

 

           In wireless sensor networks, Self-localization is an important application in wireless senor 

network. The positions of the sensor nodes spread in the environment of interest are very helpful 

in several applications like environmental monitoring, precision agriculture, geographical 

routing, and detection of hazardous material in an environment and manufacturing. Since it is 

impossible to measure the sensor data position manually and the conventional method based 

GPS require large amount cost, there is need of estimation of the position of the sensor node 

using in a cooperative manner. In this some sensor can be spread whose position is already 

known and it can be consider as the reference sensor node. Using the position of the reference 

sensor node and the relative sensor measurement the position of the sensor can be calculated.  

             The choice of sensor measurement technology also plays a major role in the network’s 

localization accuracy, energy and bandwidth efficiency, and device cost. This thesis explains the 

theory of the sensor node localization for different pair wise measurements of time-of-arrival 

(TOA), received signal strength (RSS), quantized received signal strength (QRSS), and 

connectivity. We have taken the simulated data at different positions of the sensor node. From 

these different position the Cram´er-Rao lower bounds on the variance possible from unbiased 

location estimators are obtained.  In this CRB calculation we have taken the RSS case only. 

Maximum Likelihood estimation algorithm is studied and applied for a particular node position. 
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Networks, both wired and wireless, have been growing in size with years. As the size of the 

wireless sensor network node is decreasing, wireless sensor networks of thousands or tens of 

thousands of nodes have been proposed, and these numbers are continue to grow over time as 

wireless sensor nodes becoming cheaper. In most application of the sensor network the sensors 

are spread in the environment of interest and the data of the environment is measured by the 

sensor node. Using this data the condition of the environment can be calculated. Since the data is 

spread throughout the environment then without knowing the position from where it is measured 

the data become invaluable. In order to associate the position with the measured data the sensors 

should know their absolute position with respect to some reference point. Usually the sensors are 

spread randomly in a remote area where it is very difficult to measure their coordinate. For that 

purpose the sensor should find out their own position by cooperative communication among 

them. This means the sensors should transmit the signal among them and from the relative signal 

strength (RSS) and time of arrival (TOA) the relative position can be calculated. By placing 

some sensor nodes those know their absolute position the relative location can be change to some 

absolute value.   

             The thesis deals with the estimation of the positions of the sensor node present in 

environment of interest through cooperative communication among them which is already 

proposed in the paper [3-7] . The parameters considered during the position estimation are RSS 

and TOA. 

             Sensors are referred to a device which is connected, RF communication medium, to 

other devices present in the network. The sensors can be viewed as the nodes in a graph having 

some edges. These edges indicates the presence of communication link among different sensor 

nodes which is given in Fig. 1.1  In this scenario each node measures the environment parameter 

such as temperature, pressure and humidity and further transmit it to the other sensor through the 

communication link. In order to achieve this sensor nodes are equipped with transmission unit, 

measurement unit, processing unit and power supply unit. So all these units need  to   present in a 

single chip called integrated circuit (IC).  Here the measurement parameter are considered to be 

the signal strength and time of arrival. These data need to be transmit to a central high power 

processor called fusion center and fusion center processes the entire data and estimated the 
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position of the each node using some algorithm. Here the maximum likelihood estimation 

algorithm is used which is already explained in the paper [3].   

            Second, here position means the coordinate the sensor in x-,y- directions. These location 

coordinates to be estimated may be either physical location, or data location: Physical Location: 

The sensor’s physical coordinates, that is, where it exists. 

           As discussed estimating a sensor’s physical coordinates is very much important. For 

estimation of these physical coordinates, two types of sensor measurements are used in this 

thesis. First, the data is measured which is directly related to the relative sensor node position. 

For example if the one sensor measures the signal strength receives from the other sensor the 

change in signal strength between the two sensors is related to the distance between the two 

sensors.  

       Second, sensor data measurements can be directly taken into consideration, which are the 

direct measurements made at a single sensor of the environment near itself. For example, if two 

sensors are placed in every city of India for measurement of the rain, temperature throughout the 

year then the sensors present near to each other measures the data which are highly correlated to 

each other while the sensor present vary far from each other the data become more uncorrelated. 

This means the correlation between the data measurement empirically relates to the relative 

distance between the two sensors. However this situation is not considered in this thesis.  

          The motivation behind the study of this problem is introduced in the in Section 1.1 

Following this, the location estimation problem in wireless sensor networks is explained in 

Section 1.3.. 

1.1 Wireless Sensor Networks 

       Advancement in radio frequency (RF) and micro-electro-mechanical systems (MEMS) IC 

design have made possible the use of networks of wireless sensors for a variety of new 

monitoring and control applications. For example, smart structures could actively respond to 

earthquakes to make safe buildings and bridges, and constantly monitor for cracks or structural 

problems. In precision agriculture the crops can be save from loss by supplying appropriate 

amount of water and fertilizer. In order to do this the WSNs need to be spread in the field of 

crop. In case of war appropriate action can be taken which only be possible due to the wireless 

sensor network. Traffic monitoring systems can be made intelligent by using the sensor network 

through out the city of interest.  The source localization in the radar and sonar type problem can 
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be made feasible. Environment monitoring application such as finding the intensity of the 

poisonous chemical and other varieties of chemical can be made. So there is large number of 

applications are related based upon the wireless sensor network [1, 26]. 

     Since the data is distributed through out the environment so the data only can be made 

meaningful by knowing the position from where the data is observed. For example in precision 

agriculture the objective is to know the position where the humidity is very low. This low 

humidity indicates that the crop in that area is going to affect. So objective is to save that crop by 

supplying appropriate amount of water. Thus there is a need to embedded the data with the 

position otherwise it is very difficult to know the position where the humidity is less.   Moreover 

for geographical routing of the data the sensor should know their own position and the position 

of the point to where the data is to be transmitted.          

           Since the sensors are spread in a random and remote area it is possible to manually 

measure the position of each sensor node. On the other hand this can be made feasible by using 

the GPS based sensor. Often the sensors are low power. Since GPS based system demands large 

amount of power so the tiny sensor will die down very fast. So that the lifetime of the sensor 

network will be very less. Usually the sensors are spread for long time interval.  So the objective 

should be to increase the lifetime of the network. Moreover large amount of sensor nodes are 

required for these applications. Usually the GPS systems are very costly. So it may require large 

amount of cost to implement such system in real scenario. .   

 

               Instead, this thesis deals  with small of sensors and some reference nodes, which obtain 

their coordinates - either via GPS, or by a  system administrator during startup - and the rest, n 

unknown-location nodes, need to determine their position using the relative location between the 

known sensor node and unknown sensor node and the absolute position of the known sensor 

node. If sensors were capable of high-power transmission, they would be able to make 

measurements to multiple reference nodes and positioning techniques such as multilateration or 

multi-angulations could be applied. These direct techniques have been studied for a long time 

within and outside of the signal processing research group. However, low capability, energy-

conserving devices are lack of  a power amplifier, and also  lack of the  energy necessary for 

long-range communication, or it can be limited by some constraints on transmit power. Instead, 

wireless sensor networks, and localization techniques, can be applied using the multi-hop  
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‘cooperative’ localization, as shown in Fig. 1.2. Rather than solving each sensor’s position at one 

time, an algorithm needs to develop which can solve the  position of the entire sensor node 

cooperatively. By this way the power of the sensor node can be saved and also it requires less 

amount cost. 

          

 

 

 

 

 

 

 

 

Figure 1.1: This thesis considers sensor networks, in which nodes have wired or wireless 

communication channels, shown as arrows, with some other nodes. Each node also has a sensor, 

shown as S1, . . . , S8, which may measure the physical environment, or the node itself. 
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1.1.1 Motivating Application Example: Animal Tracking 

          If cooperative localization is implemented in wireless sensor networks as described above, 

many compelling new applications can be enabled. This application can help the purposes of 

biological research and animal behavior studies community to track animals over time and over 

wide area [4]. Such tracking can able to answer questions about the behavior of animal and the 

interactions of the animal among their own and with other animals. It is very difficult for 

tracking of the animal using the current practices.  A particular way is to attach VHF transmitter 

collars with the animals to track, and then triangulate their position by driving (or flying) to 

various locations with the use of a directional antenna. Alternatively, GPS-based system can be 

used with the animal but it requires large amount of cost and energy. Using wireless sensor 

networks this problem can be easily solved and the performance can be improved (as 

demonstrated by ‘ZebraNet’). By fixing the wireless sensor network based tags to the individual 

animal and using multi-hop routing of location data through this sensor network enables low 

transmit powers. Further, the inter-animal distances, which are of measure interest of animal 

research group, can also be calculated using pair-wise measurements and cooperative 

localization methods.  The end result of the requirement of longer battery lifetimes is less 

frequent in this case.  

