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ABSTRACT 

 

The dynamic stability behavior of a rotating shaft system under parametric excitation subjected 

to specified boundary conditions is studied theoretically and theoretical findings with the 

experimental results. For this theoretical analysis Finite Element Method is applied to derive the 

governing equation of motion. In this paper, the Ritz finite element procedure and LaGrange’s 

equation are employed to derive the governing equation of a rotating shaft subjected to axial 

compressive forces. The effects of gyroscopic moment and the static buckling load parameter on 

the regions of dynamic instability are studied. Application of Bolotin’s method and under the 

conditions of constant rotational speed, the boundaries between the regions of stability and 

instability are constructed. For experimental work the existing experimental setup is redesigned. 

Suitable End Attachments are designed and fabricated to achieve various conditions of boundary 

conditions for the rotating shaft 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

NOMENCLATURE 
 
E                                       Modulus of elasticity 

Id                                       Diametral mass moments of inertial of the shaft per unit length 

Ip                                       Polar mass moments of inertial of the shaft per unit length 

L                                       Length of the shaft 

N                                      Speed of the rotating shaft 

P                                       Axial periodic load 

P(t)                                   Axial compressive load 

Po,Pt                                 Time dependent amplitude of load 

P*,Pcr                                Fundamental static buckling load 

t                                        Variable time 

Te                                      Kinetic energy of the shaft 

Ue                                     Potential energy of the shaft 

α                                       Static load factor 

β                                       Dynamic load factor 

ρ                                       Mass density of the material of the beam 

Ω                                      Disturbing frequency 

ω1                                     Fundamental natural frequency 

θ                                       Axial disturbance frequency 
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INTRODUCTION 
 

 

 

 

 



INTRODUCTION 
 

Dynamic stability 

The theory of dynamic stability of elastic systems deals with the study of vibrations induced by 

pulsating loads that are parametric with respect to certain forms of deformation. 

Parametric excitation  

A system is said to be parametrically excited if the excitation which is a function of time appears 

as one of the coefficients of the homogenous differential equation describing the system, unlike 

external excitation which leads to an inhomogeneous equation. 

Practical examples 

In practice parametric excitation can occur in structural systems subjected to vertical ground 

motion (drill bit), aircraft structures subjected to turbulent flow, machine components and 

mechanisms. Other examples are longitudinal excitation of rocket tanks and their liquid 

propellant by he combustion chambers during powered flight. 

Spinning satellites in elliptical orbits passing through a periodically varying gravitational field. 

In industrial mechanisms, their components and instruments are frequently subjected to periodic 

excitation transmitted through elastically coupling elements (electromagnetic and aeronautical 

instruments), vibrator conveyers and saw blades. 

Difference between Parametric instability and Typical resonance 

In parametric instability the rate of increase is generally exponential and thus potentially 

dangerous while in typical resonance the rate of increase is linear 

Damping reduces the severity of typical resonance but may only reduce the rate of increase 

during parametric resonance 

Parametric instability occurs over a region of parameter space and not at discrete points 

Ordinary Resonance 

In this case external force is applied transverse to the beam or parallel to the amplitude of 

vibration which leads to ordinary typical resonance when the excitation frequency becomes equal 

to the natural frequency of the system. This causes resonance only at discrete point. The figure is 

shown in the next page. 
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Fig 1.1 
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Parametric Resonance 

In this case external excitation force is applied in the axial direction or perpendicular to the 

amplitude of vibration which leads to parametric resonance, when the excitation frequency or 

any integer multiple of it is twice the natural frequency. Here dynamic load component and ex 

citation frequency is parametric with respect to the vibration. 

 
Fig 1.2 
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Condition of Parametric Instability 

The system can experience parametric instability when the excitation frequency or any other 

integer multiple of it is twice the natural frequency that is to say 

 

mωe = 2ω       ;    m= 1,2,3…. 

