
3-PARTY KEY AGREEMENT PROTOCOL SECURE

AGAINST ONLINE AND DICTIONARY ATTACKS

A THESIS SUBMITTED IN PARTIAL FULFILLMENT

OF THE REQUIREMENTS FOR THE DEGREE OF

Master of Technology

In

Computer Science & Engineering

By

SAIRAM KULKARNI

Department of Computer Science & Engineering

National Institute of Technology

Rourkela

2007

3-PARTY KEY AGREEMENT PROTOCOL SECURE

AGAINST ONLINE AND DICTIONARY ATTACKS

A THESIS SUBMITTED IN PARTIAL FULFILLMENT

OF THE REQUIREMENTS FOR THE DEGREE OF

Master of Technology

In

Computer Science & Engineering

By

SAIRAM KULKARNI

Under the Guidance of

Prof.S.K.Jena

Department of Computer Science & Engineering

National Institute of Technology

Rourkela

2007

National Institute of Technology

Rourkela

CERTIFICATE

This is to certify the thesis entitled, 3-PARTY KEY AGREEMENT PROTOCOL SECURE

AGAINST ONLINE AND DICTIONARY ATTACKS submitted by Sri.Sairam Kulkarni in

partial fulfillment of the requirements for the award of Master of Technology Degree in Computer

Science and Engineering at the National Institute of Technology, Rourkela (Deemed University) is

an authentic work carried out by him under my supervision and guidance.

To the best of my knowledge, the matter embodied in the thesis has not been submitted to any other

University / Institute for the award of any Degree or Diploma.

Date: 21-05-2007 Prof. S. K. Jena
 Professor&Head

 Dept. of Computer Science and Engg.
 National Institute of Technology

 Rourkela – 760008

Acknowledgement

I am grateful to numerous local and global peers who have contributed towards shaping

this thesis. At the outset, I would like to express my sincere thanks to Professor S.K.Jena

for his advice during my thesis work. As my supervisor, he has constantly encouraged

me to remain focused on achieving my goal. His observations and comments helped me

to establish the overall direction of the research and to move forward with investigation

in depth. He has helped me greatly and been a source of knowledge.

I thank Prof.S.K.Rath(Dean-Academics) for his constant encouragement and support

during my postgraduate studies. I would like to express my special thanks to Prof.B.Majhi

for being a great soul. He is always ready to help with a smile. I would like to thank

Prof. R. Baliarsingh, Prof. A. K. Turuk, Prof. D. P. Mohapatra, Prof. B. D. Sahoo,

Prof. S. Chinara, Prof. Sabuj K. Jena for their valuable suggestions.

I express my gratitude to Prof. P. K. Sa for generously sharing his time and knowledge

and for making life fun while working.

I would like to thank administrative and technical staff members of the Department

who have been kind enough to advise and help in their respective roles. Throughout Post

graduate studies I have been fortunate to have wonderful support structure among the

post graduate students.Iam really thankful to my friends. My sincere thanks to everyone

who has provided me with kind words, a welcome ear, new ideas, useful criticism, or their

invaluable time, I am truly indebted. Last, but not least, I would like to dedicate this

thesis to my family,for their love, patience, and understanding.

(Sairam Kulkarni)

i

Contents

1 INTRODUCTION 1

1.1 ELEMENTS OF INFORMATION SECURITY 2

1.2 LAYOUT OF THESIS . 3

2 OVERVIEW OF KEY AGREEMENT PROTOCOLS 5

2.1 DEFINITIONS . 6

2.2 MOTIVATION FOR USE OF SESSION KEYS 7

2.3 DESIGN GOALS . 8

2.4 ADVERSARIES IN KEY ESTABLISHMENT PROTOCOLS 10

3 TRADITIONAL KEY DISTRIBUTION PROTOCOLS 12

3.1 INITIAL ASSUMPTIONS . 12

3.2 2-PARTY KEY DISTRIBUTION PROTOCOL

(2PKDP) . 14

3.2.1 Security Analysis . 14

3.3 3-PARTY KEY DISTRIBUTION PROTOCOL

(3PKDP) . 17

3.3.1 The Protocol . 17

3.3.2 Insider Attacks . 18

4 2-PARTY KEY AGREEMENT PROTOCOLS 19

4.1 DIFFIE-HELLMAN PROTOCOL . 19

4.1.1 The Protocol . 23

4.1.2 Attacks on Diffie-Hellman . 24

4.1.3 Results And Discussion . 27

4.2 ENCRYPTED KEY EXCHANGE PROTOCOL 29

ii

4.2.1 Generic EKE . 29

4.2.2 EKE with Diffie-Hellman key exchange 30

4.2.3 Results And Discussion . 31

4.3 SAKA PROTOCOL . 35

4.3.1 The Protocol . 35

4.3.2 Security Analysis . 36

4.3.3 Results And Discussion . 37

5 3-PARTY KEY AGREEMENT PROTOCOLS 40

5.1 STW PROTOCOL . 40

5.1.1 The Protocol . 41

5.1.2 Undetectable on-line guessing attacks 42

5.2 LSH 3-PEKE PROTOCOL . 43

5.2.1 The Protocol . 44

5.2.2 Results And Discussion . 45

6 MODIFIED 3-PARTY KEY AGREEMENT PROTOCOL 51

6.1 THE PROTOCOL . 51

6.2 COMMUTATIVE ONE-WAY HASH FUNCTIONS 54

6.3 SECURITY ANALYSIS . 54

6.4 RESULTS AND DISCUSSION . 55

7 CONCLUSION AND FUTURE WORK 64

iii

List of Tables

3.1 Terminology used . 12

iv

Abstract

Frequent key changes are must in order to limit the amount of data compromised. Cryp-

tography simply can not get off the ground without effective key distribution mecha-

nism.Several key agreement protocols are proposed on password based mechanism. These

protocols are vulnerable to dictionary attacks. Traditional 3-party key agreement prot-

cols are vulnerable to insider attacks and server becomes a monitoring centre which we

dont want in most of the applications.EKE protocol is vulnerable to Denning -Sacco at-

tacks. EKE demands storing clear text version of password on server which is always

not possible. STW protocol was proved to be vulnerable to on-line and off-line guessing

attacks as it lacks server authentication to hosts. LSH 3-PEKE uses server public keys

but its not an optimistic solution.the approach of using server public keys is not always

a satisfactory solution and is impractical for some environments. Communication parties

have to obtain and verify the public key of the server, a task which puts a high burden

on the user. SAKA protocol has got limited applications as it is a 2-party protocol.

In proposed protocol trusted third party (key Distribution server) mediates in key

distribution. Rather than storing clear text version of password one way hash of the

password is stored at the server. Every host and server agree upon family of commutative

hash functions using which host authenticates itself to server when it applies for session

key . During this protocol run host establishes one time key with server using which

server also authenticates to host. This defeats man-in-the middle attacks.Diffie-Hellman

protocol serves as basis for this protocol. It is secure against dictionary attacks as we

use one time keys with server. It is also secure against malaicious insider attacks (host

misuses the information in one protocol run to another)since we use one time keys. It

also provides perfect forward secrecy i.e. even if one key is disclosed future session keys

will not be disclosed. Moreover we don’t use any public key infrastructure which needs

large computational power. In this protocol server acts just like a authentication server

not like a monitoring server. This protocol is also immune to off-line and on-line guessing

attacks as there is no verifiable information is present.

Chapter 1

INTRODUCTION

”A hundred ounces of silver spent for information may save ten thousand

spent on war”.

By Sun-Tzu[Chinese general fourth century B.C]

Information is a ”quality” of a message that is sent from a sender to one or more receivers.

Information is the state of a system of interest (curiosity). Message is the information Ma-

terialized.Information security deals with several different ”trust” aspects of information.

Another common term is information assurance. Information security is not confined to

computer systems, or to information in an electronic or machine-readable form. It ap-

plies to all aspects of safeguarding or protecting information or data, in whatever form.

The concepts, techniques, technical measures, and administrative measures used to pro-

tect information assets from deliberate or inadvertent unauthorized acquisition, damage,

disclosure, manipulation, modification, loss, or use.

I
¯
nformation security is defined as the protection of information systems against unau-

thorized access to or modification of information, whether in storage, processing or tran-

sit, and against the denial of service to authorized users or the provision of service to

unauthorized users, including those measures necessary to detect, document, and counter

such threats. Because today’s economy depends on the secure flow of information within

and across an organization, information security is an issue of vital importance. A secure

and trusted Environment for stored and shared information greatly enhances consumer

benefits, business performance and productivity, and national security. Conversely, an

1

insecure environment creates the potential for serious damage to governments and cor-

porations that could significantly undermine consumers and citizens.

For firms engaged in critical activities, such as electrical power generation, banking and

finance, or healthcare, the stakes are particularly high. Integral to all security programs

whether for an asset or an entire agency is a risk assessment process that includes deter-

mining the level of sensitivity of information and systems. As the technological revolution

has progressed throughout society, an increasing amount of ’valuable’ data is stored or

transported in the form of electronic binary sequences. This has lead to an extremely

efficient and sophisticated environment, with the rate of information exchange reaching

incomprehensible limits. Organizations have finally grasped the concept of Information

Technology, and now see that by effectively applying it, they are increasing business pros-

perity. Inevitably, this has lead to greater dependence on IT on the part of the firms.

As we all know, we do not live in a perfect environment, and with access to such

informational power via the networks, there is bound to be an increasing amount of

hacking. So, with a variety of organizations depending on their computer systems, the

cost of this type of crime could be extremely high, both in terms of time and money.

The other main disadvantage is the need for extremely expensive hardware leading to

an increased number of physical thefts. It is these fundamental problems that have

brought about the need for security. It is an important point that information security

is, inherently and necessarily, neither hermetic nor watertight nor perfectible. No one

can ever eradicate all risk of improper or capricious use of any information.

1.1 ELEMENTS OF INFORMATION SECURITY

Three widely accepted elements (aims, principles, qualities, characteristics, attributes) of

information security are:

Confidentiality :

Confidentiality has been defined by the International Organization for Standardization

(ISO) as ”ensuring that information is accessible only to those authorized to have access”

and is one of the cornerstones of Information security. Confidentiality is one of the design

goals for many crypto systems, made possible in practice by the techniques of modern

2

cryptography.

Integrity :

In computer science and telecommunications, the term data integrity has the following

meanings:

• The condition in which data are identically maintained during any operation, such

as transfer, storage, and retrieval.

• The preservation of data for their intended use.

• Relative to specified operations, the apriori expectation of data quality.

Another aspect of data integrity is the assurance that data can only be accessed and

altered by those authorized to do so. Integrity can be compromised in two main ways:

1. Malicious altering

2. Accidental altering

Availability :

Availability has the following meaning:

• The degree to which a system, subsystem, or equipment is operable and in a com-

mittable state at the start of a mission, when the mission is called for at an un-

known, i.e., a random, time. Simply put, availability is the proportion of time a

system is in a functioning condition. The conditions determining operability and

commutability must be specified.availability is Expressed mathematically, as one

minus the unavailability. A simple way to express this is ”the right information to

the right people at the right time”.

1.2 LAYOUT OF THESIS

As part of this thesis in Chapter-1 need for Information security,Elements of Information

security are discussed. In Chapter-2, key distribution,Design goals of key agreement pro-

tocols,possible attacks are discussed. In Chapter-3 , traditional 2-Party authentication,2-

Party key distribution and 3-party key distribution protocols[7] are discussed. 2-party key

3

agreement protocols like Diffie-Hellman protocol [10], Encrypted key exchange protocol

(EKE)[5] ,Simple Authenticated Key Agreement protocol [1] are discussed in Chapter-4.

3-party Key agreement protocols , STW protocol [13], LSH-3 Party EKE [2] are discussed

in Chapter-5. In Chapter-6, new 3-party key agreement protocol which is secure against

masquerading and dictionary attacks is proposed. In Chapter-7 conclusion and scope of

future work in this area is discussed.

4

Chapter 2

OVERVIEW OF KEY

AGREEMENT PROTOCOLS

The main goal of cryptography is to enable secure communication in a hostile environ-

ment. Two parties, Pi a
¯
nd Pj ,want to safely communicate over a network occupied by an

active adversary. Usually, Pi a
¯
nd Pj will want to ensure the privacy and authenticity of

the data they send to each other. They will encrypt and authenticate their transmissions.

But before Pi a
¯
nd Pj can use these tools they will need to have keys. Indeed, without

keys, cryptography simply cannot get off the ground. Key agreement is one of the fun-

damental cryptographic primitive after encryption and digital signature. Such protocols

allow two or more parties to exchange information among themselves over an adversarially

controlled insecure network and agree upon a common session key, which may be used

for later secure communication among the parties. Thus, secure key agreement protocols

serve as basic building block for constructing secure, complex, higher-level protocols. Key

establishment may be broadly subdivided into key transport and key agreement.

S
¯
ecret communications with secret keys implies that only trusted parties should have

copies of the secret key. Although secret keys can assure us of confidentiality,authentication

of users, and message integrity, in a global world we must be able to securely distribute

keys at a distance in a timely manner [19]. If security is to be maintained, key distri-

bution must be as solid as the cryptographic method and must be able to ensure that

only trusted parties have copies of the keys. Obviously, key distribution is a significant

problem. Key establishment protocols involving authentication typically require a set-up

phase whereby authentic and possibly secret initial keying material is distributed. Most

5

protocols have as an objective the creation of distinct keys on each protocol execution.

In some cases,the initial keying material pre-defines a fixed key which will result every

time the protocol is executed by a given pair or group of users. Systems involving such

static keys are insecure under known-key attacks.

