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ABSTRACT 
 

 
Occurrence of a fault in a power system causes transients. To stabilize the system, 

Power System Stabilizer (PSS) and Automatic Voltage Regulator (AVR) are used. Load flow 

analysis is done to analyze the transients introduced in the system due to the occurrence of 

faults. The Flexible Alternating Current Transmission (FACTS) devices such as UPFC are 

becoming important in suppressing power system oscillations and improving system 

damping. The UPFC is a solid-state device, which can be used to control the active and 

reactive power. This thesis considers a typical three-machine nine-bus system as a case study 

for investigating the performance of UPFC is achieving stability. By using a UPFC the 

oscillation introduced by the faults, the rotor angle and speed deviations can be damped out 

quickly than a system without a UPFC. The effectiveness of UPFC in suppressing power 

system oscillation is investigated by analyzing their oscillation in rotor angle and change in 

speed occurred in the three machine system considered in this work. A proportional integral 

(PI) controller has been employed for the UPFC. It is also shown that a UPFC can control 

independently the real and reactive power flow in a transmission line.  

 

A MATLAB simulation has been carried out to demonstrate the performance of the 

UPFC in achieving transient stability of the three-machine nine-bus system.   
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INTRODUCTION 
 

1.1 BACKGROUND 

The classical model of a multi machine may be used to study the stability of a power system 

for a period of time during which the system dynamic response is dependent largely on the 

kinetic energy in the rotating masses. The classical three-machine nine-bus system[1] is the 

simplest model used in studies of power system dynamics and requires of minimum amounts 

of data. Hence such studies can be connected in a relatively short time under minimum cost. 

Among various method of load flow calculation Newton raphson method[10-14] is chosen 

for calculation of load flow study. 

 

 If the oscillatory response of a power system during the transient period following a 

disturbance is damped and the system settles in a finite time to a new steady operating 

condition, we say the system is stable. If the system is not stable, it is considered unstable. 

This primitive definition of stability requires that the system oscillations should be damped. 

This condition is sometimes called asymptotic stability and means that the system contains 

inherent forces that tend to reduce oscillation. 

 

The continuing rapid development of high-power semiconductor technology now makes it 

possible to control electrical power systems by means of power electronic devices.[15] These 

devices constitute an emerging technology called FACTS (flexible alternating current 

transmission systems). FACTS technology has a number of benefits, such as greater power 

flow control, increased secure loading of existing transmission circuits, damping of power 

system oscillations, less environmental impact and, potentially, less cost than most alternative 

techniques of transmission system reinforcement [11]. 

 

 The UPFC is the most versatile of the FACTS devices. It cannot only perform the functions 

of the static synchronous compensator (STATCOM), thyristor switched capacitor (TSC) 

thyristor controlled reactor (TCR), and the phase angle regulator but also provides additional 

flexibility by combining some of the functions of the above controllers[17]. The main 

function of the UPFC is to control the flow of real and reactive power by injection of a 

voltage in series with the transmission line. Both the magnitude and the phase angle of the 

voltage can be varied independently. Real and reactive power flow control can allow for 

power flow in prescribed routes, loading of transmission lines closer to their thermal limits 

 1



and can be utilized for improving transient and small signal stability of the power system. 

The schematic of the UPFC is shown in Fig.1.1. 
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+  

VSC 1 

+

Control 

+

Transmission line

Shunt Transformer

Series Transformer 

     Fig.1.1. Schematic diagram of UPFC 

 

 

 

 

 

 

 

 

 

 

 

 

 

The UPFC consists of two branches. The series branch consists of a voltage source converter, 

which injects a voltage in series through a transformer. The inverter at the input end of the 

UPFC is connected in shunt to the AC power system and the inverter at the input end of the 

UPFC is connected in series with the AC transmission circuit. Since the series branch of the 

UPFC can inject a voltage with variable magnitude and phase angle it can exchange real 

power with the transmission line. However the UPFC as a whole cannot supply or absorb real 

power in steady state (except for the power drawn to compensate for the losses) unless it has 

a power source at its DC terminals. 

 

The UPFC can control the transmission real power, at its series-connected output end, while 

independently providing reactive power support to the transmission line at its shunt-

connected input end. Furthermore, the UPFC can independently control real and reactive 

power flow along the transmission line at its output end, while providing reactive power 

support to the transmission line at its input end.  It has been shown [ 2-4] that it is possible to 

independently control real and reactive power flow at the UPFC input circuit by regulating 

the DC-link capacitor voltage and varying both the phase angle and the modulation index of 

the input inverter. The DC-link capacitor voltage (Vdc) is unregulated.  
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The main parameter of a power system i.e. line impedance (XL), terminal voltage (Vt) and 

rotor angle (δ ). The effectiveness of UPFC is analyzed by analyzing, damping of the 

oscillation of   rotor angle (δ ) and change in angular speed (dw) is analyzed in the three 

machine of the 3-machine nine bus system. 

 

The control of an AC power system in real time is involved because power flow is a function 

of the transmission line impedance, the magnitude of the sending and receiving end voltages, 

and the phase angle between these voltages. Years ago, electric power systems were 

relatively simple and were designed to be self-sufficient; power exportation and importation 

were rare. Furthermore, it was generally understood that AC transmission systems could not 

be controlled fast enough to handle dynamic system conditions. The sustainability of a power 

system is the most important point. Therefore the important point of a power system is the 

transient stability analysis of a system. To analyze the transient stability of a system a 

common three machine nine bus system is taken and its power flow study is done by Newton 

Raphson method among the various load flow calculation method such as Newton Raphson, 

Runge Kutta method, Decoupled method.[18] By load flow analysis the Transient behavior of 

the multi machine system is analyzed. The behavior of the rotor angle (δ ) and change in 

angular speed is analyzed without UPFC. Transmission systems were designed with fixed or 

mechanically-switched series and shunt reactive compensations, together with voltage 

regulating and phase-shifting transformer tap-changers, to optimize line impedance, minimize 

voltage variation, and control power flow under steady-state or slowly changing load 

conditions[21-25]. The dynamic system problems were usually handled by over design; 

transmission systems were designed with generous stability margins to recover from 

anticipated operating contingencies caused by faults, line and generator outages, and 

equipment failures. All these resulted in the (often considerable) under utilization of 

transmission systems. 

 

1.2 LITERATURE RIVIEW 

In recent years, energy, environment, right-of-way, and cost problems have delayed the 

construction of both generation facilities and new transmission lines, while the demand for 

electric power has continued to grow. This situation has necessitated a review of the 

traditional power system concepts and practices to achieve greater operating flexibility and 

better utilization of existing power systems[7-10]. 
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During the last two decades, major, if not revolutionary, advances have been made in high-

power semiconductor device and control technologies[28,29,34,35] These technologies have 

been instrumental in the broad application of high voltage DC transmission and power system 

inertia schemes, and they have already made a significant impact on AC transmission via the 

increasing use of thyristor controlled static VAr compensators (SVCs). 

 Static VAr compensators control only one of the three important parameters (voltage, 

impedance, phase angle) determining the power flow in AC power systems: the amplitude of 

the voltage at selected terminals of the transmission line. Theoretical considerations and 

recent system studies [1] indicate that high utilization of a complex, interconnected AC 

power system, meeting the desired objectives for availability and operating flexibility, may 

also require the real-time control of the line impedance and the phase angle. Hingorani [17] 

proposed the concept of flexible AC transmission systems or FACTS, which includes the use 

of high-power electronics, advanced control centers, and communication links, to increase the 

usable power transmission capacity to its thermal limit. Within the framework of FACTS, 

and other efforts with similar objectives, the development of thyristor-controlled series 

compensators for line impedance control, thyristor-controlled tap-changing transformers for 

phase angle control, and other thyristor-controlled devices for dynamic ‘brakes’ and over 

voltage suppressors has already been started [3, 4] or is expected to start in the near future. 

 Although present static VAr compensators and other thyristor-controlled equipments 

developed for power flow control (i.e., series compensators and phase shifters) can have the 

necessary speed for real-time control, they are rather large, custom-designed and fabricated 

systems of substantial cost, requiring considerable size facility with significant labour 

installation[24-29]. For these reasons, it is unlikely that they will be able to provide the long-

term, volume-production based economic solution for flexible AC transmission systems. It 

has long been realized that an all solid-state or advanced, static VAr compensator, which is 

the true equivalent of an ideal synchronous condenser, is technically feasible [5-8] and, with 

the use of gate turn-off (GTO) thyristors[10,31], is economically viable [17]. The extension 

of this approach to controllable series compensation and phase shifting has been recently 

proposed [5].But the other thyrstorised FACT devices provide only specific control[20-26]. 