 

The case of  ωe = 2ω  is known to be the most important in application and is called main 

parametric resonance. A vital step in the analysis of parametric systems in thus establishment of 

regions in the parameter space (plot between dynamic load component and excitation frequency) 

in which the system becomes stable, these regions are known as the regions of dynamic 

instability or zones of parametric resonance 

The unstable regions are separated from stable ones by the so called stability boundaries and a 

plot of these boundaries on the parameter space is called STABILITY DIAGRAM.   

 

Numerical method used for the analysis of dynamic stability systems 

     There are various numerical methods, out of which FINITE ELEMENT METHOD is used 

due to the following advantages, 

 FEM is applicable to any field problem: heat transfer, stress analysis, magnetic field & so 

on. 

 There are no geometric restrictions. The body region analyzed may have any shape. 

 Boundary conditions and loading are not restricted. 

 Material properties are not restricted to isotropy & may change from one element to 

another or even within an element. 

 An FE structure closely resembles the actual body or region to be analyzed. 

 The use of finite element for the simulation of rotor systems make it possible to formulate 

increasingly complicated problems, and also it has been established that more accurate 

results can be obtained only using for degrees of freedom. 
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THEORETICAL ANALYSIS 
 

 

 

 

 

 

 

 



 

THEORETICAL ANALYSIS 

 

2.1 FINITE ELEMENT FORMULATION 

 

                                A uniform cantilever shaft of length L, subjected to an axial compressive 

load P(t) and rotating at a constant speed Ω is shown in the figure. A typical shaft element 

consists of two nodes and each node has four degrees of freedom: two translations and two 

rotations. With the axial motion neglected, a typical cross section of the shaft element, located at 

a distance s from the left node, in a deformed state is described by the translations V(s, t) and 

W(s, t) in the Y and Z directions and small rotations B(s, t) about Y and Z. The translations (V, 

W) consist of a contribution (Vb, Wb) due to bending and as contribution (Vs, Ws) due to 

transverse shear deformation; the rotations (B, Γ) are only related to the bending deformations 

(Vb, Wb). The relationships can be expressed as follows 

 

V(s, t) = Vb(s, t) + Vs(s, t);          W(s, t) =   Wb(s, t) +   Ws(s, t),                          (1) 

 

 

B(s, t) = -∂Wb(s. t)/∂s,                   Γ(s, t)= ∂Vb(s, t)/ ∂s                                          (2) 

 

        The translations and rotations of a typical point within the element can be related to the 

nodal displacement vector [qe] and the translational and rotational shape function [Nt(s)] and 

[Nr(s)] respectively as 

 

=
⎭
⎬
⎫
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),(
),(
tsW
tsV

[Nt(s)] {qe (t)},                      [N=
⎭
⎬
⎫

⎩
⎨
⎧
Γ ),(

),(
ts
tsB

r(s)] {qe (t)},                (3,4) 

  

 

where  {qe (t)}= {V1,W1,B1, Γ1 ,V2,W2,B2, Γ2 }T  .   
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From equations (1)-(4), the two transverse shear strains {Vs’, Ws’} can be related to the nodal 

displacement vector as 
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Where the symbol “ ’ ” indicates differentiation with respect to axial distance s. The 

representation of the shape function of the shape functions can be derived by using the 

expression of static deflection of a Timoshenko beam (Archer, 1965), and their detailed forms as 

well as the shape function matrices are as follows. 
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⎦

⎤
⎢
⎣

⎡
−− 0000

0000

4321

4321

θθθθ
θθθθ
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[Bs(s)]=  ⎥
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where 

 

θ1=[1-3ξ2+2ξ2+(1-ξ) Ф]/(1+Ф), 

 

θ2=l[ξ-2 ξ2+ ξ3+ (ξ- ξ2) Ф/2]/(1+Ф), 

  

θ3= (3ξ2-2ξ2+ξФ) /(1+Ф), 

 

θ4=l[-ξ2+ ξ3- (ξ- ξ2) Ф/2]/(1+Ф),           
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¢1=6(-ξ+ ξ2)/[l(1+Ф)], 

 

¢2=[1-4ξ+3ξ2+(1-ξ) Ф] /(1+Ф),           

 