K
¯
ey pre-distribution schemes are key establishment protocols whereby the resulting

established keys are completely determined a priori by initial keying material. In contrast,

dynamic key establishment schemes are those whereby the key established by a Fixed pair

(or group) of users varies on subsequent executions. Dynamic key establishment is also

referred to as session key establishment. In this case the session keys are dynamic, and

it is usually intended that the protocols are immune to known-key attacks. Many key

establishment protocols involve a centralized or trusted party, for either or both initial

system setup and on-line actions (i.e., involving real-time participation). This party

is referred to by a variety of names depending on the role played, including: trusted

third party, trusted server, authentication server, key distribution center (KDC), key

translation center (KTC), and certification authority.

I
¯
t is generally desired that each party in a key establishment protocol be able to

determine the true identity of the other(s) which could possibly gain access to the resulting

key, implying preclusion of any unauthorized additional parties from deducing the same

key. In this case, the technique is said (informally) to provide secure key establishment.

This requires both secrecy of the key and identification of those parties with access to it.

2.1 DEFINITIONS

• Protocol :

protocol is a multi-party algorithm, defined by a sequence of steps precisely spec-

ifying the actions required of two or more parties in order to achieve a specified

objective.

• Key establishment :

Key establishment is a process or protocol where by a shared secret becomes avail-

able to two or more parties, for subsequent cryptographic use.

6

• Key transport protocol :

key transport protocol or mechanism is a key establishment technique where one

party creates or otherwise obtains a secret value, and securely transfers it to the

other(s).

• Key agreement protocol :

key agreement protocol or mechanism is a key establishment technique in which

a shared secret is derived by two (or more) parties as a function of information

contributed by, or associated with, each of these, (ideally) such that no party can

predetermine the resulting value.

• Key distribution system :

KDS is a method whereby, during an initialization stage, a trusted server generates

and distributes secret data values (pieces) to users, such that any pair of users may

subsequently compute a shared key unknown to all others (aside from the server).

2.2 MOTIVATION FOR USE OF SESSION KEYS

Key establishment protocols result in shared secrets which are typically called, or used

to derive, session keys. Secret keys are not secure forever. They can be stolen, lost, for-

gotten, destroyed,stored in insecure ways, or copied without authorization [16]. A secret

key that has been used many times probably hides more secrets than a secret key that

has been used only once. An adversary is more likely to go after the secret key that has

been used many times. Ideally, a session key is an ephemeral secret, i.e., one whose use

is restricted to a short time period such as a single telecommunications connection (or

session), after which all trace of it is eliminated [17].

Motivation for ephemeral keys includes the following:

• To limit available cipher text (under a fixed key) for cryptanalytic attack.

• To limit exposure, with respect to both time period and quantity of data, in the

event of (session) key compromise.

• To avoid long-term storage of a large number of distinct secret keys (in the case

where one terminal communicates with a large number of others), by creating keys

7

only when actually required

• To create independence across communication sessions or applications. It is also

desirable in practice to avoid the requirement of maintaining state information

across sessions.

2.3 DESIGN GOALS

Before turning to the construction of the actual protocols,we emphasize the goals of design

and desired properties of the resulting protocols:

• Simplicity

Simplicity is the major theme in the design and its foremost intended feature. The

simpler the protocol, the easier it is to spot vulnerabilities and to demonstrate

security features.

• No timetamps

Use of timestamps in authentication and key distribution protocols has been de-

bated ad nauseum for a number of years. Since our concern is with simplicity,

timestamps are unacceptable because of the inherent requirement for (even loose)

clock synchronization [19].

• Small number of cryptographic operations

Cryptography is essential but must be used sparingly. Minimizing the use of cryp-

tography makes protocols simpler and more efficient.

• Small message sizes

Small message sizes can make a protocol suitable for implementation in space-

conscious environments, e.g., in a network layer” or in a boot service. Another

incentive is to eliminate unnecessary redundancy which can otherwise make a pro-

tocol less secure and/or less efficient.

• Small number of messages

Similarly, too many messages make an awkward protocol. Few messages make

the protocol simpler to implement, and less prone to timing constraints(i.e., fewer

delays).

8

• Conventional cryptography

The merits of public key cryptography are many and well known. However, it is

still quite inefficient. Furthermore its use sometimes presents a problem because of

the associated patent issues. Finally, most public key methods impose a fairly large

basic encryption block size (e.g., 512 bits is a recommended minimum for RSA.).

Nonetheless, for the sake of generality, the resulting protocols must not have any

features that rule out the use of public key cryptography.

• No decryption

A typical cryptosystem has two components: encryption and decryption. While the

use of encryption is necessary there are reasons to avoid using decryption. First,

decryption makes the implementation more complex. Second, it rules out the use

of strong one-way hash functions in place of traditional encryption techniques (and

where only encryption is needed, strong one-way hash functions can be used instead

at much lower cost).

• Minimal overhead

The key distribution protocol we intend to construct should impose minimal ad-

ditional overhead on the existing authentication protocol it is based on. Since the

authentication protocol used as building block is a generic one, we abstract out the

specifics of the underlying encryption function.

• Key Non-Disclosure

A third party cannot discover a key being distributed without explicit collaboration

of a legitimate party. Legitimate party is one of the two protocol participants.

• Key Non-Modification

a third party cannot modify a key being distributed to any value known to this

third party.

• Key Non-Reuse

A third party cannot distribute a previously used key, i.e., it cannot fool the ini-

tiating party into using an old key(This can be considered a subset of the Key

Non-Modification property).

• Key Independence

Knowledge of one key cannot be used to compute other keys, i.e., a key distributed

9

in one protocol run does not open the door to discovering keys distributed in other

protocol runs.

2.4 ADVERSARIES IN KEY ESTABLISHMENT PRO-

TOCOLS

To clarify the threats protocols may be subject to, and to motivate the need for specific

protocol characteristics, one requires (as a minimum) an informal model for key establish-

ment protocols, including an understanding of underlying assumptions. Attention here

is restricted to two-party protocols, although the definitions and models may be gener-

alized. Communicating parties or entities in key establishment protocols are formally

called principals,and assumed to have unique names. In addition to legitimate parties,

the presence of an unauthorized third party is hypothesized, which is given many names

under various circumstances, including: adversary, intruder, opponent, enemy, attacker,

eavesdropper,and impersonator. When examining the security of protocols, it is assumed

that the underlying cryptographic mechanisms used, such as encryption algorithms and

digital signatures schemes,are secure. If otherwise, then there is no hope of a secure pro-

tocol. An adversary is hypothesized to be not a cryptanalyst attacking the underlying

mechanisms directly, but rather one attempting to subvert the protocol objectives by de-

feating the manner in which such mechanisms are combined, i.e., attacking the protocol

itself.

A
¯

passive attack involves an adversary who attempts to defeat a cryptographic tech-

nique by simply recording data and thereafter analyzing it (e.g., in key establishment,

to determine the session key). An active attack involves an adversary who modifies or

injects messages. It is typically assumed that protocol messages are transmitted over un-

protected (open) networks, modeled by an adversary able to completely control the data

therein, with the ability to record, alter, delete, insert, redirect, re-order, and reuse past

or current messages,and inject new messages. An active adversary attacks the network.

Adversary can start up entirely new instances of players. Adversary may acquire session

keys and corrupt players themselves. In the face of such a powerful adversary secure

session key distribution is only possible when Pi a
¯
nd Pj have some information advan-

tage over the adversary. To emphasize this, legitimate parties are modeled as receiving

10

messages exclusively via intervening adversaries (on every communication path, or on

some subset of t of n paths), which have the option of either relaying messages unaltered

to the intended recipients, or carrying out (with no noticeable delay) any of the above

actions.An adversary may also be assumed capable of engaging unsuspecting authorized

parties by initiating new protocol executions.An adversary in a key establishment protocol

may pursue many strategies, including attempting to:

• Deduce a session key using information gained by eavesdropping.

• Participate covertly in a protocol initiated by one party with another, and influence

it,e.g., by altering messages so as to be able to deduce the key.

• Initiate one or more protocol executions (possibly simultaneously), and combine

(interleave) messages from one with another, so as to masquerade as some party or

carry out one of the above attacks.

• Without being able to deduce the session key itself, deceive a legitimate party

regarding the identity of the party with which it shares a key. A protocol susceptible

to such an attack is not resilient.

11

Chapter 3

TRADITIONAL KEY

DISTRIBUTION PROTOCOLS

In this protocol an existing secure two-party authentication protocol [7]is used as a step-

ping stone for constructing a series of simple and secure key distribution protocols. The

protocols are shown to satisfy desired security requirements, using the security properties

of the underlying authentication protocol. This protocol is modular and simple.

A, B, P, Q Full principal names

S Trusted Third Party

Ek(X) Encryption of plaintext block ”X” under key ”K”

MACK(X) Message Authentication Code

Kab A and B share Key ”K”

Nab Nonce genrated by A and received by B

A ⇒ B M A sends message ”M” to B

Table 3.1: Terminology used

3.1 INITIAL ASSUMPTIONS

Here it is assumed that there exists a secure two-party authentication protocol (2PA

P)[7].However, any secure nonce based 2PAP will suffice this purposes. Informally speak-

ing, a 2PAP is considered secure if and only if It is computationally difficult for an

intruder to impersonate either party. The difficulty should be equal to the strength of

the underlying cryptosystem or a strong one-way function. For example, if DES is used

12

with the 2PAP in , the computational difficulty of defeating the protocol equals that of

breaking DES by brute force,which is generally believed to require on the order of 256

trials. 2PAP is as given below :

P ⇒ Q P,Npq (1)

Q ⇒ P AUTHKpq(Npq, Nqp, Q), Nqp (2)

P ⇒ Q ACKKpq(Npq, Nqp, P) (3)

AUTHKpq denotes an authentication expression based on the shared key Kpq and gener-

ated by the responding party (Q in this case). This expression is computed over three

inputs, two nonces (one generated by each party) and the name of the message origi-

nator.One example of AUTH is: E(Q ⊕ E(Nqp ⊕ E(Npq))) Similarly, ACKKpq is the

authentication expression that the initiating party sends in order to complete two-way

authentication. It is computed over the same inputs except for the message origina-

tor’s name (which Is P in this case, or can evenbe omitted). An example of ACK is:

E(Nqp ⊕ E(Npq)) .

In flow-1 ”P” genrates a nonce, which is assumed to be a good random number choosed

from a uniform distribution and assumed to be different in every protocol run. ”P” sends

Npq. ”Q” genrates its nonce Nqp. ”Q” computes authentication expression and sends

along with Nqp to ”P” in flow-2. After receving, ”P” computes authentication expression

and verifies ”Q” s authenticity. Since authentication expression is assumed to be secret

only legitimate parties can compute it. ”P” computes acknowledgement, Npp and Nqp

as seeds and sends to ”Q”. ”Q” recomputes acknowledgement and authenticates ”P”.

Since Npq and Nqp are coming in plain there is no need of decryption. Authentication

expression and acknowledgment functions are oneway hash functions. This protocol is

compact(requires minimum no.of messages). Stronger one way hash function suffices

decryption.

13

3.2 2-PARTY KEY DISTRIBUTION PROTOCOL

(2PKDP)

The model for two-party key distribution [7] is such that one of the parties initiates the

protocol by requesting a new key. The other party responds by generating a new key and

shipping it back to the requester. The protocol may include a confirmation flow whereby

the initiator acknowledges the receipt of the new key. The 2PKDP is as specified below:

P ⇒ Q P,Npq (1)

Q ⇒ P AUTHKpq(Npq, Nqp, Q)⊕Knew, Nqp (2)

It is a simple protocol consisting of only two messages. This protocol is much more

similar to 2PAP. ”Q” generates Knew (session key) sends to ”P”. After flow-2, ”P”

extracts the key XOR-ing the re-computed mask expression with the corresponding field

in the message. Knew is also assumed to be good random number which varies in every

protocol run. Subsequently 2PKDP can be used as a stepping stone for obtaining three-

party KDPs. However, one should not conclude that two-party key distribution, by itself,

has no applications. A 2PKDP can be used, for example, to refresh a short-term session

key between two parties (while retaining a more long-term pairwise key). Given a secure

2PAP, it is computationally difficult for an intruder (not knowing Kpq) to obtain an

AUTH expression when at least one of the nonce Npq or Nqp is selected by a legitimate

party. The AUTH expression scavenged from the secure 2PAP. Both plaintext and key are

random and unpredictable values, and therefore this can be considered a strong encryption

function. It resembles a truncated 2PAP except that the authentication expression in the

second message is used as a one-time mask for the key being distributed.

3.2.1 Security Analysis

Key Disclosure in 2PKDP can take place only if the attacker is able to obtain an AUTH

expression that safeguards a new key. The attacker has two sources of information that

can help in ”breaking” the protocol. First of all, the attacker may record any number of

legitimate executions of 2PKDP between P and Q. In this case,Npq is always under control

of ”P” and Nqp is always under control of ”Q”. Alternatively, he may try to impersonate

”P” by changing or composing a first message of the protocol and intercepting Q’s reply;

14

in which case Npq is under the attacker’s control, and Nqp is selected by Q. In both cases,

at least one of the nonces: Npq, Nqp, is always under the control of a legitimate party,

i.e.,P or Q. Therefore, the ability to compute AUTHKpq(Npq, Nqp, Q) is equivalent to

breaking 2PAP.

Key Modification to a value known by the attacker is essentially equivalent to key

disclosure. If the attacker is able to modify the key to a selected value then the corre-

sponding AUTH expression simultaneously becomes known. However,since the attacker

cannot know the key apriori, he must first know the AUTH expression. This is clearly

impossible.

