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Abstract 
 

In this work an attempt was made to experimentally study the effect of different 

parameters like flowrate, void fraction, ionic strength, valence of anion and pH on release 

of kaolin particle from kaolin-sand mixture bed. It was observed that plugging of the 

released particle occur in the bed, which was explained, by size exclusion and 

agglomeration of particles. It was found that there exists a critical velocity for the release 

of kaolin and it was found graphically to be 0.017cm/sec. It was observed that void 

fraction has minimal effect on the release of kaolin particle. The effect of pH and ionic 

strength on release was explained by DLVO theory. The Cl-, SO4
-2, and PO4-3 ions are 

used to study the anion valence effect on the release. It was found that effect of anion 

valence on the kaolin release does not follow the Schulze-Hardy rule.  

 

Key wards: Kaolin, colloid release, plugging, ionic strength 
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Chapter – 1  
 

 

 

 

 

 

 

Introduction  

 

Porous media is used in many engineering as well as natural operations such as 

filtration, absorption, ionexchange, rainwater seepage etc.. The natural processes such as 

traveling of groundwater through an aquifer is an example of fluid flow through a porous 

media. Mobility of fine particle is a phenomenon that simultaneously occurs along with 

the motion of fluid in these engineered as well as natural systems. These fine particles are 

termed as the colloid. A colloid is a fine particle in the range of 0.1μm to 10μm in the 

form of gas, solid or liquid, which can be dispersed in a continuous fluid or solid and 

could be mobilized in a specified environment. 

 

1.1 Colloids and its properties 

Colloids are very fine particles and colloidal systems are sometimes referred to as 

the missing link between solution and suspension. In a solution solute is in a dissolved 

form in a solvent and in a suspension particles are large enough to get settled where as in 

a colloidal system particles remain in a fine state of dispersion. Unlike solution in a 

colloidal system there exists a dispersing medium and dispersed phase, for example in a 

aerosol particles are dispersed phase which are dispersed in a continuous medium of air 

called as dispersing medium. Table 1.1 gives some examples of the colloidal system and 

their specific names. 
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Table 1.1: Some examples of different types of colloidal system [1]. 
  
Physical phase of 
colloidal Particle 

Physical phase of 
dispersing phase  

Name of the 
system 

Practical example 

Gas Liquid Foam Detergent Foam  

Gas Solid Solid Fome Styrofoam   

Liquid  Gas Liquid aerosol  Fog 

Liquid Liquid Emulsion  Milk 

Liquid Solid Gel Jell  

Solid Gas Solid aerosol  Dust, Smoke  

Solid Liquid Sol Latex  

Solid Solid Solid Sol Gems  

 

 

 

Since the small size of the colloids they are mostly governed by surface 

phenomenon and effect of gravity is almost negligible when flowing through porous 

media. Table 1.2 shows the behavior of particle when they are suspended or dispersed or 

dissolved depending on there size. Surface forces are dominant on the particle sizes 

below 1μm and are significant up to the particle size of 20 μm and colloids fall in this 

range. Sometime shape of the particle also plays an important part in deciding the 

behavior. Neglecting other effects spherical particle will interact less compared to plate 

like or needle like particle and will produce slurry of lower viscosity. The spherical 

particle has larger surface area compared to other forms of particle which intern gives 

more active sites for surface activities. 
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Table 1.2:Behavior of different sizes of particle in dispersed in fluid [2]. 
 
Size (Nominal diameter. in 
μm) 

Example Behavior  

1000 Coarse sand Newtonian 

100 Fine Sand Newtonian / Stokesian  

10 Coarse clay Stokesian / Colloidal 

1 Clay Colloidal 

0.1 Milk Colloidal 

.0001 NaCl Solution Solution 

 

 

 

Colloidal system shows specific properties like optical properties (Tyndall effect), 

Brownian movement, electrical properties, adsorbing effect. As far as optical properties, 

colloidal systems scatter light due to reflection of light from the surfaces of colloid and 

this phenomenon is called Tyndall effect. This property of colloids is widely used to 

indirectly measure the concentration of the colloid in a system with the help of a turbidity 

meter. Brownian movement means random movement of the particles, which hinders the 

settling of the particle in dispersion. Colloids are charged particle and this electrical 

property decides whether the particles remain in dispersed phase of a system or will 

remain adsorbed to a substrate. Due to the presence of high surface area the colloidal 

particle have high adsorbing power. Because of electrical property and high surface area 

many contaminants having little solubility adsorb to colloid surface 
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1.2 Colloids associated contaminant transport  
The awareness of healthy environment has been accelerated in the last decade and 

half and contamination of ground water has received a special attention among the other 

aspects of environmental issues. Contaminates, like heavy and toxic metals and 

radionuclides are being released to the environment in a large scale due to the increase in 

the industrial growth. These contaminants in the course of time gets transported to the 

ground water through porous soil either directly getting dissolved in the fluid phase or 

indirectly by getting attached to the colloidal particle and moving with them. 

In the past, it was believed that only liquid or gaseous phases are mobile in nature 

and act as a carrier for the contaminants to travel in subsurface. In the last few decades 

this concept has been proven wrong. It’s been found by many researchers that in addition 

to fluid phase solid phase can also be mobile in a specific geophysical and geochemical 

environment [14]. The contaminants have affinity towards theses solid colloid particles. 

The transport of these contaminants is being facilitated or retarded by the mobile 

colloidal particles [3,5,12,14,19,24,26,27,28]. On account of this the study of colloid 

transport in a porous media has gained importance and many work has been done in this 

field, findings of which has been reviewed by many [14,19]. 