Motivating Application Example: Logistics 

       As another example, consider the deployment of a sensor network in an office building and 

manufacturing floor.  Sensor can also play prominent role in automation of the manufacturing 

industry by spreading large number of sensors through out the area where the manufacturing 

process is going on. Sensors can measure the amount of things remain unused and where there is 

need of such amount. Monitoring all these and taking optimized action the production capability 

of the industry can increased drastically. Wired sensor has been used in monitoring and control 

of machinery. However the high cost can be reduced by using the wireless sensors.  Furthermore 

the automation can be increased by using the automatic localization of the sensor nodes.  
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          The boxes and parts which is to be warehoused and factory and office equipment can all 

be tagged with wireless sensors when first brought into the facility. Storage conditions 

(temperature, humidity) can be monitored and the HVAC system can be controlled. So by using 

wireless sensor network the equipment can be saved from loss. The wireless sensors are placed 

in every equipment and the sensors measure the relative distance between them. If the relative 

distance is equal at the time when it was placed  then there is indication that the equipment or 

thing is at the same place. But when the distance changed by large value at that time there is 

indication that the thing is displaced or someone has stolen.  So that it can be said to the 

information security about the stolen of the thing. Then again using the relative position 

estimation algorithm the place where it is present can be traced and can be retrieved from that 

place.   

       These methods of using radio-frequency identification (RFID) tags, can also be extended for 

application like this. Suppose large number of packets is entering to a house and these are placed 

inside the house. So at the time of entering these packets can be tagged by RFID. So there is no 

need to remember where these packets are present. Using the cooperative sensor localization 

system the relative position of the packet can be found out and can be used at the time of 

requirement.  So this relative position estimation system is having large number of potential 

application in real life world. Moreover this requires less amount cost so it can be made available 

for general people application.  

 

Costs of Commercial Logistics Solutions: 

           Logistics applications can be made easy by using this local positioning systems (LPS)., 

Sensors can be made active using signals transmitted to or received from high-capability base 

stations to locate them. However the cost for the deployment of the base station with LPS is the 

to cover an area of interest is very high. 

         For example, for a personal security application system on a small college campus a 

company called Detection Systems, Inc. (now owned by Bosch Security Systems) deployed a 

LPS. Here the RSS is used to find the location of the person which pushes the alarm button of its 

radio tag. So the security officer can rush to that area for assistance. It helps for security inside a 

campus.  However the system is very successful for giving protection to the people inside a 

campus. However the cost of the Detection System is very high that is around $400,000.     
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Another LPS system is provides by WhereNet Corp.  This is marketed as an “active RFID” 

solution. In this case the time of arrival (TOA) is being used to locate the position. In this the the 

active tags transmit the signal to the multiple base station.  Based on the time difference between 

the time of arrival of the received signal the position is estimated. Obviously this type of system 

suffers from multiple path fading and its cost is very high near to $350,000 to $500,000 for a 1 

million square foot warehouse. 

          In addition, the theoretical accuracy of cooperative sensor  localization increases with the 

density of sensors, which is similar to the Metcalfs Law, which holds that the important of 

network system increases with the increase of the number of nodes in the network. So if there is 

a large number of sensor nodes are present for different application then the cooperative 

algorithm can give good performance by using all the type of the sensors.  

Pair-wise and Sensor Data Measurements 

      Usually the sensors are spread over an area of interest to measure some data. As discussed 

the measured data by the sensors present near to each has a high amount of correlation. So the 

sensor data can be used to roughly estimate the position of the sensor. By this way it can be 

easily find which sensor is near to the one particular sensor. By this way the life time of the 

sensor can further be increased because there is no need  to used extra transmission of data for 

position estimation. This type of algorithm has already been used in different literatures. This 

type of method is only very much helpful for isotropic scenario which generally very less occur 

real time environment.   

            Such use of sensor data measurements for position estimation is restricted to the isotropic 

field. Since the isotropic field is very rare thus there is need to incorporate some other 

information for sensor position location. In this thesis some other methods are used which is 

already reported in some literatures for position estimation. These are pair wise signal 

measurements such as received signal strength, time of arrival, angle of arrival.  In received 

signal strength each sensor transmits a signal having some value and is received by other sensors. 

From the difference between the transmitted power and the received power by the different 

sensors and the model of environment the relative position can be calculated. This type of 

solution affects by the small scale fading and shadowing effect. Similarly in case of time of 

arrival  each sensor transmits the signal at a particular time and this time is  stored and the 

receving time by the other sensor are also stored. Taking the difference between the transmitted 
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time and receiving time the relative sensor position can be calculated. These measurements can 

be made using acoustic or RF signals.  

 

 

 

 

 

 

 

 

 

 

 

Figure 1.2: In cooperative localization (b), measurements made between any pairs of sensors can 

be used to aid in the location estimate. Traditional multi-lateration or multi-angulation 

(a) is a special case in which measurements are made only between an unknown-location 

sensor and known-location sensors.  

 

1.2 Problem statement 

Before plugging into the design it is useful to state the cooperative sensor location estimation 

problem [3].  So the objective is to estimate the positions of the sensors present the environment 
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of interest. Suppose there are ‘N’ numbers of sensor nodes are present in the environment. From 

these the positions of ‘m’ number of sensor nodes are known to us.  This can be achieved by 

manually or by using the GPS system.  So there are ‘n=N-m’ numbers of sensors remain whose 

positions is not known. Thus the objective is to estimate the positions of these ‘n’ numbers of 

sensor by cooperative manner. Here the positions of the sensors are defined by two parameters x-

coordinate and y-coordinate. Mathematically it can be represented as like below. In other way 

the two dimensional localization problem can be formulated like below.  So total number  2n 

numbers of parameters is to be estimated, ],[ yx   , where  

(1.1)                   ],...,,[ 21 nx xxx
,        

],...,,[ 21 ny yyy  

The number of parameters known to us is the coordinates ],...,,,...,[ 11 mnnmnn yyxx  , and  at least 

one of the of location measurements among the TOA, RSS, AOA.  The coordinates  of the  

sensor i can be referred as zi where zi=[xi,yi]
T
. Only the two dimension case is taken into account 

here. This can be extended into three dimension case. The measured data is the Pair-wise 

measurements Xij between the sensor ‘i’ and ‘j’ which is related to the relative distance between 

the sensor nodes. Eg. Time-of-arrival (TOA), angle-of-arrival (AOA), received signal strength 

(RSS), or connectivity (whether or not two devices can communicate). Le the sensor 

measurement at sensor i at time t be denoted by Vi(t).   

                              In this case all the pairwise measurements are not taken into account only the 

pairwise measurements which can be possible are taken into account. If all the pairwise 

measurements are consider then it wil be (N/2) pairs of measurements. Let the sensor ‘i’ can 

communicate with H(i) number of  sensors. This can be consider as a set. Obviously 
)(iHi

and 

}...1{)( mniH 
. The pairwise measurement can be different based upon the environment it is 

spread. If it is air it can be acoustic or electromagnetic signal. If it is water then it is only 

acoustic. Infrared signal can also be used as a communication between the two sensors. 

Moreover for different measurements like DOA,AOA,RSS different signaling technique can be 

used for example for TOA direct sequence spread spectrum (DS-SS) or ultra wideband [25] is 

more suitable.  These are discussed in chapter II. The main theme  of the  chapter-II is to study 

the impairment introduced in the measurement method due to noise. The main cause of 

impairment in the environments effect such as additive white Gaussian noise, shadowing effect, 
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impulse noise, multipath effect etc.   However these effects cannot be changed and also it is not 

known to us in advance. So the objective is to design efficient algorithm to estimate the positions 

of the sensor with less error. So large number of sensor measurement can only be helped to 

increase the performance of the estimator algorithm. In order to study the distortion the first 

objective is to find the appropriate model for this which is given in Chapter II.  

 

 

 

Figure 1.3: Cooperative localization is analogous to finding the resting point.  
 

1.2.1 Imperfect Prior Knowledge 

       For some applications some nodes have some imperfect prior knowledge. This imperfect a 

priori knowledge can be used with the measurement data to rectify this coordinates.  This can be 

used in designing the efficient algorithm and the performance can also be increased. The mean-

squared errors can be taken as the appropriate performance bounds in the case of imperfect prior 

information [4].   

