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Abstract

A wide spectrum of investigations devoted to the determination of natural frequencies 
and mode shapes of beams with an open crack are presented in the literature. However, as 
is well known, an open crack is a fairly crude model of a fatigue crack. The study of the 
dynamic characteristics of a beam with a closing crack is the main aim of the present 
paper. The analytical approach which enables one to determine the effect of crack 
parameters (crack magnitude and location) on different dynamic characteristics of a 
cantilever Bernoulli}Euler beam with a closing edge transverse crack is performed. 
Natural frequencies, mode shapes and distortion of time functions describing wave 
shapes of displacement, acceleration and strain of different cross-sections of a beam are 
considered as dynamic characteristics to be investigated. The general solution of the 
problem is derived from the synthesis of particular solutions obtained for the crack-free 
beam and for the beam with an open crack. The possibility of origination of several 
modes of vibrations during crack opening is taken into account as well as the peculiarity 
of strain distribution in the vicinity of a crack. It is shown that analytically predicted 
relationships between the dynamic characteristics of a cracked beam and crack 
parameters are well-founded. The analytical approach makes it possible to solve the 
inverse problem of damage diagnostics with sufficient accuracy for practical purposes.



Chapter 1
                                                    

                                                                                  GENERAL INTROIDUCTION

1.1 INTRODUCTION

1.2 DYNAMIC CHARACTERISTICS OF A BEAM WITH OPEN CRACK



Introduction
       Dynamic characteristics of a damaged and undamaged body are, as a rule, different. 
This difference is caused by a change in stiffness and can be used for the detection of 
damage and for the determination of its parameters (crack magnitude and location). Many 
mechanical structures in real service conditions are subjected to combined or separate 
effects of the dynamic load, temperature and corrosive medium, with a consequent 
growth of fatigue cracks, corrosive cracking and other types of damage. The immediate 
visual detection of damage is difficult or impossible in many cases and the use of local 
non-destructive methods of damage detection requires time and "financial expense and 
frequently is inefficient.

              In this connection, the use of vibration methods of damage diagnostics is 
promising. These methods are based on the relationships between the vibration 
characteristics (natural frequencies and mode shapes) or peculiarities of a non-linear 
vibration system behavior (for example, non-linear distortions of the displacement wave 
in different cross-sections of a beam, the amplitudes of sub-resonance and super-
resonance vibrations, the anti-resonance frequencies, etc.) and damage parameters. It is 
important to note that the essential non-linearity of vibrations of a body with a fatigue 
crack is due to the change of stiffness at the instant of crack opening and closing and is 
the main difficulty in the solution of such class problems. The analytical
Investigation of vibrations of damaged structures is a complicated Problem. This problem 
may be simplified if a structure can be represented in the form of a beam with 
corresponding boundary and loading conditions. This class of structures can include 
bridges, offshore platforms, pipelines, masts of electricity transmission, TV towers, 
aircraft wings, blades and rotors of turbine engines, propellers of helicopters and many 
others.

            In earlier works, the solution of the problem of the bending vibrations of a 
cantilever beam with a closing crack during the "first cycle of vibration was described. It 
was shown that at the instant of crack opening, the so-called concomitant mode shapes 
differ from the initially given mode shape. This approach to the solution of the problem 
can be extended not only over the "first but also over the subsequent cycles.

              Therefore, the aim of the study is to develop the algorithm of consecutive (cycle-
by-cycle) calculation of cracked beam mode shapes amplitudes, to investigate the 
regularities of concomitant mode shapes origination, and to study the level of non-linear 
distortions of the displacement, acceleration and strain waves.



DYNAMIC CHARACTERISTICS OF A BEAM WITH AN OPEN CRACK

Let us consider a cantilever beam of constant rectangular cross-section with a mass on the 
end. It is well known that the free bending vibrations of such a beam with the damping 
effect neglected are described by the differential equation.

                                                                                         (1)
                                  

where E and o are Young's modulus and density of the beam material, respectively, 
I=bh³/12 and A=bh are the moment of inertia and area of the cross-section, respectively, 
and b and h are the width and height of cross-section respectively.