 

1.3 Colloid release and transport 

Fundamentally colloid transport depends on the attachment of colloid particle to 

porous media and/or detachment from it. The desirability of this attachment or 

detachment is dependent on the operations involved like the back wash efficiency of a 

sand filter is dependent on particles being re-entrants in the flow in other word depends 

on the detachment. Where as in the filtration processes attachment is desirable. As far as 

colloid associated contaminate transport is concerned both the phenomenon has its own 

importance.  

In a natural subsurface or aquifer colloid particles are present inherently either in 

the attached or coagulated form with a wide range of concentration as low as 1% to as 

high as 10% [3]. These colloids of natural system are generally dormant in nature under 

undisturbed geophysical or geochemical condition unless they are being activated (i.e. 
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mobilized) by disturbing the soil chemistry and /or flow condition. Soil chemistry and 

flow condition affect the net force acting on the colloid particle. If this net force is 

attractive then particle will remain attached to the porous medium and if the net force is 

repulsive the colloid particle will detach from the porous media and will be mobilized by 

the fluid present in the pours.  Keeping this point in view, the study of detachment of 

colloid has more significance. Many studies have been performed in this area in 

laboratory scale [3,4,7,21] initially attaching the colloids to the substrate and then 

detaching it. But in a natural system colloids are part of the system from the beginning so 

it is more important to study the release in in-situ condition and very few researchers 

have ventured in the field of in-situ release. Some researchers had studied some aspects 

of in-situ release of colloids [37,38]. In this work we will be concentrating on effects of 

different parameters relating to the chemistry and hydrodynamic aspect of natural media 

on in-situ colloidal particle release. Our system consists of natural sand as porous media 

and clayish kaolin colloid particle. 
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Chapter – 2 

 

 

 

 

 

 

 

Literature review  

 

 

2.1 Colloid transport 
 

The colloids are very small particle, which are movable in certain geochemical 

and geophysical conditions. These colloids carry the contaminants along with them.  

Colloid associated contaminant transport to prevail the following conditions is to be met: 

(1) Colloids and contaminant should be present in sufficient quantity. (2) Contaminants 

should be sparingly soluble and have affinity towards the colloid. (3) Colloid associated 

contaminants should be transported [14]. We will survey each point one by one. 

 
2.1.1 Source and generation of colloids  
           

There are different categories of colloids available as stated in Table 1.1 but we 

will be concentrating on the category in which solid is dispersed phase and liquid is 

dispersing medium as this type of colloid system exists in the subsurface and aquifer. 

Most of the colloids are present inherently in the subsurface as a part of soil and rocks 

and these concentrations of colloids are formed due to phenomenon like the weathering 

of subsurface due to the seepage of rain water, dumping of fine industrial solid waste.  

Out of which colloidal fines in due course of time transmitted to different layers of the 
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subsurface by suitable change of hydrogeochemical condition. Sometimes presence of 

colloids in the subsurface can be attributed to the fact that they might have been migrated 

by some geological processes like transmission of colloids by ground water or rainwater 

to some other location and deposited in the pores. Potential colloids for transport can also 

be generated by specific land applications like presence of fine colloids in the top soil of 

agricultural land [11] and these colloids being migrated by irrigation [5], drilling bore 

wells for different proposes like exploration, in-situ mining, etc..  

The sand or quartz material used to make the cementitious aggregate for the 

backfill in radio nuclide waste site is chemically unstable in the prevailing geochemical 

condition, which led to the formation of secondary mineral by dissolution of quartz 

leading to the formation of potential colloids for radio nuclide transport [24]. Backfilling 

the stops of the mine with the slimes (containing fine particle and generated after the 

extraction of ore) generates lots of colloidal fines in subsurface within few kilometers 

radius of the mine. Colloids can also be generated by direct injection of it by the process 

of landfills, leakage of septic tanks [14] and for remediation of land with smart 

biocolloids. 

Sources of colloids in ground water aquifer are mainly due to the following (1) 

Transport of colloids present in subsurface due to change in the chemistry or flow 

condition of the environment. (2) Precipitation and coagulation of supersaturated metal 

oxides and hydroxides present in the form of mineral fragments. However majority of the 

colloids found in ground water is of the first kind and corresponds to the nature of 

mineral found in the subsurface.  

 
2.1.2. Colloid release and mobilization 
 

In heterogeneous natural media colloids are mostly stable during normal 

hydrogeochemical condition of environment unless a disturbance is caused to the system. 

Disturbance to the system can be caused due to change in the chemistry of aqueous 

solution and / or hydrodynamics of the system. 
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2.1.2.1. Chemically induced release & mobilization 
 

The parameters affecting the chemically induced release are ionic strength, pH, 

valance of the cation and anion. The effects of all these parameters have been extensible 

studied by many researchers [3, 4, 7, 14, 19] except the effect of valence of anion of 

electrolyte. It has been seen that when particles are permanently charged pH effect is not 

that important [19]. 

It has been found in laboratory as well as in field experiments that with the 

decrease in ionic strength increases the release of the colloids. But this release starts 

below certain ionic strength above that there is coagulation or attachment of the particle 

and this point is known as the critical salt concentration (CSC) [19]. The decrease in ionic 

strength below CSC in subsurface is the most common factor for release of colloid 

particle. This decrease in ionic strength is mostly caused by dilution due to the infiltration 

of the rainwater, irrigation of land by fresh water or the artificial injection of fresh water 

for the recovery of secondary oil [14]. The oil reserves are generally bounded by brine 

having high ionic strength, on injection of fresh water to this ionic strength deceases 

rapidly overcoming the CSC and there by inducing release. Sen et al. [19] states this CSC 

depends on the following five factors i.e. valence of cation, specific characteristic of 

cation, pH, type of substrate, temperature.  