             Our location estimation problem is based upon the relative location estimation. Then 

relative location estimation will be used with the knowledge of the sensor nodes which positions 

are known to us to obtain the position of the unknown sensor node. So different measurement 

technique will be used in order to achieve this objective.  
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Notation Description 

N=n+m 

n   

m 

Total number of sensors present in the environment 

Number of sensors with unknown position.  

Number of sensors with known positions.  

Zi Actual distance between two sensor  i, i=1,2,….,n+m 

Pi,j 

Π0, 0 

np 

σdB 

Power received by sensor i which is transmitted by sensor j 

Π0  is the free space received power at some reference distance  0 

RF is the path loss exponent 

Standard deviation of RSS at some node  in dB 

δij Measured /estimated raw distance between the sensors i and j  

iẑ  

Z 

Estimated coordinates of the sensors i, i=1,…,n 

Actual coordinate matrix 
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Chapter 2 

 
 
 

 

LOCATION MEASUREMENT  

AND MODEL 
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For the development of a good localization algorithm, the channel impairments methods need to 

study accurately.  There is large number challenges are present in this. Propagation of RF signals 

in real world is obstructed by building, moving object, multipath fading etc.  The pair-wise 

measurements need to accurately model in the scenario where it is done. This chapter discusses 

the study done by the Neal Patwari and his group to model the environmental factors. They have 

done a large extensive on this. This can be found out from the literatures [3]. These models can 

help to design efficient algorithms which are discussed in the later chapters.  These models are 

presented and tested using the measured data.   

               Generally, the time varying errors such as (e.g. due to additive noise and interference) 

are responsible for the degradation in range and angle measurements. The effect of these time 

varying errors can be erased by taking the average measurements data. Where as environment 

dependent errors are due to the building, trees, obstacles, people etc.  So the time varying errors 

can be modeled as random variable since these are varying with time where as the environment 

dependent errors effect is much more. So the main challenge is to model these environment 

dependent errors.   

                

2.1 Measurement Characterization  

                     In order to do the statistical characterization the measurement data the following 

procedure needs to be done. Suppose the statistical characterization is to be done for a network 

of ‘N’ number of sensor nodes those are arranged in a particular geometry.   For this ‘K’ number 

of such network needs to be placed at different environmental condition such as in the building, 

in the open area. Then large number of data is to be measured between the different sensor 

nodes. Then there is to find the mean of all these data. For accurate characterization the 

measured data is to be taken much more. Then the joint probability function between the 

different sensor networks among the K number of sensor network is to be calculated.  For 

different type of geometry this type of experiments need to be repeated for different environment 

scenario.   
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            These measurements need to take some simplifying assumptions. These assumptions may 

be incorrect in real environment scenario. For example if large number of sensor nodes are 

spread densely in an environment then the different communication link are similar in terms of 

their correlation where as it is very difficult to model these measured data using these correlation 

factors inside the model. Thus it can be assumed that the different communication links are not 

correlated to each other. By this simplifying assumption it will be easy to mode the measured 

data. However this can be incorporated to design very efficient localization algorithm, which can 

be treated as the future work of this?  

            The second simplifying assumption is about the choice of the distribution function of the 

measurement data. For the measured data is to be subtracted from its mean and then the 

distribution of the residual error is to be modeled near to a famous distribution such as Gaussian, 

lognormal or mixture distribution. Then the likelihood function of the error can be calculated. 

Since this may add some other error and it will not give good performance still it is advisable to 

simplify this to a near famous distribution and it is more motivated at the time of the starting of 

the research in this field. Then in future it may be extended for distribution function estimation 

such as nonparametric distribution function. By using nonparametric distribution a large number 

of measured data can be easily approximated to a correct distribution. The main problem 

associated with this nonparametric distribution estimation is that it requires large number of 

computational complexity which may not be suitable for wireless sensor network. Due to 

development of low power VLSI and efficient VLSI architecture now-a-days it is not a problem 

from computational point of view.   

         Neal Patwari and his group have conducted several measurement experiments in order to 

estimate accurate statistical models for RSS and TOA measurements data for indoor wireless 

sensor networks. Section 2.6 deals with these measurement experiments. However, it is required 

to  have a general idea to the sources of the errors and difficulties associated with each type of  

measurements, before understanding to a particular measurement campaign. So, Sections 2.2 

through 2.5 contains the  introduction for various measurement models. Each measurement 

model section deals with the four sub-topics: ‘Major Sources of Error’, ‘Statistical Model’, and 

‘Calibration and Synchronization’.  
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2.2 Method of Received Signal Strength 

                 Received signal strength (RSS) is defined as the signal voltage measured at the 

receiver node by using some circuit. This RSS based position estimation is a very popular area 

especially in the mobile network. However this requires large amount of power needs to be 

transmitted by one sensor to avoid the noise present in the environment. For this purpose a high 

power short pulse needs to be transmitted in the environment.  However it can be easily affected 

by the environment noise.  In order to use this the environment noise and its implication to the 

RSS must be studied thoroughly. The main source is the noise present in the environment such as 

AWGN and impulse noise.  

 

2.2.1 Major Sources of Error in RSS 

                   The decays of signal power in free space is  proportional to d
−2

, where d is the 

distance between transmitter and receiver. So the multipath signals and shadowing are two major 

sources which belong to the  environment-dependence in the measured RSS. Multiple signal with 

different phase which comes from reflection from different objects present in the real world 

added to each other at the receiver so it leads to fading at the receiver. Further different 

frequency with different phase reached at the receiver which leads to frequency selective fading. 

These two factor accounts for the distortion of RSS at the receiver. In order to avoid this 

wideband signals needs to be used having a high power. CDMA is one such solution to this.   

         The effect of frequency selective fading can be made decreases by using CDMA method. 

However due to the presence of wall, floor and different objects in the environment the 

shadowing effect come into picture.  Since this objects positions are random this shadowing 

effect can be assumed to be random in nature. So there is need to find the distribution about this 

random variable. This can be obtained by taking large number of measured data and then 

subtract the mean from this measured data. Due to this the received signal is attenuated. 
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2.2.2 Statistical Model 

       Typically, the ensemble mean value power decays proportional to d
-np 

where np is the ‘path-

loss exponent’. This value is typically between 2 and 4. So the the ensemble mean power at some 

distance d can be  modeled as 

(2.1)          
0

log10)(



d

ndp po  

where 0 is the received power (dBm) at a short reference distance 0 . The difference between 

the measured received power and its mean, which is due to the randomness of the shadowing, 

can be  modeled as log-normal distribution.  This model is based on a wide variety of 

measurement result and analytical evidence [30]. This model is also tested by the  experimental 

measurements done by Neal Patwari which is shown in Section 2.6. The standard deviation of 

received power (when received power is expressed in dBm), σdB, has units of (dB) and is 

constant with distance. Typically, σdB is between  4 and 12. Thus, the distribution of the received 

power (dBm) at any sensor i transmitted by j, Pi,j is  

(2.2)         )),(;()/( 2

dBjiij zzppNpPf    

Where ),;( zyxN is our notation for value of x of a Gaussian p.d.f. with mean y and variance z,θ 

is the coordinate parameter vector from(1.1), and the actual transmitter-receiver distance 

ji zz   is given by  

 (2.3)    
22 )()( jijiji yyxxzz   

For a two dimensional location coordinate  
T

iii yxz ],[
 

 

 

2.2.3 Estimating Range from RSS 

The estimated distance between any two sensor node devices i and j, can be found from jip ,

given by jiji zzd ,  is, 
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where c1 is a constant independent of θ. Due to the quadratic form of the distribution, it is found 

that the maximum of (2.4) occurs for   ,, jiji zzPP   where the p is shown  in (2.1). Thus 

the estimated distance can be calculated as 
MLE

ji, which best estimates 
ji zz   in the maximum 

likelihood sense is given by                    

(2.5)                                              
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Thus  
MLE

ji,  has a log-normal distribution since log
MLE

ji,  has a Gaussian distribution, and that 

(2.6)                                          ,, ji
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(2.7)         C=exp[γ/2], where 

2

10log

10













dB

pn


  

(2.8)                       p

ji

n

p

BC

ji
C

100
,

,0

10








  

2.2.4 Problem of Calibration and Synchronization  

It is found from (2.1) that the distribution of the RSS model is a function of the path loss 

exponent np. This need to be  estimated along with the coordinates of the sensor, as an unknown 

parameter.  