So UPFC is the more versatile FACT device, which can provide various types of control such 

as voltage compensation, phase shifting, real and reactive power compensation. So by using 

the UPFC the power system transient stability is enhanced by placing it in the bus of the 

power system. Which enhance the power carring capability and Transient stability of the 

power system approach of power transmission control promises simplified system design, 
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reduction in equipment size and installation labour, improvements in performance, and 

significant reduction in capital cost, fuelled by advances in power semiconductor technology. 

 

1.3 MOTIVATION OF THE PRESENT WORK 

Transient stability of a transmission is a major area of research from several decades. 

Transient stability restores the system after fault clearance. Any unbalance between the 

generation and load initiates a transients that causes the rotors of the synchronous machines 

to “swing” because net accelerating torques are exerted on these rotors. If these net torques 

are sufficiently large to cause some of the rotors to swing far enough so that one or more 

machines “slip a pole” and synchronism is lost. So the calculation of transient stability should 

be needed. A system load flow analysis is required for it .The transient stability needs to be 

enhanced to optimize the load ability of a system, where the system can be loaded closer to 

its thermal limits. UPFC is a device which gives both the series and shunt compensation. It 

also enhances the real and reactive power capacity of the system.  

 

1.4 PROBLEM STATEMENT 

Occurrence of fault may lead to instability in a system or the machine fall out of 

synchronism. Load flow study should be done to analyze the transient stability of the power 

system. If the system can’t sustain till the fault is cleared then the fault instabilise the whole 

system. If the oscillation in rotor angle around the final position go on increasing and the 

change in angular speed during transient condition go on increasing then system never come 

to its final position. The unbalanced condition or transient condition may leads to instability 

where the machines in the power system fall out of synchronism. Calculation of load flow 

equation by Newton Raphson method, rungee kutta method, decoupled method gives the 

rotor angle and initial condition. 

 

To optimize the cost and optimum use of transmission line compensation is needed, which 

can either, compensate the voltage, phase shift, or both the increase of voltage and phase 

shift, and real and reactive power enhancement. Before the introduction of static power 

electronics device, fixed capacitor, inductor etc.are used for compensation over which control 

could not be done. So after introduction of FACT devices give a control on the compensation. 

FACT devices like STATCOM, SVC etc.are only give the shunt compensation .So some 

controller should need to be used which can give both series and shunt compensation, and 
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increase its transient stability by which the transmission line loading can be closer to their 

thermal limits. 

 

1.5 THESIS ORGNISATION 
  Chapter 2 describes of the model of synchronous machine, Automatic Voltage 

Regulator (AVR) and Power System Stabilizer (PSS). A review on UPFC is discussed in 

chapter 3. Control strategy of UPFC in chapter 4.A discussion on three machine nine bus 

system is given in chapter 5.The load flow analysis of three machine nine bus system and 

simulation result are given in chapter 6.At the end  conclusions and scope of future work is 

given in chapter 7 . 
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Chapter 2 
 
 
 
 
 
 
 

 
 
 
 

 
 
 
 
 
 
 

MODELLING OF SYNCHRONOUS 
MACHINE 

 
 

 



MODELLING OF SYNCHRONOUS MACHINE, AVR AND 
PSS 

                 
 

2.1 MATHEMATICAL MODEL OF SYNCHRONOUS MACHINE 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.2.1 Pictorial Representation of a Synchronous Machine 
 

A great simplification in the mathematical description of the synchronous machine is 

obtained if certain transformation of variable is performed. The transformation used is 

usually called Park’s transformation. It defines a new setoff stator variable such as currents, 

voltages, or flux linkages in terms f the actual winding variables. The new quantities are 

obtained fro the projection of the actual variables on three axes; one along the direct axis of 

the rotor field winding, called the direct axis; a second along the neutral axis of field winding, 

called the quadrature axis; and the third on a stationary axis. Park’s transformation[1,21,31] is 

developed mathematically as follows: 

We define the d axis of the rotor at some instant of time to be an angle θ  rad with 

respect to a fixed reference position, as shown un Fig.2.1.Let the stator phase currents ia, ib 

and ic be the currents leaving the generator terminals. If we “project ” these currents along 

the d and q axes of the rotor, we get the relations 

 

[ ])3/2sin()3/2sin(sin)3/2( πθπθθ ++−+= cbaqaxis iiii                               (2.1) 

 

 7



                [ ])3/2cos()3/2cos(sincos)3/2( πθπθθ ++−+= cbadaxis iiii                         (2.2) 

 We note that for convenience the axis of phase a was chosen to be the reference 

position, otherwise some angle of displacement between phase a and arbitrary reference will 

appear in all the above terms. 

The effects of Park’s transformation is simply to transformation is simply to transform all 

stator quantities from phases a, b, and c into new variables the frame of reference of which 

moves with the rotor. We should remember, however, that if we have three variables ia ,ib, 

and ic, we need three new variables. Park’s transformation uses two of the new variables as 

the d and q axis components. The third variables are stationary currents, which is proportional 

to the zero-sequence current. A multiplier is used to simplify the numerical calculations. Thus 

by definition 

                                                                                            (2.3)    abcdq Pii =0

 

where we define the current vectors 
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and where the Park’s transformation P is defined as 
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2/1
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⎥
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⎦

⎤
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2/1

πθ
πθ                                    (2.5) 

 

The main field-winding flux is along the direction of the d axis of the rotor. It 

produces the EMF that lags this flux by 900. Therefore the machine EMF E  is 

primarily along the rotor q axis. Consider a machine having a constant terminal voltage V 

.For generator action the phasor E  should be leading the phasor V .The angle between  E  

and  V  is the machine torque angle δ  if the phasor V  is in the direction of reference phase 

(phase a). 

 At t=0 the phasor V  is located at the axis of phase a, i.e., at the reference axis in 

fig(2.1). The q axis is located at an angle δ , and the d axis is located at 2/πδθ += . At t>0, 
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the reference axis is located at an angle  with respect to the axis of phase a. The d axis of 

the rotor is therefore located at 

twR

 

2/πδθ ++= twR    rad                                                                        (2.6) 

where  is the rated (synchronous) angular frequency in rad/s and Rw δ  is the synchronous 

torque angle in electrical radians. 

 Expressions similar to (2.3) may also be written for voltages or flux linkages: e.g., 

abcvdq Pv =0         abcdq Pλλ =0                                                            (2.7) 

If the transformation (2.5) is unique, an inverse transformation also exist wherein we may 

write 

dqabc iPi 0
1−=                                                                                           (2.8) 

The inverse of (2.5) may be computed to be  
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and we note that tPP =−1 , which means that the transformation P is orthogonal .Having P 

orthogonal also means that the transformation P is power invariant, and we should expect to 

use the same power expression in either the a-b-c or the 0-d-q frame or reference. Thus  

)()'( 0
1

0
1

dqdqabc
t
abcccbbaa iPvPivivivivp −−==++=  

                                                                               (2.10) 
qqdddq
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dq
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2.1.1 TORQUE AND POWER 

The total three-phase power output of a synchronous machine is given by 

abc
t
abcccbbaaout ivivivivP =++=      pu                                                                                (2.11) 

where the superscript  t  indices the transpose of . But from (4.8) we may write 

 with a similar expression for the voltage vector. Then (2.11) becomes 

abcv

dqabc iPi 0
1−=

      dq
tt

dqout iPPvP 0
11

0 )( −−=
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Performing the indicated operation and recalling that P is orthogonal, we find that the power 

output of a synchronous generator is invariant under the transformation P; i.e., 

                                                                                                       (2.12) 00ivivivP qqddout ++=

For simplicity we will assume balanced but not necessarily steady-state conditions. Thus 

000 == iv   and  

        (balanced condition)                                                                        (2.13) qqddout ivivP +=

Substituting for  and   dv qv

                                                              (2.14)                         )()()( 22
qdqddqqqddout iirwiiiiP +−−++= λλλλ

It observes that the three terms are identifiable as the rate of rate of change of stator magnetic 

field energy, the power transferred across the air gap, and the stator ohmic losses 

respectively. The machine torque is obtained from the second term, 

[ ] qddqqddqfldflde iiwiiwwPWT λλλλθφ −=−∂∂=∂∂=∂∂= )(///  pu                               (2.15)           

   

The mathematical model of synchronous machine,  taking into account the various effects 

introduced by different  rotor circuits,i.e. both field effects and damper-winding effects.The 

model includes nonlinear equation. In this model the saturation effect is neglected.  

