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ABSTRACT 

 

 
 

                   The project report deals first with the brief introduction on composites and their 

types and uses. Then it explains about the vibration of sandwich beams. The consistent 

higher-order dynamic formulation for foam-type (soft) core sandwich beams was extended to 

the case of composite sandwich plates. Eight dynamic governing equations and the 

corresponding boundary conditions were derived through the application of Hamilton’s 

principle. The extended formulation was applied to the free vibration analysis of soft-core 

and honeycomb-core sandwich plates with anti-symmetric and symmetric lay-ups. 

 The vibration results for the thin and thick composite sandwich plates obtained using 

the extended formulation were consistent with the predictions of the higher order mixed layer 

wise theory for laminated and sandwich plates. To simplify the formulation for the case of 

symmetric sandwich plates, the general dynamic formulation was decoupled into two 

systems of equations representing symmetric and anti-symmetric vibrations. The numerical 

study demonstrates the importance of the present formulation for the prediction of higher 

mode vibration response of composite sandwich plates. 
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INTRODUCTION 

 

1.1 History 

 

Composite Materials, which made a new revolution in materials industry, are known 

to mankind since ancient time. Composite have been used by humans in past. The most 

primitive composite material that was made by man was a brick for building construction. It 

comprised straw and mud, wherein straw acted like fibers and mud as matrix. Mankind 

reinvented the benefits of composite materials in 1960s. Since then, Composite materials 

have created an impact on the development of the aerospace structures because of their 

superior fatigue characteristics, damage tolerance and strength to weight ratio compared to 

that of metals. The use of composite is not only restricted to Aerospace domain and now it is 

being used extensively in Automotive, Industrial applications and Civil structures domain. 

Another important reason for the popularity of composite materials is due to the significant 

operating cost reduction due to its use. Considerable weight reduction is achieved using 

composite materials. 

The composite plates are used in various applications, ranging from Aerospace to 

marine industry. As composites are having better properties than metals, they can be exposed 

severe loading conditions and environment. 

 

1.2 What are composites? 

In their broadest form, composites are a material which consists of two or more 

constituents. The constituents are combined in such a way that they keep their individual 

physical phases and they are neither are not soluble in each other nor to form a new chemical 

compound. One constituent is called reinforcing phase and the one in which the reinforcing 

phase is embedded is called matrix. Historical or natural examples of composites are 

abundant: brick made of clay reinforced with straw, mud wall with bamboo shoots, concrete, 

concrete reinforced with steel rebar, granite consisting of quartz, mica and feldspar, wood 

(cellulose fibers in lignin matrix), etc.  
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1.3 What are hybrid composites? 

They are composites hybridized with other materials (either other composites or 

unreinforced materials) or composites using multiple reinforcements and matrices. For 

example, carbon fibers and glass fibers are both included in the epoxy matrix; a compressed 

natural gas tank consists of aluminum liner and carbon fiber/epoxy composite over-wrapping. 

 

1.4 Advantages of the Composites 

 

• High specific stiffness  and high specific strength  .weight reduction for the 

same strength applications. 

• High corrosion resistance. Acid, alkali resistance of polymers, chemical and 

marine applications, infrastructure applications. 

• High impact resistance .High internal damping of Kevla fiber/epoxy 

composites, ballistics protection. 

• High wear resistance .Ceramic particle reinforced metal matrix composites, 

ceramic matrix composites. 

• Resistance to high temperature and extreme mechanical, environmental 

conditions: 

• Tailor-able properties. Design both materials and structures. 

Choose appropriate combination of reinforcements and matrices. 

Choose optional fiber orientation and lay-up sequences. 

 

1.5 Disadvantages of composite materials 

 

• Higher cost 

• Complexity in mechanical characterization and difficulty in analysis 

• Weak in transverse direction and low toughness 

• Difficulty in attaching (Joining) 

• Environmental degradation (Polymer matrix absorb moisture) 
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1.6 Classification of the composite 

 

1. According to the types of fiber reinforcement 

      a. Fiber-reinforcement composite (Fibrous composite) 

      b. Particle-reinforcement composite (Particulate composite) 

2. According to the matrix material  

a. Metal matrix composite (MMC) 

b. Polymer matrix composite (PMC) 

3. According to the particulate orientation 

a. Random orientation composite 

b. Preferred orientation composite 

4. According to the number of fiber constituent 

a. Simple composite 

b. Hybrid composite 

5. According to the fiber type 

a. Continuous fiber composite 

b. Discontinuous fiber composite 

     6.   According to the direction of the fiber 

a. Unidirectional reinforcement composite 

b. Bi-directional reinforcement composite  

 