Key Reuse entails the attacker ”feeding” an old key to the initiating party. Note that

the attacker does not have to know the old key in order to try this attack (the simplest

attack is to use pre-recorded replies from previous 2PKDP runs). Since the attacker does

not know any old key K0, the only pieces of knowledge available to him are the recorded

messages from previous protocol runs of the form: AUTHKpq(N
0
pq, N

0
qp, Q)⊕K0, N0

qp

In order to be fooled into accepting K0, P has to receive a message of the form:

AUTHKpq(Npq, N
x
qp, Q)⊕K0, Nx

qp

where Npq is the fresh nonce generated by P in the current, protoco run and Nx
qp is a

nonce which is either generated by the attacker or by Q. Then, the following relationship

must hold:

AUTHKpq(Npq, N
x
qp, Q) = AUTHKpq(N

0
pq, N

0
qp, Q)

Assuming that AUTH is based on a strong one-way function, this condition can hold only

if: Npq = N0
pq and Nx

qp = N0
qp which is impossible since P is assumed to generate bonafide

nonces (i.e., nonces, by definition, are never reused). Alternatively, we can analyze the

issue of replay by considering what happens if an attacker re-sends an old protocol mes-

sage to P, replacing the nonce N0
qp by some value Nx

qp: AUTHKpq(N
0
pq, N

0
qp, Q)⊕K0, Nx

qp

where either Npq 6= N0
pq or Nx

qp 6= N0
qp P will extract a key K̄ instead of K0, satisfying

following equation:

AUTHKpq(Npq, N
x
qp, Q)⊕ K̄ = AUTHKpq(N

0
pq, N

0
qp, Q)⊕K0

K̄ is,not known to the attacker, since he can’t compute the AUTH expression masking

it. One important consequence of this result is that the attacker can, in effect, ”fool”

15

the protocol initiator P into accepting just about any tuple of the form < GX , NX > as

valid reply in the second flow of the protocol. However, still the protocol achieves its goal

of distributing a random,one-time key which can only be discovered by the legitimate

protocol initiator. That is, even though the attacker can convince P to accept any value

GX as an expression masking the key, the protocol retains its strength since the key

extracted from GX remains secret.

Key Independence requires that protocol runs be unrelated. If the attacker discov-

ers K i from some protocol run (possibly via a brute force attack or some other means

external to the protocol) then he simultaneously gains the knowledge of the correspond-

ing AUTH expression,AUTHKpq(N
i
pq, N

i
qp, Q) that conceals the said key. As there is no

relationship between keys distributed in different protocol runs, knowledge of a Ki by

itself, offers no advantages to the attacker. Even knowledge of AUTHKpq(N
i
pq, N

i
qp, Q) is

only marginally useful since we assume that the probability of:

AUTHKpq(N
i
pq, N

i
qp, Q) = AUTHKpq(N

j
pq, N

j
qp, Q).

is negligible when pN i
pq, N

i
qpq 6= pN j

pq, N
j
qpq (i, j denote the different protocol runs). There-

fore, knowledge of a single session key cannot lead to the discovery of other session keys.

Key Integrity : This protocol does not provides key integrity. Key integrity is not

necessarily considered a foremost property of a secure key distribution protocol. Failure

to assure key integrity may result in the distribution to the requesting party of a key

different from the one originally issued. However, under some circumstances,this is not

problematic. The integrity of the key does not matter as long as its value does not become

known to an unauthorized party. There are also scenarios where key integrity is needed.

So far, we have made an implicit assumption that the new key is chosen uniformly by its

issuer. By uniformly we mean that, supposing that a key is an n bits long, then every

possible n-bit quantity is equally likely to be selected as a key. On the other hand, if

keys are selected in a non-uniform manner whereby each key must satisfy some particular

requirements (e.g., the RSA cryptosystem), the uniformness can not be acheived.

16

3.3 3-PARTY KEY DISTRIBUTION PROTOCOL

(3PKDP)

The properties of the 2PKDP discussed so far appear reassuring. However, two party key

distribution is not a particularly useful application. A much more common scenario is

that of three-party key distribution[7]. The model for three party key distribution is that

two parties having no shared secret key enlist the assistance of a mutually trusted third

party performs the actual key distribution. This trusted third party is frequently referred

to as Authentication Server (AS) or Key Distribution Center (KDC). Each of the two

parties are assumed to share a long term key with the AS. As with 2PKDP, the goal is

to design a secure 3PKDP. The conditions for a secure 3PKDP are essentially similar to

that of 2PKDP. The only additional requirement is that a 3PKDP must be secure against

a malicious insider, i.e., a legitimate party that, by participating in legitimate runs of the

protocol,can gather enough information to impersonate other parties or otherwise abuse

the protocol(e.g., a malicious insider disclosing a key shared with another party).

3.3.1 The Protocol

A naive version of a secure 3PKDP is illustrated here. It is constructed by simply putting

together two runs of 2PKDP.

A ⇒ S A,B,Nas (1)

S ⇒ A AUTHKas(Nas, Nsa, B)⊕Kab, Nsa (2)

B ⇒ S B,A, Nbs (3)

S ⇒ B AUTHKbs
(Nbs, Nsb, A)⊕Kab, Nsb (4)

One notable aspect is that the key being distributed in messages 2 and 4 is one and the

same-Kab. The names of the parties involved are changed to emphasize the difference with

respect to previously discussed two-party protocols. A and B are the two principals and

S is the mutually trusted AS. The only other aspect where the present protocol differs

from 2PKDP is in the way principal names are used within AUTH tokens. Whereas

before, a name denoted the originator of a token , it now refers to the thrid party in

the protocol,e.g., the AUTH token sent from S to A includes B’s name. Similarly, the

AUTH token sent from S to B includes A’s name. This feature is necessary to prevent

17

masquerading attacks whereby a malicious party tampers with the principals’ names in

message 1 of the protocol. The protocol is secure with respect to outsider attacks,i.e., a

non-participating party (i.e., not A, B or S) cannot subvert the protocol. This follows

directly from the established security of 2PKDP.

3.3.2 Insider Attacks

The new danger introduced in this 3PKDP as a result of using the same key in messages 2

and 4 are the so called insider attacks by either A or B. Both A and B, being privy to Kab

can discover each other’s AUTH expressions and try to use this new knowledge in some

malicious fashion. Knowing Kab, A (or B) can now alter B’s (or A’s)key distribution token

to any desired value. Whether or not this is a real threat depends on the requirements

specific to the local environment. The present protocol certainly fulfills the requirements

of nondisclosure, non-modification, non-reuse and independence. As long as the adversary

is an outsider. In its current state, the protocol is vulnerable to modification of Kab by

an insider (A or B). In other words, neither of the two parties can be sure that theKab

was actually issued by the AS. This exposure cannot be addressed without changing the

original 2PKDP. However, not knowing either the key or the masking expression, the

attacker can only try to play XOR-ing ”games” and factor out Kab by computing:

AUTHKas(Nas, Nsa, B)⊕Kab ⊕ AUTHKbs
(Nbs, Nsb, A)⊕Kab

=AUTHKas(Nas, Nsa, B)⊕ AUTHKbs
(Nbs, Nsb, A)

This expression cannot be of any value since its components remain unknown. Since the

AUTH expression is computed using Kas the only way ”X” (another insider) could try

to misuse this information is in an attempt to modify or find a key distributed to A in

a 3PKDP execution between A and some other party, say B. For such an attempt to

succeed, X needs to compute AUTHKas(Nas, Nsa, B) for a random value of Nas or Nsa.

Since X only knows expressions of the form AUTHKax(..., ..., X) and finding an expression

of the form AUTHKas(..., ..., B) is equivalent to breaking 2PAP.

18

Chapter 4

2-PARTY KEY AGREEMENT

PROTOCOLS

2-party key agreement protocols generally function by sharing a predistributed secret

between both parties for authentication.

4.1 DIFFIE-HELLMAN PROTOCOL

The Diffie-Hellman key agreement protocol [10] (also called exponential key agreement)

was developed by Diffie and Hellman in 1976 and published in the ground-breaking paper

New Directions in Cryptography. The protocol allows two users to exchange a secret key

over an insecure medium without any prior secrets. A number of commercial products

employ this key exchange technique. The algorithm itself is limited to the exchange of

keys. The Diffie-Hellman algorithm [10] depends for its effectiveness on the difficulty of

computing discrete logarithms. This Protocol is based on Group theory.

• Group :

In abstract algebra, a group is a set with a binary operation that satisfies certain

axioms. For example, the set of integers with addition is a group [20]. Many of the

structures investigated in mathematics turn out to be groups. These include familiar

number systems, such as the integers, the rational numbers, the real numbers, and

the complex numbers under addition, as well as the non-zero rationals, reals, and

complex numbers, under multiplication. A group G,sometimes denoted by {G,•},is
a set of elements with a binary operation •,that associates to each ordered pair

(a,b) in G,such that following axioms are obeyed.

19

(A1) Closure : If a and b belong to G,then a •b is also in G.

(A2) Associative : a •(b •c) =(a •b) •c for all a,b,c in G.

(A3)Identity Element : There is an element ”e” in G such that

a •e=e •a=a for all a in G.

(A4)Inverse Element : For each ”a” in G there is an element a 'in G such that a

•a '=a '•a=e

• Finite Group :

If a group has a finite number of elements,it is referred to as Finite Group ,and

the Order of the group is equal to the number of elments in the group. Otherwise

the group is infinite group.

• Abelian Group :

A group is said to Abelian if it satisfies all the properties of group and the fallowing

additional condition:

(A5)Commutative : a •b=b •a for all a,b in G.

The set of integers(positive,negative and zero) under addition is an abelian group.

• Cyclic Group :

A group is Cyclic if every element of G is power ak(k is an integer) of a fixed

element a ∈ G . The element ”a” is said to generate the group G, or to be a

generator of G. A cyclic group is always abelian,and may be finite or infinite.

Exponentiation with in a group as repeated application of the group operator,so

that a3=a •a •a. Furthur, a0=e,the identity element;and a−n=(a
′
)n. The additive

group of positive integers is an infinite cyclic group generated by the element 1.

• Rings :

A ring R,sometimes denoted by {R,+,X}, is a set of elements with two binary oper-

ations,called addition and multiplication, such that for all a,b,c in the R following

axioms are obeyed:

(A1-A5) : R is an abelian group with respect to addition;that is,R satisfies

axioms A1 to A5.For this case of an additive group we denote the identity element

as 0 and the inverse of a as -a.

(M1)Closure under multiplication : If a and b belong to R then ”ab” is also in R.

(M2)Associativity of Multiplication : a(bc)=(ab)c for all a,b,c in R

20

(M3)Distributive Laws: a(b+c)=ab+ac ,(a+b)c=ac+bc for all a,b, c in R

with respect to addition and multiplication ,the set of all n-Square matrices over

the real numbers is a ring R.

A ring is said to be commutative if it satisfies the fallowing additional condition:

(M4)Commutativity of multiplication : ab=ba for all a,b in R.

Let S be the set of even integers(positive,negative and 0) under the usual operations

of addition and multiplication. S is a commutative ring.

An Integral domain ,which is a commutative ring that obeys following axioms:

(M5)Multiplicative identity : There is an element 1 in R such that a*1=1*a=a

for all a in R.

(M6)No Zero Divisors : If a,b in R and ab=0,then either a=0 or b=0.

Let S be the set of integers,positive,negative,and 0 ,under usual operations of addi-

tion and multiplication. S is an integral domain.

• Fields :

A field F, sometimes denoted by {F,+,x} ,is a set of elements with two binary op-

erations,called addition and multiplication,such that for all a,b,c in F the following

axioms are obeyed:

(A1-M6) F is an integral domain;that is, F satisfies A1 to M6.

(M7)Multiplicative inverse : For each a in F,except 0,there is an element a−1 in F

such that a(a−1)=(a−1)a=1.

In essence, a field is a set in which we can do addition, subtraction,multiplication,and

division without leaving the set. Division is defined with following rule:

a/b=a(b−1). Familiar examples of fields are the rational numbers,the real num-

bers,and the complex numbers. Set of all integers is not a field,because not every

element of the set has a multiplicative inverse. Infact only 1 and -1 have the mul-

tiplicative inverse in the integers.

• Galois Field :

Infinite fields are not of particular interest in the context of cryptography. However

finite fields play vital role in many cryptographic algorithms. Galois field is a

finite field. The finite field of order pn,where p is a prime and n is a positive

integer is generally written as GF(pn);GF stands for Galois field,in the honour of

the mathematician who first studied finite fileds. For every prime number p and

21

integer n ≥ 1, there exists a finite field with pn elements. The simplest case is

when the order of the field is prime, i.e., n = 1. This finite field, GF(p). It is

a finite field with p elements, usually labelled 0, 1, 2, ... p-1, where arithmetic is

performed modulo p. It is also sometimes denoted by Zp. The simplest finite field is

GF(2). Addition in GF(2) is equivalent to the Exclusive-OR(XOR) operation,and

multiplication is equivalent to the logical AND operation.

A primitive root of a prime P is an integer g such that g(mod P) has modulo order P-1

. More generally, if GCD(g,n)=1 (g and n are relatively prime) and g is of modulo order

�(n) modulo n. Where �(n) is the totient function, then g is a primitive root of n . The

first definition is a special case of the second since �(n)=P-1 for P a prime.

for example,P=7. We have to choose a number which is relatively prime to P(i.e.

gcd(P,x)=1).Taking x=3 ,genrate allthe powers of ”x” mod P.

(31, 32, 33, 34, 35, 36)mod(7)≡(3,2,6,4,5,1) .

powers of 3 generate all the integers from 1 to 6(i.e P-1) hence 3 is a primitive root of

7.Taking x=5

(51, 52, 53, 54, 55, 56)mod(7)≡(5,4,6,2,3,1) .

powers of 5 generate all the integers from 1 to 6(i.e P-1) hence 5 isalso a primitive root

of 7.Taking x=2

(21, 22, 23, 24, 25, 26)mod(7)≡(2,4,1,2,4,1) .

since 2 does not genrates all the integers from 1 to 6(i.e P-1) it is not a primitive root.