The general solution of equation (1) can be presented in a following form:

                                   ∞
                       Y(x,t)=∑wi(x)(Pi sin ωit + Ri cos  ωit)                        (2)
                                      =I 1
Where wi (x) and ωi are the mode shapes and natural angular velocities, respectively, and 
i is the number of the mode shape. The mode shapes of the beam are described by the 
expression.

                   wi (x)=AiS (kix) + BiT (kix) + CiU (kix) + DiV (kix),      (3)

Where
                 Ki=(ωi²ρA/EI)¼

               S(kix)=(cosh kix+cos kix)/2,

               T(kix)=(sinh kix+sin kix)/2,

               U(kix)=(cosh kix  cos kix)/2, 

               V(kix)=(sinh kix  sin kix)/2

Where S, T, U,V are the Krylov functions.

The coeficients Ai , Bi, Ci and Di in expression (3) are determined from the boundary
Conditions

1) wi (0) = 0,                                                                   
2) θi (0) = ∂ wi (0)/∂x = 0                                                         (4)
3) Mi(L) = EI∂²wi (L)/∂x² = Im ωi² ∂ wi(L)/∂x

http://www.sciencedirect.com/science?_ob=MathURL&_method=retrieve&_udi=B6V4C-4F1SVH0-2&_mathId=mml1&_user=1657113&_rdoc=1&_acct=C000053917&_version=1&_userid=1657113&md5=ee5b12f170cffa75c0d3c2ce2b5331f7


4) Qi(L) = EI∂³wi (L)/∂x³ = Im ωi² wi(L)
          Where h is the angle of rotation of the cross-section, M is the bending moment, Q 
is the transverse force, ¸ is the length of the beam, mL is the mass on the end, and Im is 
the moment of inertia of the mass.

The characteristic equation in this case assumes the form

[S(kiL)  qT(kiL)][S(kiL) + gV(kiL)]  [T(kiL)qU(kiL)][V(kiL) + gU(kiL)] = 0,    (5)

where q=Imki³ /ρA, 
           g=mLki/ρA.

Taking coefficient Ci to be Ci"M(0)/EIki² one can obtain

             wi (x) = M(0)/EIki²{U(kix)  [V(kiL)+gU(kiL)/S(kiL)+gV(kiL)]V(kix)}     (6)

The coefficients Pi and Ri in equation (2) are determined by the formulae

Pi= wiFı sinωitı + F2 cos ωitı /ωi[ ∫mwi²(x) dx + mLwi² (L)+Imθi²(L)]

Ri= wiFı sinωitı  F2 cos ωitı /ωi[ ∫mwi²(x) dx + mLwi² (L)+Imθi²(L)]

where m=ρA is the beam mass per unit length,

Fı= ∫m yı(x) wi(x)dx + mL yı(l) wi (L) + Im θı(L) θi(L),

F2 = ∫ m vı(x) wi(x)dx + mL vı(L) wi(L) + Im [∂θ(L,t)/∂t] = θi(L),  at t = tı

 Taking into consideration the fact that S(0) =1, T(0) = U(0) = V(0) = 0 and the first two 
boundary conditions, it can be shown that Ai2"Bi2"0. Residuary boundary and 
compatibility conditions determine the set of equations.
   
    The solution of characteristic equation enables one to calculate the natural frequencies 
of the beam with an open crack:

                                 ωi = ki²√(EI/ρA)                                        (7)

            When solving the set of equations by the Gauss method the coefficient Ci3 is taken 
to be the same as in the case of the crack-free beam and in doing so Mi3(0)=M(0). It is 
also assumed that on the boundaries of the section j=2, the cross-sectional moment of 
inertia is equal to I.