Experimentally [4] it has been seen that with the increase of pH release of colloid 

increases. pH of the solution affects the surface charge of the particle as protons are 

exchanged between particle surface and solution at the surface. It’s been found that some 

of the particles possess positive charge at lower pH and negative charge at higher pH, and 

in between them there exists a point where particle surface possess no charge which is 

called point of zero charge (PZC) or isoelectric point [15]. 

The mechanism of chemically induced release states that there should exist a net 

repulsive force between the two surfaces to induce release. Many theories and hypothesis 

have given by researches in this regard but the DLVO (Derjaguin - Landan -Verwey – 

Overbeek) theory remains the basic theory almost for last six decades. This theory 

assumes that any process which takes place at the interaction surface area is fully 

completed.  According to this theory the net force acting on the particle surface is 
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summation of two types of forces (a) Coulombic forces (b) Van der waals attraction 

[40,41].  

 
VDWCoulTotal EEE += .         (2.1) 

 
This theory correlates the total   interaction potential energy with the separation 

distance between two surfaces. A schematic representation of this is given in fig. 2.1. Van 

der waals attraction energy is a short range energy whose contribution decreases as the 

separation distance increases and there exists a point beyond which this interaction 

energy become nil This energy is independent of the solution chemistry. The van der 

waals energy can be calculated by an expression derived by Hamaker [42].  
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Where A0 is the Hamaker constant. 

The coulombic energy can be obtained by modified Debye – Huckel theory [43] as 

follows 
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Where φv is the volume fraction of the colloidal particle, Z is the number of charges in a 

colloidal particle; d is the particle diameter and 1κ  can be calculated by following 

expression  
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It has been repotted by many researchers [4,6] that in addition to the above stated 

DLVO forces there also exists some non DLVO interfacial forces like hydrogen bonding 

forces, hydration pressure, disjoining pressure, structural forces, Lewis acid base forces 

etc. Including theses non-DLVO forces Bergendahl and Grasso [4] has proposed an 
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extended DLVO theory. They have proposed it in the line of thermodynamics; they 

applied the concept Gibbs free energy in determining the total interaction energy. 

According to them total interaction energy is the summation of electrostatic interaction, 

Van der waals energy, Born repulsion, and Lewis acid base interaction.                

                              
ABBornVDWEL GGGGG Δ+Δ+Δ+Δ=Δ Σ       (2.5) 

 

Where   is total Gibbs free energy,  is electrostatic energy,  is van der 

Waals energy,  is Born repulsion energy,  is Lewis acid base energy 

ΣΔG ELGΔ VDWGΔ
BornGΔ ABGΔ

 
When this total interaction energy have a positive value then only the release of 

colloids are possible, likewise when value is negative attachment or attraction is 

favorable. The electrostatic energy can be predicted by using the following expression 

given by Gergory [44] 
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Where ε1 is permittivity of medium,  is colloid radius, kca B is Boltzmann’s constant, T is 

temperature, e is electron charge. 
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Where  is ion valance,  is surface potential of each surface,  is number 

concentration of ion in bulk solution. 
jz io,ϕ jon

The van der Waals energy is can be predicted using the following expression 

given by Gergory [43]. 
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Where λ is characteristic wavelength, A  is Hamaker constant, s is surface separation 

distant. 

 

Born repulsion energy can be predicted using the expression given by 

Ruckenstein and Prieve [36].  

 

⎥
⎦

⎤
⎢
⎣

⎡ −
+

+
+

=Δ 77

6
0 6

)72(
8

7560 s
sa

a
saAG c

c

ccBorn σ
     (2.8) 

 

Where cσ  is collision diameter. 

Lewis acid base interaction energy can be predicted using he expression given by 

Van Oss [46,47]. 
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Where 
AB

AB
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KG
λπ 020
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The potential interaction energy profile deduced from DLVO or extended DLVO 

theory follows a profile as represented schematically in fig.2.1. Energy barriers 

represented as the picks in the fig.2.1 are characterizing this profile. In case of similarly 

charged particle attachments is possible in accordance with the primary minimum and 

secondary minimum and detachment of particle can only occur if the energy barrier 

crated by primary minimum and primary maximum is breached [3]. Ruckenstein and 

Prieve [36] reported that there is a need of finite minima to successfully achieve the 

release of colloids and in order to get a finite minima they added another energy 
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interaction to the total interaction energy called Born repulsion as per equ.2.8. This was 

needed because as the separation distance gets smaller and smaller van der Waals 

attractive interaction energy increases which may create a virtual infinite minima at very 

small separation distance.     

 

 

 

 

 

 

 

 

 

Fig.2.1: Schematic representation of potential interaction energy profile [3].  
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Ruckenstein and Prieve [36] also reported that coefficients of rate of attachment and 

detachment vary exponentially with the magnitude of energy barrier. 
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Parameters relating to solution chemistry like pH, ionic strength affects this 

energy barrier and primary and / or secondary minimum for release of particle. Reduction 

of ionic strength reduces or totally overcomes net attractive force minima despite the 

increase in the net repulsive energy barrier and induces colloidal particle release [3,14]. 

The onset of this release starts at CSC at which point the total interaction energy and the 

net force acting on the colloids are zero. 

The concept of electrical double layer plays an important role in these short-range 

energy interactions. Most of these energies depend on the surface charge. A schematic 

representation of electrical double layer is given in fig.2.2. The processes involved at this 

EDL include (1) Clouding of ionic charge at the interface. (2) Neutralization of the 

oppositely charged ions. (3) Transport of ions to and from bulk to EDL through diffuse 

layer(s). (4) Lateral transport of ions in the EDL. It is difficult to measure the surface 

charge density directly so instead of it surface potential, which is a representation of 

surface charge, is measured but it is not possible to measure the surface potential at it 

onset of diffuse layer, which is the true representation of surface charge. So surface 

potential at a hypothetical shear plane is measured assuming that this plane is very close 

to the onset of diffuse layer so Zeta potential is used as the approximation of the surface 

potential. Zeta potential (ζ) can be calculated using the expression given by 

Smoluchowski [48]. 
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Where 0ε  is the permittivity of vacuum, 1ε  is the permittivity of water, η is the viscosity 

of water and ⊥μ  is the electrophoritic mobility which can be measured easily.  