Algorithm for computing Primitive root:

Input : A cyclic group G of order n, and the prime factorization

n= pe1
1 . pe2

2 . pe3
3pek

k .

OUTPUT: a generator ”g” of G.

1. Choose a random element g of G.

2. Choose i from 1 to k.

2.1 compute b � gn/pi

2.2 if b = 1 then go to step 1.

3. Return (g).

22

4.1.1 The Protocol

Two parties who wish to establish a key agree upon ”global public elements” ,”P” a

large prime no and ”g” a generator over a finite (Galois) field. Let G be a cyclic group

generated by g(primitive root of P) which is of order P. Then every element of G can be

expressed as gn, nε[1...p−1]. That is if g is a primitive root , powers of g generate all the

integers from 1 to p-1. g mod(P) ,g2mod(P) ,g3mod(P)gp−1mod(P) are distinct

and consist of the integers from 1 through P-1 in some permutation we can find a unique

exponent ”i” such that b ≡ gi(mod P) where 0 ≤ i ≤ (P − 1).

The exponent ”i” is refered to as the discrete logarithm, or index, of b for the base g,

mod P.

Step-1 :

A ⇒ B YA= gXAmodP .

User A selects a secret XA (private) and XA ≤ P − 1.

User A computes YA= gXA(mod P).

A sends YA TO B.

Step-2 :

B ⇒ A YB= gXBmodP .

User B selects a secret XB (private) and XB ≤ P − 1.

User B computes YB= gXB(mod P).

B sends YB TO A.

B computes session key as K=(YA)XB(mod P)

Step-3 :

A computes session key as K=(YB)XA(mod P)

These two calculations of ”K” produce identical results:

K=Y XA
B (mod P)

=(gXBmodP)XA(mod P)

=(gXB)XA(mod P)

=(gXA)XB(mod P)

=(gXAmodP)XB(mod P)

=Y XB
A (mod P)

23

The result is that the two sides have exchanged a secret key. Furthurmore, because XA

and XB are private,an opponent only has following ingredients to work with : P,g,YA and

YB. Thus the opponent is forced to take discrete logarithm to determine the key. The

security of Diffie-Hellman key exchange [10] lies in the fact that,while it is relatively easy

to caliculate exponentials(by repeatedly taking squares of a number) it is very difficult to

calculate discrete logarithms. For larger primes,the latter task is considered infeasible.

4.1.2 Attacks on Diffie-Hellman

Attacks against the Diffie-Hellman protocol [10] come in a few flavors. The plausibility

of these attacks depends on what assumptions we make about the adversary.

• Man in the Middle Attacks :

An active attacker (Oscar), capable of removing and adding messages, can easily

break the core DH protocol presented above. By intercepting gx and gy and replac-

ing them with gx1
and gy1

respectively, Oscar (O) can fool A and B into thinking

that they share a secret key. In fact, A will think that the secret key is gx(y1) and

B will believe that it is g(x1)y . This is a man in the middle attack.As an example

of what can be done with such an attack, consider the case where A and B use a

shared secret key obtained in a DH protocol for symmetric encryption. Suppose A

sends a message ”m” to B and that ENCK(m) represents the symmetric encryption

(e.g. DES) of ”m” using the secret key K.

1. ”A” sends ENCgx(y1)(m). to ”B”

2. ”O” intercepts ENCgx(y1)(m) and decrypts it (which he can do since he knows

gx(y1)).

3. ”O” replaces this message with ENCg(x1)y(m1). which he sends to B. Note that

m1 can be set to any message.

The encryption scheme is thus clearly compromised as message privacy is violated.

In the next section, we study attacks that can be mounted by a less powerful

adversary.

• Degenerate Message Attacks :

There are degenerate cases in which the protocol does not work (i.e. it can be

24

broken). For example when gx or gy equals one, the shared secret key becomes one.

Since the communication channel is public anybody can detect this anomaly. For-

tunately, this situation is impossible in a properly carried out protocol run because

both x and y are chosen from {1, . . . , p - 2} . However, an insider attack is

possible and so DH protocol participants should make sure that their key agreement

peer does not send gx = 1.

• Simple Exponents :

If one of x and y can be easily determined, the protocol can be broken. For example,

if x equals 1 then gx = g which any observant attacker will be able to detect. It is

very hard to determine where to draw the line here, that is, determining for which

values of gi, ”i” is hard to determine, since this depends entirely on the strategy of

the attacker. Any set of ”i” values could be vulnerable, depending on which values

of gi are precomputed, where the search starts, and how it proceeds. In any case,

it seems very reasonable to insist that x and y not equal 1.

• Simple Substitution Attacks :

The following attack is very interesting, as it is extremely easy to mount and nor-

mally would not come up in theoretical proofs of security. The attacker can force

the secret key to be an impossible value. If the DH protocol would only be exe-

cuted by sentient beings this would not be interesting as the anomalies would be

easily detected. However in practice DH protocols are carried out by computers

and careless implementations might not spot the following attack.

1. O intercepts gx and gy and replaces them with 1.

2. Both A and B compute the same shared secret key which equals one.

So it is safe practice to always verify that gx and gy are positive integers smaller

than p - 1 and greater than 1.

• Identity Mis-binding Attacks :

Diffie-Hellman protocol [10] does not provides authenticity. In this model any entity

can pretend like any other entity and can establish a secret a key. For example an

entity A1 may pretend like A and send a request to B. B do not have any information

to verify that whether requested party is Genuine or not. If B establishes a secret

key with A1 ,he will reveal all the secrets to him.

25

• Subgroup Confinement Attack :

The generator g in the Diffie-Hellman protocol [10] is a primitive root of the prime

p, i.e. the order of the group generated by g is equal to p-1. If the selected prime

p is such that p-1 has several small prime factors, then some values between 1 and

p-1 do not generate groups of order p-1,but of subgroups of smaller orders. Hence,

within the group of order p - 1 there are subgroups of smaller orders. If the public

parameter of either A or B lies within one of these small subgroups, then the shared

secret key would be confined to that subgroup. If the order of the subgroup is small

enough, the intruder may launch a brute force attack to determine the exact value

of the shared secret key.

Example :

Let p = 19 and g = 2.

Then the group generated by g is

(2, 4, 8, 16, 13, 7, 14, 9, 18, 17, 15, 11, 3, 6, 12, 5, 10, 1)

Now, Let k = 2(secret key of first party), A = 22 = 4

Subgroup generated by A = SA = (4, 16, 7, 9, 17, 11, 6, 5, 1)

Let l = 3(secret key of second party), B = 23 = 8

Sub-group generated by B = SB = (8, 7, 18, 11, 12, 1)

Kab = 26(mod 19) = 7

It can be clearly seen from the example above that the shared secret key Kab lies

in the intersection of the subgroups generated by k and l. The Solution to counter

this kind of an attack is to choose a Safe Prime. Safe primes are prime numbers

of the form p = 2q + 1 where q is prime. Such primes have various cryptographic

advantages.

26

4.1.3 Results And Discussion

SOURCE PROGRAM

DIFFIE -HELLMAN PARAMETER SET:

P:

1199402460584245814675433691935209867833552408559212632558703365869698273662

1987092341112900267866858312783155654161681009099187886188189413731781965378

783

g:

67505685761627944187961319896238774658423053895548422872983918206247242543074

07732792027782062035901812516179806640744631645547803772283650025471484484977

G[xa]modP:

2787932030109329889336576239692938588933944198177132240436392343606213

1598624051481868760717011361200279096547040726918072868119601551753532

12849316798506

G[xa]mod P is forwarded to destination

Received G[xb] mod P from destn.

G[xb] mod P:

112246321678327609948354317011535317327278656937169714746441258386

688031075863444155224926094940898845353388914127691642944035081781

56146864607212250446113

Final Key agreed Upon:G[x,y]:

66527320302752971679329327679124714778772892222697798777218582037999567563580

96207287999136649195894365965239387720742508728813278994987220568620763495311

27

DESTINATION PROGRAM

DIFFIE -HELLMAN PARAMETER SET:

P:

1199402460584245814675433691935209867833552408559212632558703365869698273662

1987092341112900267866858312783155654161681009099187886188189413731781965378

783

g:

67505685761627944187961319896238774658423053895548422872983918206247242543074

07732792027782062035901812516179806640744631645547803772283650025471484484977

Received G[xa] mod P from source.

G[xa] mod P:

27879320301093298893365762396929385889339441981771322404363923436062131598624

05148186876071701136120027909654704072691807286811960155175353212849316798506

G[xb] modP:

112246321678327609948354317011535317327278656937169714746441258386688

031075863444155224926094940898845353388914127691642944035081781561468

64607212250446113

G[xb]mod P is forwarded to source

Final Key agreed Upon:G[x,y]

66527320302752971679329327679124714778772892222697798777218582037999567

56358096207287999136649195894365965239387720742508728813278994987220568

620763495311

In this protocol one can easily observe from results that neither of the two parties

can alone decide the key completely. Both parties collaborate and constitute session key

without revealing their secret information. This protocol lacks entity authentication.

28

4.2 ENCRYPTED KEY EXCHANGE PROTOCOL

This protocol allows two parties sharing a password to establish a secret key. The En-

crypted Key Exchange(hereafter referred to as simply EKE)[5] presents a novel and ele-

gant method of key establishment.

4.2.1 Generic EKE

The ’generic’ version of EKE is illustrated below:

A ⇒ B A, P (Ea) (1)

B ⇒ A P (Ea(K)) (2)

A ⇒ B K(Ca) (3)

B ⇒ A K(Ca, Cb) (4)

A ⇒ B K(Cb) (5)

The protocol begins with A generating a random key-pair (Ea, Da) of some public

key encryption scheme. Then, A sends to B the encryption of Ea under the password P

(a weak shared secret). B generates a new session key, K, encrypts it with Ea, super-

encrypts the result with P, and forwards it back to A. The remainder of the protocol -

flows 3, 4, and 5 - represent standard hand-shaking that follows key distribution. A gen-

erates a challenge Ca and encrypts it with K and send to B. B decrypts it and generates

its own challenge Cb . B encrypts and sends back both Ca and Cb to A. A decrypts it and

verifies received value of Ca with sent value and confirms that B posses same key as A.

A encrypts Cb and sends back to B. B decrypts it and verifies received value of Cb with

sent value and confirms that A posses same key as B.

Attacks on Generic EKE:

The generic EKE [5]protocol is susceptible to the type of attack that, for lack of better

term, we shall call Denning-Sacco Attack [11] or DS for short. The attack proceeds as

follows:

The attacker manages to obtain one of the session keys used in one run of a key distri-

bution protocol. Armed with that knowledge, the attacker is then able to impersonate one

of the parties indefinitely often.

The attacker somehow obtains one of the session keys distributed in one (recorded) run

of EKE. Armed with that knowledge, the attacker mounts a dictionary attack on the

29

password and, upon breaking the password, is able to impersonate one of the parties

indefinitely.

In more detail, the DS attack is as follows:

• The attacker records one run of generic EKE and somehow obtains the key K.

• Iterating upon all possible choices of ”P” :

1. Pick a candidate P

2. ComputeEa = P
−1

(P (Ea))whereP (Ea) is taken from flow 1 of the recorded

run.

3. Compute Ea(K) (only if Ea is a valid key)

4. Compute P (Ea(K)) and compare it to P (Ea(K)) from recorded flow 2.

A match in the last step indicates correct guess of the password and earns the

attacker carte blanche with respect to impersonating A.

4.2.2 EKE with Diffie-Hellman key exchange

The Exponential Key Exchange (EKE) variant (referred to as EKE-DH from here on) is

illustrated below. EKE-DH appears to be the most practical EKE variant because of the

relative simplicity of the Diffie-Hellman key exchange[10]. Here it is assumed that both

A and B agree upon Diffie-Hellman parameters, g(genrator of cyclic group) and p(large

prime no.)

A ⇒ B A, P (Ra) (1)

B ⇒ A P (Rb), K(Cb) (2)

A ⇒ B K(Ca, Cb) (3)

B ⇒ A K(Ca) (4)

In step-1, A picks a random number ”ra” and calculates Ra = gra(mod p). Note that

name is sent in the clear. Ra is encrypted with shared password(P) between A and B.

A,P(Ra) is sent to B

30

In step-2 B picks a random number ”rb” and calculates Rb = grb(mod p). B also uses the

shared password P to decrypt P[Ra] and calculates g(ra)(rb)(mod p) like in Diffie-Hellman

protocol[10]. The session key K is derived from this value, perhaps by selecting certain

bits. Finally, a random challenge Cb is generated.Cb is encrypted with K. P(Rb),K(Cb) is

sent to A.

In step-3 A uses P to decrypt P[Rb] and calculates g(rb)(ra)(mod p) . From this, K is cal-

culated; it in turn is used to decrypt K [Cb]. A then generates her own random challenge

Ca. Both Ca and Cb are encrypted with K and sent to B.

In step-4 B decrypts and verifies that Cb is proper. B encrypts Ca with K and sends

to A. A verifies genuineness of Ca.

4.2.3 Results And Discussion

SOURCE PROGRAM

Diffie-Hellman Parameter set:

P:

1095797768353286420715091810236630693536585288798935872735296566973

2438312869573444504571395567689537023042636408476830100913006285163

226374528497081783723

g:

7165316616100661080618245107143110754326442427439315963099802673571

0682348002493573519832473788258446883041546485434393569455657576473

06712866661624492784

**

g.[ra]mod P

44899096842390491254115606333939579975722664854444198214206396406133

22889265141292707233958906266627692434155032697995141590963448803937

850164961594530685

**

AFTER ENCRYPTION:

448990968423904912541156063339395799757226648544441982142063964061332

31

288452730278398725869178187504249881099953604967056148359247954306254

0323906262386719

g[ra]mod P is forwarded to destination

**

Received g[rb] mod P from destn.