¢3=6(ξ-ξ2)/ [l(1+Ф)], 

 

 ¢4=(2ξ-3ξ2+ξФ) /(1+Ф),           

 

  η1=Ф/[l(1+Ф)], 

 

  η2=Ф/(1+Ф),           

 

   η3=Ф  [l(1+Ф)], 

 

   η4=Ф /(1+Ф),           

 

 ξ=s/l,  Ф=12EI/(kGAL2)   ,   
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2.2 FINITE SHAFT ELEMENT  

 

                          The potential energy Ue    of the uniform shaft element of length l, including the 

contributions of elastic bending and shear energy and the energy due to a spatial independent, 

axial compressive load P is given by 

              

 

Ue= ∫
1

02
1 EI [(Vb”)2+(Wb”)2]ds + ∫

1

02
1 kGA [(Vs’)2+(Ws’)2]ds- ∫

1

0

)'[(
2
1 VP 2+ )'(W 2]ds  (6) 

 

Where e is the Young’s modulus, I is the second moment of area, k is the shear coefficient, G is 

the shear modulus and A is the cross-sectional area of the shaft. 

 

      Under the assumption that the shaft rotates at a constant speed Ω, the kinetic energy Te of the 

shaft element including both the translational and rotational form is given by 
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……………….(7) 

 

Where the symbol “ ‘ “ denotes the differentiation with respect to time t, ρ  is the mass density 

of the shaft material, Id and Ip are the diametrical and polar moments of inertia of shaft per unit 

length. 

 

                    Upon substituting Equations (3)-(5) into equation (6)-(7), respectively the potential 

energy Ue and kinetic energy Te can be rewritten in terms of the nodal displacement vector as, 
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Where, 
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Upon substituting Equation (8) and (9) into Lagrange’s equation, the equation of motion for the 

finite rotating shaft element is given as 
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2.3 SYSTEMS EQUATION OF MOTION: 

 

               The equation of motion of the complete system can be expressed as 

 

[ ] [ ] [ ] },0{}]){[(}{}{ =−+Ω−
•••

qSPKqGqM                                                          (11) 

 

Where, 
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       For the case in which the shaft system is subjected to a periodic axial force of the form  

tPPtP t θcos)( 0 +=           

       Where θ is the axial disturbance frequency 

The static and time dependent component of the load can be expressed as a fraction of the 

fundamental static buckling load P* of the non-rotating Shaft as 

 

tPPtP θβα cos)( ** +=                                                                                     (12) 

 

       where α and β are referred to as the static and dynamic load factor respectively 

 

  If the two static and dynamic i.e. time dependent components of load are applied in the same 

manner, then equation (11) becomes 

 

[ ] [ ] }0{}]){)[cos(]([}{}{ * =+−+Ω−
•••

qStPKqGqM θβα                                   (13) 

Equation (13) represents a system of second order differential equation with periodic co-efficient 

of the Mathiew-Hill type. Application of the theory of linear equations with periodic  
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coefficients, the boundary between stable and unstable regions can be constructed by periodic 

solutions of period T and 2T (Bolotin 1964), where T= θ
π2 . In dynamic stability problems, the 

usual interest is to determine the boundaries of principal instability region in frequency domain, 

in which the solution corresponds to the period of 2T. As first approximation and putting 

attention only to the case of simple parametric resonance type, the parametric solution with 

period 2T can be sort in the form 

 

{ } { } { } )2/cos()2/sin( tbtaq θθ +=                                                                     (14) 

 

          By substituting Equation (14) into equation (13) and equating the coefficients of the sin 

(θt/2) and cos (θt/2) terms , a set of linear algebraic equations in terms of {a} and {b} is obtained 

as 

 

( )[ ] }0{}]{)[2/(}]{)[4/(2/(][ 2* =Ω+−−− bGaMSPK θθβα                       (15a) 

 

}0{}]{)[2/(}]{)[4/(])[2/(]([ 2* =Ω+−−− aGbMSPK θθβα                      (15b) 

 