 

 
 
 
Fig.2.2: Schematic representation of Electrical double layer [18].  
 

 XXVII



2.1.2.2. Hydrodynamic induced release and mobilization 
 

The hydrodynamic parameters affecting the release process are porosity, flow rate 

or superficial velocity. The hydrodynamic induced release has its own importance in the 

subsurface colloids release because of the high pore velocity and large particles 

experiencing higher drag. The following hydrodynamic forces act on the colloid particle 

i.e. (1) Adhesion or attachment force, (2) Drag force, (3) Lift force [14] and (4) frictional 

force. A free body representation of all these forces is given below. 

 

 
Fig.2.3: Schematic representation of hydrodynamic forces acting on a particle. 

 

The attachment forces  acting on the particle can be calculated using Equ.2.1 

or Equ.2.5. The phenomenon of release and transport of colloids can only be fully 

explained only if we consider both chemical and hydrodynamic forces simultaneously as 

solution chemistry affects the colloid transport by hydrodynamic shear. 

AF

The drag force  on the particle in a slow and linear shear condition can be 

calculated by a modified expression given by Goldman et al [49,50]. One can see from 

expression that drag force varies directly with the radius of the particle because of which 

large particles experiences higher drag than smaller particle due to which large particles 

is mobilized faster 

DF
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( )( )xpD UaF πμ67009.1=         (2.12) 

 

Where μ is the viscosity of fluid,  is the fluid velocity at he center of the particle at a 

distance  (radius of particle) from the wall.  can be calculated using the following 

relation [51]. 

XU

pa XU

 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=

l
a

Al
aQ

U ppf
x 16         (2.13) 

 

Where   is the flow rate, A is the cross-sectional area, and l is the thickness of the 

flow area (normal to the plane wall) in a packed column it could be considered as the 

pore diameter. 

fQ

The lift force can be calculated by the following expression [14]. As it clear from 

the expression this force varies directly as the square of the particle radius and the colloid 

particles are very small because of which this force can be neglected compared to the 

attachment force. 

 

5.0

5.022.81
ν
μω xp

L

Ua
F =          (2.14) 

 

Where ω is the velocity gradient at the plane wall and v is the kinematic viscosity of the 

fluid. 

 
The frictional force which acting on the particle is wall friction, because of the 

small size of the colloidal particle contact surface is very small due to which this force 

can also be neglected as compared to drag force. 

 

The torque due to drag on the attached particle, , has been presented as DT

 

DpDyD FaFlT 399.1==         (2.15) 
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Owing to the increase in velocity with distance from the plane wall, the drag force 

effectively acts on the attached particle at a height of 1.399 x ; thus, the drag force 

creates torque by acting on a lever arm of ly = 0.399 . For detachment, the 

hydrodynamic torque must exceed the adhesive torque, which is represented as the net 

attractive force acting on a lever arm of lx and is represented mathematically as follows. 

pa

pa

 

xAA lFT =           (2.16) 

 

For release of colloids there exists threshold values like CSC and PZC, on 

attaining these thresholds only release is possible. Likewise here also exists a critical 

velocity for detachment. Combining Equ.12, 15 and 16 the critical velocity can be 

calculated as follows. 

 

( )( )267009.1399.1 p

xxcrit
x a

lF
U

πμ×
=        (2.17) 

 

 

The study on the effect of hydrodynamic parameters is very limited. It’s reported 

that with the increase of flow velocity beyond the critical velocity release of particle 

increases as drag on the particle increases. Although many studies have been reported on 

the effect of fluid velocity on the detachment but studies on the effect of the porosity of 

the media and the colloidal particle initial concentration in the bed on the mobilization of 

colloids and on the blocking phenomenon has not yet been studied properly. However the 

concept of critical particle concentration (CPC) has been incorporated beyond which 

blocking starts. Blocking can be of two types (1) Blocking due to the larger particle at the 

smaller pore diameter, (2) Blocking due to multiple particle entrapment. 

 

 
2.2 Colloid associated contaminant transport  
 

 XXX



Colloid facilitated contaminant transfer has been widely studied by many 

researchers [24,26,28,37,38]. The contaminants transmission in association with the 

colloids can be possible if it has a low solubility and has a tendency to adhere to the 

surface of the colloids. The transmission of colloids becomes faster in association with 

the colloids. Penrose et al [30] reported that the rate of Pu and titanium mobilization is 

improved by 10 fold when they are associated with colloid particle. Kletzke et al [39] 

reported with the help of column experiment that colloidal Pb (insoluble precipitate) 

moves faster than the dissolved Pb.  Many colloids adsorb the radionuclides through ion 

exchange and surface reactions owing to the larger surface area of colloidal particle. 

Studies were reported for transmission of radionuclides from the nuclear waste depositary 

with the colloids generated from the backfill or any other engineered barrier. 

Contaminants associated with the colloids are of different forms like cationic, anionic, 

polar or non-polar organic, inorganic etc.   

In addition to the factors affecting the release of colloids there are other 

parameters that influence the colloid associated transport. These parameters could be 

organic mater content of soil, water regime, biological activities. Organic mater content 

of soil primarily consists of humic substance which could be as high as 60% [31] Rachid 

et al. [7] reported that humic acid coated kaolin moves faster than the kaolin. Humic acid 

coated kaolin is more stable in the solution, which can be conformed from the fact that 

absolute value of zeta potential increases with the increase of humic acid. Humic acid is 

negatively charged and it is adsorbed to the surface of kaolin through ligand transfer. 