1.7 Application of the Composite materials 

 

1. Aerospace industries 

2. Civil engineering 

3. Space industries 

4. Marine applications 

5. Defense industries 

6. Automobile industries 

7. Electrical applications 
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1.8 Terminology used in composite materials 

 

1. Isotropic materials-Properties of the materials are same in all the direction. (Short, 

discontinuous fiber reinforcement composite) 

2. Anisotropic materials-Properties are different in different direction (Long continuous 

fiber reinforcement composite) 

3. Reinforcement-composite consists of one or more continuous/discontinuous phase 

embedded in the continuous phase. The discontinuous phase, generally stronger than the 

continuous phase is called reinforcement or reinforcing material whereas continuous 

phase is called as matrix. 

4. Controlled anisotropy-means the desired ratio of the property values in different 

direction can easily obtained. Ex. Unidirectional composite in which ration of 

longitudinal to transverse modulus ratio can easily altered by changing the fiber volume 

fraction. 

5. Volume fraction-Fractional volume of the any constituent (fiber/matrix material) in a 

composite is referred as a volume fraction. 

6. Weight fraction- Fractional weight of the any constituent (fiber/matrix material) in a 

composite is referred as weight fraction of the individual constituent. 

7. Aspect ratio-The ratio of diameter of the fiber to length of the fiber  

8. Lamina-A single layer of the composite material is generally referred as a ply or 

lamina. (Thickness=013mm) 

9. Laminate- Several laminas are bonded together to form the laminates. Here each 

lamina should have different properties. 

10. Homogeneous anisotropy- Material properties are the function of the direction but do            

not change from point to point 
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2. Higher Order Sandwich Panel Theory 

 

 The free vibrations of composite sandwich plates have been extensively studied using 

classical analytical formulations, finite element analyses based on first- and higher-order 

shear deformation theories. In the majority of these studies, the sandwich core is assumed to 

be incompressible in the vertical direction. This assumption is practically accurate only for 

the vibration analysis of sandwich plates with a honeycomb core. However, in the case of a 

flexible sandwich core (for example, a foam core), this assumption will preclude modeling of 

the symmetric vibration modes where the two face sheets move out-of-phase. Furthermore, 

modeling of a flexible sandwich core with the aid of general-purpose commercial finite 

element software requires the use of 3-D solid elements, which consumes significant 

computational resources (memory and cpu time).  

 The higher-order sandwich panel theory was derived to model the behavior of 

sandwich plates with a flexible core. This model is based on the nonlinear through-the-

thickness displacement field in the core in both longitudinal and vertical directions. However, 

the corresponding acceleration field in the core is assumed to vary linearly with height, 

which introduces inconsistency in the formulation. For sandwich beams, this inconsistency 

has been overcome in the recently developed formulation that accounts for a nonlinear 

acceleration field in the core.  

 In the present work, the one-dimensional beam formulation described is generalized 

to the two-dimensional plate analysis. The main difference between the present approach and 

the higher order mixed formulation in Ref. [3] is that in the latter case, the assumed through-

the-thickness displacement field is used, whereas in the former, non-linear displacement field 

in the core is derived based on well-defined physical assumptions. In what follows, a 

consistent free vibration formulation for composite sandwich plates is developed in terms of 

the system of governing partial differential equations and the corresponding boundary 

conditions.  

 The derived formulation is applied to the vibration analysis of soft-core and 

honeycomb-core sandwich plates with anti-symmetric and symmetric lay-ups. Excellent 

agreement between the calculated vibration response for the thin and thick composite 

sandwich plates and the results of the higher order mixed layer wise theory is demonstrated. 
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 For the case of symmetric sandwich plates, simplification is achieved through the 

decoupling of the general formulation into two independent systems of equations 

representing symmetric and anti-symmetric motions. The numerical study of the free 

vibration response of composite sandwich plates based on the derived formulation follows 

next. Differences between the vibration responses of the soft-core sandwich plates with anti-

symmetric and symmetric composite layups are studied and discussed. The effect of 

honeycomb core modulus on the symmetric vibration response of sandwich plates with 

isotropic face sheets is investigated. Finally, the importance of the present formulation for the 

prediction of higher-frequency vibration response is discussed and conclusions are drawn.  
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3. Mathematical Assumptions 

3.1. Assumptions 

 

Sandwich Plate conventions: (a) Geometry, co-ordinate systems and displacement 

functions of the sandwich plate. (b) Stress field in the core 

The present formulation is concerned with the linear vibration analysis of sandwich 

plates (see Fig. 1). The face sheets of a sandwich plate are assumed to behave as Kirchhoff 

thin plates with negligible shear deformations. The vertically compressible core layer is 

considered as an antiplane, three-dimensional elastic medium with orthotropic out-of-plane 

shear properties. Here, an antiplane assumption implies that the stresses in the core in planes 

parallel to the face sheets are neglected, and only the out of plane shear and normal stresses 

are accounted for the analysis.  