The condition for the set of linear homogeneous equations, Equation (17) to have a nontrivial 

solution is  

 

0
])[4/(])[2/(][][2/

][2/])[4/(])[2/(][
2*

2*

=
−+−Ω−

Ω−−−
MSPKG

GMSPK
θβαθ

θθβα
    (16) 

 

 

Equation (16) is referred to as the equation of boundary frequencies and can be used to construct 

the principal regions of dynamic stability.  
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EXPERIMENTAL VALIDATION 

3.1 INTRODUCTION 
The purpose of the present experimental wok is to validate the theoretical results obtained from 

Finite Element Analysis and to find the instability and stability region for a rotating shaft system 

by plotting the stability diagram for it. For this purpose an experimental test rig was designed 

and fabricated. 

3.2 DESCRIPTION OF EXPERIMENTAL SETUP 
 
The main components of this set up are as follows: 

1. Frame 
2. DC Motor(1 HP) 
3. Electrodynamic shaker(EDS) 
4. Load cell 
5. Vibration pick up 
6. Oscillator and Power amplifier 
7. Oscilloscope 
8. Screw Jack 

 
The test rig consists of a frame made up of steel channel section. The cannel section of 6”×3” is 
used to provide sufficient strength and rigidity. The test rig is an inverted “U” shaped structure 
fixed to a concrete foundation with foundation bolts. Its approximate height is two meters and 
distance between the vertical columns is one meter.  
A screw jack is fixed to the top horizontal bar of the frame. It is used to accommodate specimen 
of various length and also to apply static load on the specimen. A dc motor is rigidly attached to 
the screw jack, as shown in the figure. The specimen is attached to the motor by means of a 
sleeve coupling. A fluctuating load is applied to the other end of the specimen by means of the 
electrodynamic shaker (with frequency range of 0-3000 Hz and capacity 50 kgf). The dynamic 
load was measured by a load cell fitted to the moving table of shaker. The Electrodynamic 
Shaker is placed at the centre of the concrete foundation.  The Electrodynamic Shaker is the key 
component of the set up. The EDS is connected to the power amplifier which is used to operate 
the EDS at desired frequency and amplitude. The pick up MM002 ( Bruel & Kjaer,Denmark) is 
used to record the amplitude of external excitation frequency. It is placed at the top end of the 
specimen which is attached to the motor. The load cell is placed on the EDS table to record the 
Dynamic load acting on the specimen. 
 

 

 
 
 
 
 

13 



 
EXPERIMENTAL SETUP 
 
 
 

 
 

Fig-3.1 
 
 

INDEX 
 
 
1. Oscillator and power amplifier 
2. Electro dynamic shaker 
3. Specimen 
4. Oscilloscope  
5. D C Motor 
6. Screw Jack 
7. Frame  
8. Accelerometer 
9. End attachment 
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Fig-3.2 EXPERIMENTAL SET UP 
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Fig-3.3 
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Fig 3.4 
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Fig 3.5 
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Fig 3.6 
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PICTURE OF END ATTACHMENTS 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

 

 
 
 
 
 
 
 
 

 
Fig 3.7 
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3.3 SPECIMEN PREPARATION 
 

The specimen consists of a 4mm diameter GI wire. The length of the rod is 1.5m.The specimen 

is fitted to the end attachments in turn namely.,  

Pinned motor ------ Pinned bottom. 

Fixed motor ------- Pinned bottom. 

Fixed motor ------- Fixed bottom. 