            Moreover, the measured RSS is also depends upon the calibration of  the transmitter as 

well as the receiver. Since the calibration and power of the sensors vary from device to device, 

there is a need that each sensor should report their calibration data to their neighborhood sensors.                  

Otherwise the sensor power and calibration value can be taken as unknown parameter and needs 

to be estimated along the coordinate. Which further increases the complexity of the sensor node?  

This can be solved by using the method of estimation with some unknown parameter. This may 

also degrades the performance of the estimation process.  

 

2.3 Method of Time-of-Arrival 

              The time of arrival is the time at which the received signal reach at the receiver.  The 

time difference between the transmitted signal and the received signal depends upon the speed of 
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the signal and the distance between the two sensor nodes. So as the distance between the two 

sensor increases the TOA increases. The main draw backs associated with this is the 

synchronization problem. Due to multiple reflection from the different objects present I the 

environment the objective is to find the time of arrival of the first signal. This type of distance 

estimation also affected by additive noise present in the environment. If the environment noise is 

more stronger that the received signal then it is very difficult to find the line of sight signal and 

the processor speed should be very fast to record the arrival time.   

 

2.3.1 Additive Noise 

          Although assuming that the multipath signal is not present the TOA also affects by the 

noise present in the environment. If the noise is strong enough then it is become very difficult to 

find the line of sight signal. For this the correlation based TOA can be used. In this case the 

correlation of the received signal is found out with the known transmitted signal. Then the time 

for which this gives the maximum value that can be considered as the TOA. However the more 

advanced methods are available which is known as the general cross correlation in which the 

received signal is first prefilter and large noise value are attenuated and then the cross correlation 

is carried out.            

                 Although assuming that the multipath signal is not present the TOA also affects by the 

noise present in the environment. If the noise is strong enough then it is become very difficult to 

find the line of sight signal. For this the correlation based TOA can be used. In this case the 

correlation of the received signal is found out with the known transmitted signal. Then the time 

for which this gives the maximum value that can be considered as the TOA. However the more 

advanced methods are available which is known as the general cross correlation in which the 

received signal is first prefilter and large noise value are attenuated and then the cross correlation 

is carried out.  

                  

(2.9)  ,
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        where Ts is the signal duration, and SNR is the signal to noise power ratio. By changing  the 

system to find a very high SNR, the bound can be achieved for multipath-free environment. Thus 

it  provides an intuition about how duration, bandwidth, and power affect parameters affects the 

ability to estimate the TOA.  

 

2.3.2 Multipath Problem 

             The errors caused by the multipath system is very serious than the error caused by the 

additive noise. In this the late arriving signals can be added to give a high peak in the cross 

correlation. So there is need to design an alternative method for finding the TOA which will give 

less error. In order to do this the first peak of the cross correlation need to betaken into account 

than the maximum cross correlation value. For this there is need to fix a threshold value and 

when the correlation value will be greater than this value that time may be taken as the TOA.  

However this value is to fixed in advance by doing some experiment about the environment.  

      . Usually the TOA errors in estimation problem are caused by two major problems: 

 Early-Arriving Multipath: After the LOS signal  a large number of multipath signals arrive at the 

receiver whose contributions in the calculation of the cross-correlation decrease to find the actual 

location of the peak from the LOS signal.  If the late arriving multiple path signals are strong 

enough at that time the cross correlation due to the late arriving signal minimizes the effect of the 

real peak.  This type of situation is very bad in TOA estimation. In this case the the late-arriving 

multipath components attenuates the  LOS signal severely. It can be considered as a scenario of 

‘lost in the noise’ and missed completely. It gives large amount of errors in the TOA estimate. 

                   In the case dense sensor networks, any pair of sensors can able to measure the TOA. 

There is distinct advantage of this to measure the TOA.  With the decrease of the length the path 

length decreases and the LOS signal power (relative to the power in the multipath components) 

generally increases. The measurement study is very much helpful in verification of this claim. 

Because it presents the synchronized indoor TOA measurements data which specifically 

measured the received power in the LOS signal and then it is compared with the received power 

measurement at later time. These measurements were done in a large number of links in an office 

building, and it was shown that the relative LOS signal power is high at low path lengths, and 

slowly decreasing with increasing path length. Thus, the severely attenuated LOS problem is 

especially severe in networks with large inter-sensor distances. 
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          Usually the TOA errors in estimation problem are caused by two major problems: 

 Early-Arriving Multipath: After the LOS signal  a large number of multipath signals arrive at the 

receiver whose contributions in the calculation of the cross-correlation decrease to find the actual 

location of the peak from the LOS signal.  If the late arriving multiple path signals are strong 

enough at that time the cross correlation due to the late arriving signal minimizes the effect of the 

real peak.  This type of situation is very bad in TOA estimation. In this case the the late-arriving 

multipath components attenuates the  LOS signal severely. It can be considered as a scenario of 

‘lost in the noise’ and missed completely. It gives large amount of errors in the TOA estimate. 

                   In the case dense sensor networks, any pair of sensors can able to measure the TOA. 

There is distinct advantage of this to measure the TOA.  With the decrease of the length the path 

length decreases and the LOS signal power (relative to the power in the multipath components) 

generally increases. The measurement study is very much helpful in verification of this claim. 

Because it presents the synchronized indoor TOA measurements data which specifically 

measured the received power in the LOS signal and then it is compared with the received power 

measurement at later time. These measurements were done in a large number of links in an office 

building, and it was shown that the relative LOS signal power is high at low path lengths, and 

slowly decreasing with increasing path length. Thus, the severely attenuated LOS problem is 

especially severe in networks with large inter-sensor distances. 

 

2.3.3 Statistical Model 

         (2.10)                            ,,/;)( 2

, TTpjiji vzztNtTf    

 

             The presence of large errors magnitude can invalidate the Gaussian model. These errors 

increase the tails of the measured signal distribution of measured TOA heavier than Gaussian. It 

can be modeled using a mixture distribution. In this mixture of distribution there is two 

distributions one with small variance distribution and the other is a large variance distribution.   

This can be considered as situation of outliers in a Gaussian noise. For this situation position 

estimation system needs to be  designed which will be  robust to these large errors. These errors 

can also be called as non-line-of-sight (NLOS) errors.  For the situation where TOA 

measurements are made in a channel which is changing, the TOAs which consist of excess 
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delays can be ignored. For the static channels, the redundancy can be used if the numbers of 

range measurements to a device are greater than the minimum number of device required, to 

identify likely NLOS errors [21, 5].   

 

2.3.4 Problem of Calibration and Synchronization 

          If the clocks in the wireless sensors are accurately synchronized, then the time delay can 

easily determined by subtracting the known transmit time from the from the measured TOA. 

However the available clock synchronization algorithms are well suited for acoustic signals, not 

for RF signals. 

            For asynchronous sensor network a common practice to estimate the time of arrival is if a sensor 

send a signal to another sensor then the second sensor immediately reply to it. Thus time of arrival is half 

of the time difference between the difference of the reception time and the transmission time from the 

time taken by the second sensor to reply this. For this case the processor speed of the second sensor 

should be very fast to receive and reply the second sensor otherwise the second should also transmit the 

time taken by it to reply. If the first sensor is equipped with a sophisticated DSP processor then it can 

easily find out the receiving time from the multiple sensor using the muti use interference cancellation 

technique.   

            On the other way the state of the each sensor clock can be taken as an unknown 

parameter and it can be added with the parameter to be estimated. With this the number of 

parameters to be estimated increases. So the number of computational complexity also increases.   

  The difference between the arrival times of the same signal at two sensors is called the time-

difference of arrival (TDOA). Usually the TDOA measurement between the two sensors does not 

depend on the bias of the clock. This has already been used in source localization and GPS 

system.  

 

2.3.5 Method of Ultra-Wideband and TOA 

            UltraWideband (UWB) communication uses a  narrow pulses having very short  duration 

of time. This type of signal are broadly spread in frequency  domain.  This type of signal can be 

used for calculation of time of arrival. This type of signal can easily discriminate in the 

environment where the objects are present very far from each other. This type of signal can also 

be used to find the relative distance beteen the two sensor which are placed very near to each 
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other and the objects are present far away from this.  The article published by Gezici et. al. gives 

a detailed of UWB-based localization. A signal can be  considered as a UWB signal if either its 

fractional bandwidth, which is the ratio of its bandwidth to its center frequency, is larger than 

0.2, or the signal is a multiband signal having  total bandwidth greater than 500 MHz.    