 This assumption is nearly exact for a honeycomb core, and is an appropriate 

approximation for an isotropic foam core, where the core material modulus is significantly 

lower than the modulus of the face sheets (see Section 1). Note that as a result of the 

compressibility of the core, the core height may change under loading and the cross section 
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may not remain planar. The interface layers between the face sheets and the core are assumed 

to provide perfect continuity of the deformations at the interfaces. The acceleration fields of 

the face sheets are assumed to vary linearly with height, whereas the acceleration field of the 

compressible core varies nonlinearly with height in the plane and out-of-plane directions. 

Thus, the dynamic fields in the face sheets and core are consistent with the corresponding 

static patterns as normally assumed in dynamic analyses 

 

3.2. Equations of motion 

 

The governing differential equations and the corresponding boundary conditions are 

derived here through the use of Hamilton’s variational principle, namely,  

 

 
 

where T is the kinetic energy and V is the strain energy of a sandwich plate; t is the time 

coordinate; and t1 and t2 are the values of the time coordinate at the beginning and end of the 

motion, respectively. The strain energy of the composite face sheets is given by  

 

 

 

V
F =   [1/2Ai11u0i,x

2
+1/2Ai22v0i,y

2
+1/2Ai66(u0i,y+v0i,x)

2
+Ai 12u0i,xv0i,y + 

          Ai16(u0i,y +v0i,x)u0i,x + Ai26(u0i,y + v0i,x)v0i,y –              

     Bi11u0i,xwi,xx – Bi22v0i,ywi,yy – 2Bi66(u0i,y + v0i,x)wt,xy –   

    Bi12(v0i,ywi,xx + u0i,ywi,yy) – Bi16(u0i,y + v0i,x)wi,xx – Bi26(u0i,y +  

    v0i,x)wi,yy – 2Bi16u0i,xwi,xy – 2Bi26v0i,ywi,xy + ½ Di11wi,xx
2
 +  

    1/2Di22wi,yy
2
 + 2Di66wi,xy

2
 +Di12wi,xx + 2Di16wi,xxwi,xy +  

    2Di26wi,yywi,xy]dxidyi                                                    (2) 

 

where a and b are the in-plane dimensions of the sandwich plate; u0i(xi, yi, t), v0i(xi, yi, t), and 

wi(xi, yi, t) are the longitudinal, transverse and vertical unknown displacement  functions of 



14 

 

the centroid line of the face sheets, respectively (i = t, b); t and b refer to quantities affiliated 

to top and bottom face sheets, respectively; Aijk, Bijk, and Dijk (i = t, b; j, k = 1, 2, 6) are the 

coefficients of the stiffness matrices A, B, D in the force–strain relations for the face sheets; 

and the comma stands for differentiation with respect to the spatial coordinate. The kinetic 

energy of the face sheets reads 

   

TF       =  ½                                     [ρtdt(u0t
2
 + v0t

2
 + wt

2
) + 1/12ρtdt

3
(wt,y

2
 +wt,x

2
)]dxtdyt + 

   

               ½ [ρbdb(u0b
2
 + v0b

2
 + wb

2
) + 1/12ρbdb

3
(wb,y

2
 + wb,x

2
)]dxbdyb 

 

where dt and db are the thicknesses of the upper and lower face sheets, respectively; ρt and ρb 

are the densities of the upper and lower face sheets, respectively; and the dot represents time 

differentiation.  