Other studies has also been reported the improvement of mobility with the humic 

substances [5].     

 

2.3 Kaolin and its characterization  
 

Kaolin is known to contain amphotric charge on its surface. Kaolin basal plane 

contains a positive surface charge due to iso-morpous substitution of Si4+ by Al3+ and its 

edge contains a negative surface charge due to protonation and deprotonation of exposed 

hydroxyl group.  Kaolin contains a net negative charge as its face area to edge area ratio 

is high [15]. But at particular pH solution the surface of kaolin will have zero charge 
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known as point of zero charge (PZC), which is also called isoelectric point. As reported 

by Hu et al [15] isoelectric point of kaolin varies in the range of 2.82 to 3.78 depending 

on different nature of kaolin and these results are reported in table 2.1 and. in fig.2.4. 

 

 

 

 
Fig.2.4: Zeta potential vs. pH [15]. 

 

 

 

Table 2.1: Isoelectric point of different types of kaolin. [15] 

Ka-ML Ka-JX Ka-MC Ka-DYG 

3.34 3.62 3.78 2.82 
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Table 2.2: Composition of kaolin. [32] 

Constituent Percentage Present (%) 

SiO2 53.00 

AL2O3 26.71 

Na2O 0.62 

K2O 1.39 

CaO 0.57 

Fe2O3 0.37 

MgO 0.28 

LoI 17.20 

 

 

 

Studies reported that the major composition of kaolin is SiO2 (41% - 56%) and 

Al2O3 (32% - 39%) and small quantities of oxides of different metals like Fe, Mg, Ca, 

Na, K, Ti etc. [33,34,35]. A typical composition of kaolin is given in table 2.2. Kaolinite 

is a 1:1 dioctahedral aluninosilicate having two basal faces. One basal face consists of a 

tetrahedral siloxane surface very inert –Si– O–Si– links. The other basal surface consists 

of an octahedral, gibbsite (Al(OH)3) sheet. Both of these surfaces are theoretically 

electrically neutral. At the edges of a 1:1 layer, the structure is disrupted and broken 

bonds occur that are accommodated as OH groups. A computer generated stucture of 

Kaolin is given fig.2.5. 
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Fig.2.5. Computer generated structure of kaolin [33]. 

 

 

2.4 Scope of this work 

 

 An extensive work had been done in understanding the colloid release from 

porous media. One of the applications of this study is the colloid associated contaminant 

transport in the subsurface. The colloids in the subsurface are mostly inherently present 

so it is wise to study the in-situ colloid release. Unfortunately, few researchers had 

ventured in this field [19]. Here an attempt has been made to experimentally study the 

effect of different parameters on the in-situ kaolin release from kaolin-sand bed. Kaolin is 

considered as colloidal particle here because colloids present in subsurface are mostly 

clay materials. In this work an emphasis has been given to study the plugging 

phenomenon in the bed and effect of anion valence on the kaolin release besides other 

parameters like void fraction, ionic strength and pH. 
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Chapter – 3 

 

 

 

 

 

 

 

Materials and methods  

 

 

3.1 Sand 
 

Sands were used for porous media i.e. as a packing material in the column. 

Naturally available sand was used for all the experiments. Sands collected from site and 

sieved to get the desired size of the sand. Here two sizes of sand were used, 390 μm and 

327.5 μm. The density of sand used was calculated to be 2.619 g/cc using displacement 

of water method. The desired sized sands were first washed with ordinary tape water to 

remove the dust particles present till the visible turbidity vanishes, then they were treated 

with dilute HCl for the removable of organic contaminants that might be present, which 

influences the release process [5]. This was followed by washing sand with double 

distilled water to remove any ion that was present till water conductivity reduces to zero. 

Then sands are dried in a oven at 100 ±  10 degree centigrade. 

 

3.2 Kaolin 

 
Kaolin is a clay type material. It has been reported in many work that the colloids 

present in the subsurface are mostly cay minerals, oxides or hydroxides of metals, silica 
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etc. [35]. Studies also reported that Kaolin mineral acts as carrier colloids for the 

mobilization of many contaminants. For the above reason kaolin was used as the colloid 

particle in our study. Light kaolin was obtained from C.D. pharmaceutical works (DL 

no.44RPG) and used without treatment. The average particle size of the kaolin used is 

1μm.  

 

3.3 Chemicals 
The following analytical grade chemicals were used for different purposes. 

Concentrated HCl (35% pure, 407235, NICE laboratory reagent) was used for treating the 

sand and for making different solution pH. Concentrated NaOH (96% pure, 5JDV0618, 

Ranboxy laboratory limited) was also used for maintaining pH above 7. Here following 

salts were used for studying the effect of mono and multivalent ions on the kaolin release. 

1) Sodium Chloride (NaCl) 99.5% pure, manufactured by MERCK chemicals B.N 

B632831. 

2) Sodium Sulphate (NaSO4) 98% pure, manufactured by MERCK chemicals 

DD2DR52514. 

3) Sodium Phosphate (Na3PO4) MCC chemicals. 

 

3.4 Calibration plot 

Turbidity meter was used for measuring the kaolin concentration in the effluent 

stream. Turbidity meter gives reading in NTU on account of which a calibration plot was 

made taking known concentration of kaolin. Calibration plot for kaolin concentration is 

shown in fig.3.1. Another calibration plot was also made for different flowrate with rpm 

of the peristaltic pump and this plot is shown in fig. 3.3. 
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Fig. 3.1: Calibration plot for different concentration of known kaolin concentration (mg/l) 

with NTU of turbidity meter. 