 

2.2 MODEL OF AUTOMATIC VOLTAGE REGULATOR AND POWER      

SYSTEM STABILIZER: 

 
A Power System Stabilizer (PSS) which is installed in the Automatic Voltage Regulator of 

the Generator can improve the power system stability[18,35]. Therefore the PSS has excellent 

cost performance rather than constructions of power system arrangements. 

 

                  
Fig.2.2.variation of excitation value                    Fig.2.3.Behaviour of PSS 

To change the stability 
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Though a generator output power is decided by the turbine mechanical torque, a generator 

output power also can be changed by changing excitation value transiently. (Fig.2.2) A PSS 

detects the changing of generator output power, controls the excitation value, and reduces the 

power swing rapidly. (Fig.2.3) 

 

 
Fig.2.4.Block diagram and phasor diagram of constant excitation system 

 

 

    
Fig.2.5.Block diagram and phasor diagram of constant excitation system and AVR 
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Fig.2.6.Block diagram and phasor diagram of constant excitation system and AVR 

and PSS 

As mentioned before, a PSS detects the changing of generator output power and 

controls the excitation value. The type of PSS is identified by the detecting signal. The most 

simple and typical type is Δ P input type. And, recently Δ ω input type and/or Δ f input type 

PSS also adopted in order to improve a stability of inter-area mode due to the recent increase 

in power system and power re-routing. 
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UNIFIED POWER FLOW CONTROL 
(UPFC) 

 
 

 
 
 



    UNIFIED POWER FLOW CONTROLLER (UPFC)                   
 

3.1 A REVIEW ON UPFC 

The UPFC is the most versatile FACTS-equipment and is able to insert a voltage in series 

with   the line. This voltage can have any phase and magnitude referred to the line voltage. The 

UPFC consists of a parallel and a series branch, each consisting of a three-phase transformer and 

a PWM converter. Both converters are operated from a common dc link with a dc storage 

capacitor. The real power can freely flow in either direction between the two-ac branches. Each 

converter can independently generate or absorb reactive power at the ac output terminals         

[31-34]. The controller provides the gating signals to the converter valves to provide the desired 

series voltages and simultaneously drawing the necessary shunt currents, 

      

In order to provide the required series injected voltage, the inverter requires a dc source 

with regenerative capabilities. One possible solution is to use the shunt inverter to support the dc 

bus voltage. The pulse width modulation (PWM) technique is used to provide a high-quality 

output voltage, to reduce the size of the required filter, and to achieve a fast dynamic 

response[19]. The harmonics generated by the inverter are attenuated by a second order filter, 

providing a low THD voltage to the transformer [36]. 

 

The Unified Power Flow Controller (UPFC) was proposed' for real turn-off time control 

and dynamic compensation of ac transmission systems, providing the necessary functional 

flexibility required to solve many of the problems facing the utility industry. The Unified Power 

Flow Controller consists of two switching converters, which in the implementations considered 

are voltage sourced inverters using gate thyristor valves, as illustrated in Fig.3.1. These 

inverters, labeled "Inverter1" and "Inverter 2" in the figure, are operated from a common dc link 

provided by a dc storage capacitor. This arrangement functions as an ideal auto ac power 

converter in which the real power can freely flow in either direction between the ac terminals of 

the two inverters and each inverter can independently generate (or absorb) reactive power at its 

own ac output terminal since the series branch of the UPFC can inject a voltage with variable 

magnitude and phase angle it can exchange real power with the transmission line. However a 

UPFC as a whole cannot supply or absorb real power in steady state (except for the power drawn 
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to compensate for the losses). Unless it has a power source at its DC terminals. Thus the shunt 

branch is required to compensate (from the system for any real power drawn/supplied by the 

series branch and the losses. if the power balance is not maintained, the capacitor cannot remain 

at a constant voltage. 

 
Shunt branch can independently exchange reactive power with the system. 

The main advantage of the power electronics based FACTS controllers is their speed. 

Therefore the capabilities of the UPFC need to be exploited not only for steady state load flow 

control but also to improve stability. 

A control strategy, in general, should preferably have the following attributes: 

 Steady state objectives (i.e. real and reactive power flows) should be readily achievable 

by setting the references of the controllers. 

 Dynamic and transient stability improvement by appropriate modulation of the controller 

references. While the application of UPFC for load flow control and in stability 

improvement has been discussed in [33, 34], a detailed discussion on control strategy for 

UPFC in which we control real power flow through the line, while regulating magnitudes 

of the voltages at its two ports. 

 

         Inverter 2 provides the main function of the UPFC by injecting a voltage Vpq with 

controllable magnitude Vpq (0≤Vpq≤Vpq) and phase angle ρ  (0≤ ρ  ≤ 360 degree), at the power 

frequency, insert with line via an insertion transformer. This injected voltage can be considered 

essentially as a synchronous ac voltage source. The transmission line current flows through this 

voltage source resulting in real and reactive power exchange between it and the ac system. The 

real power exchanged at the ac terminal (i.e., at the terminal of the insertion transformer) is 

converted by the inverter into dc power, which appears at the dc link as positive or negative real 

power demand. The reactive power exchanged at the ac terminal is generated internally by the 

inverter.       

 

The basic function of Inverter 1 is to supply or absorb the real power demanded by 

Inverter 2 at the common dc link. This dc link power is converted back to ac and coupled to the 

transmission line via a shunt-connected transformer. Inverter 1 can also generate or absorb 

controllable  
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Fig 3.1 Basic circuit arrangement of the Unified Power Flow Controller 

 

 

reactive power, if it is desired, and thereby it can provide independent shunt reactive  

compensation for the line. It is important to note that whereas there is a closed "direct" path for 

the real power negotiated by the action of series voltage injection through Inverters 1 and 2 back 

to the line, the corresponding reactive power exchanged is supplied or absorbed locally by 

Inverter 2 and therefore it does not flow through the line. Thus, Inverter 1 can be operated at a 

unity power factor or be controlled to have a reactive power exchange with the line 

independently of the reactive power exchanged by Inverter 2. This means that there is no 

continuous reactive power flow through the UPFC. 

 

 Viewing the operation of the Unified Power Flow Controller from the stand point of 

conventional power transmission based on reactive shunt compensation, series compensation, 

and phase shifting, the UPFC can fulfill all these functions and thereby meet multiple control 

objectives by adding the injected voltage Vpq, with appropriate amplitude and phase angle, to 

the terminal voltage Vo, Using phasor representation, the basic UPFC power flow control 

functions are illustrated in Fig.3.2. 
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Fig 3.2. Basic UPFC control function. (a)Voltage Regulation (b) Series compensation 

(c) Angle regulation (d) Multi function power flow controller 

 
       Terminal voltage regulation, similar to that obtainable with a transformer tap-changer having 

infinitely small steps, is shown at (a) where Vm=ΔV(boldface letters represent phasors) is 

injected in-phase (or anti-phase) with Vo . Series capacitive compensation is shown at (b) where 

Vpq= Vc is injected in quadrature with the line current I. Transmission angle regulation (Phase 

shifting) is shown at (c) where Vpq=Vσ  is injected with an angular relationship with respect to 

Vo that achieves the desired σ  phase shift (advance or retard) without any change in magnitude. 

 Multi power flow control, executed by simultaneous terminal voltage regulation, series 

capacitive line compensation, and phase shifting, is shown at (d) where  . σVcVVpqV ++Δ=

 

The powerful, hitherto unattainable, capabilities of the UPFC summarized above in terms 

of conventional transmission control concepts, can be integrated into a generalized power flow 

controller that is able to maintain prescribed, and independently controllable, real power P and 

reactive power Q in the line. Within this concept, the conventional terms of series compensation, 

phase shifting etc., become irrelevant; the UPFC simply controls the magnitude and angular 

position of the injected voltage in real time so as to maintain or vary the real and reactive power 

flow in the line to satisfy load demand and system operating conditions. 
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3.2 BASIC PRINCIPLE OF p and q CONTROL 

Consider Fig.3.3. At (a) a simple two machine (or two bus ac inertia) system with 

sending-end voltage Vs, receiving-end voltage Vr, and line (or tie) impedance X (assumed, for 

simplicity, inductive) is shown. At (b) the voltages of the system in form of a phasor diagram are 

shown with transmission angle δ and Vs = Vr =V. At (c) the transmitted Power 

P( δsin
2

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

=
X

V
P ) and the reactive power Q =Qs=Qr ( { δcos1

2
−=

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

X
V

Q })supplied at the 

ends of the line are shown plotted against angleδ . At (d) the reactive power Q=Qr=Qs, is 

shown plotted against the transmitted power P corresponding to the "stable" values of δ  

(i.e.,0≤δ ≤90 ) 0

 

 
 

 
Fig.3.3.Simple two machine system (a) Related voltage phasors (b) Real and Reactive power 

versus transmission angle (c) sending end and receiving end reactive power versus transmitted 

real power (d) 
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The basic power system of Fig.3.3 with the well known transmission characteristics is introduced 

for the purpose of providing a vehicle to establish the capability of the UPFC to control the 

transmitted real power P and the reactive power demands, Q, and Q,, at the sending-end and, 

respectively, the receiving-end of the line. 