As described in Section 3.1, the transversely flexible core is treated as a three-

dimensional elastic medium with small deformations, where the core height may change 

under loading, and the core cross-section does not remain planar (nonlinear displacement 

field in the core). The in-plane stresses in the core are neglected because of the negligible in-

plane strength compared to the face sheets, which implies that 

 

σ xxc = σ xxy = τ xyc 

 

where σ xxc; σ xxy and τ xyc are the in-plane normal and shear stresses in the core. For this 

case, the partial differential equations describing the equilibrium in the core can be 

uncoupled and solved analytically for the longitudinal, transverse and vertical displacements, 

and the resultant expressions are generalized here to include the time parameter, as shown 

below 

uc(xcyc,zc,t) = [{zc
2
(2zc-c)}/12](τxx,xx(xc,yc,t)+τyx,xy(xc,yc,t))+[{zc

2
}/2c](wt,x(xc,yc,t)- 

   wbx,x(xc,yc,t)+zcτxzc(xc,yc,t)-zcwt,x(xc,yc,t)+u0t(xc,yc,t)-1\2dtwt,x(xc,yc,t)   (5) 
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vc(xc,yc,zc,t)  =           [{zc
2
(2zc-3c)}/12Ec](τxx,xy(xc,yc,t)+τyzc,yy(xc,yc,t))+ [{zc

2
}/2c](wt,y(xc,yc,t) 

   – wb,y(xc,yc,t)) + [zc/Gcy] τyx(xc,yc,t) – zcwt,y(xc,yc,t) + v0t(xc,yc,t) – ½  

   dtwt,y(xc,yc,t)                                           (6)  

 

wc(xc,yc,zc,t)  =          [{zc(zc – c)}/2Ec] (τxzc,x(xc,yc,t) + τyzc,y(xc,yc,t)) – {wt(xc,yc,t) +  

    wb(xc,yc,t)}/c]zc + wt(xc,yc,t)                              (7) 

 

Here, Ec is the vertical Young’s modulus of the core, Gcx and Gcy are the vertical 

shear moduli of the core, τxzc and τyzc are the shear stresses in the core, and c is the thickness 

of the core. The strain energy and kinetic energy of the transversely flexible core can be 

calculated from the displacements in Eqs. (5)–(7). The strain energy of the core reads  

 

Vc       =    [c
3
/24Ec(τxzc,x + τyzc,y)

2
 +Ec/2c(wt – wb)

2
 + c/2(τxzc

2
/Gcx + τyzc

2
/Gcy)]dxcdyc               

             (8) 

The expression for the kinetic energy of the core reads  

 

            Tc      =    1\2 ρc(uc
2
+vc

2
+wc

2
)dxcdyzcdzc                                                                              (9) 

 

where ρc is the density of the core. 

Eqs. (5)–(7) account only for the compatibility between the top face sheet and the core. The 

compatibility conditions at the lower interface are accounted for by  

uc(xc,yc,c,t) = u0b(xc,yc,t)+1\2dbwb,x(xc,yc,t)                      (10) 

 

vc(xc,yc,c,t) = v0b(xc,yc,t)+1\2dbwb,y(xc,yc,t)                   (11) 

 

The governing equations are then obtained from Eq. (1) using the Lagrange multiplier 

method with the auxiliary equations given in Eqs. (10) and (11). The Lagrange multipliers 

can be shown to be the shear stresses in the core, τxzc and τyzc [15]. 
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3.3. Symmetric sandwich plate 

 

 The majority of sandwich plates used in practical applications have symmetric cross-

sections. Therefore, it is worthwhile to simplify the general formulation derived in Section 

3.2 for the symmetric case. For this purpose, the general horizontal and vertical motions of 

the face sheets are represented as the superposition of the symmetric and anti-symmetric 

displacements (see Fig. 2). 

 

 uoi   =  u’  ±  u’    (12)      

 voi   =  v’ ±  v’    (13)       

    wi   =  w’ ±  w’     (14) 

 

where i = t, b stands for the top and bottom face sheets, respectively, the plus and minus 

signs are used for the upper and lower face sheets, respectively, and u’, v’, w’ denote the 

symmetric and anti-symmetric displacements of the face sheets, respectively.  

 In the following, the displacement field in the core flexible in the vertical direction, 

corresponding to symmetric and anti-symmetric vibrations, is derived. Substitution of the 

relations u0t = u0b = u’ and v0t = v0b = v’, which characterize the symmetric response, into 

Eqs. (5)–(7) yields 

 

-c
3
\12Ec(τxzc,xx+τyzc,xy)+c\Gcxτxyc = 0   (15)   

    

   -c
3
\12Ec(τxzc,xy+τyzc,yy)+c\Gcyτyzc     =   0     (16) 

  