 

3.5. Experimental Setup 

 

A schematic representation of the experimental setup is shown in fig.3.2. It 

consists of a packed column having sand – kaolin mixture as the packing material. There 

is a reservoir used for storing different solution. A peristaltic pump is used to pump the 

influent solution continuously through the bed in a pulsating manner. The effluent 

solution is collected with the help of a measuring cylinder. A turbidity meter is used to 

measure the turbidity of the effluent but not online. A U tube mercury manometer is used 

for measurement of pressure drop in bed. The column used is made of plastic material 

having a diameter of 2.5 cm and a length of 56 cm. It is closed from top and bottom with 

perforated caps. All the connections are made through nylon tubes through which 

transportation is possible. 
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Fig.3.2: Schematic representation of experimental set up.  
 
 
3.6. Experimental Procedure       
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3.6.1 Bed preparation 

 

1) The required amount of treated sand and Kaolin was weighted and mixed 

properly so that kaolin gets adsorbed to the sand surface. 

2) The Column was made leak proof by using grease. 

3) The packing of the bed was done in the wet packing method. 10-15 ml of 

double distilled water / solution was poured inside the column and then sand-

kaolin mixture was entered into the column. 

4) The D.D. water / solution level was always kept above the sand –kaolin 

mixture bed. 

5) The bed was constantly stirred so that there will be no air entrapment. 

6) Steps 3, 4 and 5 were repeated till the complete bed is prepared. 

 

 
3.6.2 Manometer setting 
 

1) After bed preparation all the inlet and outlets of the column were closed. 

2) Then nylon tubes were fixed at the top and bottom of the column made for 

taking manometer readings. 

3) Double distilled water was poured in the tubes so that no bubbles remain 

inside it. 

4) Now tubes were connected to the manometer. 

 
 
3.6.3 Release experiment 
 

1) A tube was connected at the top of the Column for collecting the release of 

colloid particle i.e. Kaolin. 

2) Out of the two inlets at the bottom one of them is closed and to the other   

          peristaltic pump’s outlet is connected. Before starting experimental run bed was   

          kept undisturbed for 10-15 min. for stabilization of bed 
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3) Pump was started to inject the solution and keep the flow rate constant. 

4) When the particle starts to release for the 1st reading around 20 ml of the 

solution collected and the reading was taken in a turbidity meter. 

5) Kaolin solution was allowed to be collected on the container. 

6) Then depending on the retention time of the column. next readings was taken at 

a interval of 3 – 4 minute instantaneously, i.e., about 20-30 ml of the colloidal 

solution were collected from to bed and diluted it (if required) and the reading 

in turbidity meter was taken. 

7) Likewise readings were taken till the release was finished. 
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Fig.3.3: Calibration plot for different flow rate (ml/min) with rpm of peristaltic pump. 
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Chapter – 4 

 

 

 

 

 

 

 

Results and discussion 

 

 

The effect of both hydrodynamic and chemical parameters on the release of kaolin 

particle has been studied experimentally here. The parameters studied here are: flow rate, 

void fraction, pH, ionic strength and valence of anion. The stability of kaolin-sand bed 

was studied first before studying the effect of different parameters. 

 

4.1 Plugging in the bed 
 

Theoretical and experimental pressure drop vs velocity has been plotted in the 

figures 4.1 & 4.3. Theoretical pressure drop was calculated using Ergan’s equation given 

in equation 4.1 and experimental pressure drop is calculated using expression given in 

equation 4.2. 
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Where ρΔ  is the density difference between the manometric fluid and water, h is the 

difference in height shown by mamometer. 

Figures 4.1 and 4.3 show that there is an increase in pressure drop with the 

increase of the velocity. Although there is a smooth increase in pressure drop with 

velocity, there has been quite a difference between two values; which can be accounted 

by the development of channeling and plugging phenomenon inside the packed column 

[19] According to Sen et al [19], the released of particle either will reattach to the 

substrate or move in the stream through pores or get plugged in the pores. With the 

increase in velocity the release of colloidal kaolin increases (see fig.4.6). The surfaces of 

kaolin and sand are negatively charged, so it is highly unlike that these released kaolin 

particle will reattach to the sand surface. In this situation, they will either just flow 

through the pores or entrapped in the pores, which in turn blocks the path. As a result, the 

pressure drop increases which does not occur in normal packed bed. In the fig.4.5 it can 

be clearly seen that with the increase of superficial velocity the difference in 

experimental pressure drop and theoretical pressure drop increases linearly, which 

conforms the fact that due to presence of colloids in bed channeling and plugging has 

been enhanced causing diff. in pressure drop. 

The plugging in the bed can occur either due to the size exclusion or 

agglomeration of number of particle at the entrance of pore. Size exclusion means 

particle getting trapped in the pores due to larger size of particle than the pore opening. 

After the release of kaolin particle they come in to the solution forming colloidal 

suspension. In this colloidal system similarly charged particle agglomerates. If two 

similarly charged particle is present in the solution they will experience a repulsive force 

between them but when there exists a cloud of similarly charged particle in the solution 

there will exist repulsive force between some particles and some of them will experience 

the existence of attractive force between them [6,8,9]. Whenever, two particles is 

surrounded by similarly charged particle they will experience a strong repulsive 

interaction with neighboring particle which will make these particles come very close to 

each other. When distance of separation is less than the distance of closest approach 

effect of van der Waals force of attraction will be more than the coulombic force of 

repulsion as a result these two particles will agglomerate. 