       Chapter 2
ANALYTICAL WORK



ANALYTICAL WORK

           Let us consider a cantilever beam of constant rectangular cross section with a mass 

on the end. It is well known that the free bending vibration of such beam with the 

damping effect neglected by the differential equation

                                                  

Where 

 Mass  m= 20.4 gram

Density of ball ρ =7.78×10^-6 kg/mm³

Modulus of elasticity E= 206800 N/mm²

Length of cantilever beam L= 500mm

Cross sectional area A= 29×4 =116.10^-4m²

Base b= 29mm

Height h= 4mm

Moment of inertia I=bh³/12 =24×4³=1856×10^-8mm^4

As described before the mode shape of the cantilever beam can be expressed by the 

expression

                   wi (x)=AiS (kix) + BiT (kix) + CiU (kix) + DiV (kix),

where

               S(kix)=(cosh kix+cos kix)/2,

               T(kix)=(sinh kix+sin kix)/2,

               U(kix)=(cosh kix  cos kix)/2, 

               V(kix)=(sinh kix  sin kix)/2

Where S,t,U,V are the Krylov’s function

1) Then considering the 1st boundary condition 

http://www.sciencedirect.com/science?_ob=MathURL&_method=retrieve&_udi=B6V4C-4F1SVH0-2&_mathId=mml1&_user=1657113&_rdoc=1&_acct=C000053917&_version=1&_userid=1657113&md5=ee5b12f170cffa75c0d3c2ce2b5331f7


i.e. wi (0) = 0

S(kix)= 1

T(kix)=0

U(kix)=0

V(kix)=0

i.e 0= Ai×1+ 0 + 0 + 0

or Ai=0                                                                                                     (a)

2)Now considering 2nd boundary condition

i.e. θi (0) = ∂ wi (0)/∂x = 0       

∂S/∂x=ki(sinh kix+sin kix)/2     =0

∂T/∂x=   ki(cosh kix + cos kix)/2 =  ki

 ∂U/∂x=   ki (sinh kix  sin kix)/2 = 0

  ∂U/∂x=   ki(cosh kix  cos kix)/2   = 0

i.e     θi (0)   =  0+ Bi× ki  +0 +0  

or       Bi= 0                                                                                                 (b)      

3)Now considering 3rd boundary condition

i.e.   Mi(L) = EI∂²wi (L)/∂x² = Im ωi² ∂ wi(L)/∂x
takind 2nd derivative of all kryloves function

∂²S/∂x²= ki²(cosh kix + cos kix)/2

∂²T/∂x²=   ki²(sinh kix+sin kix)/2     

∂²U/∂x²=    ki²(cosh kix  cos kix)/2   

∂²U/∂x²=   ki ²(sinh kix  sin kix)/2

As Ai=Bi=0

Mi(L)/EI=ki²[Ci(cosh kix  cos kix)/2  ] + ki ²[Di(sinh kix  sin kix)/2]         (c)

4)Now considering the 4th boundary condition

i.e. Qi(L) = EI∂³wi (L)/∂x³ = Im ωi² wi(L)
taking the third derivative of all the krylov’s function

∂³S/∂x³= ki³(sinh kix+sin kix)/2     



∂³T/∂x³= ki³(cosh kix + cos kix)/2

∂³U/∂x³= ki ³(sinh kix  sin kix)/2

∂³V/∂x³=ki³(cosh kix  cos kix)/2  
As Ai =Bi=0

i.e Qi(L)/EI=0+0+Ci[ ki ³(sinh kix  sin kix)/2] Di[ki³(cosh kix + cos kix)/2]

       or 2Qi(L)/EI ki ³= Ci(sinh kix  sin kix) Di(cosh kix + cos kix)     (d)

taking equation (c) and (d) and by multiplication of coefficient of Di and adding

Ci[(cosh kix  cos kix)² +(sinh kix  sin kix)²]= 2Qi(L)/EI ki ³×(sinh kix  sin kix)     

                                                                              2Mi(L)/EI ki²×(cosh kix  cos kix)  (e)  

AS    Qi(L) is the transverse force at the end  at the end of the end of the cantilever hence 

the bending moment will be

M(L)= Qi(L).L³/3EI

Hence equation (e) becomes

Ci[(cosh kix  cos kix)² +(sinh kix  sin kix)²]= 2Qi(L)/EI ki ³×(sinh kix  sin kix)     

.                                                                             2Qi(L).L³/3E²I² ki²(cosh kix  cos kix) 

Ci=2Qi(L)/EI ki²[(sinh kix  sin kix) / ki  L³(cosh kix  cos kix)  /3EI] /(cosh kix  cos 

                                                                                                      kix)² +(sinh kix  sin kix)²

                                                                                                                 (A)