           However the generation of UWB signal is very tough. So a large amount of power is 

reuired for generation of the UWB signal. Thus the life time of the sensor node decreases by 

using this type of method. Hence this is not suitable for wireless sensor network scenario.  Only 

it can be suitable for the scenario where power is not a constraint. So it is suitable for radar and 

sonar type application where power is not a problem.  

 

2.4 Method of Angle-of-Arrival 

                   In this case the angle information is used for localization of the senor. This made 

feasible by providing the information about the direction of the receiving of the signal to the 

other sensors, where as previous methods the sensors gives the distance to the neighbor sensor.  

In this case each sensor is equipped with three or four antennas that measures the time at which 

the signal is received. The inter antenna distance is already known to the sensor. Using the time 

of arrival of the signal and the geometry of the position of the antenna the angle of arrival is 

calculated. This is similar to the array signal processing. In which the antennas can be considered 

as an array whose position with respect to the center of the sensor node is already known.                 

In The AOA is estimated from the differences in arrival times for a transmitted signal at each of 

the sensor array elements. The estimation is similar to time-delay estimation, but generalized to 

the case of more than two array elements. When the impinging signal is narrowband (that is, its 

bandwidth is much less than its center frequency), then a time delay τ relates to a phase delay φ 

by φ = 2πfcτ where fc is the center frequency. Narrowband AOA estimators are often formulated 

based on phase delay. 

            The second method of finding the angle of arrival is by using the three directional 

antennas. Due to the directional nature of the antenna the received signal strength is different at 

different antenna. By taking the ration of the signal strength and the positions of the antenna the 

direction of the source can be found out.  Thus there is different ways to find out the received 

signal strength.. 
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                 Since all these methods require large number of antennas in the sensor node thus the size and 

cost of the sensor node increases by large amount. In order to do this a high frequency signal is to be 

used. However the processing at this high frequency signal requires large amount of high power 

processor, which further increases the requirement of a large device. In order decrease all these millimeter 

wave can be used. In case of millimeter wave the oxygen absorption helps to decrease the multipath 

effect.  

 

2.4.1 The Sources of Error and Statistical Model 

The sources of the error in case of angle of arrival is similar to the case of TOA. In this case  the 

multipath fading and aadditive noise are measure source of error. If the error is modeled as 

Gaussian then the mean is the accurate angle of arrival and having some standard deviation 

value.   Theoretically the standard deviation of the angle of arrival is already calculated and in 

different literatures [24] [8]. So due to different ways of angle of arrival calculation standard 

deviation is also different.  

 

2.4.2 Problem of Calibration and Synchronization 

            Since it is not priority known the orientation of the antennas. Then the calculation of 

angle of arrival is very difficult. In this case the sensor should tell the orientation of the angle to 

its neighbor sensor such that it will be easy. More over the since the sensor nodes are spread 

randomly through out the environment so there is need to calculate the orientation of the 

antennas. Otherwise as discussed previously the orientation of the antenna can be add as 

unknown parameter to estimate. These further increases the number of computation required at 

the sensor node.   

  

2.5 Method of Quantized RSS 

               Connectivity measurement is an important method to find whether two sensors are 

connected to each other or not. If two sensors are not connected then there is no way to study the 

distance between these two  sensors. In this the first objective is to find out whether two sensors 

are connected to each other or not.  This can be done by using the method of quantized receive 

signal. In this case the data is first sent from one sensor to the other sensor making it packet. 

Then if two sensors are connected then the other sensor can easily demodulate the packet without 
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any error if it is not connected then it is not possible. This method can be termed as the quantized 

received signal. The signal is first quantized and then it is transmitted to the neighbor senor.  

                     This can be modeled as binary signal strength receiver ike beow. In this case the 

mathematical representation is given by  
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where Pi,j is power received at the sensor I send by the sensor j in (dBm) and p1 is the threshold 

value. If the received signal is above this threshold value then it ca be considered as 1 other wise 

it can be consider as 0.  

                     In many cases the received data is not a step function. In this case the error is to be 

calculated by sending large number of packets through the channel. So here  the number of 

packets are erroneous is to be calculated.  This method can also be implemented in different 

sensors to find  out the position and  the relative distance between then . However the main 

problem is associated with this the large number of packets needs to be transmit through the 

channel and then the  error can be calculated. It takes large amount of time. Moreover it requires 

large amount of power. So this will helps to decrease the lifetime of the sensor network by a 

large amount. So the life time of the sensor network deceases very fast. The objective should be 

to use very less power for localization so that the other energy can be used for other applications. 

For which the sensor network is meant.   Thus The number of received packets can be modeled 

as  a random variable. This can be given by  

 (2.12)                       ]/[]/1[ ,,, jijiji PerrorpacketnoPPQP   

           

                      This can also be modeled as the Gaussian process having some mean and the 

variance which is shown latter.  

            

           The probability of error depends upon the signaling method being used, packet length and 

the forward error correction. The lower and the upper bound can be calculated using some 
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methods. This also depends upon the type of the received detection is being used. Taking all 

these account this method can be think as a complicated method for position estimation.   

            Finally, it can be noted that the proximity is a step function of RSS  assumption cannot 

loose the upper and lower bound significantly. In case of digital receivers in typical fading 

channels. In case of digital receivers, the received power is very large so that the error is very 

small and similarly the probability of getting the real power is one.  The range of power which 

provide probability equal to the zero and one is very less hence the error occurs in this method is 

very less. The multipath fading is the measure error in this case which degrades the accuracy of 

the method to large amount. This error is very large than packet error. The log normal standard 

deviation in this case is of the value 8 dB.  As the power level of the transmitted signal increases 

then the error value goes on decreasing. So more power and large number of packets helps to 

design an efficient method of position estimation in this case.   

         This can be modeled mathematically like below.  

(2.13)  )],1([)1(],[ ,, ji

S

jiji gsZZsQP 

 

(2.14)

 

,ln)(,

s

ji

ji
d

ZZ
sg


 

 

(2.15) 

2

10log

10













dB

p




  

 

where  1,0s , and ds  is the range value which provides the actual distance 

between the two signal.  Specifically, from (2.1), 
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The function  s  gives the CDF of a Gaussian random variable having mean zero and variance 

one.  

2.5.1 Method of Quantized RSS  

          In the previous case only one bit quantization is used. It can be extended for large number 

of quantization level such that the error can be decreases.  Connectivity measurements method is 

just a binary quantization of the case of RSS measurements method. In more general case large 

number of quantization level can be considered. Suppose it is divided into ‘k’ number of 

quantization levels. This value should be known at the other sensor nodes. In this case the 

number of errors increases because of the increase of the number of level and decrease of the 

step size. So the error can only be decreases by increasing the size of the quantization level and 

decrease of the number of quantization level. So more power is required in this case. So power 

amplifier needs to be used in the transmitter. This situation also requires more powers so that the 

lifetime of the sensor network also decreases. So the sophisticated scenario needs to be done.  

There is also another problem that occurs in QRSS method. That problem can be called 

as the processor problem. If the number of quantization level increases, the processor needs to be 

very fast to implement. In this case the fast processor is required so that the cost of the device 

also increases. 

In the previous case only one bit quantization is used. It can be extended for large number of 

quantization level such that the error can be decreases.  Connectivity measurements method is 

just a binary quantization of the case of RSS measurements method. In more general case large 

number of quantization level can be considered. Suppose it is divided into ‘k’ number of 

quantization level. This value should be known at the other sensor nodes. In this case the number 

of errors increases because of the increase of the number of level and decrease of the step size. 

So the error can only be decreases by increasing the size of the quantization level and decrease of 

the number of quantization level. So more power is required in this case. So power amplifier 

needs to be used in the transmitter. This situation also rewiores more powers so that the lifetime 

of the sensor network also decreases. So the sophisticated scenario needs to be done.  
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There is also another problem that occurs in QRSS method. That problem can be called 

as the processor problem. If the number of quantization level increases, the processor needs to be 

very fast to implement. In this case the fast processor is required so that the cost of the device 

also increases.    

This can be modeled like below  1,...,1,  ksPs  are the number of quantization levels 

Similarly, let us define  ds  as the path length. This path length  correspond to the the mean 

received power. This  is equal to sP , as given in (2.16). So  a measurement of sQ ji , for s

 1,...,0  k  would occur if  1, ,  ssji PPP . 

Similarly, sQ ji , would occur if  ,,1, ssji dd   where 
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There is no lower bound for  the ‘out-of-range’ power (the lower bound of level s=0), For 

this case let us define 0P (dBm). There is also no term to define the maximum power (the 

upper bound of level s=k-1), For this case there is also need to  define )(dBmPk  . 