 

3.4 EXPERIMENTAL PROCEDURE 

 

ontrolle otor and its control circuit. The 

ontrol circuit consists of two rheostats, one connected to the field and other connected to the 

. The rotational speed of the specimen which is 

 measured by tachometer. The dynamic load was applied to 

ynamic Shaker. The displacement applied to the specimen at 

bration signal is visible at the oscilloscope. The displacement 

ould be controlled by means of the amplifier or the shaker. Once the vibration signal was visible 

e frequency of the dynamic load was increased by 

eans of the oscillator of the power amplifier and oscillator unit of the shaker. The vibration 

The speed of the test specimen was c d by the DC m

c

armature. The speed of the motor is varied by changing the resistance of either the field or the 

armature. The specimen is run at constant speed

equal to the speed of the motor was

the specimen by means of Electro D

the bottom end is such that the vi

c

the amplitude was kept unchanged. Then th

m

signal of the test specimen was recorded by the vibration pickup. When the signal suddenly 

becomes very high the excitation frequency corresponds to the parametric resonance frequency 

which was noted down. The frequency of excitation was continuously increased and the 

frequencies at which the response becomes very high were noted down. These frequencies were 

divided buy the first fundamental frequency (ωo) of the system to give the frequency. The 

dynamic load factor β is calculated by dividing the dynamic load with the fundamental buckling 

load of the specimen. The unstable boundaries were established experimentally by plotting the 

points Ω/ωo ,β  and the theoretical and experimental results were compared. 
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RESULTS AND DISCUSSION 

 The problem studied in this work is to determine the regions of Dynamic instability of a 

t subjected to compressive load , where P*  is the static 

 The physical configurations for different end 

1, 2.2, 2.3 and the configuration and material properties are 

sted in table 4.1. A ten element discretisation gives good convergence of the first natural 

equencies. 

eed considered here is 2000 RPM stability regions for different end 

fig 4.1, 4.2, 4.3. Figure 4.1 is for fixed-pinned end condition, Figure 4.2 

is for fixed-fixed end conditio nd condition. It is observed 

at as the rotational speed increases, the boundary of region of dynamic instability are shifted 

 more 

portional to the rotation

 

tem. 

 the comparison of the theoretical and experimentally determined instability 

d 
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tPPtP θβα cos)( ** +=rotating shaf

buckling load of the cantilever non-rotating shaft.

conditions are shown in figure 2.

li

fr

         The rotational sp

conditions are plotted in 

n and figure 4.3 is for pinned-pinned e

th

outwardly, and width of the instability regions are increased, therefore the system becomes

unstable. Because gyroscopic moment is pro al speed, it leads to the 

conclusion that the gyroscopic moment has destabilizing effect on the dynamic stability problem

of the rotating shaft system. By comparing the nature of instability regions for the boundary 

conditions it is found that fixed fixed condition gives more stability to the rotating shaft sys

Fig 4.4 shows

regions for Ω=2000 RPM for Fixed-pinned condition. It shows matching between theory an

experiment. 

 

 

 

 

 

 

 

 

 

 

 



 
 
 
 
 
 

 
      

 
 

Fig-4.1 
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Fig-4.2 

 



 
 
 
 
 
 
 

 
 
 

 
Fig 4.3 
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Fig 4.4 
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Fig 4.5 
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Fig 4.6 
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TABLE  4.1 

ATE RTIES AND FORMULAE USED 

 
 
 
 
CONFIGURATION DATA, M
 

RIAL PROPE

 
 

SL.NO. QUANTITIES VALUES 
01 L 1.5m 
02 D 4mm 
03 m 0.27kg/m 
04 Pcr

2L
EI  

05 β Pd/Pcr

06 I=п  d4/64 1.26*10-11

07 E 2.1*10  N 211 /m
08 ρ 7500kg/m3

09 ω EI  4mL
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CONCLUSION 

 Ritz finite element procedure employed to determine the regions of dynamic instability of a 

l forces. By the use of Bolotin’s method the equation of boundary 

frequencies can obtained and instability regions were established by using Hsu’s criteria. For the 

ractical part, four end attachments were designed and fabricated.  

with long bearing, drill bits. 

y simulation model and 
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A

shaft subjected to periodic axia

p

The experiment was conducted for four different boundary conditions.  

                             Numerical results show that the gyroscopic moment or the rotational speed can 

enlarge the regions of dynamic instability, and therefore the system becomes more unstable.  

                           This type of parametric excitation is seen in shafts 

                            The graphs from theoretical analysis were plotted b

compared with the experimental graphs. 

                            The experimental findings corroborates well with the theoretical results. 
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