 XLII



 

 

a

0

1000

2000

3000

4000

5000

6000

7000

8000

0.0
1

0.0
27

0.0
42

4

0.0
57

7
0.0

75
0.0

88
0.1

09
0.1

29

Superficial Velocity (cm/s)

Pr
es

su
re

 D
ro

p 
(N

/m
2 )

Th
Exp

 

b

0

1000

2000

3000

4000

5000

6000

7000

8000

0.0
08

5
0.0

24
0.0

41
0.0

58
0.0

75
0.0

92
0.1

09
0.1

29

Super ficial Velocity (cm/s)

Pr
es

su
re

 D
ro

p 
 (N

/m
2 )

Th
Exp

 

 XLIII



c
0

2000
4000
6000
8000

10000
12000
14000
16000
18000
20000

0.0
1

0.0
22

0.0
44

0.0
54

0.0
71

0.0
92

0.1
09

Super ficial Velocity (cm/s)

Pr
es

su
re

 D
ro

p 
(N

/m
2)

Th
Exp

 
  

d0

2000

4000

6000

8000

10000

12000

14000

16000

0.0
1

0.0
24

0.0
41

0.0
58

0.0
75

0.0
92

0.1
09

0.1
29

Superficial Velocity (cm/s)

Pr
es

su
re

 D
ro

p 
(N

/m
2 )

Th
Exp

 
Fig.4.1: Plot between pressure drop vs superficial velocity determined theoretically and 

experimentally for different kaolin concentration at bed (a) 1%, (b) 2%, (c) 3%, (d) 4%.  
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Fig.4.2: Plot between pressure drop vs. superficial velocity at different kaolin 

concentration.  
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Fig.4.3: Plot between pressure drop vs superficial velocity determined theoretically and 

experimentally for different kaolin concentration at bed (a) 1%, (b) 2%, (c) 3%, (d) 4%. 

Fig.4.4: Plot between pressure drop vs superficial velocity at different

Column is packed with sand of size 0.03275cm and DIW is used as the solution. 
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ig.4.5: It is a plot of difference in experimental and theoretical pressure drop vs 

.2 Effect of flow rate 

The fig.4.6 shows with the increase of superficial velocity or flow rate there is an 

increas

F

superficial velocity (1% kaolin bed and column packed with sand size 0.03275). 

 

4

 

e of kaolin release which is obvious because as hydrodynamic sheer force 

increases on attached particle it goes on counterbalancing the electrostatic and 

hydrodynamic forces of attraction resulting in more release of kaolin. Another important 

feature of the curve is, as the velocity increases there is stiff liner rise in curve indicating 

there exists a critical velocity (CV) above which the increased sheer force is sufficiently 

high and overcomes the surface forces and there is rapid release of particle. The critical 

velocity was found to be 0.017cm/sec from fig.4.6.In the fig.4.7 breakthrough curve of 

kaolin release at different flow rate is given. 
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Fig.4.6: Total kaolin released from the bed at different flow rate. 
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Fig.4.7: Breakthrough curve of kaolin release at different flowrate (released kaolin conc. 

vs. volume passed). Inserted figure is the fig. as above but in small scale limit. 
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4.3 Effect of void fraction 
 

It is seen from fig .4.8 that as void fraction of column decreases there is increase 

in pressure drop. This can be explained as; when the void fraction decreases flow area 

reduces which in turn increases the resistance to flow. But this explanation alone cannot 

justify the stiff rise in pressure drop with very little change in void fraction. The plot in 

fig. 4.8 clearly shows that when superficial velocity increases stiffness of curve or 

absolute value of slope increases indicating this stiff rise in pressure drop is because of 

higher flow rate and not because of change in void fraction. The increase in superficial 

velocity increases release of kaolin [fig.4.6]. These released kaolin are entrapped in the 

pores and increases the resistance to flow. So this stiff rise in pressure drop is there 

because of plugging in the bed. 
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Fig.4.8: Effect of void fraction on plugging. This fig. plots pressure drop vs void fraction 

at different superficial velocity. 

 

4.4 Effect of Ionic strength 
 

 L



The ionic strength of the solution controls the extent to which double layers 

extend from the surface into the bulk solution. In an electrolyte solution ions gets 

dissociated and charged particle is surrounded by these ions. Depending on the charge of 

particle cation or anion starts balancing the charge there by forming an electrical double 

layer. At high ionic strength, the surface charge can be balanced by a small ("thin") 

double layer because the ion concentration near the surface is high; conversely, low ionic 

strength will produce large ("thick") double layers. At high ionic strength, the double 

layers of approaching surfaces will overlap only at small separation distances or in other 

words the effective length of the electrical double layer decreases and the double layer 

repulsion between the surfaces is reduced, similarly at low ionic strength, the double 

layer repulsion is increased. This implies that as the ionic strength increases there is 

decrease in release of particle. The fig.4.14 shows this fact i.e. kaolin release decreases as 

the ionic strength increases. To verify this fact DIW is passed through the same bed for 

release of kaolin after the release is over by passing electrolyte solution, the breakthrough 

curve of this kaolin release is plotted in fig.4.13. This fig. shows that, the release of 

kaolin is higher with DIW when initially kaolin of bed was released by passing higher 

electrolyte concentration 

The fig.4.12 represents the breakthrough curves of the kaolin release with 

different electrolyte solution. One thing is notable to see in these curves is that, the initial 

release of kaolin is very high and this release subsidizes to low value very quickly. 

Initially the bed is in undisturbed state and when there is sudden flow of solution through 

the bed there is a instantaneous disturbance in the bed. Due to this sudden change the lose 

particles and some of the attached particle present released immediately. Some of these 

kaolin particles due to sudden release block the pore as discussed in section 4.1 and 4.2. 