                Consider Fig.3.4 where the simple power system of Fig. 3 is expanded to include the 

UPFC. The UPFC is represented by a controllable voltage source in series with the line which, as 

explained in the previous section, can generate or absorb reactive power that it negotiates with 

the line, but the real power it exchanges must be supplied to it, or absorbed from it, by the 

sending-end generator[1,7,17]. The voltage injected by the UPFC in series with the line is 

represented by phasor V, having magnitude Vpq (0≤Vpq≤0.5 p.u.) and angle ρ  (0≤ ρ  ≤360 ) 

measured from the given phase position of phasor as illustrated in the figure. The line current, 

represented by phasor I, flows through the series voltage source, Vpq and generally results in 

both reactive and real power exchange. In order to represent the UPFC properly, 

0

 
 

 

 
 

Fig 3.4 Two-machine system with the Unified Power Flow Controller 
     
  
the series voltage source is stipulated to generate only the reactive power Q, it exchanges with 

the line. Thus, the real power P, it negotiates with the line is assumed to be transferred to the 

sending end generator as if a perfect coupling for real power flow between it and the sending-end 

generator existed. This is in agreement with the UPFC circuit structure in which the dc link 

between the two constituent inverters establishes a bi-directional coupling for real power flow 

between the injected series voltage source and the sending end bus. As Fig.3.4 implies, in the 

present discussion it is further assumed for clarity that the shunt reactive compensation capability 
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of the UPFC is not utilized. That is, the UPFC shunt inverter is assumed to be operated at unity 

power factor, its sole function being to transfer the real power demand of the series inverter to 

the sending- end generator. With these assumptions, the series voltage source, together with the 

real power coupling to the sending-end generator as shown in Fig. 3.4, is an accurate 

representation of the basic UPFC. 

 

 It can be readily observed in Fig. 3.4 that the transmission line "sees" Vs+Vpq as the 

effective sending-end voltage. Thus, it is clear that the UPFC affects the voltage (both its 

magnitude and angle) across the transmission line and therefore it is reasonable to expect that it 

is able to control, by varying the magnitude and angle of Vpq the transmittable real power as 

well as the reactive power demand of the line at any given transmission angle between the 

sending-end and receiving- end voltages. 

in fig 3.2(d)  

σVqVVpqV ++Δ=                                                                                                              (3.1)        
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When Vpq=0 then   
 

*
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Thus with Vpq ≠ 0 then 
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 Substituting  
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δ

ρ
δρδ
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+
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 The following expressions are obtained for P and Qr        
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where 
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)cos1(
2

)(0 δδ −−=
X

V
rQ  

 
since angle ρ  is freely varies between  0 and 2π  at any given transmission angle  
 

δ (0≤ δ ≤ π ).It follows that (P pq ρ ) and Qpq( ρ ) are controllable between 
X

pqVV
− and 

X

pq
+

VV
independent of angle δ  .therefore the transmittable real power varies between  
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and the reactive power varies between  
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And the normalized transmitted reactive power )cos1(
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V
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The relationship between real power (P0 δ ) and reactive power (Q r0 δ ) can readily be 

expressed with (V /X)=1 in the following form.  2

 

Q r0 (δ )= -1- )}(0{1
2

δP−                                                                                                  (3.10) 

or 

}1)({ 2+δQor + =1                                                                                                (3.11) )}(0{
2

δP
 
the above equation describes a circle with a radius of 1.0 around the center defined by 

coordinates P=0 and Q = -1 in a { ,P} plane. Each point of this circle gives the corresponding 

value of  and Q  values of the uncompensated system at a specific transmission angle

r Qr

P0 r0 δ . 

 

 Assume that Vpq 0.that the real and reactive power  change from  their uncompensated values 

, (

≠

P0 δ ) and Q (r0 δ ),as a function of magnitude Vpq and angle ρ  of  the injected voltage 

phasor  Vpq Since angle ρ  is an unrestricted variable (0≤  ρ ≤2π ),The boundary  of the 

attainable control region for P(δ , ρ ) and Q (r δ , ρ ) is obtained from  a complete rotation of 

phasor Vpq with its maximum magnitude Vpqmax .It follows from the above equation that this 

control region is a circle with a center defined by coordinates (P0 δ )  and (Q r0 δ ) and radius of 

(VrVpq)/X. The boundary can be described by the following equation: 

 

2
max

)}(0),({)}(0),({
22
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=−+− X
pqVV
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The circular region controlled by the above equation for V=1.0.Vpqmax=0.5 and X=1.0 p.u. with 

their center on the  circular arc characterizing the uncompensated system  at transmission angle 

δ = ,30 , 60 ,and90 .In other words the center of the control regions are defined by the 

corresponding (

00 0 0 0

P0 δ ), (Q r0 δ ) coordinates at angles δ = ,30 , 60 ,and  in the {Q ,P} 

plane. 

00 0 0 900
r

 

 
 

 

Fig.3.5. Attainable sending –end reactive power vs. transmitted power (left hand side plots) and 

receiving-end reactive power vs. transmitted power (right hand side plots) values with the UPFC 

at  δ = ,00 δ =30  0
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Fig.3.5. Attainable sending –end reactive power vs. transmitted power (left hand side plots) and 

receiving-end reactive power vs. transmitted power (right hand side plots) values with the UPFC 

at δ = ,600 δ =90  0
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In Fig.3.5 (a) through 3.5(d) the reactive power Qs, supplied by the sending- end generator, and 

Qr is supplied by the receiving-end generator, are shown plotted separately against the 

transmitted power P as a function of the magnitude Vpq and angle ρ  of the injected voltage 

phasor Vpq, at four transmission angles: δ = , , , and . At Vpq=0, each of these 

plots becomes a discrete point on the basic Q-P curve shown in Fig. 3.5(d), which is included in 

each of the above figures for reference. The curves showing the relationships between Qs and P, 

and Q, and P, for the transmission angle range of   0≤

00 300 600 900

δ  ≤90 when the UPFC is operated to 

provide the maximum transmittable power with no reactive power control (Vpq=Vpqmax 

and ), are also shown by a broken-line with the label "P(

0

maxpp== ρρ δ )=MAX" at the 

"sending-end'' and, respectively, "receiving-end" plots of the figures. 

 

Consider first Fig. 3.5(a), which illustrates the case when the transmission angle is zero 

(δ =0) With Vpq=0, P, Qs, and Qr are all zero, i.e., the system is at standstill at the origins of the 

Qs ,P and Qr ,P coordinates. The circles around the origin of the { Qs, P} and {Qr,P}  planes 

show the variation of Qs and P, and ,Qr and P, respectively, as the voltage phasor Vpq with its 

maximum magnitude Vpqmax is rotated a full revolution (0≤ ρ  ≤ )  . The area within these 

circles defines all P and Q values obtainable by controlling the magnitude V and angle 

3600

ρ  of 

phasor Vpq. In other words, the circle in the {Qs,P} and {Qr ,P} planes define all P and Q, and, 

respectively, P and Q, values attainable with the UPFC of a given rating. It can be observed, for 

example, that the UPFC with the stipulated voltage rating of 0.5 p.u. is able to establish 0.5 p.u. 

power flow, in either direction, without imposing any reactive power demand on either the 

sending-end or the receiving-end generator. Of course, the UPFC, as seen, can force the 

generator at one end to supply reactive power for the generator at the other end. (In the case of 

inertia, one system can be forced to supply reactive power for the other one.). 

 

In general, at any given transmission angle δ , the transmitted real power P, and the 

reactive power demands at the transmission line ends, Qs and Qr , can be controlled freely by the 

UPFC within the boundaries obtained in the { Qs,P} and {Qr,P}  , planes by rotating the injected 

voltage phasor Vpq with its maximum magnitude a full revolution. The boundary in each plane 
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is centered around the point defined by the transmission angle on the Q versus P curve that 

characterizes the basic power transmission at Vpq. 