Using(2.16), this it can be  that 0d and dk=0. It may be noted that the  Ps are increasing with 

s, but ds are decreasing with s. 

Now the probability density function of QRSS measurements can be written as, 

(2.18)
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2.5.2 Problem of Calibration and Synchronization 
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            The QRSS and connectivity also posses the same calibration and synchronization 

problem as in RSS. It may be  noted that, the QRSS is a more realistic scenario which may in 

real position estimation since the data is quantized. Since RSS need to be quantized so that it can 

be easily detected at the receiver. Moreover in real case a technique should be their which will 

indicate the receiver the proper value of the quantized.  In real scenario these are not known in 

that case a sub-optimal algorithm can be used to estimate the quantized function.  

 

2.6 Channel Measurement Experiments done by ‘Neal Patwari’  

      This section  deals with the pair wise measurements done (M2M) by using wideband 

channel. These measurements were done  in the Motorola laboratory facility in Plantation, 

Florida. The term ‘multipoint-to-multipoint’ indicates that the every link between the each sensor 

nodes pair is done.  That means the every channel between every pair of sensors is measured. 

The conventional measurement method deals with the pair wise measurement between the base 

station with the each small station present in the environment. This is valid for WLN deployment 

or mobile tower deployment. This can be called as point-to-multipoint measurements.  

         The objective of these was to test how the real world environment is following the 

measurement model considered in the thesis how these algorithms will perform if it will be used 

in real world environment. This can also help to get the real data of the environment. This data 

can be directly tested with the localization algorithm to find how accurate the algorithm can 

work in real environment.    

          In both campaigns the following environment is taken into account.  The measurement 

scenario was an office building  partitioned by 1.8m high cubicle walls. There was also presence 

of  hard partitioned offices, external glass windows and cement walls on the outside of the area. 

There also metal and concrete support beams were present within and outside the area where the 

experiment was done. The offices premises were occupied by desks, bookcases, metal and 

wooden filing cabinets, computers and some equipment. Since the areas was an open plan, hence 

it may be  difficult to define the dimension of the  ‘room’,. This was a typical of office 

environments.  

 

. 
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           The log-normal distribution of the RSS measurements can be  verified by quantile-

quantile plot  using the examining the residuals 
R

jir ,  . If the data is lognormal then the plot will 

give a straight line.  

 

2.7 Conclusion: 

        The models presented in Sections 2.2 through 2.5 have been verified by the experiment 

done by Neal Patwari. Experiments data has been shown in the site,  which has been conducted 

by the Neal Patwari and his group. Wireless sensor networks has been designed only to use these 

pair-wise measurements. Cramer-Rao bounds can be efficiently obtained using the mode given 

in the literature.  
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3.1 Limits on Localization Covariance 

The Cramer-Rao lower bound gives a mean for calculation of the lower bound for one particular 

estimator. This is only valid for the case of unbiased estimator. Since in our case the random 

variable is modeled as of mean zero and variance finite so it is a unbiased estimator. The number 

lower bound can be calculated for different methods such as AOA, TOA, RSS and QRSS. The 

lower bound indicates the performance of the estimator that means if the lower bound is very low 

then that estimator is very good. On the other hand it can be think that the lower bound gives one 

reference to judge whether the performance of a method is good or not. And moreover it also 

helps to judge if the performance is good how much good is it. In this thesis the mathematics 

done by Neal Patwari et. al. [3] is reported to calculate the lower bound. It is found that the lower 

bound depends upon the following factors.  

Number of unknown-location and known-location sensors, 

1. Sensor geometry, 

2. Whether localization is in two or three dimensions, 

3. Measurement type(s) implemented (i.e., RSS, TOA, or AOA), 

      5. Channel parameters (such as σdB and np in RSS, σT in TOA, or σ_ in AOA 

         measurements), 

6. Which pairs of sensors make measurements (network connectivity), 

7. ‘Nuisance’ (unknown) parameters which must also be estimated (such as clock bias for  

TOA or orientation for AOA measurements). 

              This section deals with the analytical results obtained for the CRB.  Firstly it is indicated 

that the in cooperative sensor location the priori information about the sensor node position and 

the pair wise measurements are used. So the lower bound depends upon the priori information 

about the sensor node position and the measurements. In this case also it is shown that as the 

number of priori information increases and the lower bound decreases. ,It also depends upon the 

self calibration of the sensors present in the environment.      Different lower bound has been 

obtained for different measurement. This lower bound is shown to calculate the relative 

performance between the different methods. 

 In order to make the analysis simple two types of assumptions are taken into account the device 

parameters and the channel parameters are assumed to be known. This is requires in the first of 

the calculation of the lower bound. If the unknown parameters goes on increasing then the lower 
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bound goes on increasing. Because as the  unknown parameter is need to be estimated first then 

the actual parameter is to be estimate. In this case the unknown parameter provide some 

uncertainty or bound which goes on adding with the increase of the unknown parameter. For this 

case to make the formulation short the assumption need to be incorporated inside the 

formulation.  

3.1.1 What is the Cram´er-Rao lower Bound? 

              The Cram´er-Rao bound (CRB) gives the lower bound of the performace estimation.  

The bound is very useful for comparison purpose between different methods . This can be treated 

as an uncertainty principle for location estimation. A detailed analytical result is given in the 

thesis which is taken from Neal Patwari’s thesis. This can be treated as an overview.  This is 

found out by using cooperative method All this methods are based upon the statistical 

distribution assumption. The statistical methods are given in the previous sections. The statistical 

distribution is a function of the unknown parameter. So this can be consider as conditional 

likelihood function of the distribution function on the parameter to be estimated, which can be 

given by f (X|θ), where X represents the random measurement, and the other value is the 

parameters that are to be estimated. The lower bound can be given by        (3.1)

    1

)(ln)ˆ(



T

xfECov  
 

This is the general forlumation of the lower bound 
 

Here the )ˆ(Cov  is the covariance of the parameter estimator, E[.] gives the  expected value, 

is the gradient operator w.r.t. the vector  ,subscript T indicate transpose. 

 

          . Figure 3.1: Example log-likelihood functions for two-parameter estimation with (a) small 

and (b) large curvature. The variance bound will be higher in example (a) than in (b). 
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       The bound can be treated as the sensitive analysis for any random measurements. That 

means this indicate how the distribution function is sensitive to the parameter to be estimated. If 

it is more sensitive then the bound is very less. Hence the bound can be defined in terms of the 

curvature of the distribution function with respect to any parameter. If the curve is more then 

sensitivity id more and the bound is less. Usuallay the bound is calculated taking logarithm of the 

distribution function. As shown in figure if  the curve is more the bound is less and the 

estimation performance is more. However this is only limited to the unbiased estimator.                  

The CRB is very limited to the unbiased estimators. Such an estimator provide coordinate 

estimates that, if averaged over enough realizations, are equal to the true coordinates. 

 3.2 Decreasing Bound on Self-Calibration Estimators 

             A fundamental question arises regarding the ‘cooperative’ sensor  localization is the  

adding of some unknown-location sensors to the entire network increases the performance of the 

position estimation in the entire network or not. This is because theory says more dense network 

should provide the accurate estimation of the entire sensor network. This question can be 

considered as a critical question.  Because it relates to the theory  that more dense sensor 

networks should  provide better accuracy in the sensor localization. 

           In order to verify this , a single sensor node is added to the unknown-location sensor in an 

existing sensor network.  It is found that the given sufficient condition presents the lower bound 

of the sensor node localization decreases. This is very good information for cooperative sensor 

node localization. However it cannot be made zero. So more sensor means more measurements 

and a very good position estimation. 

            In fact, this theorem can be applied to more generally to a larger class of network 

estimation problems called ‘self-calibration’ estimators. In this case each sensor in the network 

has a parameter which is to be estimated. So the information in this case is the measurements 

between the sensor nodes and the number of positions which is already known.  