 These equations are satisfied for τxzc =  τyzc = 0. This is a mathematical manifestation 

of the fact that the symmetric motion of the sandwich plate is characterized only by the 

expansion and compression of the core material, which are caused by the out-of-phase 

vertical displacements of the face sheets, in the absence of shear deformation. Substitution of 

the relations u0t = u0b = u’, v0t = v0b = v’ and τxzc = τyzc = 0 into Eqs. (5)–(7) produces the 

following displacement field in the core for the case of symmetric motion  
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  u’c     =        zc
2
w’,x-(zc+d\2)w’,x+ ū                      (17)  

  vc’    = zc
2
\2w’,y-(zc+d\2)w’,y+v’                        (18) 

            w’c =       (1-2zc\c)w’                  (19) 

 

 Eqs. (17)–(19) show that the tangential displacements in the core for symmetric 

motion are given by polynomials of the second order in the vertical coordinate zc, whereas 

the vertical displacements depend linearly on zc. Note particularly that neglecting the non-

linear terms in Eqs. (17) and (18) will result in a tangential displacement field for ordinary 

plates consistent with the  Kirchhoff  assumptions. From Eq. (19), the vertical displacements 

of the core are seen to be the linear interpolation of the vertical displacements of the face 

sheets. Similarly, for the anti-symmetric motion, substitution of the relations u0t = u0b = u’, 

v0t = v0b = v’ and w0t = w0b = w’ into Eqs. (5)–(7) yields the following displacement field in 

the core: 
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 u’c  = [{2zc
3
-3czc

2
\12Ec}](τxzc,xx+τyzc,xy)+{[zc\Gcx}]τxzc(zc+d\2)w’,x+ū     (20) 

v’c =         [{2zc
3
-3czc

2
}]12Ec(τxzc,xy+τyzc,yy)+[{zc\Gcy}]τyc_(zc+d\2)w’,y+v’    (21) 

        w’c       =       -[{zc
2
+czc}]\2Ec(τxzc,x+τyzc,y)+w’                                  (22) 

 

 Eqs. (20)–(22) reveal that the non-linear behavior of the core depends on the second-

order derivatives of the shear stress. Therefore, for harmonic motion, the influence of the 

non-linear terms on the response of the core will increase with increasing frequency of the 

vibration modes (see Section 4). Finally, using the auxiliary Eqs. (10), (11) and Eqs. (5), (6), 

the tangential displacements in the core can be expressed in the form  

 

 

uc’=[{z
2
(2z-3c)\c

3
}](2u’+c\Gcxτxyc-(c+d)w’,x)+z\Gcxτxzc+u’-(z+d\2)w’,x     (23) 

 

vc’=[{z
2
(2z-3c)\c

3
}](2v’+c\Gcxτyzc-(c+d)w’,y+z\Gcyτyzc+v’-(z+d\2)w’,y    (24) 

 

 

where the second-order derivatives of the shear stress in the core have been eliminated. Thus, 

the general formulation for the free vibrations of symmetric soft-core sandwich plates with 

composite laminated face sheets has been decoupled into two formulations representing 

symmetric and anti-symmetric motions. The symmetric motion is represented by the three 

governing equations, nine boundary conditions, and three equations describing the 

displacements in the core, Eqs. (17)–(19), in terms of u’, v’ and w’. The anti-symmetric 

vibrations are represented by five governing equations, 17 boundary conditions and three 

equations for the displacements of the core, Eqs. (20)–(22), in terms of u’ , v’, w’, τxzc and 

τyzc.  
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4. Validation 

 For the free vibrations of a simply supported sandwich plate, the boundary conditions 

are identically satisfied by the following harmonic functions  

 

 

   u0t=Utcos(m \a x)sin(n \b y)        (25)                  

 

u0b=Ubcos \a x)si \b y)      (26)                 

 

   v0t=Vtsin(m \a x)cos(n \b y)           (27)       

    

   v0b=Vbsin(m \a x)cos(n \b y)      (28)             

    

wt=Wtsin(m \a x)sin(n \b y)         (29) 

 

wb=Wbsin(m \a x)sin(n \b y)         (30) 

 

τxzc=Гxcos(m \a x)sin(n \b y)        (31) 

 

τyzc=Гycos(m sin(n     (32) 

 

 

 Substitution of Eqs. (25)–(32) into the general governing differential equations,  

produces the generalized algebraic Eigen value problem from which the natural frequencies 

and corresponding vibration modes of a sandwich plate can be calculated 

 

4.1. Sandwich plate with composite face sheets and a soft core 
 

The free vibration response of a five-layer (0/90/core/0/90), simply supported sandwich plate 

with planar dimensions a x b is analyzed here. The computed results are subsequently 
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compared with the predictions of the higher order mixed layer wise theory for laminated and 

sandwich plates. The material constants for graphite-epoxy T300/934 composite face sheets 

and the isotropic core used in the calculations are given in Table 1. Note that the elastic 

moduli of the face sheets are given with respect to the material coordinates.  