Received challenge-B:

644784991818454152722819191298327885028844551312946016155120225718673

120274098256439110844911931459122497950191945026571093610511107061816

086198882386049

Encrypted g[rb] mod P:

698875332881071785105248881631044812329816206093439758836925026495866

033265858310260265602550706012623805381407585844656283927476039982692

6078895563696082

**

Decrypted g[rb] mod P:

698875332881071785105248881631044812329816206093439758836925026495866

032221556510929853625617989707514912610569600843191903000096853728706

8031381424829616

**

Key value:

644784991818454152722819191298327885028844551312946016155120225718673

120274098256439110844911931459122497950191945026571093610511107061816

086198922769717

**

Decrypted challenge-B : 45626804

challenge- A: 1174

**

K[Ca]:

64478499181845415272281919129832788502884455131294601615512022571867312

02740982564391108449119314591224979501919450265710936105111070618160861

98922768803

K[Cb]:

64478499181845415272281919129832788502884455131294601615512022571867312

32

02740982564391108449119314591224979501919450265710936105111070618160861

98882386049

k[ca,cb] is forwarded to Destination

**

Received K[Ca] from destn.

Received K[Ca] :

6447849918184541527228191912983278850288445513129460161551202257186731

2027409825643911084491193145912249795019194502657109361051110706181608

6198922768803

**

Received [Ca] after decryption: 1174

RECEIVED CHALLENGE-A IS PROPER

DESTINATION PROGRAM

Diffie-Hellman Parameter set:

P:

109579776835328642071509181023663069353658528879893587273529656697324383

128695734445045713955676895370230426364084768301009130062851632263745284

97081783723

g:

716531661610066108061824510714311075432644242743931596309980267357106823

480024935735198324737882584468830415464854343935694556575764730671286666

1624492784

**

Received g.[ra] mod P from source

Received Value g.[ra] mod P From Source[Encrypted]:

448990968423904912541156063339395799757226648544441982142063964061332288

452730278398725869178187504249881099953604967056148359247954306254032390

6262386719

G[xa] mod P[Decrypted]:

448990968423904912541156063339395799757226648544441982142063964061332288

926514129270723395890626662769243415503269799514159096344880393785016496

33

1594530685

**

g[rb] mod P[Before Encryption] :

6988753328810717851052488816310448123298162060934397588369250264958660322

2155651092985362561798970751491261056960084319190300009685372870680313814

24829616

**

Key value :

6447849918184541527228191912983278850288445513129460161551202257186731202

7409825643911084491193145912249795019194502657109361051110706181608619892

2769717

**

challenge B: 45626804

Challenge B[encrypted] :

6447849918184541527228191912983278850288445513129460161551202257186731202

7409825643911084491193145912249795019194502657109361051110706181608619888

2386049

g[xb] mod P[After Encryption] :

6988753328810717851052488816310448123298162060934397588369250264958660332

65858310260265602550706012623805381407585844656283927476039982692607889556

3696082

g[xb]mod P,K[Cb] is forwarded to source

**

Received K[Ca,Cb]

K[Ca]:

644784991818454152722819191298327885028844551312946016155120225718673120

274098256439110844911931459122497950191945026571093610511107061816086198

922768803

K[Cb]:

6447849918184541527228191912983278850288445513129460161551202257186731202

7409825643911084491193145912249795019194502657109361051110706181608619888

2386049

**

34

Decrypted [Cb]:45626804

RECEIVED CHALLENGE-B IS PROPER

Decrypted [Ca]:1174

**

Encrypted Ca:K[Ca]:

644784991818454152722819191298327885028844551312946016155120225718673120

274098256439110844911931459122497950191945026571093610511107061816086198

922768803

K[Ca] is forwarded to source

**

This protocol provides entity authentication. Both parties encrypt their data using

shared password. This protocol also provides key confirmation. Sharing a secret between

every two parties is almost impossible in large environment. Unlike generic EKE, DH-

EKE does not suffers from dictionary attacks.

4.3 SAKA PROTOCOL

Simple Autheticated Key Agreement Protocol [1] called SAKA is simple and cost effective.

SAKA has less number of steps and less computation cost. Password based mechanism

is used for user autentication. This is a 2-party key agreement protocol. This protocol is

based on Diffie-Hellman key agreement[10],Easy generalization.

4.3.1 The Protocol

A and B(system pricipals) are assumed to share the weak secret(password) pw in a se-

cure way. They agree upon the generator g and its group Z∗
p . x and y are selected in

Z∗
p for a uniform distribution, and X = gx(mod P) and Y = gy(mod P) are also in Z∗

p

for a uniform distribution. The session key is made byh(gxymod P). The protocol run as

follows.

1.A ⇒ B X ⊕ pw

A chooses a random number x, computes X = gx(mod P), and encrypts it with pw send

to B. After receiving message 1, B recovers X by using the password pw. Then, B chooses

a random number y, computes Y = gy(mod P) and Key2 = Xy(mod P) = gxy(mod P)

35

like in Diffie-Hellma protocol[10]. B encrypts Y with pw. B also computes one way hash

h() using X,Key2 as parameters. B sends Y ⊕ pw||h(Key2, X) to A.

2.B ⇒ A Y ⊕ pw||h(Key2, X)

After receiving message- 2, A recovers Y by using the password pw and computes

Key1 = Y x(mod P) = gxy(mod P). A also computes one way hash h() using X,Key1

as parameters and verifies that h(Key1, X) = h(Key2, X). If they match each other, A

confirms that Key2 is valid and both parties posses same key. It also suggests that X is

not tampered in transit and Y is from valid source(B) i.e. it authenticates B. Then, A

computes the response data h(Key1, Y) and sends it to Bob.

3.A ⇒ B h(Key1, Y)

B computes h(Key2, Y) and verifies h(Key1, Y) = h(Key2, Y). If they match each other,

B confirms that Key1 is valid and both parties posses same key. It also suggests that Y

is not tampered in transit and X is from valid source(A) i.e. it authenticates A.

Finally, A and B agree on the common session key K = h(Key1) = h(Key2) =

h(gxymod p).

4.3.2 Security Analysis

SAKA protocol [1] is based on computational Diffie-Hellman (CDH) [10] problem, which

states that computing gxy(mod P) giving gx(mod P) and gy(mod P) is hard. SAKA [1]

also satisfies completeness property i.e. if each party’s messages are faithfully relayed

to one another, then the parties succeed in authentication and key agreement, at least

with overwhelming probability. Adversaries cannot not be accepted by the principals

without knowing the password. Off-line password guessing attack succeeds when there

are pieces of information in communications which can be used to verify the correctness

of the guessed passwords. In the SAKA protocol, a passive attacker , all he receives from

the protocol is as follows: X ⊕ pw,Y ⊕ pw,h(Key1, Y),h(Key2, X). He first guesses a

password pw1 and finds gx1
= X ⊕ pw ⊕ pw1and gy1

= X ⊕ pw ⊕ pw1. If he wants to

verify his guess, he has to find Key1 or Key2 which is impossible.

Since x and y are selected in the cyclic group for a uniform distribution, we can see

that X and Y remain on the cyclic group under uniform distribution, and X ⊕ pw and

Y ⊕ pw also remain on the cyclic group under uniform distribution. There is no way to

find the relationship between the rejected password and the remaining password.on-line

36

trial on password cannot partition out the possible set. The partitioning implies that the

possible set decreases logarithmically. If an adversary tries to masquerade B and defraud

A, she can know gx⊕pw sent from A and y, gy,gy⊕pw1 by herself where pw1 is a guessed

password. It is helpless since there is not any verifiable data. That means, he can not

carry out the off-line guessing attacks. To continue, he has to reply h(Key2, X) data.

Which is not possible since he cannot find out Key2.

4.3.3 Results And Discussion

SOURCE PROGRAM

P :

10163730290118433019669854391759641550877131600343545635428272118766324512

92160915193928533212202860148651474922288894298730439908593907300992684837

9534113

g :

79107858144553357499004354010774603642381692475568793029591610234869803517

01132320936286130733271761100015930547819036820304088822415812780082043052

443176

Pw:

98439849821793940494843739830

G(xa)modP :

52335914079605760131781045401304740492987987578769754811105561739728654544059

10158847411022613636628665523734836433474265955186439441014919747711606832317

AFTERENCRYPTION:

52335914079605760131781045401304740492987987578769754811105561739728654591427

22822414672641837294947578583333489793234954450831656745438703033320515645407

G[xa]mod P is forwarded to destination

Received Hash Code : 380258010

Received G(xb) mod P :

89878914849557570277047852664036400385943662322031549774967736017094093807865

37

13914648529799916072260984026662567027786583144675336950050582032120183217714

Decrypted G(xb) mod P :

89878914849557570277047852664036400385943662322031549774967736017094093684454

84462800683985223923067636517608632513228971924933600727410998048188128021840

Received hash value from DestinationH(GXY,GX) :380258010

Computed Hash value:H(GXY,GX) 380258010

Received Hash value is proper.

HASH:H(GXY,GY) : 352721330

H(GXY,GY) is forwarded to Destination

Final Key agreed Upon:H(G(x,y)) 1592155219

DESTINATION PROGRAM

DIFFIE-HELLMAN PARAMETER SET :

P :

10163730290118433019669854391759641550877131600343545635428272118766324512

92160915193928533212202860148651474922288894298730439908593907300992684837

9534113

g :

79107858144553357499004354010774603642381692475568793029591610234869803517

01132320936286130733271761100015930547819036820304088822415812780082043052

443176

Pw:

98439849821793940494843739830

**

Received Value G(xa) mod P From Source

52335914079605760131781045401304740492987987578769754811105561739728654591

42722822414672641837294947578583333489793234954450831656745438703033320515

645407

G(xa) mod P(DECRYPTED) :

38

52335914079605760131781045401304740492987987578769754811105561739728654544

05910158847411022613636628665523734836433474265955186439441014919747711606

832317

**

G(xb) mod P(Before Encryption) :

89878914849557570277047852664036400385943662322031549774967736017094093684

45484462800683985223923067636517608632513228971924933600727410998048188128

021840

**

NEW HASHH(GXY,GX) : 380258010

G(xb) mod P(After Encryption) :

8987891484955757027704785266403640038594366232203154977496773601709409380

7865139146485297999160722609840266625670277865831446753369500505820321201

83217714

G(xb)mod P is forwarded to source

**

COMPUTED HASH:H(GXY,GY) 352721330

Received HashH(Gxy,Gy) Value : 352721330

Final Key agreed Upon:H(G(x,y)) 1592155219

SAKA provides entity authentication by shared passwords. This protocol is optimal 2-

party key agreement protocol as it takes minimum no.of steps and random nubers. Both

the parties encrypt the data using shared secret. It is secure against dictionary attacks

as there is no verifiable information present. One can observe from results that one way

hash is not at all useful for cryptanalysis purpose as it is irrversable.

39

Chapter 5

3-PARTY KEY AGREEMENT

PROTOCOLS

5.1 STW PROTOCOL

This protocol was proposed by Steiner, Tsudik and Waidners [13]. Password-based mech-

anism is the widely used method for authentication since it allows people to choose their

own passwords without any assistant device to generate or store. However,people are

used to choose easy-to-remember passwords such that guessing attacks could succeed.

This is a 3-party key agreement protocol. All parties (clients) share their secrets with

a trusted server only. This protocol is more suitable for large communication environ-

ments. From the form of passwords stored in the second party (B), there are two types

of protocols,plaintext-equivalent protocols in which the clear form of the first party’s

(A) password is stored in B, and verifier-based protocols in which the verifier that is

easily computed from the password, yet deriving the password from the verifier is com-

putationally infeasible, is stored in B. The verifier-based protocol has the advantage

that a compromised verifier does not reveal the password directly. However, a compro-

mised verifier of a weak password also suffers from the guessing attack. Additionally, the

verifier-based protocol has more computational overheads than the plaintext-equivalent

protocol. Thus, a secure plaintext-equivalent protocol is suitable and necessary if we can

not confine people to choose and remember strong passwords.

From the session key creation point, such protocols can be classified into two types:

key transport protocols in which the session key is created by one party and securely

40

transmitted to the other party, and key agreement protocols in which both parties con-

tribute information for creating the resultant session key. The latter is fairer and more

secure than the former since in the latter no one can fully control the session key, while

the former is suitable for some special environments. In key transport type of three-party

protocols,the session key is created by the server S instead of one of the two communica-

tion parties. This will result in the worry that a malicious server can get all transaction

contents. In most applications we only need the server to be an authentication server

but not to be a monitor center (except some special needs, e.g. national defense). In

key agreement type of three-party protocols, the session key contributed from A, B and

S needs more computational cost than it contributed from A and B, moreover, it is still

unknown to the server S.

Steiner, Tsudik, and Waidner proposed a three-party EKE protocol (hereafter referred

to as STW 3-Party EKE) [13] and declared that it performed the following tasks:

• Secure distribution of session key K to A and B.

• Mutual authentication of A and B.

• (Indirect) authentication of S to A and S to B.

5.1.1 The Protocol

Every host shares a secret(password) with trusted third party denoted by P. They agree

upon Diffie-Hellman [10] parameter set g(generator),p(large prime number)

STW 3-party EKE is as given below:

1.A ⇒ B [RA ⊕B]PA

A chooses a random exponent NA, keeps it secret and computes RA=gNA(mod p). Then,A

encrypts [RA ⊕ B] with his password PA and sends the encrypted message as a request

to B. After receiving A’s request, B also chooses a random exponent NB, keeps it secret,

computes RB=gNB(mod p), then encrypts [RB ⊕ A] with PB . B forwards A’s request

with the encrypted message to S.