 

Considering next the case of δ  = 30  (Fig. 3.5b), it is seen that the receiving-end control 

region in the { Qr, P} plane is again defined by a circle, however, the sending-end control region 

boundary in the {Qs,P} plane becomes an ellipse. As the transmission angle

0

δ  is further 

increased, for example, to 60  (Fig. 3.5c), the ellipse defining the control region for P and Qs in 

the { Qs, P}  plane becomes narrower and finally at  (Fig. 3.5d) it degenerates into a straight 

line. By contrast, the control region boundary for P and Qr in the {Qr, P} plane remains a circle 

at all transmission angles. Fig.3.5a through 3.5d clearly demonstrate that the UPFC, with its 

unique capability to control independently the real and reactive power flow at any transmission 

angle, provides a powerful new tool for transmission system control. 

0

900

 

 
3.3 COMPARISON BETWEEN CONVENTIONAL THYRISTOR-CONTROLLED   

       AND UNIFIED POWER-FLOW CONTROLLERS. 

Conventional thyristor controlled power controllers employ traditional power system 

compensation and control schemes, in which thyristor valves replace mechanical switches. Each 

scheme is devised to control a particular system parameter affecting power flow. Thus, static 

VAr compensators are applied for reactive power and voltage control, controllable series 

compensators for line impedance adjustment, and tap-changing transformers for phase-shift. 

Each of these is a custom-designed system with different manufacturing and installation 

requirements. Although thyristor controlled power-flow controllers (primarily static VAr 

compensators) have played a significant role in demonstrating the effectiveness of fast, 

electronic controls in power system stability improvements, and in this way they have paved the 

way for the concept of flexible AC transmission systems, they have also revealed the inherent 

limitations of the conventional approaches with regard to manufacturing and installation 

complexity, physical size, and relatively high overall cost which is increasingly dominated by 

that of nonelectronic components and labour. 
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The unified power-flow controller concept has the potential to overcome the major 

shortcomings of the conventional thyristor controlled approach [22, 23]. From the technical 

standpoint, it makes it possible to handle practically all power-flow control and transmission line 

compensation problems uniformly, using solid-state voltage sources exclusively instead of 

switched capacitors and reactors, or tap-changing transformers. Apart from the general 

attractiveness of a universally applicable single compensator/controller device, the voltage 

source based universal power flow approach provides functional flexibility and operational 

performance generally not attainable by conventional thyristor-controlled systems. From the 

equipment and installation standpoints, this approach naturally lends itself to volume production, 

it minimizes real estate and installation labour requirements, and makes the overall capital cost 

primarily dependent on the cost of the solid-state components, which historically exhibits the 

sharpest decreasing trend with technology advances. 

 

3.3.1 PERFORMANCE COMPARISON 
 

The unified power flow controller can regulate or vary the line impedance, voltage, and 

phase angle via a single series voltage-source injection, and generate controllable reactive power 

for independent shunt compensation. Comparing this to a roughly equivalent arrangement of a 

thyristor controlled tap changing transformer for phase angle control together with a static VAr 

compensator for reactive power control, the advantages of the universal power-flow controller 

become quite obvious. The unified power-flow controller can simultaneously or selectively 

provide series impedance compensation and phase angle control[16,25]. (The conventional 

approach would require two totally different, independent equipments to do that.) It internally 

generates all of the reactive power required to accomplish the power-flow control by series 

voltage injection. (The conventional phase shifter cannot generate its own reactive power 

demand; it has to be supplied by the line or, as in the case considered, by a separate controllable 

VAr source.) It is able to regulate voltage, without additional power hardware, by direct, in-

phase voltage injection. (The conventional approach would require another set of ‘in-phase’ 

transformer windings with an independent thyristor switch arrangement.) It is capable of 

providing controllable shunt reactive compensation for the line independently of the reactive 

power demand of the series voltage injection. (In the conventional combined arrangement of 
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phase shifter and static VAr compensator, the VAr capacity of the compensator is dedicated for 

the supply of the reactive power demand resulting from the series voltage injection).  

 

The universal power-flow controller is inherently modular. In its most general form 

(capable of controlling line impedance, voltage, phase angle, and reactive power), it employs two 

inverters, each with a coupling transformer appropriate for either series or shunt connection. The 

two inverters are ‘back-to-back’ connected with a common DC capacitor to accommodate 

bidirectional real-power transfer between the AC ‘input’ (shunt) and ‘output’ (series) terminals. 

If a specific application requires only controllable shunt or series reactive compensation, the two 

inverters can be separated, each with its own DC capacitor. In this case, each inverter becomes a 

self-sufficient VAr source, controlling the voltage of its own DC capacitor by exchanging real 

power with the AC system. (This is done by introducing a small phase angle between the inverter 

and AC system terminal voltages.) 

 

The inverter with the parallel coupling transformer (called the advanced static VAr 

compensator [3.7]) can supply controllable reactive power for shunt compensation (the inverter 

voltage is in phase with the AC system voltage), and the one with the series injection transformer 

can provide controllable series compensation (the inverter voltage is in quadrature with the line 

current). It should be noted for completeness that the shunt compensator arrangement can also be 

converted into an energy storage system, with independent reactive output power control, by 

appropriately interfacing its DC terminal with an energy storage device, such as a 

superconducting coil These two main constituents of the universal power flow controller, when 

used independently as an advanced static VAr compensator[10,13,15] and controllable series 

compensator, individually exhibit characteristics superior to those pertaining to their 

conventional thyristor controlled counterparts. 

The advanced static VAr compensator, owing to its superior VI characteristic [12,17,23], 

can supply full capacitive current at any system voltage down to about 0.15p.u. (thus it needs 

normally an appreciably lower VAr rating than a conventional SVC  whose maximum capacitive 

output current decreases with voltage - for the same stability improvement or voltage support). In 

addition, it can have an increased transient rating in both the inductive and capacitive operating 

regions (the conventional SVC cannot increase the capacitive VAr output above its rated value 

at, or below, the nominal system voltage). 
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The advanced controllable series compensator employs no series capacitor and thus it 

cannot cause sub synchronous resonance; its output is continuously variable with fast response 

so it can precisely control impedance and damp sub synchronous oscillations caused by existing 

series capacitors; in addition, it can reverse its output to provide series inductive compensation to 

decrease excessive line currents. (The conventional thyristor-controlled series compensator, 

depending on its actual implementation, can provide these features only to a limited degree or 

not at all.) 

 

3.3.2 EQUIPMENT COMPARISON 

The unified power-flow controller approach incorporates two basic concepts: one is that 

all transmission line compensations (shunt or series) can be provided by the same solid-state 

inverter functioning as a controllable AC voltage source with internal VAr generation capability, 

and the other one is that two of these basic inverters can be combined into a single unit to 

provide all power flow compensation (shunt and series) and control functions (direct voltage 

regulation and phase-shaft) involving both reactive and real power. 

 

From the equipment standpoint, the unified power flow controller is based on a single 

power electronic hardware building block, the voltage-sourced inverter. This inverter can be 

constructed from standard six-pulse modules, using GTO valves, in a flexible harmonic 

neutralized structure for virtually any desired rating. The inverter modules can be produced in 

volume and pretested. The unified power flow controller approach, apart from the coupling 

transformers, requires no large AC storage components, such as capacitors and reactors. The real 

estate requirements are therefore low and the installation labour is minimal. 

 

  The hardware implementation of each conventional thyristor-controlled power-flow 

controller is different. Static VAr compensators use thyristor-switched capacitors and thyristor 

controlled reactors, operated at a relatively low voltage level on the secondary of a coupling 

transformer. Controllable series capacitive compensators employ functionally similar 

components in  different circuit configurations, which are operated at  transmission line potential 

and therefore located on a high-voltage platform, with control and cooling provided from ground 

potential[20,22-18]. The phase shifter requires a completely different thyristor valve structure 

and a relatively complex transformer with a number of isolated secondary windings. The 
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hardware for each of these applications is essentially custom designed and built. Owing to the 

presence of AC storage components and their associated (normal or high-voltage) hardware, the 

conventional reactive compensators are physically large, requiring considerable real estate and 

installation labour. 

 Whereas in general the solid-state inverter represents the major capital cost for the 

unified power-flow controller, the cost of the nonelectronic components and their installation is 

the major contributor to the overall capital cost of conventional thyristor-controlled installations. 