 A comparison between the normalized natural frequencies, Ω, calculated using the 

present formulation and the results of Rao and Desai  is presented in Table 2. The normalized 

frequencies are given by the equation Ω = ωb
2
 (ρt/E2)

1/2
/H, where Ω is the natural frequency 

and H is the total thickness of the sandwich plate. Table 2 demonstrates excellent agreement 

between the predictions based on the present formulation and those in Ref. [3] Note 

particularly that the close agreement between the two theories holds in a broad range of 

length-to-thickness ratios. This means that the present formulation can be successfully used 

for the vibration analysis of both thin and thick soft core sandwich plates.  

 Note also that for each pair (m, n) (see Eqs. (25)–(32)), there are eight natural 

frequencies with eight corresponding vibration modes. Physically, this represents various 

combinations of the displacement patterns of the face sheets and the core corresponding to 

the same pair of wave numbers. Variations of the in-plane and vertical displacements through 

the thickness of the sandwich plate under consideration vibrating at the fundamental 

frequency (m = 1, n = 1), as obtained by the present analysis and that Ref. [3] , appear in Fig. 

3.  

 The variations of the longitudinal displacements (along the x-axis) are given at the 

middle of the left edge of the sandwich plate (x = 0, y = b=2), Fig. 3a. Similarly, the through-

the-thickness variation of the transverse displacements (along the y-axis) are given at the 

middle of the front edge of the plate (x = a/2, y = 0), Fig. 3b.  

 

 

Table 1 : Material parameters of the antisymmetric sandwich plates 

Component Elastic 

modulus(GPa) 

Poisson’s Ratio Shear 

modulus(GPa) 

Mass 

density(kg/m3) 

Face Sheets E1 = 131 v12 = 0.22 G12 = 6.985 ρt = 1627 

 E2 = 10.34 v13 = 0.22 G13 = 6.985 ρb = 1627 

 E3 = 10.34 v23 = 0.49 G23  = 6.205  

Core Ec = 6.89 x 10
-3
 vc  ≈ 0 Gc = 3.45 x 10

-3
 ρc  =  97 
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Table 2 : Comparison of non dimensional frequencies Ω of (0/90/core/0/90) sandwich plate 

with a/b = 1 and c/dt = 10 

M n Rao and Desai [3] Present Analysis 

a/H = 100    

1 1 11.9401 11.8593 

1 2 23.4017 23.3419 

1 3 36.1434 36.1150 

2 2 30.9432 30.8647 

2 3 41.4475 41.3906 

3 3 49.7622 49.7091 

a/H = 10    

1 1 1.8480 1.8470 

1 2 3.2196 3.2182 

1 3 5.2234 5.2286 

2 2 4.2894 4.2882 

2 3 6.0942 6.0901 

3 3 7.6762 7.6721 

    

  Fig. 3a      Fig. 3b 

Fig. 3c 
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 Finally, the distribution of the vertical displacements through the height of the plate 

are calculated in the center of the plate (x = a/2, y = b/2), as shown in Fig. 3c.  

 Fig. 3 shows that the distributions of the in-plane displacements from the present 

analysis practically coincide with those of Rao and Desai. The displacements in Fig. 3 were 

normalized to the longitudinal (usurface), transverse (vsurface), and vertical (wsurface) 

displacement components at the outer surface of the lower skin (see Fig. 1). The same 

normalization is used in the following figures. A negligible discrepancy between the two 

theories (~0.3%) is detected for the vertical displacements of the core, which is explained by 

the fact that in the present formulation, the horizontal stresses in the core are neglected. 

 

4.2  Symmetric sandwich plate with isotropic face sheets and a honeycomb core 

 

 A simply supported sandwich plate (1.83 m x 1.22 m) with symmetric cross-section, 

aluminum face sheets, and an aluminum honeycomb core is considered next. The material 

properties of the plate constituents are given in Table 3. In Table 4, the natural frequencies of 

the honey comb core sandwich plate computed using the present analysis are compared with 

the analytical results of Ref. [1]. and the experimental and analytical results of Ref. [4].. As 

shown in Table 4, the frequencies, which are obtained using the present formulation, are 

consistent with both previous experimental and numerical predictions. Thus, the present 

formulation yields accurate results for both soft core and honeycomb-core sandwich plates. 