2.B ⇒ S A, [RA ⊕B]PA
, [RB ⊕ A]PB

S decrypts [RA⊕B]PA
, [RB⊕A]PB

with PA and PB respectively and responses RNS
A , RNS

B

41

to B, in which NS is a random exponent S chose.

3.S ⇒ B RNS
A , RNS

B

B computes the session key K = (RNS
A)NB=gNA.NB .NS(mod p) and sends RNS

B with a key

confirmation message [flow1]K to A.

4.B ⇒ A RNS
B ,[flow1]K

A computes the session key K = (RNS
B)NA=gNA.NB .NS(mod p). A decrypts [Flow1]K with

session key ”K” and checks Flow-1 equals [RA⊕B]PA
to confirm that B posses the same

session key K. A re-encrypts [Flow1]K with the session key K and responses it to B for

key confirmation.

5.A ⇒ B [[Flow1]K]K

B decrypts [[flow1]K]K with the session key K and checks [Flow1]K to confirm that A

posses the same session key K.

5.1.2 Undetectable on-line guessing attacks

An attacker attempts to use a guessed password in an online transaction. He verifies

the correctness of his guess using responses of S. If his guess fails he must start a new

transaction with S using another guessed password. A failed guess can not be detected

and logged by S, as S is not able to depart an honest request from a malicious request.

This can be demonstrated in two scenarios. In these two scenarios, the attacker B, who is

valid but malicious, completes the protocol with S and no participation of A is required.

Scenario 1 :

1. B: records [RA ⊕B]PA

The attacker B records [RA ⊕B]PA
of an arbitrary run of the protocol. He guesses

a password PA and computes the value RA. He sets RB=RA and encrypts RA ⊕A

with his password PB. Then, he sends S the message A,[RA ⊕B]PA
,[RA ⊕ A]PB

.

2. B ⇒ S A, [RA ⊕B]PA
, [RA ⊕ A]PB

S decrypts [RA ⊕ B]PA
, [RA ⊕ A]PB

with PA and PB respectively and responses

RNS
A ,R

NS

A to B, in which Ns is a random exponent S chose.

42

3. S ⇒ B RNS
A , R

NS

A

The attacker B compares the two values. If RNS
A = R

NS

A and so he has guessed the

correct password PA = PA

Scenario 2 :

1. B: [RA ⊕B]P A

The attacker B guesses a password PA generates on behalf of A a random expo-

nent NA and computes RA = gNA(modP). Then, B encrypts [RA ⊕ B] with the

guessed password PA. Additionally, B chooses a random exponent NB computes

RB = gNB(mod P) and encrypts [RB ⊕A] with his password PB. Then, he sends S

the message A,[RA ⊕B]P A
,[RB ⊕ A]PB

2. B ⇒ S A, [RA ⊕B]P A
, [RB ⊕ A]PB

S decrypts [RA⊕B]P A
, [RB⊕A]PB

with PA and PB respectively and responses RNS
A ,

RNS
B to B. in which NS is a random exponent S chose.

3. S ⇒ B RNS
A , RNS

B

The attacker B computes the two values (RNS
A)NB and (RNS

B)NA . If they are equal,

it follows that he has guessed the correct password PA = PA

5.2 LSH 3-PEKE PROTOCOL

This protocol was proposed by Chun-Li Lin, Hung-Min Sun and Tzonelih Hwang [2].

This protocol is secure against both the off-line guessing attack and undetectable on-line

guessing attacks [14] but also satisfies the security properties of perfect forward secrecy

. The most important requirement to prevent undetectable on-line guessing attacks is

to provide authentication of A and B to S(server). In step 2 of the STW 3-Party EKE,

the message [RA ⊕ B]PA
, [RB ⊕ A]PB

doesn’t contain any verifiable information for S to

authenticate A and B eventhough S uses correct passwords to decrypt that message. On

the contrary, if there is any verifiable information for S combined with password PA and

PB, it will result in off-line guessing attacks. One solution for this problem is by means

of the help of server S’s public key. Assuming that S’s public key is a cryptographic

43

parameter which is secure against guessing and exhaustive attacks, and is well-known

for all parties. Therefore, any verifiable information with a confounder encrypted with

S’s public key is able to withstand off-line guessing attacks. Based on such idea, a new

three-party EKE protocol was proposed which is secure against both off-line guessing

attacks and undetectable on-line guessing attacks [14].

5.2.1 The Protocol

The LSH 3-PEKE is described below:

1. A ⇒ B A, {ra, RA, PA}Ks

A chooses a confounder ”ra” and a random exponent NA, keeps them secret and

computes RA = gNA(mod P). Then, A encrypts ra, RA, PA with server’s public key

Ks and sends the encrypted message as a request to B. After receiving A’s request,

B also chooses a confounder ”rb” and a random exponent NB, keeps them secret,

computes RB = gNB(mod P) then encrypts rb, RB, PB with server’s public key Ks.

B forwards A’s request with the encrypted message to S.

2. B ⇒ S A, {ra, RA, PA}Ks , {rb, RB, PB}Ks

S decrypts {ra, RA, PA}Ks , {rb, RB, PB}Ks with his private key and authenticates A

and B by verifying their passwords PA and PB respectively. Then, S encrypts B,

RB with ”ra”, encrypts A, RA with ”rb” and responses them to B. Notice that the

values ”ra” and ”rb” also act as one-time keys.

3. S ⇒ B [B,RB]ra, [A,RA]rb

B decrypts [A, RA]rb with ”rb” and authenticates S by verifying the integrity of ID

A. B computes the session key K=RNB
A (mod P) and sends [B,RB]ra with a key-

confirmation message [f(flow1), CB]K to A.

4. B ⇒ A [B,RB]ra, [f(flow1), CB]K

A decrypts [B, RB]ra with ”ra” and authenticates S by verifying the integrity of

ID B. A computes the session key K=RNA
B (mod P) decrypts [f(flow1), CB]K with

the session key K and checks f(flow1)? = f(A, {ra,RA, PA}Ks) to confirm that B

possessed the same session key K. Then, A responses CB to B for key confirmation.

44

5. A ⇒ B CB

B checks CB to confirm that A possessed the same session key K.

5.2.2 Results And Discussion

SERVER PROGRAM

SERVER RUNNING.......

**

DIFFIE -HELLMEN PARAMETER SET

P :

8944223619343319413202660391078810066955479012785167041461715642462802

9833629764386485662656410324304440843556944065821759470268064206933382

85846500843697

g :

5013973527723429312855835987184964007156227917243639127727905747257967

5081141945691714237931809637284505295666972058511828713750344508119808

32852300901492

**

Public key Pair of server : 349427 , 732349

Private key Pair of server :23 ,732349

Received PKT- II B −→ S [A,ra,RA,PAKS,rb,RB,PBKS]

SOURCE ID : A

Confounder[Encrypted] : 254460

RA[Encrypted] :

23703480845600098993540291677901987455509326216539008521827470381416071

95858888525505688611742210414820721527413659032392672351640248425539653

750799433526

PA[Encrypted] : 593246

DESTINATION ID : B

Confounder[Encrypted] : 417399

RB[Encrypted] :

45

88941851718499952068937529427132305172385210540638809248000243247585472

25175880370525974125562979947727877586145866793386229068040025754962872

572192692804

PB[Encrypted] : 235976

**

DATA AFTER DECRYPTION[WITH SERVER PRIVATE KEY

CONFOUNDER[ra] : 7499

PASSWORD[PA] : 1007

CONFOUNDER[rb] : 2543

PASSWORD[PB] : 1109

**

RA :

237034808456000989935402916779019874555093262165390085218274703814160719

585888852550568861174221041482072152741365903239267235164024842553965375

0798701451

RB :

8894185171849995206893752942713230517238521054063880924800024324758547225

1758803705259741255629799477278775861458667933862290680400257549628725721

91979257

**

PASSWORD OF SOURCE A : 1007

PASSWORD OF DESTINATION B : 1109

SOURCE PASS WORD MATCHED

DESTN. PASS WORD MATCHED

**

(RB)ra :

88941851718499952068937529427132305172385210540638809248000243247585472251

75880370525974125562979947727877586145866793386229068040025754962872572191

976370

(RA)rb :

2370348084560009899354029167790198745550932621653900852182747038141607195

8588885255056886117422104148207215274136590323926723516402484255396537507

98703204

46

PKT-3 S −→ B : [B,RB]ra,[A,RA]rb TO DESTINATION DISPATCH

**

SOURCE PROGRAM

DIFFIE -HELLMEN PARAMETER SET

P :

894422361934331941320266039107881006695547901278516704146171564246280

298336297643864856626564103243044408435569440658217594702680642069333

8285846500843697

g :

501397352772342931285583598718496400715622791724363912772790574725796

750811419456917142379318096372845052956669720585118287137503445081198

0832852300901492

ENTER YOUR IDENTITY : A

CONFOUNDER GENARATED : 7499

ENTER PUBLIC KEY [e,n] OF SERVER : 349427 732349

ENCRYPTED CONFOUNDER[era] : 254460

RA :

2370348084560009899354029167790198745550932621653900852182747038141607

1958588885255056886117422104148207215274136590323926723516402484255396

53750798701451

ENTER UR PWD : 1007

Encrypted PWD : 593246

A, {ra,RA, PA}KS
FORWARDED TO DESTINATION

Received PKT- IV B −→ A [B,RB]ra,[f(flow1),CB]

(B,RB)ra :

889418517184999520689375294271323051723852105406388092480002432475854722

517588037052597412556297994772787758614586679338622906804002575496287257

2191976370

(f(flow1),CB) :

47

1378481141054318551649291312944327308728661142569464110453044722831532438

7235562457079466084119200613801554669940005656262498473517756133173243283

18349371

DECRYPTED [RB] :

88941851718499952068937529427132305172385210540638809248000243247585472251

75880370525974125562979947727877586145866793386229068040025754962872572191

979257

FINAL KEY :

137848114105431855164929131294432730872866114256946411045304472283153243872

355624570794660841192006138015546699400056562624984735177561331732432831457

3651

**

Flow1 : 31131269

CB[Decrypted] : 26584557

CB .. FORWARDED TO DESTINATION

DESTINATION PROGRAM

DIFFIE-HELLMAN PARAMETER SET:

P :

8944223619343319413202660391078810066955479012785167041461715642462

8029833629764386485662656410324304440843556944065821759470268064206

93338285846500843697

g :

50139735277234293128558359871849640071562279172436391277279057472579

67508114194569171423793180963728450529566697205851182871375034450811

980832852300901492

**

Received Pkt1.[A, {ra, RA, PA}KS] from source

**

CONFOUNDER GENARATED : 2543

ENTER UR ID : B

ENTER PUBLIC KEY [e,n] OF SERVER : 349427 732349

48

ENCRYPTED CONFOUNDER[erb] : 417399

**

RB :

8894185171849995206893752942713230517238521054063880924800024324758547

2251758803705259741255629799477278775861458667933862290680400257549628

72572191979257

Encrypted RB:

8894185171849995206893752942713230517238521054063880924800024324758547

2251758803705259741255629799477278775861458667933862290680400257549628

72572192692804

**

ENTER UR PWD : 1109

Encrypted PWD : 235976

PKT- II B −→ S [A, {ra,RA, PA}KS, {rb, RB, PB}KS] DISPATCHED

Received Pkt3. S −→ B : [B, RB]ra, [A,RA]rb from server

(RB)ra :

88941851718499952068937529427132305172385210540638809248000243247585472

25175880370525974125562979947727877586145866793386229068040025754962872

572191976370

(RA)rb :

23703480845600098993540291677901987455509326216539008521827470381416071

95858888525505688611742210414820721527413659032392672351640248425539653

750798703204

RA [Decrypted] :

237034808456000989935402916779019874555093262165390085218274703814160719

5858888525505688611742210414820721527413659032392672351640248425539653

750798701451

**

FINAL KEY VALUE :

1378481141054318551649291312944327308728661142569464110453044722831532438

7235562457079466084119200613801554669940005656262498473517756133173243283

14573651

49

Flow1 : 31131269

CB : 26584557

ENCRYPTED[f(flow1),CB] :

1378481141054318551649291312944327308728661142569464110453044722831532438

7235562457079466084119200613801554669940005656262498473517756133173243283

18349371

**

PKT- IV B −→ A [B,RB]ra,[f(flow1),CB] DISPATCHED

Received CB:26584557

Received CB frm source is proper

This protocol uses public key infrastructure. Here RSA algorithm is used for this

purpose. In the first two steps of protocol all the data are encrypted using server public

key using RSA algorithm. This protocol provides key confirmation also in last two steps.

As all the data are encrypted using server public key it is not vulnerable to dictionary

attacks.

50

Chapter 6

MODIFIED 3-PARTY KEY

AGREEMENT PROTOCOL

A new 3-party key agreement protocol is proposed which withstands all online and off-

line guessing attacks ,which does not makes use of public key infrastructure. Several

key agreement protocols are proposed on password based mechanism. These protocols

are vulnerable to dictionary attacks. Storing clear text version of password on server

is always not possible. In this protocol we use a trusted third party (key Distribution

server) which mediates in key distribution. Rather than storing clear text version of

password we store one way hash of the password at the server. Every host and server

agree upon family of commutative hash functions using which host authenticates itself

to server when it applies for session key . During this protocol run host establishes one

time key with server using which server also authenticates to host. Moreover we don’t

use any public key infrastructure which needs large computational power. Since this is

3-party key agreement protocol every host need not share secret information with every

other host.

6.1 THE PROTOCOL

Before we proceed we define one way hash function:

A one-way function is a function f such that for each x in the domain of f, it is easy to

compute f(x), but for essentially all y in the range of f, it is computationally infeasible

to find any x such that y = f(x).