Therefore, the cost of the unified power-flow controller is expected to decrease significantly as 

the GTO thyristor technology matures or advanced power semiconductors are developed. By 

contrast, semiconductor cost improvements will likely have only a minor impact on the overall 

cost of conventional thyristor-controlled installations, less than that required to offset the 

expected cost increases in nonelectronic components and the escalating labour cost. 
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 CONTROL STRATEGY OF UPFC 
 

4.1. CONTROL STRATEGY 

The main function of UPFC is to control the flow of real and reactive power by 

injection of a voltage in series with the transmission line. The schematic of UPFC is shown in 

Fig 4.1 .The UPFC consists of two branches .The series branch of the UPFC can inject a 

voltage with variable magnitude and phase angle, and the shunt branch is required to 

compensate( from the system) for any real power drawn , supplied by the series branch and 

the losses.  

              1 * 2
1 2( )u u

lossV I V I P∗ 0− =ℜ +   (4.1) 

It is this context that suitable control strategies and control design to achieve the same ease of 

importance. 

 The control strategies should have the following attributes: 

1. Steady state objective should readily achievable by setting the references of the 

controllers. 

2. Dynamic and transient stability improvements. 

 

The UPFC allows us three "degrees of freedom"  

  1. Magnitude and angle of series voltage  

  2. Shunt reactive current. 

 The real and reactive power flow in the line can be con-trolled independently using the series 

injected voltage [29-31]. 

 It should be noted that the UPFC uses Voltage Source Converters (VSCs) for series 

voltage injection as well as shunt current control. The injection of series voltage can respond 

almost instantaneously to an order. The shunt current, however, is controlled indirectly by 

varying the shunt converter voltage (closed loop control of shunt cur-rent is required).  

 
4.1.1 Series injected voltage control 

To achieve real and reactive power flow control we need to inject series voltage of the 

appropriate magnitude and angle. The injected voltage can be split into two components 

which are in phase ("real voltage") and in quadrature ("reactive voltage") with the line 

current. It is to be noted that the line current measurement is locally available. The real power 

can be effectively controlled by varying the series reactance of the line. Reactive voltage      
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injection is like series insertion of reactance except that the injected voltage can be  
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+  

VSC 1 

+

Control 

+

Transmission line

Shunt Transformer

Series Transformer 

Fig.4.1Unified Power Flow Controller (UPFC) 
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       Fig.4.2 UPFC as a two-port device 

 

 

 

 

 

 

 

 
independent of the transmission line current. Thus we control active power flow using the 

reactive voltage. It should be kept in mind that real and reactive power references are 

obtained from (steady state) power flow requirements. The real power reference can also be 

modulated to improve damping and transient stability.  
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In addition, reactive power can be controlled to prevent dynamic over/undervoltages. In fact, 

instead of having closed loop control of reactive power using the voltage, the voltage at port 

2 (see Fig.4.2) of the UPFC can be controlled readily by calculating the required real voltage 

to be injected. We can control reactive power in-directly by changing the voltage reference 

for port 2.  

4.1.2  Shunt current control 

It is well known that shunt reactive power injection can be used to control bus 

voltage. Thus the shunt current is split into real (in phase with bus voltage) and reactive 

current components. The reference value for the real current is set so that the capacitor 

voltage is regulated (which implies power balance). The reactive current reference is set by a 

bus voltage magnitude regulator (for port 1 of the UPFC).The voltage reference of the 

voltage regulator itself can be varied (slowly) so as to meet steady state reactive power 

requirements.  

 

4.2 CONTROLLER DESIGN 

To simplify the design procedure we carry out the design for the series and shunt 

branches separately. In each case, the external system is represented by a simple equivalent. 

The design has to be validated when the various subsystems are integrated. The design tasks 

are listed below:  

 
   1. Series injected voltage control  

    a. Power Flow control using reactive voltage.  

               b. UPFC port 2 voltage control using real voltage.  

 
   2. Shunt converter voltage control  

    a. Closed loop current (real and reactive) control.  

    b. UPFC port 1 voltage control using reactive current.  

               c. Capacitor voltage regulation using real current.  

The basic design considerations are illustrated using simplified system models. The 

performance of all the controllers is subsequently evaluated using detailed simulations for a 

case study.  
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4.3 SERIES INJECTED VOLTAGE CONTROLLER. 

 4.3.1 Power Flow Control 

In this section we consider the control of real power using reactive voltage (real voltage 

injection is assumed to be zero). We carry out the analysis on the simplified system shown 

below in Fig.4.3. The differential equations for the current at port 2 in the D-Q 

(synchronously rotating at system frequency oω ) frame of reference [29,30] are given by: 

                
20

0 ( )
ser

ser ser u Rser bD
D Q D

ser ser

rdi i i v v
dt x x

ω ωω= − − + − D                                       (4.2) 

                
20

0 (
ser
Q )ser ser u Rser b

Q D Q
ser ser

di r i i v v
dt x x

ω ωω= − − + − Q

sr

                                  (4.3) 

where 
         

                    
2 1u u e

D D Dv v                                                                              (4.4) e= +

sre= +
 
                     v v                                                                           (4.5) 2 1u u e

Q Q Q

and, bω  is the base frequency. The subscripts 'D' and 'Q' denote the variables in the D-Q 

frame. 

 

+ 

Pu2

Port 2 

xser rser 

RV  SV  

ser
Re  

Fig 4.3.  Simplified diagram of Unified Power Flow Control 

 

 

 

 

 

 

 

1 1( , ) , ( , )R R u u
D Q D Qv v v v  and  are the components of the voltages at the 

receiving end bus, UPFC port 1 and poK2 respectively. We assume that 

2 2( ,u u
D Qv v )

1S uV = 

constant. Power at receiving bus

V=

)( ,ser ser
D Qe e   is approximately equal to that at port 2 

of the UPFC in the steady state; therefore we control the power at port 2 since the 

feedback signal is readily available. 

2( uP )
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2 2 2u u ser u ser

D D Q QP v i v i= +  (4.6) 

Injected reactive and real voltages are written in terms of injected voltages in the D-Q frame 

( , )ser ser
D Qe e   as, 

                           cos( ) sin( )ser ser i ser i
R D Qe e eφ φ= −   (4.7) 

                           sin( ) cos( )ser ser i ser i
P D Qe e eφ φ= +    (4.8) 

where 
1tan

ser
i D

ser
Q

i
i

φ −=  

For the design of the control of power flow by reactive voltage using output feedback, 

we examine the transfer function 
2 ( )
( )

uP s
u s

⎛ ⎞Δ
⎜ of the linearized system at various operating 

points.u s  is the reactive voltage order obtained from the output feedback controller. Since 

the injection of voltage can respond almost instantaneously to an order, we can 

assume

⎟Δ⎝ ⎠

( )

sh sh
R Rorde e= . 
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Fig 4.4 Bode Plots of 
)(

2

su
Pu

Δ
Δ

  

(a) without auxiliary feed-back 
(b) with auxiliary feed-back 



 

 

 In Fig. 4.4, we show the Bode plot of the transfer function for quiescent voltage injection =0. 

The main concern in the design of an output feedback controller is the stability of the 

oscillatory mode (in the D-Q frame of reference: near about ) associated with the 

series inductance. To make the system more amenable to feedback control we use an 

auxiliary feedback using the signal, 

0 /w rad s

                                   ( )
1

i sTk s
sT
ω

ω

φ−
+  

as shown in Fig.4. 5. Note that the contribution of this auxiliary feedback is zero in steady 

state. An advantage of using the auxiliary feedback instead of conventional cascade 

compensators is that even if the output feedback control of active power is not used, the 

auxiliary signal can 

still be used to improve stability of network mode. 

 

From the bode plot, it is seen that the transfer function (
)(

2

su
Pu

Δ
Δ

) with the auxiliary feedback 

has a vastly improved phase margin. This allows larger gain to be used in the output feedback 

controller with a consequence speeding up the response. 