 

Table 3 : Material Parameters from Ref [3]. 

Component Thickness 

(mm) 

Elastic 

modulus 

(GPa) 

Poisson’s 

ratio 

Shear 

modulus(GPa) 

Mass 

density 

(kg/m
3
) 

Face Sheets 0.4064 68.984 0.3 25.924 2768 

Core 6.35   0.1379 0 G xy = 0 121.8 

    G xz = 0.13445  

    G yz = 0.05171  
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Table 4: Natural frequencies of sandwich plate with aluminum face sheets and aluminum    

    honeycomb core 

Ref. [4] Natural 

Frequency Experimental Analytical 

FEM SFPM Present 

Analysis 

f 1 - 23 23 23.29 23.04 

f 2 45 44 44 44.47 44.16 

f 3 69 71 70 71.15 69.76 

f 4 78 80 80 78.78 79.17 

f 5 92 91 90 91.57 90.24 

f 6 125 126 125 125.10 124.27 

 

FEM   : Finite Element Method 

SFPM : Spline Finite Point Method 
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5. Numerical study and discussion 

5.1. Vibration response of soft-core sandwich plates with symmetric and anti-symmetric 

lay-ups of composite laminated face sheets 

  A comparison of the vibration response of soft-core sandwich plates with anti-

symmetric (0/90/core/0/90) and symmetric (0/90/core/90/0) lay-ups is considered. The 

properties of the composite laminates and the core are given in Table 1. The first six 

normalized natural frequencies Ω for both anti-symmetric and symmetric sandwich plates are 

presented in Table 5. Note that the vibration frequencies of both thin (a/H = 100) and thick 

(a/H = 10) soft-core sandwich plates are presented. As evident from Table 5, the differences 

between the natural frequencies of the anti-symmetric and symmetric sandwich plates are 

negligible. Note that this equivalence of values for anti-symmetric and symmetric cases was 

tracked up to the pair of wave numbers m = 101, n = 101.  

Table 5 : Natural frequencies of anti-symmetric and symmetric sandwich plates 

 

M N Anti-symmetric 

(0/90/core/0/90) 

Symmetric 

(0/90/core/0/90) 

a/H = 100    

1 1 11.8593 11.8674 

1 2 23.3419 22.7200 

1 3 36.1150 34.9339 

2 2 30.8647 30.8859 

2 3 41.3906 40.7379 

3 3 49.7091 49.7455 

a/H = 10    

1 1 1.8470 1.8483 

1 2 3.2182 3.1645 

1 3 5.2286 5.1399 

2 2 4.2882 4.2845 

2 3 6.0901 6.0441 

3 3 7.6721 7.6753 
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 However, the corresponding vibration modes exhibit quite different through-the-

thickness, in-plane displacement patterns, as illustrated in Fig. 4. As expected, for the 

symmetric sandwich plate, the in-plane displacements of the face sheets corresponding to the 

fundamental frequency are identical in magnitude and opposite in sign, as shown in Fig. 4a 

and b.  

 

Fig(a):longitudinal displacement along x-axis Fig(b):transverse displacement along y-axis 

      

        Fig(c) : vertical displacement along z- axis  

                             

Fig 4 : Comparison of the through-the-thickness variations of the normalized 

displacements corresponding to the fundamental frequency (m = 1, n = 1) of 

the anti-symmetric and symmetric sandwich plates with a/H = 10 
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5.2. Effect of the modulus of a honeycomb core on the symmetric vibration response of 

sandwich plates with isotropic face sheets  

  The vibration response of a honeycomb-core sandwich plate is anti-symmetric 

up to very high frequencies because a honeycomb core is extremely stiff in the vertical 

direction. Therefore, symmetric vibration modes of a honeycomb core sandwich plate are 

observed only in the much higher frequency range. For example, in the frequency range 

below 200 Hz, the vibration response of the sandwich plate with aluminum face sheets and 

honeycomb core, which was considered in Section 3.2, is characterized by anti-symmetric 

vibration modes. 

  On the other hand, the first symmetric vibration mode for this plate is numerically 

predicted at a frequency above 600 Hz, even for a core with a very low value of elastic 

modulus in the vertical direction. To illustrate this point, the effect of the vertical stiffness of 

the honeycomb core Ec on the magnitude of the first symmetric natural frequency f1
s
 of the 

sandwich plate is presented in Fig. 5. As shown in Fig. 5, the magnitude of f1
s
 strongly 

depends on the vertical stiffness of the core up to Ec ≈ 0.3 MPa.  