The protocol is as described below:

51

1. A ⇒ S A ,B , H(PA)[RA]

A chooses a random no. ”ra” and generates RA = gra(mod P) like in Diffie-Hellman

protocol [10] where ”g” is a generator of cyclic group and ”P” is a large prime. It

also generates one way hash of its password H(PA). A encrypts RA with H(PA)

and sends it to server along with ID s of participating entities. Server stores one

way hash of password of every host (assumed to be pre distributed) using which it

decrypts the above packet to get RA = gra(mod P).

2. S ⇒ A H(PA)(grs1mod P), H(PB)(grs2mod P)

Server chooses random nos. rs1 and rs2. ”S” generates grs1(mod P) and grs2(mod P)

respectively. Using these quantities server establishes ephemeral keys with A and

B respectively. Using this ephemeral keys ”S” authenticates itself to ”A” and ”B”.

”S” computes these ephemeral keys as specified below:

KAS = (gra)rs1mod P

KBS = (grb)rs2mod P

Note that KBS can be computed only after fourth step of the protocol.

grs1(mod P) and grs2(mod P) are encrypted with H(PA) and H(PB) respectively

and dispatched to ”A”. A decrypts this packet with H(PA)

3. A ⇒ B FA(PA, KAS) , H(PB)(grs2mod P)

A decrypts this packet with H(PA) to get grs1(mod P) . ”A” establishes ephemeral

key with ”S” as KAS = (grs1)ramod P . ”A” calculates its predicate function

FA(PA, KAS) using which it authenticates itself to server. Since only ”A” knows PA

only it can compute this predicate function. This is a commutative one way hash

function .

This value along with H(PB)(grs2mod P) is forwarded to ”B”. B decrypts with

H(PB) to get (grs2mod P)

4. B ⇒ S FA(PA, KAS), FB(PB, KBS), H(PB)[RB]

”B”chooses a random no. ”rb” and generates RB = grb(mod P) . It also gener-

ates one way hash of its password H(PB). ”B” computes ephemeral key for au-

thenticating server as KBS = (grs2)rbmod P . ”B” calculates its predicate function

FB(PB, KBS) using which it authenticates itself to server. This predicate function

52

is a commutative one way hash function. Password of B and ephemeral session key

KBS are seeds for this function. Since only ”B” knows PB only it can compute this

predicate function. After receiving this packet server decrypts with H(PB) to get

RB. Server computes ephemeral one time session key KBS = (grb)rs2mod P . using

this KAS,KBS server authenticates itself to hosts. KAS,KBS changes with every

protocol run. Server recomputes predicate functions of A and B i.e. FA(),FB()

and authenticates A and B respectively.

Server need not know PA to compute this predicate function. Since this is a

commutative hash function and H(PA) is pre distributed, using KAS, H(PA) server

can calculate the predicate function FA() and authenticates A. Similarly using

KBS, H(PB) server can calculate the predicate function FB() and authenticates B.

5. S ⇒ B fKAS
(RB), fKBS

(RA), HKAS
(RA, RB), HKBS

(RA, RB)

”S” encrypts RB and RA with KAS and KBS respectively. This defeats identity

mis-binding attacks.f()is a cryptographic transformation function.”S” computes

one way hash functionHKAS
(RA, RB) using KAS(one time key shared between A

and server)using this host-A authenticates the server. Similarly ”S” computes one

way hash function HKBS
(RA, RB) using KBS(one time key shared between B and

server)using this host-B authenticates the server.

fKAS
(RB), fKBS

(RA), HKAS
(RA, RB), HKBS

(RA, RB) are sent to B. After receiving

this B decrypts fKBS
(RA) with KBS and gets RA. Since KBS is shared between

server and B,it ensures B that RA value is from authentic source. B recomputes one

way hash HKBS
(RA, RB) using KBS as key and authenticates server. B computes

session key with A as KAB = (RA)rb(mod P) like in Diffie-Hellman protocol [10].

6. B ⇒ A fKAS
(RB), HKAS

(RA, RB), HKAB
(NAB), NAB

B forwards fKAS
(RB), HKAS

to A. A decrypts fKAS
(RB) using KAS to get RB.

Since KAS is shared between server and A, it ensures A that RB value is from

authentic source. A computes session key with B as KAB = (RB)ra(mod P) like

in Diffie-Hellman protocol [10]. B also computes a one way HKAB
(NAB) using

KAB and NAB as seeds. Where NAB is a random number. This one way hash is

used for key confirmation(assures that both parties posses same session key). Since

53

NAB is transmitted in plain there is no need of decryption. One way hash suffices

decryption.

7. A ⇒ B HKAB
(HKAB

(NAB))

Using KAB and NAB A recomputes one way hash HKAB
(NAB) and verifies that

B posses same key, KAB as A. Using KAB A once again calculates one way hash

HKAB
(HKAB

(NAB)) and sends to B. After receiving this B recomputes this one way

hash using KAB and verifies that A posses same session key(KAB) as B.

6.2 COMMUTATIVE ONE-WAY HASH FUNCTIONS

Both host and server agree upon family of commutative hash functions {H0, H1, H2,Hn}
. Let H (P) be defined as H0(P), a member of a family of Commutative one-way hash func-

tions. Host A calculates one way hash of its password as H0(PA) = P h0
A (mod P),where h0

is a random number(which it kepps as secret). We assume that one way hash of password

H0(P) of every host is distributed to server. Since one way hash is irreversable nobody

can compute P from H0(P). Host A calculates its predicate function FA() as :

H0(HKAS
(PA)) = (PKAS

A)h0(mod P).

Server Knows only one way hash of password PA i.e. H0(PA) using which it calculates

predicate function of A as HKAS
(H0(PA)).

HKAS
(H0(PA)) = (P h0

A)KAS(mod P)

Here KAS is one time (ephemeral) key established between server and A. Since server

knows KAS and H0(PA) it can compute this predicate function and authenticate A.

Similarly it computes predicate function for B and authenticates B. Since these are

commutative hash functions HKAS
(H0(PA)) = H0(HKAS

(PA)) i.e. (PKAS
A)h0(mod P) =

(P h0
A)KAS(mod P).

6.3 SECURITY ANALYSIS

Proposed protocol extends Two party version SAKA [1] to 3-party protocol. Every host

need not share a secret with every other host. Since all the transactions in the protocol

are done using one way hash of the password, host need not store clear text version of

its password at server and it defeats dictionary attacks. Since this is a one way hash

function there is no way to recover P from H(P). Every time host and server establish a

54

one time(ephemeral) key using which host authenticates server. Unlike traditional 3-party

key agreement protocol we need not use long term(master) keys which leads to malacious

insider attacks. In malicious insider attacks one of the participating parties turns hostile

and misuse the information it has acquired in previous protocol runs and breaks the

system. Server authenticates hosts using predicate functions. For calculating predicate

functions server need not know password of hosts. Server can calculate predicate function

using one way hash of the password of the hosts.

Even though H(P) is compromised (under some rare circumstances) nobody can mimic

the host to server as only legitimate hosts can compute predicate functions . Because host

only knows its password which is a seed for predicate function. Nobody can mimic the

server to the host even if H(P) is compromised. It is equivalent to breaking Diffie-Hellman

problem[10]. ”S” encrypts RB and RA with KAS and KBS (one time ephemeral keys)

respectively. This defeats identity mis-binding or masquerading attacks. Here the server

acts just like authentication server not as monitoring server. This prevents malicious

server from knowing session key and subsequently knowing all transactions. This protocol

also ensures key integrity, key non disclosure, and key confirmation. Proposed protocol

also ensures perfect forward key secrecy. Even if one of the session keys are compromised

it will not lead to disclose of future keys. This protocol sustains online and off-line

guessing attacks as there is no verifiable information present.

6.4 RESULTS AND DISCUSSION

SERVER PROGRAM

SERVER RUNNING.......

DIFFIE -HELLMEN PARAMETER SET

P :

121386361064310594916212903584122868395761162311655314252345320071

65568312340044675579825709081 489157457158870 77474420238844614265

1939009377680219122511059

g :

119077291994964663908866784897756917715350071429839542185034189670

55

272358636182731452203365635033722738175924780216490096446074023516

37012098758354356767257

**

RECEIVED PKT-1

H(P)RA :

45086061722240630041988877452116190209516185748206933103513535461553

50271818871624021443609239917611949690855405275580770463564876555706

687322800127562864

Decrypted RA:

66941914784977161878691515098743429481282538516081861327375463284910

13410946577813037942930164927964499691963220546372965283002599652719

518097907350818470

**

(g.pow(rs1)) mod P :

10589670287949016801502819818738505600807676733184043051758884891727

46258650985830301278863475915052470512091025374912392637738378701262

3157261242199898095

H(Pa) (g.pow(rs1)) mod P :

11938905828610402552228640373537124227049158111894218131397406994296

059333442749923411094574487937540299900895547201352340346925600160

202340101270046993721

(g.pow(rs2)) mod P :

394591762559215207764913352309990521462254459706570827371789841246741

793602856957596134845456404096921490808804474960732322523746245718924

35927886632984

H(Pb)(g.pow(rs2)) mod P :

4981862849651397891723128997730827365040005309363718317193718188004547

9752165888085581616152503812929839049069007142454999761208370313817176

11774522527546

Secret key(one time) with A (KAS)=

61759808532498778423770931624033012844206896840823034468844807311906255

78884982086895105034575947843374263282236635040537700489990627870259369

175485996752

56

Pkt-2 Dispatched.......

RECEIVED PKT-4 FA(PA,KAs), Fb(Pb,Kbs) ,H(PB)(RB) FROM DESTN

RECEIVED VALUES :

SOURCE PREDICATE :

15650674462492612935697665262578278791196824525618257812321485071987627

06200885436482856278175228898775562546986860788391130468718301080883639

261834346489

DESTN PREDICATE :

10947913581441145991817474330211789441955283514660845306711321423430104

71627540401741036301739120194291604149947401711586601908160255274106581

561726966034

H(PB)(RB) :

498186284965139789172312899773082736504000530936371831719371818800454797

521658880855816161525038129298390490690071424549997612083703138171761177

4522527546

RB :

3945917625592152077649133523099905214622544597065708273717898412467417936

0285695759613484545640409692149080880447496073232252374624571892435927886

632984

Secret key(one time) with B (KBS)=

512212498053090802815885427610053396658517871012825054829099037487458314

009316246512792839089917262644214684819576941501374597908475310037772519

892730027

**

Predicate function of source Hk(H0(P)) :(Caliculated at server side)

1565067446249261293569766526257827879119682452561825781232148507198762

7062008854364828562781752288987755625469868607883911304687183010808836

39261834346489

Predicate function of Destination Hk(H0(P)) : (Caliculated at server side)

1094791358144114599181747433021178944195528351466084530671132142343010

4716274040174103630173912019429160414994740171158660190816025527410658

15617269660394

57

**

PREDICATE VERIFIED

VALID SOURCE : A

VALID DESTINATION : B

Fkas(RB) :

6136648082860645121597430585685668868340629388419570868806330582369

2590247026202649492436839185468692260368975540955230654055176985745

88616853328374646472

Fkbs(RA) :

15771432135485792133403569182616947943160808008286002477760443447344

33090457571272245013065184416963310191797593609728683634551250153979

161453256399556109

HKas(RA,RB) :7237724

Hkbs(RB,RA) :234806968

PKT-5 (Fkas(RB),Hkas,Fkbs(RA),Hkbs) DISPATCHED

SOURCE PROGRAM

DIFFIE -HELLMEN PARAMETER SET:

P :

121386361064310594916212903584122868395761162311655314252345320071

655683123404467557982570908148915745715887077474420238844614265193

9009377680219122511059

g :

1190772919949646639088667848977569177153500714298395421850341896702

7235863618273145220336563503372273817592478021649009644604023516370

12098758354356767257

ENTER YOUR IDENTITY : A

ENTER DESTINATION IDENTITY : B

ENTER YOUR PASSWORD : 454545435234354545

58

Hash of password :

2187671133980143754901405612596440220308509820482974824804448396751

2652166763554602516526365450730233397829845723871185967442857653909

63261130156439870166

RA:

66941914784977161878691515098743429481282538516081861327375463284910

13410946577813037942930164927964499691963220546372965283002599652719

518097907350818470

H(P)RA:

45086061722240630041988877452116190209516185748206933103513535461553

50271818871624021443609239917611949690855405275580770463564876555706

687322800127562864

Dispatched Pkt-1 to Server

Received packet -2 H(Pa) (g.pow(rs1)),H(Pb) (g.pow(rs2)) from Server

H(Pa)(g.pow(rs1) mod p) :

1193890582861040255222864037353712422704915811189421813139740699429

6059333447499234110945744879375402999008955472013523403469256001602

02340101270046993721

H(Pb)[g.pow(rs2) mod p] :

49818628496513978917231289977308273650400053093637183171937181880045

47975216588808558161615250381292983904906900714245499976120837031381

717611774522527546

**

Secret key(one time) with server KAS=

617598085324987784237709316240330128442068968408230344688448073119062

557888498208689510503457594784337426328223663504053770048999062787025

9369175485996752

**

PREDICATE FUNCTION VALUE :

1565067446249261293569766526257827879119682452561825781232148507198762

7062008854364828562781752288987755625469868607883911304687183010808836

39261834346489

59

PKT-3 H(Pa)(g.pow(rs2)),Fa(Pa,Kas) DISPATCHED TO DESTN

**

Received (Fkas(RB),Hkas(RA,RB), H(KAB,RA)) from DESTINATION

RB : (DECRYPTED)

3945917625592152077649133523099905214622544597065708273717898412467417

9360285695759613484545640409692149080880447496073232252374624571892435

927886632984

Nonce (NAB): 5256

SERVER VERIFIED ::::VALID SERVER::::::

SESSION KEY (KAB) :