Similarly by cross multiplication by coefficient of Ci and substracting

Di[(sinh kix  sin kix)²+ (cosh kix  cos kix)²]=  2Mi(L)/EI ki²×(sinh kix  sin kix)

                                                                               2Qi(L)/EI ki ³×(cosh kix  cos kix)

or Di= 2Qi(L)/EI ki ²×[L³(sinh kix  sin kix)/3EI +(cosh kix  cos kix)/ ki]/ +(sinh kix  

                                                                                            sin kix)²+ (cosh kix  cos kix)²

or Di=2Qi(L)/EI ki ²×[(cosh kix  cos kix)/ ki + L³(sinh kix  sin kix)/3EI]               (B)

 From all these boundary conditions and their subsequences we can get a 4×4 matrix as 

follow



 

By simplifying the equation we will get

ki /2×2Qi(L)/EI ki ²×[(cosh kix  cos kix) (sinh kix  sin kix)/ kiL³(cosh kix  coskix)² 

                                                                                                                                    /3EI]/

                                                                           (cosh kix  coskix)² +(sinh kix  sin kix)²

                                                     =2Qi(0).L³/3E²I²

Or L³[(cosh kix  coskix)²   (sinh kix  sin kix)²]/3EI = L³/3EI

Or (sinh kix  sin kix)² =  (sinh kix  sin kix)²

Or ki=0                                                                                                   (C)

For ki=0    R.H.S = L.H.S

     Ki= π   R.H.S = L.H.S

Hence Ki= nπ,       where n= 1,2,3,4,5………..

Since Ki^4= ωi²ρA/EI

Where Ki= Stiffness coefficient

          ωi=natural frequency

         ωi²= Ki²√(EI/ρA)

now taking all the given values and calculated values

for Ki= π

            ωi=π²√(20.68×1856×10^-8/7.78×10^-12× 116×10^-4)

or        ωi=π²√42.53×10^8

or       ωi=643.64 KHz

for Ki=2π

        ωi=4π²√42.53×^8

       ωi=2571.97 KHz

for Ki=3π



       ωi=9π²√42.53×^8

       ωi=5792.81 KHz

for Ki=4π

       ωi=16π²√42.53×^8

      ωi=10298.3 KHz

and so on

        

                                        



                        Chapter 3

RESULTS  AND  DISCUSS ION

3.1    RESULTS 

3.2 DISCUSSION



3.1 RESULT
             From the above calculations we got different frequencies for different valuies 
of Ki 
ω(0)=0
ω(π)= 643.64 KHz
ω(2π)= 2571.97 KHz
ω(3π)= 5792.81 KHz
ω(4π)= 10298.3 KHz

DISCUSSION

CRITERION FOR APPLICABILITY OF THE THEORY

           The theory presented above is valid if the crack at the corresponding half-cycles is 
either permanently open or closed. However, when concomitant modes of vibration arise 
this requirement is not always fulfilled.

ESTIMATION OF VALIDITY OF THE ANALYTICAL APPROACH

The estimation of the validity of the analytical approach was carried out based on the 
comparison of the results of calculations with the results of laboratory tests of the 
specimens with fatigue and open cracks. The geometrical characteristics of the specimens 
are shown in Table 1. 



Chapter 5

CONCLUS IONS



CONCLUSION

             An analytical approach that enables investigation of dynamic characteristics of a 
beam with a closing (fatigue) crack is developed. It is shown that in the process of the 
crack opening the origination of associated mode shapes differing from the initially given 
mode shape takes place. In the case of the initially given first mode shape (s=1), the 
amplitudes of higher mode shapes are relatively small. In the case of the initially given 
second or more higher mode shape, the amplitudes of associated mode shapes under 
certain conditions can be comparable with the amplitude of the initially given mode 
shape. The predicted values of natural frequencies and mode shapes for the specimens 
with a fatigue crack are close to those obtained experimentally, as well as the results of 
calculation and experimental estimation of distortion of strain and acceleration wave 
shapes. The verification of the analytical approach with a considerable amount of 
experimental data and with the results of other author's calculations showed that the 
analytical approach enables one to obtain well-founded relationships between different 
dynamic characteristics and crack parameters and to solve the inverse problem of damage 
diagnostics with sufficient accuracy for practical purposes.
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