 Beyond this value, the magnitude of the first symmetric frequency is not affected by 

the increase in Ec. This behavior is explained by the fact that there are three natural 

frequencies and three corresponding vibration modes for each pair (m, n) in the case of the 

symmetric vibration response (compare with Section 3.1). For the low value of Ec the 

magnitude of the vertical displacements W is significantly larger than that of the in-plane 

displacements (see Fig. 6a).  

 On the other hand, if Ec is increased by several orders of magnitude, the reverse 

picture is observed. Namely, the in-plane displacements become significantly larger than the 

vertical displacements (see Fig. 6b). Therefore, for the low value of Ec, the pronounced 

vertical motion of the sandwich plate occurs, whereas for the significantly increased value of 

Ec, the longitudinal motion dominates the symmetric vibration response. This in-plane 

vibration response happens to be independent of the value of Ec (see the plateau in Fig. 5) 
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Fig 5 : Dependence of the first symmetric natural frequency on the Young’s modulus of 

the core (m = 1, n = 1) 

                                                      

Fig 6 : The horizontal (Us) and vertical (Ws) displacement amplitudes at  x = a/2 

corresponding to the first symmetric frequency (f1
s
 ) of the honeycomb-core 

sandwich plate with isotropic face sheets for: (a) Ec ≈ 0:07 MPa, {Us = -

0.5271e - 4, Vs = - 0.7908e - 4, Ws = 1.0000}; and (b) Ec ≈ 70:0 MPa, {Us = -

.8320, Vs = 0.5547, Ws = -0.1336e - 9} (- - -, U; —, W). 
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5.3 Importance of the present formulation for the prediction of the higher-frequency 

vibration response  

 

 As shown in Fig. 7, the variation of the normalized inplane displacements 

corresponding to the anti-symmetric vibration modes, which are characterized by the 

dominant vertical displacements, changes significantly with increasing mode pair (m,n). 

Namely, the through-the-thickness variation of the in-plane displacements is linear for m = 1, 

n = 1, whereas it becomes increasingly nonlinear for higher values of m and n. This is 

because the higher order terms in Eqs. (20) and (21) involve the second derivatives of the 

shear stress in the core, which increase with the mode numbers m and n in the harmonic 

assumptions of Eqs. (31) and (32). Therefore, the linear assumptions for the acceleration field 

in the core [9] are suitable only in the case of low vibrations modes. The present analysis, 

however, can be applied equally well for all frequency  ranges of a sandwich plate.  

 

 

 

 

 

Fig 7 : Distribution of the anti-symmetric longitudinal displacements u’ at x = 0; y = b/2 

[—, (m = 1, n = 1), - - -, (m = 5, n = 5),· · ·, ( m = 7, n = 7)]. 
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6. Conclusions 

 The consistent higher-order free vibration equations and the corresponding boundary 

conditions for sandwich plates have been derived, taking into consideration the nonlinear 

acceleration field in the core. In addition, the general formulation was decoupled into two 

systems of equations representing symmetric and anti-symmetric vibrations. The present 

formulation has been validated by comparisons with results of the higher order mixed layer 

wise theory for laminated and sandwich plates and the results of experimental studies. 

 A numerical study of the free vibration analysis of soft and honeycomb-core thin and 

thick sandwich plates with anti-symmetric and symmetric lay-ups was undertaken. The study 

showed that the vibration modes of the soft-core sandwich plates with anti-symmetric and 

symmetric layups exhibit quite different through-the-thickness in-plane displacement patterns 

in spite of the almost identical natural frequencies. In the case of honeycomb sandwich 

plates, it was shown that the change in the modulus of the core not only brings about the shift 

in the first symmetric frequency, but also the qualitative change in the corresponding 

vibration pattern.  

 The importance of the present formulation for the prediction of the higher-frequency 

response of sandwich plates was demonstrated. The main difference between the present 

approach and the higher order mixed formulation is that unlike the latter, which is based on 

the assumed through-the-thickness displacement field in the core, the former uses the non-

linear displacement field that is derived based on the well-defined physical assumptions. The 

present two-dimensional formulation constitutes an efficient alternative to the application of 

commercial finite element software, which requires three-dimensional modeling to achieve 

comparable results. 

 Furthermore, in the case of symmetric sandwich plates, the decoupled formulations, 

which represent symmetric and anti-symmetric motions, can be easily coded and applied to 

the accurate and efficient assessment of the free vibration response of simply supported 

sandwich plates with either foam or honeycomb cores. 
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