  

     While the plots are shown for one operating point 00 =
ser
Re ,the improvement is there for 

positive and negative  also. 
ser
Re 0
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Fig.4.5. Real Power Controller 
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4.3.2 Port 2 voltage controls 

The voltage at port 2 of the UPFC is algebraically related to that at port 1 and the reactive 

voltage injected ( ser
Re ) for power flow control. (For simplicity the series transformer reactance 

is clubbed with the line impedance). The voltage relation is given by 

                        

2 2 2 2 2

1 2 1 2

1 2 1

( ) ( )

( ) (

( ) ( )

u u u
D Q

u esr u esr
D D Q Q

u esr u esr
R R P P

V V V

v e v e

v e v e

= +

= + + +

= + + + 2

)

iv

                                           (4.9) 

                        

                             v v1 1 1cos( ) sin( )u u i u
R D Qφ φ= −

v

           (4.10) 

                             v v1 1 1sin( ) cos( )u u i u i
P D Qφ φ= +   (4.11) 
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Fig.4.6. Port 2 Voltage Controller 

 

 

 

 

 

 

 

 

 

 

Since all quantities are locally available, we can easily calculate real voltage ser
Pe  to be 

injected to obtain desired magnitude of  (see Fig.4.6). Note that there are two solutions 

of  

2uV

ser
Pe  the solution which has a lower magnitude is chosen. 
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4.4 SHUNT CURRENT CONTROL  

The shunt current is controlled by varying the magnitude and angle of the shunt converter 

voltage (see Fig.4. 2). The dynamical equations in the D-Q frame are given by, 

                              
1

0 (
sh

sh sh sh ush b bD
D Q D D

sh sh

rdi i i e v
dt x x

ω ωω= − − + − )  (4.12) 

 

                              1
0 (

sh
Q sh sh sh ush b b

Q Q Q Q
sh sh

di r i i e v
dt x x

ω ωω= − + + − )  (4.13) 

where, 

,sh shr x =shunt transformer resistance and leakage reactance respectively. 

,sh sh
D Qe e =converter output voltage components. 

1,u u
D Qv v 1

1

l=voltage components at the bus into which current is injected (port 1 of the UPFC). 

Reactive and Real current are defined as 

 

                           1cos( ) sin( )sh sh u sh u
R D Qi i iθ θ= −                                 (4.14) 

 
                           1sin( ) ( )1sh sh u sh u

Q D Qi i i cosθ θ= +                                    (4.15) 
 

 where   

                  

1
1

1tan
u

i D
u
Q

v
v

θ −=  

                  1 1 2( ) ( )u u u
D QV V V= + 1 2  

 

For control of shunt current we proceed in a way similar to the one outlined by Schauder and 

Mehta[4.6]. We can rewrite the differential equations as 

 

                             
sh

sh shsh b bR sh
R P

sh sh

rdi i i e
dt x x

ω ωω= − − + R              (4.16) 
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1( )

sh
sh sh sh ush b bP
P R R

sh sh

rdi i i e V
dt x x

ω ωω= − + + −      (4.17) 

 

      

  Note that 

                               
1 1cos( ) sin( )sh sh u sh u

R D Qe e eθ θ= −                 (4.18) 

 

                              
1 1sin( ) ( )sh sh u sh u

P D Qe e e cosθ θ= +                 (4.19) 

 

                             
1

0

ud
dt
θω ω= +                                         (4.20) 

 

If we vary the inverter output voltages as follows, 
 

                        
sh sh sh sh
R Rord sh P R

b b

xwe e x i u
w w

= = +               (4.21) 

 

                          1sh sh sh u sh
R Rord sh R

b b

xwe e x i V u
w

= = − + + Pw
 (4.22) 

 
the differential equations (4.16) and (4.17) get decoupled as follows, 

 

                          
sh

shsh bR
R R

sh

rdi i u
dt x

ω
= − +                        (4.23) 

 
 

                            
sh

shsh bP
P P

sh

rdi i u
dt x

ω
= − +             (4.24) 

 
 Independent output feedback control of the currents is achieved by varying   as, ,RU UP

 

                                (4.25) ( ) ( )( ( ) ( ))
REF

sh sh
R sh R Ru s G s i s i s= −

 
 
                                (4.26) ( ) ( )( ( ) ( ))

R E F

sh sh
P sh P Pu s G s i s i s= −
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        is the transfer function of the controller (we have used a PI controller). ( )shG s

The reactive current reference is set by a voltage regulator (PI type) for the UPFC bus                   

(port 1). 

The dynamical equation for the capacitor voltage is given by 

 

                            (4.27) ( ) ( )( ( ) ( ))
REF

sh sh
R sh R Ru s G s i s i s= −

 

,cap capg b  are the conductance and susceptance of the capacitor respectively. 
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                                          Fig.4.7 Shunt current controller 

 

Any real power drawn/supplied by the series branch (due to ser
Pe ) or by the shunt 

branch (due to real current injection sh
Pi ) manifests as DC side currents ser

DCi   and sh
DCi   

respectively. Since we allow variable real series voltage injection, and due to the losses, the 

capacitor voltage tends to change. To compensate this by sh
DCi , we set the real current reference 

( REF

sh
Pi ) as the output of a PI type capacitor voltage regulator. The controller block diagram is 

shown in Fig.4.7. The output of the shunt controller gives the desired value of real and 

reactive voltage which will controls the voltage of the bus . 
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CASE STUDY OF A THREE-MACHINE NINE-BUS SYSTEM 
                 

 5.1 CLASSICAL MODEL OF A MULTIMACHINE SYSTEM 

 
The same assumptions used for a system of one machine connected to an infinite bus 

often assume valid for a multimachine system: 

1. Mechanical power input is constant. 

2. Damping or asynchronous power is negligible. 

3. Constant-voltage-behind-transient-reactance model for the synchronous machines is 

valid. 

4. The mechanical rotor angle of a machine coincides with the angle of the voltage 

behind the transient reactance. 

5. Passive impedances represent loads. 

This model is useful foe stability analysis but is limited to the study of transients for only 

the “first swing” or for periods on the order of one second. 

Assumptions 2 are improved upon somewhat by assuming a linear damping 

characteristic. A damping torque (or power) Dw is frequently added to the inertia torque (or 

power) in the swing equation. The damping coefficient D includes the various damping 

torque coefficients, both mechanical and electrical. Values of the damping coefficient usually 

used in stability studies are in the range of 1-3 pu. [2-5]. This represents turbine damping, 

generator electrical damping, and the damping effect of electrical loads. However, much 

larger damping coefficients, up to 25 pu, are reported in the literature due to generator 

damping alone [2,5,7]. 

Assumption 5, suggesting load representation by constant impedance, is made for 

convenience in many classical studies. Loads have their own dynamic behavior, which is 

usually not precisely known and varies from constant impedance to constant MVA. This is a 

subject of considerable speculation, the major point of agreement being that constant 

impedance is an inadequate representation. Load representation can have a marked effect on 

stability results 

 

 
 
 
 

 40



5.2 CLASSICAL STABILITY STUDY OF A NINE-BUS SYSTEM 

 The classical model of a synchronous machine may be used to study the stability of a 

power system for a period of time during which the system dynamic response is dependent 

largely on the stored kinetic energy in the rotating masses. For many power systems this time 

is on the order of one second or less. The classical model is the simplest model used in 

studies of power system dynamics and requires a minimum amount of data; hence, such 

studies can be conducted in a relatively short time and at minimum cost. Furthermore, these 

studies can provide useful information. For example, they may be used as preliminary studies 

to identify problem areas that require further study with more detailed modeling. Thus a 

larger number of cases for which the system exhibits a definitely stable dynamic response to 

the disturbances under study are eliminated from further consideration. 

 A classical study will be presented here on a small nine-bus power system that has 

three generators and three loads[1]. A one-line impedance diagram for the system is given in 

fig (5.1.). Generator data for three machines are given in Table 5.1. This system, while small, 

is large enough to be nontrivial and thus permits the illustration of a number of stability 

concepts and results. 

 

5.2.1 Data preparation 

 In the performance of a transient stability study, the following data are needed: 

1. A load-flow study of the pretransient network to determine the mechanical power Pm 

of the generators and to calculate the values of 0iiE δ∠  for all the generators.  

2. System data as follows: 

a. The inertia constant H and direct axis transient reactance  for all generators. '
dx

b. Transmission network impedances for the initial network conditions and the 

subsequent switchings such as fault clearing and breaker reclosings. 