This type of breakthrough curve is the characteristic of every in-situ release experiments 
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Fig.4.9: Breakthrough curve of kaolin release from 2% kaolin bed. The solution pH 

maintained at 6.59 and water flowrate was 10ml/min. Inserted figure is the fig. as above 

but in small scale limit.  
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Fig.4.10: Breakthrough curve of kaolin release from 2% kaolin bed in presence of 0.1M 

NaCl solutions. The solution pH maintained at 6.59 and water flowrate was 10ml/min. 

Inserted figure is the fig. as above but with small scale limit. 
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Fig.4.11: Breakthrough curve of kaolin release from 2% kaolin bed in presence of 0.01M 

NaCl solutions. The solution pH maintained at 6.59 and water flowrate was 10ml/min. 

Inserted figure is the fig. as above but with small scale limit. 
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Fig.4.12: Release of kaolin particle with the variation of ionic strength. The solution pH 

maintained at 6.59 and water flowrate was 10ml/min. Inserted figure is the fig. as above 

but with small scale limit. 
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Fig.4.13: Release of kaolin particle with distilled water after the release was over in 

presence of electrolyte solutions. 
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Fig.4.14: Total release of kaolin particle in mg. from 2% kaolin-sand mixture bed with 
the variation of ionic strength. 
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4.4.1 Effect of anion valence 

To know the multivalent anion effect, monovalent, divalent and trivalent anionic 

salts of sodium are taken and in each of the solution sodium ion concentration is kept 

constant. The break through curve for the release of kaolin is shown in fig.4.15, fig.4.16 

and fig.4.17. From the fig.4.18 it can be seen that with the increase of the valence of the 

anion release of kaolin increases. When anion valence increases the effect of negative 

ions in the solution increases which decreases the net neutralization of the negative 

charge at the surface of kaolin and sand by cation there by increasing the negativeness of 

the surfaces and increasing the repulsive force. As repulsive force increases release 

accordingly increases.  According to Schulze-Hardy rule when valence of the salt 

changes then it produces a change (increasing or decreasing) of order of Z6 in the 

solution. But in this case there is increase in release with increase in anionic valence but 

it does not follow this rule i.e. release increasing the order of Z6. The kaolin contains 

small quantities of oxides of Fe, Mg, Ca. During the passing of the solution through bed 

one or more of theses cations may dissolve in the solution and alter the ionic strength and 

solution chemistry. We know from literature that with the increase of the valence of the 

cation CSC decreases and release also decreases [19,38]. When these cations dissolve 

they impart a negative effect on the release of kaolin on account of which release does 

not follow the Schulze-Hardy rule. 
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Fig.4.15: Breakthrough curve of kaolin release from 2% kaolin-sand mixture bed for 

different sodium salt having anion of different valence (effect of anion valence on 

release). Inserted figure is the fig. as above but with small scale limit. 
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Fig.4.16: Breakthrough curve of kaolin release for electrolyte 0.0033 M Na3PO4 at  pH 

6.59 from a 2% kaolin-sand mixture bed (duplicate experiment). 
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Fig 4.17: Breakthrough curve of kaolin release for electrolyte 0.005 M Na2SO4 at 

10ml/min and pH 6.59 from a 2% kaolin-sand mixture bed (Release after 1.05 l is with 

DIW) 
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Fig.4.18: Kaolin release vs. valence of anion (For trivalent anion release shown for 2 hr. 

and for others total release is shown as release is completed within 2 hr.) 
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4.5 Effect of pH 
 

 The fig.4.19 shows it clearly that with increase in pH there is increase in release 

of kaolin particles .The release can be explained with DLVO theory. All most all particles 

contain surface species or ionic charge, which cause them to act as acid or bases. When 

similarly charged colloidal particle and grains like kaolin and sand (both of them are 

negatively charged) then by increasing the surface charge increases the net repulsive 

force between the particles. The surface charge of the kaolin is due to basal plane and 

edges of the kaolin surface. The charge at the basal plane is permanent due to amorphous 

substitution of Si4+ by Al3+ and the charge at the edge is due to the protonation and/or 

deprotonation of hydroxyl group present. When the pH increases [H+] ion concentration 

decreases and [OH-] ion concentration increases, which means the net negative surface 

charge increases and due to this the net electrostatic repulsive force between the kaolin 

particle and sand increases, which in turn increases the kaolin release. 
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Fig.4.19: Breakthrough curve of kaolin release for different pH with flowrate 7ml/min 

from a 2% kaolin-sand mixture bed 
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Chapter – 5 
 

 

 

 

 

 

 

Conclusion and future work 
 

 

 In this experimental study kaolin sand system was considered to know the effect 

of hydrodynamic and chemical parameters on the release of kaolin particle, emphasizing 

on the effect of anion valence on release. The following are the some of the conclusion 

drown from this work. 

• With the increase of the superficial velocity release of kaolin particle increases 

and critical velocity found to be 0.017cm/sec. 

• Void fraction of the bed does not entirely account for the high pressure drop in the 

bed. The stiff rise in the pressure drop is due to the plugging of bed by the 

released kaolin particle. 

• With the decrease of ionic strength release of the kaolin particle increases and 

with the increase of pH kaolin particle release increases. This has been explained 

with the help of DLVO theory. 

• The valence of anion has a larger impact on the release of particle. With the 

increase of the valence of anion release of kaolin particle increases many fold but 

it did not follow the Schulze-Hardy rule strictly. 
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Colloids transport is a wide field. Although research is going on for decades still 

following areas needs the immediate research attention. 

• More work needs to be done in the heterogeneous natural systems and field scale 

study. 

• Work is needed to be done to know the structural change of the colloids in the 

transport and its effect on the solution chemistry. 

• Work needed to be done in the field of plugging phenomenon to quantify it. 

• Research is needed to use and develop colloids or biocolloids for the 

environmental cleaning  
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