            In fact, this theorem can be applied to more generally to a larger class of network 

estimation problems called ‘self-calibration’ estimators. In this case each sensor in the network 

has a parameter which is to be estimated. So the information in this case is the measurements 

between the sensor nodes and the number of positions which is already known. 
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3.2.1 The problem of Self-Calibration Estimation 

Specifically, let  a vector of device parameters  mn  ,...,, 21 . where, it is assumed 

that each device to have one parameter, but note that the results can be  equally applied if   is a 

vector of parameters. Sensor node 1...n are unknown nodes whose position is not known to us (in 

previous section it is called unknown device parameters, but now it can be consider as the 

location of the sensors) and sensors  n+1…n+m can be called as the  references sensor nodes, 

Thus the unknown parameters are to be estimated is  n ,...,1  where ii    for i=1…n. It 

can be noted that   mnnii  ...1:  are known values. Sensors i and j make pair-wise 

observations jiX ,  having probability density function ),( ,/ jijiX Xf  . The device can be 

permitted to make some incomplete observations. This is because two devices may present out of 

the range of each other or is having some  limited processing capacity. Further consider 

H(i)={j:sensor j makes a pair-wise measurement  with the sensor i}. Obviously a sensor cannot 

make pair wise measurement with it. So it can be shown by )(iHi . By the law of  symmetry, 

if )(iHj  then )( jHi . 

             By the law of reciprocity, further it can be assumed that Xi,j = Xj,i. This is sufficient to be  

considered only the lower triangle part of the observation matrix X = ((Xi,j))i,j during the 

formulation of the joint likelihood function. In general  if it may be  possible to make 

independent measurements between the links of sensor i and sensor j. It can also be assumed that 

a scalar sufficient statistic can also be found. Finally, it can be assumed that {Xi,j} are 

statistically independent of each other for j < i. This is a very good simplification but it is 

necessary for analysis. Using the pair wise measurements similar to those presented in Section 

2.6 is very important for verification of true performance. 

              The log of the joint conditional PDF is 

                  (3.2)                    

   


 



nm

i iHj

ji

ij

lXl
1 )(

,

 

where 

).,(log ,, jijiXji Xfl 



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where the CRB on the covariance matrix for any unbiased estimator ̂  is cov(̂ ) is 

,)ˆcov( 1  F . The Fisher information matrix (FIM ) Fθ  is defined as, 

                   (3.3)           
   



















nnn

n
T

ff

ff

XlEF

,1,

,11,1









 

3.2.2 Conditions for a decreasing CRB 

            As it is found that more the number of sensor device in the environment more 

performance so if the number of known device or unknown device increases the 

performance increases. So as more number of sensor devices are used for eatimation of 

the location parameter, the accuracy of the estimation of the postion of all the sensor device 

increases. So for an N number of sensor nodes network, there may be O(N) number of 

parameters, and  O(N
2
) number of measurement variables {Xi,j}.  The analysis which is done in 

this section provides some  sufficient conditions make to  ensure that the CRB decreases as the 

number of sensor devices are goes on increases in the wireless sensor network . Further let a 

wireless sensor  network consisting of n number of unknown sensor nodes and m number of 

reference sensor nodes whose position is already known to us. It may be define that the total 

number of sensor device is N = n+m. Here take a consideration that addition of one singe device 

to the sensor network., the objective is to know the effect of it in the performance of it. How the 

position estimation changes and the performance increases. Consider F and G are the FIMs 

which is defined in (3.3), respectively. (on the other hand F is a n× n matrix, and G is an n+ 1×n+ 

1 matrix.) 

Consider [G
-1

]ul is thee upper left n*n block of G
-1

. So for the (n+1) device case: 

Condition 1: nkll nk

k

nk

n

..1,1,1,

1












 
and 

Condition2: Sensor node n+1 makes a pair wise measurements between it and at least one 

neighbor sensor which is unknown sensor and at least two sensor nodes. So in total; 

Then two properties hold: 

Property 1: F
-1

-[G
-1

]ulO in the positive semi-definite sense, and  

Property 2: trF
-1

>tr[G
-1

]ul. 
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  Property (1) indicates that the additional unknown sensor position parameters which is 

introduced by the (n+1)st unknown sensor node does not change  the estimation of the original n 

unknown sensor position parameters. Further, Property (2) indicates that the sum of the CRB 

variance bounds for the n unknown sensor position parameters goes on decreasing. Thus when 

an unknown sensor node enters a wireless network and adds some pair-wise observations with at 

least one unknown sensor node and at least two sensor node in total, then  the bound on the 

average estimation variance of the for  total n number of sensor nodes coordinate estimates is 

reducing. This is also satisfied by the data processing theorem  

 

CRB for network self calibration: 

The diagonal elements, kkf , , of F is given by 

                                

 
 
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If Xk,j and Xk,p are independent random variables, and 0, 











jk

k

lE


, the expectation 

of the product is only nonzero for p=j. Thus kkf , simplifies to the k=l result in (3.4). The off-

diagonal elements similarly simplify, 

                       
  

 
 
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
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kHj lHp
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l
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k

lk llEf ,,,
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Here, due to independence and zero mean of the two terms, the expectation of product will be 

zero unless both p=k and j=l .Thus the lk   result in (3.4). 
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There is need to compare F, the FIM for the n unknown sensor nodes problem, and G, the FIM 

of the n+1 unknown sensor node devices case. Partitioning the  G blocks by the way given 

below, 

                










lrll

urul

gg

gG
G

 

where Gul is an n*n matrix, glr is the scalar Fisher information for the node having parameters 

1n , and  

T

urur gg   are n*1 vectors with kth element, 
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Here, the log-likelihood function can be denoted by the observation between sensor node  i and j 

in as 
n

jil ,  and 
1

,

n

jil  

For the unknown sensor node  n and n+1 cases, respectively. Similarly, consider  n

n Xl   and 

 1

1





n

n Xl   

The joint likelihood function in (3.2) for the unknown sensor node n and n+1 devices cases, 

respectively. Then 
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Since
1

,1





n

jnl  is a function only of parameters 11   nn   and j , 
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Thus Gul=F+diag(h), where h={h1,h2,…,hn} and 

2

1

,1)1( )( 


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
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nHk lEkIh
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. 

Comparing the cramer-rao lower bound of  the covariance matrix of the first sensor node n n and 

the second sensor node n+1 device cases, given by F
-1

 and [G
-1

]ul,. Now, [G
-1

]ul is the upper left 

n*n submatrix of G
-1

, 

         [G
-1

]ul={Gul-gurglr
-1

gu}
-1

={F+J}
-1 

where 
lr

T

urur

g

gg
hdiagJ  )(  

Both the F and G matrices are Hermitian matrices. It is clear that the F is positive semidefinite
. 

Consider the  ),(Fk k=1,..,n are the eigenvalues of the matrix F and ),( JFk  k=1…n are the 

eigen values of the both matrices. These are arranged in the increasing order. It can be shown 

that J is positive semidefinite, then it is known  that: 

(A.1)                                    nkJFF kk ...1),(0    

Since the eigenvalues of a matrix inverse are the inverses of the eigenvalues of the matrix, 

(A.2)                                    ,...1,11
nkFJF kk  

  

Which proves property ! of theorem III.5. If in addition, it can be shown that tr(J)>0, then 

tr(F+J)>tr(F), and therefore  


n

k k

n

k k FJF
11

)()(  . 

This with (A.1) implies that )()( FJF jj    for at least one ....1 nj Thus in 

addition to (A.2), 

A.2.1 Showing positive semi definiteness and positive trace of J 

The diagonal elements of J, [J]k,k are, 



40 
 

(A.3)                ./2

, lrurkkk gkghJ   

If )1(  nHk  then hk=0 and gur(k)=0, thus [J]k,k=0. Otherwise, if )1(  nHk  
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Because of reciprocity, the numerator is equal to the square of the j=k term in the sum in the 

denominator. Thus 

                
  0

1

1

,1

1

,1

2
1

,1

, 
























































n

n

kn

k

n

kn

k

n

kn

kk

ll
E

l
EJ


 

The equality will hold if k is the only member of the set H(n+1). When condition (2) of theorem 

III.5 holds, [J]k,k will be strictly greater than zero. Thus tr J>0. 

       Next, it is shown that J is diagonnaly dominant, i.e., 
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Where [J]k,k is given in(A.3). Since ,)1( nH  thus glr>0, and an equivalent condition is, 
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If )1(  nHk then hk=0 and gur(k)=0, and the equality holds. If ),1(  nHk then 
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Because of the condition (1) of theorem III.5,  
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Since   0jgur if  ,1 nHj  the first sum can include all nj ...1 . Since the 2
nd

 sum is >0, 

(A.4) is true. 

       Diagonal elements in the J is positive semidefinite, which is already give. It can be noted  

that the matrix  H(n+1) includes 1  reference sensor nodes and  the 2
nd

 sum is >0 and the 

inequality. This implies a positive definiteness of J and it can be assured that the CRB is strictly 

decreasing. 