      3. The type and location of disturbance, time of switchings, and the maximum time for 

which a solution is to be obtained. 
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 1 

8

5 

97 

6 

4

Load A Load B 

Load C 

13.8 KV 
j0.0625 18 KV 

230 KV 230 KV 

230 KV 

j0.0586 

18/230 230/13.8 

0.0085+j0.072 

B/2=j0.0745 B/2=j0.104545 

0.0119+j0.1008 

16.5 KV 

0.032+j0.161 
B/2=j0.153 

0.010+j0.085 
B/2=j0.088 

0.039+j0.170 
B/2=j0.179 

0.017+j0.092 
B/2=j0.179 

16.5/230 
j0.0576 

 Fig 5.1 Nine-bus system impedance diagram; all impedance are in pu on a 100-MVA 

Table 5.1: Generator Data 
Generator 1 2 3 

Rated MVA 247.5 192.0 128.0 
KV 16.5 18.0 13.8 

Power factor 1.0 0.85 0.85 
Type Hydro Steam Steam 
Speed 180r/min 3600r/min 3600r/min 

xd 0.1460 0.8958 1.3125 
xd’ 0.0608 0.1189 0.1813 
xq 0.0969 0.8645 1.2578 
xq’ 0.0969 0.1969 0.25 

xl(leakage) 0.0336 0.0521 0.0742 
r’d0 8.96 6.00 5.89 
r’q0 0 0.535 0.600 

Stored energy at rated 
speed 

2364MW-s 640 MW-s 301MW-s 
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 5.2.2 Preliminary calculations 

To prepare the system data for a stability study, the following preliminary calculations 

are made: 

1. all system data are converted to a common base: a system base of 100MVA is frequently 

used. 

2. the loads are converted to equivalent impedances or admittances. The needed data for 

this step are obtained from load-flow study. Thus if a certain load bus has a voltage LV , 

power , reactive power , and current LP LQ LI  flowing into a load admittance 

LLL jBGY += , then 

            [ ] )()( 2
LLLLLLLLLLL jBGVjBGVVIVjQP −=−==+ ∗∗  

The equivalent shunt admittance at that bus is given by 

 )/(/ 22
LLLLL VQjVPY −=                                                                           (5.1) 

3.  the internal voltages of the generators 0iiE δ∠  are calculated from the load flow data.  

       These internal angles may be computed from the pretransient terminal voltage α∠V      

 be used as a reference. If we define 21 jIII += , then from the relation ∗=+ IVjQP  we 

 have . But since VjQPjII /)(21 −=+ IjxVE d
'' +=∠δ , we compute  

                                                                    (5.2) )/()/( ''' VPxjVQxVE dd ++=∠δ

 

 The initial generator angle is then obtained by adding the pretransient voltage. The 

prefault network admittances including the load are equivalents are given in the  

table(5.2) The Y  matrix of the faulted network and for the faulted network with the fault 

cleared are similarly obtained. 

  

4. Elimination of the network nodes other than the generator internal nodes by network 

reduction. The faulted network, and the network with the fault cleared respectively. 
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Table 5.2 Prefault Network 

 

 Bus no. Impedance 

R                           x 

Admittance 

G                       B 

Generators* 
No.1 
No.2 
No.3 

 
1-4 
2-7 
3-9 

 
0                         0.1184 
0                         0.1823 
0                         0.2399 

 
0                  -8.4459 
0                  -5.4855 
0                  -4.1684 

Transmission Lines  
4-5 
4-6 
5-7 
6-9 
7-8 
8-9 

 

 
0.0100                0.0850  
0.0170                0.0920 
0.0320                0.1610 
0.0390                0.1700 
0.0085                0.0720 
0.0119                0.1008 

 
1.3652         -11.6041 
1.9422         -10.5107 
1.1876         -5.9751 
1.2820         -5.5882 
1.6171         -13.6980 
1.1551         -9.7843 

Shunt admittances 5-0 
6-0 
8-0 
4-0 
7-0 
9-0 

 
 
 

       …………………. 

1.2610         -0.2634 
0.8777          -0.0346 
0.9690          -0.1601 
                     0.1670 
                      0.2275 
                       0.2835 
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Chapter 6 
 
 
 
 
 
 
 
 
 
 
 

 
 

RESULTS AND DISCUSSION 
 

 



 
 RESULTS AND DISCUSSION 

                 
 
6.1 A CASE STUDY ON THREE MACHINE NINE BUS SYSTEM 
 
  A classical study will be presented here on a The three machine nine bus system 

shown in Fig.6.1 .The single line impedance for the system is given in that Fig.5.1.The 

prefault normal load flow solution is given in Fig.6.1.Generator data for the three machines 

are given in Table 6.1.This system, while small, is large enough to be nontrivial and thus 

permits the illustration of a number of stability concept and results. 
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00.0∠  

0.996 
00.4−∠  
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(-38.7)
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(50.0) -30.55  

-59.45 (-13.46)
(-16.54)  

 
Fig.6.1. Nine –bus system load-flow diagram showing prefault conditions; all flows are in 

MW and MVAR 
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In the above system various cases are there; 

Case 1:  Pre Fault condition 10 <≤ t

Case 2:  During Fault condition (Fault occurred in line 5-7) 25.11 ≤< t

Case 3:  Post Fault condition (Line 5-7 is removed) 25.225.1 ≤< t

Case 4:  Line is restored. 25.2>t

Considering the above cases the behavior of the line is examined here. 

 

The MATLAB simulation result of the power system is shown in the figure given 

below. The fault occurred during the period between 1 to 1.25 sec. After 1.25 sec the line is 

removed. The relative variation in rotor angle and the change in angular speed of the rotor is 

examined. After 1.25 the relative variation in rotor angle and relative change in angular speed 

starts to damp out. After time 2.25 sec the line is restored. The enhancement of transient 

stability of the 3 machine nine bus system by the use of UPFC is studied by the comparison 

simulation results by MATLAB. 
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Fig.6.2. Relative change in rotor angle between machine 1 and 2 
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          Fig.6.3. Relative change in rotor angle between machine 1 and 3 
   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(d
el

3-
 d

el
2)

 in
 ra

d 

           Time in second 

     Fig.6.4. Relative change in rotor angle between machine 3 and 2 
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    Fig.6.5.Relative change in angular speed  between machine 1and 2 
 

 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                              Fig.6.6.Relative change in angular speed  between machine 2 and 3 
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Fig.6.7.Relative change in angular speed  between machine 3 and 1 
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 Fig.6.8. The UPFC bus voltage  
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                                      Fig.6.9. The DC link capacitor voltage of the UPFC 
 
 
 
 
 
 
 
 
 
 
 
 

 50



Chapter 7 
 
 
 
 

 
 
 
 

CONCLUSIONS AND SUGGESTION 
FOR FUTURE SCOPE 

 



 
CONCLUSIONS AND SUGGESTION FOR FUTURE WORK 

                                                                                                  
 
7.1 CONCLUSIONS 

  

From our proposed technique of adding the UPFC in the transmission line of the power 

system we get better results as compared to the older techniques power system stabilizer and 

automatic voltage controller in terms of damping out the transients quickly. We have carried 

out extensive computer simulations for studying the addition of both series compensation and 

shunt compensation given by the series controller and the shunt controller. From comparative 

study of the relative variation in rotor angle and relative change in speed of the three 

machines nine-bus system with the proposed technique and conventional technique, we have 

seen that the transient stability is enhanced by the use of UPFC. By using a UPFC we obtain 

better transient stability performance than the case without a UPFC. 

 

Here we highlight some of the thesis contributions as follows. It describes the role of UPFC 

on stability improvement of power system. The thesis demonstrates the advantages of using 

UPFC by presenting a number simulation results.  

 

7.2 SUGGESTIONS FOR FUTURE WORK 

 From our experience on simulation studies we remark that it is difficult to tune the PI 

controller gain parameters, because it is time consuming and iterative to obtain a good set of 

values for the gains Kp and KI .  Therefore, in our opinion, an optimization framework can be 

developed to obtain the values of Kp and KI , so that the UPFC so designed may yield better 

performance. Further, there is an opportunity for applying some adaptive control techniques 

to improve the UPFC performance in place of the fixed gain PI controller.   
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APPENDIX 
 
 
 
 Exciter Data 
                   
  Ke=2*[30 200 250];  T1= [0.055 0.188 0.3]; 
                                                                                                

Te= [0.02 0.02 0.02];   T2= [0.033 0.033 0.033];                     
                    

Tw= [1.3 1.4 1.6];           Ke= [15 50 10]; 
 

Kstab=.1*[6 9.5 14]; 
 
Shunt Controller Data: 
 

rsh=0.04;           xsh=0.1;         rdc=150;        cdc=5000e-6; 
 
Series controller data: 
 

re=0.0119;       xe=0.1008; 
 
Parameters of AVR and PSS: 
 

Te=.1;     hh=4;     Ke=50;     kpss=5;     kipss=12; 
 
The Kp and KI value: 
 

kpp=100; kip=500; 
 

kpr=100;  kir=10000; 
 

kpv=5;      kiv=5; 
 

kpvdc=.5;  kivdc=2; 
   

kppa=0.05;   kipa=0; 
 

kpqa=0.05; kiqa=0; 
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