           This section deals with the self-calibration lower bound analysis in Section 3.2 which 

already applied specifically to the localization estimation problem originally stated in Section 

1.3. In the particular case , 2-D coordinate estimation problems are considered, when the 

measurements Xi,j are RSS, QRSS, connectivity, TOA, or AOA. It can be  turned out that  the 

formulation of the variance bounds for these various measurements is remarkably similar. The 

particular differences can also be marked  that the show how localization performance varies by 

measurement type. 
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Note that ,,, ji
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thus the log-normal distribution of RSS measurements meets 

condition(1) of theorem III.5. The 2
nd

 partials differ based on whether or not i=j and if the partial 

is taken w.r.t. yi or xi. For example  
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TOA: 

For the TOA case,  

  

 














 


2

2

,2

,
2

/
2log

T

pjiji

Tji

vzzT
l




 

Taking the partial w.r.t. xj 
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 meeting the condition (1) of 

theorem III.5. two examples of the second partial derivatives are given by, 
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The 2
nd

 partial derivatives depend on the term, jijip zzTv /,
, which has an expected value of 

1, and the terms of FR  take the form in (3.6) with s=2 and .,0, lkh lk   

 

QRSS:  

  The derivation of the CRB for the case when measurements are k-level QRSS. It is  already 

been indicated that the CRB for any self-calibration estimator is a function if the expected value 

of the second partial derivatives of the terms {li,j} where, 
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As a result it simplifies to  
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3.3 The Cooperative Localization CRB 

               This section deals  with  the self-calibration lower bound analysis which is given in 

Section 3.2 and is applied specifically for  the sensor node position estimation problem originally 

stated in Section 1.3. Here only the 2-D coordinate estimation is taken into account, when the 

measurements Xi,j are RSS, QRSS, connectivity, TOA, or AOA. the formulation of the variance 
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bounds of the CRLB for these various measurements is same. The particular differences can be 

found out for the sensor node  localization problem which varies by measurement type. 

  3.3.1 Calculate Fisher information sub-matrices: 

First, form these nn matrices: Fxx,Fxy,Fyy. As it is already  introduced in section 1.3, n is the 

number of unknown sensor node location. The k,l element, for the sensor node  nlk ,...,1,   of 

each matrix can be calculated by  

      

 

 

 

                    

(3.6) 

 

 

 

           

 

      where, γ is a channel constant, and s is an exponent. These both parameters are function of 

the measurement type and are given, and IH(k)(l) is a indicator function which is used for 

calculation, (this allows to include the information if sensor node  k made a measurement with 

sensor node l), IH(k)(l) = 1 if l  H(k), or 0 if not. Also, hk,l is consider to be a loss term which 

occurs due to quantization od the signal. This may be equal to any other methods that are given 

by TOA, RSS, and AOA. Since all these are assumed to use unquantized measurements, and for 

QRSS, hk,l  it is given by 
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Where gi,j(s) was given in (2.14), _(x) is the CDF of the standard normal, and the distance 

thresholds ds can be  given as (2.16). It may be noted that it  can be used for any Klevel QRSS 
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measurements methods but in particular case, 2-level QRSS represents the connectivity 

measurements. For K = 2, (3.7) . It can be simplified to  

(3.8)     
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3.3.2 Merge sub-matrices to form the FIM: 

Now the objective is to form the nn 22   Fisher information matrix (FIM) F which is of theo the 

2n coordinates of the unknown sensor node in θ that is need for estimation. For the case of  TOA, 

RSS, or QRSS, select F=FTR, while for AOA, select F=FA, where 
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Where Fxx,Fxy, and Fyy are given in (3.6), and the superscript 
T
 indicates matrix transposition. 

3.3.3 Invert the FIM to get the CRB 

As it is known that the CRB matrix which is the inverse of the fisher information matrix So it is 

equal to F
-1

, which is the inverse of the FIM. The diagonal represents the values which are the 

variance bounds for the unknown sensor node position that is 2n number of parameters of θ. It 

can be more precisely indicate that the an estimator of sensor i’s coordinates be   .ˆ,ˆˆ
T

iii yxz   

Thus the location variance of the estimator can be obtained to be 2

i , 
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Then the Cramer-rao bound can be found out  , 
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3.3.4 Results Seen from the CRB: 

             Here the scaling parameter is calculated.  This indicates that if the geometry of the 

sensor network remains constant and the scale increases how it changes the FIM. This can be 

found without calculating the CRLB. So the objective is  without calculating the CRB for the 

scaling characteristics of the variance bound can be explored or not. Another question arises 

what will happen if the geometry and the connectivity remains constant and the network is scaled 

up .  

      • TOA: TOA bounds will remain constant with a scaling of the dimensions. Note that since s 

= 2 for TOA, the fractions in (3.6) are unitless - if units of the coordinates were (ft) or even (cm) 

instead of (m), the ratios would be identical. Instead, the units come from the standard deviation 

of ranging error, vpσ
T
. 
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             Figure 3.3: Lower bound for σ1 (m) for the single unknown-location device system vs. the 

coordinates of the unknown-location device, in a channel with σdB/np = 1.7, for (a) RSS, (b) proximity 

with d1 = 1/√2 m and (c) 3-level QRSS with d1 = 0.90 m and d2 = 0.56 m. 

 

Three-Level QRSS 

 

Next, consider the performance of the system in the case of K = 3 QRSS measurements. Again, 

the system is optimized to minimize the CRB when the unknown location device is located at z1 

= [0.5, 0.5]T m. It can be shown that the CRB as a 

function of the two threshold distances, d1 and d2, is given by, 
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(3.13)              
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Fig.(3.5)  result-1 
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Fig-(3.6) result-2 

 

 

This result shows how keeping reference node constant only increasing the total number 

of node we can able to decrease the CRB.   
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Fig-(3.7) result-3 

     

 

Fig-(3.8) result-4 
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Fig-(3.9) result-5 

 

Fig-(3.11) result-6 

This result shows how changing the number of reference node and position of the node affect the 

CRB. 
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4.1 Localization Algorithms 

            In the previous section the problem is formulated and the lower bound is given.    In this 

chapter on  of the famous algorithm is used. It is called maximum likelihood estimation 

algorithm for the calculation of the position estimation. This algorithm is given in [3]. We have 

used here only for verification. This is already proposed in [3] for distributed sensor localization.  

This algorithm can be applied over any model of pair wise measurements. This is based upon the 

assumption used during the calculation of the distribution function of the measured data.  

 This is centralized solution. In this case all the sensor nodes need to measure the data and to 

send the data to a fusion center. The fusion center uses the entire data for the calculation of the 

position of the sensor node. Thus large number of energy will be used during the transmission. In 

order to avoid this distributed algorithm needs to be used. So that the life time of the sensor 

network can be increased and the will also be robust against the sensor positions. In this case 

there is large number of multi hop communication is required. In this case the gradient descent 

algorithm is used to find the optimum solution.  Here the TROA or RSS can be used to find the 

optimum solution.   

 

 

4.1 .1 TOA: 

           Since the TOA measurements, between any two sensor node  can be modeled as Gaussian 

So                                         
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     Recalling  that zi represents  the coordinate of the sensor node I and  H(i) is the set of sensor 

nodes with which sensor i made the pair wise measurements and vp is the speed of the 

propagation of the signal , and μT is the mean of the  TOA residual error. 

4.1.2  RSS: 

The MLE based estimation of the RSS case is  
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Here 
MLE

ji,  represents the function of the measured received power Pi,j between the sensor node I 

and j as given in (2.17) (Esspecilly, the MLE of the distance is  given by Pi,j). The RSS MLE is 

already biased than TOA based position estimation. (4.3)                    

  212,1 zzCE   

Here  C is the multiplicative bias factor which is  given in (2.7). For  some of the typical 

channels (like those reported in paper), C ≈ 1.2. This adds 20% bias to the range of the measured 

data. . 
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Chapter 5 

 

 

CONCLUSION 
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Conclusion: 

In this thesis we  have explained some of the pair wise measurement techniques (TOA, AOA, 

RSS and QRSS) that can be used as sensor localization. A study of the CRB and how it affects 

by the number of nodes, number of  reference nodes and the number of unknown wireless sensor 

node is also studied. This thesis gives some information of the paper [3]. There is need to find 

out some results which are already given. This work is very little. large  number of work need to 

be done about how large number of sensor nodes can be auto configurable to provide the     

measured data to the fusion center and the sensor node can be estimated. In order to increase the 

lifetime of the sensor network the algorithm is to be distributed and robust.       This work is very 

little for the wireless sensor network. The maximum likelihood estimation technique can be 

combined with clustering technique for efficient estimation 
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