2182490436834121823552542852175525894038998442910289409540264495062074

6850052347711422114119442206532095942017353474818210691238824793698157

89067516187161

**

key conformation message Received from Destn. H(KAB,NAB) : 858699223

key conformation message computed by source H(KAB,NAB) : 858699223

KEY CONFIRMATION FROM SOURCE SIDE ENDS:::::VALID KEY

key conformation message to Destn. H(H(KAB,NAB)) : 602588964

PKT-7 key conformatio message H(H(KAB,NAB)): DISPATCHED TO DESTN

KEY ESTABLISHMENT ACCOMPLISHED

DESTINATION PROGRAM

DIFFIE -HELLMEN PARAMETER SET

P :

1213863610643105949162129035841228683957611623116553142523453200716556

8312340446755798257090814891574571588707747442023884461426519390093776

80219122511059

g :

11907729199496466390886678489775691771535007142983954218503418967027235

86361273145220336563503372273817592478021649009644607402351637012098758

354356767257

60

ENTER UR ID : B

ENTER DESTINATION IDENTITY : A

ENTER YOUR PASSWORD : 3434343324434

Hash of password :

502097983856134028056936916784407385310977581659348648716159905437852151

560561281878017493333538219337492985382767320871476959921469395311110746

2855333666

PKT-3 H(Pa)(g.pow(rs2)),Fa(Pa,Kas) RECEIVED FROM SOURCE

H(Pb)(g.pow(rs2)) :

49818628496513978917231289977308273650400053093637183171937181880045479

75216588808558161615250381292983904906900714245499976120837031381717611

774522527546

Predicate of source :

156506744624926129356976652625782787911968245256182578123214850719876270

620088543648285627817522889877556254698686078839113046871830108088363926

1834346489

RB :

394591762559215207764913352309990521462254459706570827371789841246741793

602856957596134845456404096921490808804474960732322523746245718924359278

86632984

H(P)RB :

4981862849651397891723128997730827365040005309363718317193718188004547975

2165888085581616152503812929839049069007142454999761208370313817176117745

22527546

**

Secret key(one time) with server KBS :

51221249805309080281588542761005339665851787101282505482909903748745831400

93916246512792839089917262644214684819576941501374597908475310037772519892

730027

PREDICATE FUNCTION VALUE (Destination) :

1094791358144114599181747433021178944195528351466084530671132142343010471

61

6274040174103630173912019429160414994740171158660190816025527410658156172

69660394

PKT-4 FA(PA,KAs), Fb(Pb,Kbs) ,H(PB)(RB) DISPATCHED TO SERVER.

PKT-5 Fkas(RB),Hkas,Fkbs(RA),Hkbs RECEIVED FROM SERVER

Fkbs(RA) :

15771432135485792133403569182616947943160808008286002477760443447344330

90457571272245013065184416963310191797593609728683634551250153979161453

256399556109

Hkbs(RB,RA) : 234806968

RA :

66941914784977161878691515098743429481282538516081861327375463284910134

10946577813037942930164927964499691963220546372965283002599652719518097

907350818470

SERVER VERIFIED ::::VALID SERVER::::::

SESSION KEY (KAB) :

21824904368341218235525428521755258940389984429102894095402644950620746

85005234771142211411944220653209594201735347481821069123882479369815789

067516187161

GENRATED NONCE(NAB) : 5256

key conformation message to source H(KAB,NAB) : 858699223

PKT-6 Fkas(RB),Hkbs(RB,RA), H(KAB,RA) DISPATCHED TO SOURCE

key conformation message computed by Destn. H(H(KAB,NAB)) : 602588964

PKT-7 H(H(KAB,NAB)) RECEIVED FROM SOURCE

key conformation message from source H(H(KAB,NAB)) : 602588964

Received H(H(KAB,NAB)): is proper

KEY CONFIRMATION FROM DESTINATION SIDE ENDS:::::VALID KEY

62

One way hash of the password of host is stored at server. The data sent to server is

encrypted using this one way hash. Predicate function is calculated using commutative

hash functions using password as seed at client side and one way hash of the password

at server. Host authenticates Server using one way hash computed using RB and RA

as seeds. Key confirmation is provided through one way hash using session key and a

random no. as seeds. Inclusion of random no. widens the key space in case of dictionary

attacks. Encryption of RB and RA using one time keys provides user authentication. It

also prvents malicious insider attacks.

63

Chapter 7

CONCLUSION AND FUTURE

WORK

Strength of any crypto system relies upon strength of the encryption/decryption algo-

rithm and strength of Key distribution mechanism. Frequent key changes are must in-

order to minimize the amount of data compromised. Several applications demand throw

away session keys especially financial applications. In traditional 2-party key distribution

protocol every host should share a secret with every other host. 2-party key distribu-

tion protocol is not a particularly useful application but it can be used as a stepping

stone for 3-party key distribution protocol . In 3PKDP every host need not share a

secret with every other host. This greately simplifies the number of masters keys to be

distributed. Every host shares a master key with Key Distribution centre(KDC). But

3PKDP(traditional) is vulnerable to insider attacks. In 3PKDP server genrates a session

key and distributes to both parties,i.e. Server also knows the session key and it can mon-

itor every transaction between two hosts. Which is a big problem in case of malacious

servers.In most of the applications we want authentication server but not a monitoring

server(except very few applicatons like national defense).

Diffe-Hellma Protocol [10]solves these problems. One of the advantages of using Diffie-

Hellman key exchange [10] is its inherent ”democracy” - both parties contribute equally

to the resultant key without revealing their secrets. This and the relative simplicity of

implementation make it quite attractive and practical to implement, especially in low end

environments such as smartcards. Diffie-Hellman protocol [10] is vulnerable to several

64

attacks. It is obviously important to choose a group (i.e. P) large enough so that the

best known algorithms for computing discrete logs are intractable. To defeat Man -in-the

middle attack secret keys can be used in conjunction with message authentication codes.

Generic EKE [5] version is proved to be vulnerable to cryptanalysis . Unlike generic

EKE, EKE-based on Diife-Hellman appears to be resistant to the dictionary attacks. Its

resistance is due to the fact that the key is never communicated in any way. Instead,

only residues are communicated in encrypted form. Even if the attacker obtains both

residues, he does not come closer to discovering Key. Conversely, if the attacker somehow

discovers Key, he cannot validate correct guesses of RB and RA thus making a dictionary

attack impossible. Users sole means of authentication and sole long-term storage is a

simple Password, rather than a bulky private key. EKE, required that both parties have

clear text versions of the shared password, a constraint that cannot (or ought not) always

be met. In particular, consider the problem of a user logging in to a computer that does

not rely on a secure key server for authentication. It is inadvisable for most hosts to

store passwords in either clear form or in a reversibly-encrypted form. EKE is 2-party

key agreement protocol. Since every pair of hosts have to share a password,this limits

its practical applications. In large communication environments, it is inconvenient in key

management that every two communication parties mutually share a secret.

STW protocol is three party EKE protocol. Password based mechanism is the widely

used method for authentication. Since STW protocol is 3-party protocol every host shares

a password only with server. It is also based on Diffe-Hellman protocol. It is vulnerable

to undetectable on-line password guessing attacks and off-line password guessing attacks

[14]. Among the two classes of attacks, the off-line password guessing attack is the most

comfortable and promising one for an attacker. It is also not noticed and has no com-

munication cost. Comparing with off-line guessing attacks, undetectable on-line guessing

attacks are much expensive due to the communication cost. Furthermore, undetectable

on-line guessing attacks will probably fail if too many attempts notice a sensitive server.

LSH 3PEKE protocol [2] is immune to on-line guessing attacks, the off-line guessing

attacks [14]. The off-line guessing attack will not work because nothing is encrypted by

passwords. The only appearance of the password is the message encrypted with S’s public

key. Since the password is confounded with a confounder that is a sufficiently large ran-

65

dom number, the amount of guessing to verify the ciphertext is a half of the multiplication

of the confounder space and the password guessing space on average. It is computational

infeasible. Another way to get the password is direct to crack S’s private key. It is also

computational infeasible. In step 2 of protocol, S decrypts {ra, RA, PA}Ks , {rb, RB, PB}Ks

by his private key and verifies the correctness of passwords PA and PB to authenticates

A and B. Thus, undetectable online guessing attacks also will not work. Although at the

moment S can not confirm the freshness of the request, the following responses encrypted

by the one-time keys ra and rb are able to guarantee the mutual authentication and the

freshness to A and B. This protocol satisfies the property of perfect forward secrecy . It

also satisfies the property of known-key security because the ephemeral random expo-

nents NA and NB are independent among every protocol run.LSH 3-Party EKE protocol

[2] uses server public keys for key exchange. Using public key infrastructure is inadvis-

able in key agreement as it needs extensive computaional power.However, the approach

of using server public-keys is not always a satisfactory solution and is impractical for

some environments. Communication parties have to obtain and verify the public-key of

the server, a task which puts a high burden on the user. In fact, key distribution services

without public-keys are quite often superior in practice than PKIs or are at least widely

deployed.

User authentication is one of the most important security services in secure communi-

cations. It is necessary to verify the identities of the communication parties before they

start a new connection. SAKA [1] protocol is a 2-party key agreement protocol which

provides user authentication based on shared secret(password). This protocol is simple

and efficient. It is secure against on-line and off-line guessing attacks. Since it is a 2-party

protocol its applications are limited.

In proposed protocol public key infrastructure is not used. Since this is a 3-party

protocol every host need not share a secret with other host. Proposed protocol pro-

vides host authentication and server authentication as a result man-in-the middle at-

tacks are averted. It also spoils online and off-line guessing attacks as it uses one time

keys,commutative hash functions for authentication. Hosts are not forced to store clear

text version of password. Proposed protocol ensures perfect forward key secrecy ,key

integrity. Proposed protocol also sustains malacious insider attacks as we use one time

66

keys for authentication. Server acts just like authentication server not like a monitoring

server. Proposed protocol provides key confirmation also.

Future work

Proposed protocol can be extended to group key agreement protocol in distributed sys-

tems. Another possible optimization is to encrypt predicate functions FA(),FB() with

one time ephemeral keys KAS, KBS respectively. This will furthur strengthen the proto-

col against dictionary attacks [12]. Key confirmation(last two messages in protocol) can

also be acheived through blind signature. But for that we have to use again public key

infrastructure. During key confirmation step we may omit the random number but it

opens up scope for known plain text attacks.

67

Bibliography

[1] Yeh Her-Tyan and Sun Hung-Min ,”Simple Authenticated Key

Agreement Protocol Resistant to Password Guessing Attacks.

”ACM SIGOPS Operating Systems Review.Volume 36,(October 2002):Issue 4.

[2] Lin C.L.,Sun H.M. and Hwang T.,”Three-party encrypted key exchange :Attacks and

a solution.” ACM Operating System Review.volume 36(2000):pp.12-20.

[3] Aiello William,Bellovin Steven M.,Blaze Matt.”Efficient, DoS Resis-

tant,Secure Key Exchange for Internet Protocols.”Proceedings of the

9th ACM conference on Computer and communications security CCS ’02, (Novem-

ber 2002):pp.78-85.

[4] Aiello William,Bellovin Steven M.,Blaze Matt,”Just Fast Keying: Key Agreement in a

Hostile Internet.”ACM Transactions on Information and System Security (TISSEC)

Volume 7,Issue 2,(May 2004):pp.112-118.

[5] Bellovin S.M. and Merritt M. ”Encrypted Key Exchange: Pass-

word Based Protocols Secure Against Dictionary Attacks.”

IEEE Symposium on Research in Security and Privacy,(1992):pp.72-84.

[6] Bellovin S.M. and Merritt M. ”Augmented Encrypted Key Exchange: A

Password-Based Protocols Secure Against Dictionary Attacks and Password

file Compromise.”Proc. 1st ACM Conf. on Computerand Communications Security,

(1993):pp.244-250.

[7] Tsudik Gene and Herreweghen Els Van.”On sim-

ple and Secure key Distribution.”Proceedings of the

1st ACM conference on Computer and communications security,(December

1993):pp.263-269.

68

[8] Parnerkar Amit,Guster Dennis,Herath Jayantha,”secret key Distribution protocol

using public key cryptography.” Journal of Computing Sciences in Colleges.Volume

19,Issue 1,(October 2003):pp134-140.

[9] A.M Barmawi,S Takada and N Doi.”Augmented en-

crypted key exchange using RSA encryption.” The 8th

IEEE International Symposium on Personal Indoor and Mobile Radio Communications

Volume2,(1-4Sept.1997):Pp:490-494.

[10] Diffie W. and Hellman M.E.,”New directions in cryptography.”

IEEE Transactions on Information Theory IT-11.(November 1976):pp.644-654.

[11] D. Denning and G. Sacco,”Timestamps in key distributed

protocols.”Communication of the ACM.Volume no.24, Issue 8,(1981):pp.533-535

[12] L. Lomas, M.A. Needham and R.M. Saltzer, ”Protecting poorly chosen secrets from

guessing attacks.”IEEE Journal on Selected Areas in Communications.Volume 11,Is-

sue 5,(June 1993):Page(s):648 - 656.

[13] M. Steiner, G. Tsudik and M. Waidner,”Refinement and extension of encrypted key

exchange.”ACM Operating Syst. Rev. vol.29,no.3, (1995):pp.22-30.

[14] Y. Ding and P. Horster, ”Undetectable on-line password guessing

attacks.”ACM Operating Syst. Rev.vol.29,no.4,(1995):pp.77-86.

[15] Wilson S. Blake,Johason D. and Menezes A.”Key Agreement

Protocols and Their Security Analysis.” In proceedings of the

sixth IMA International Conference on Cryptography and Coding,Springer-Verlag

LNCS 1355,(1997):pp.30-45.

[16] Maher David Paul,”CryptoBackup and Key Escrow.”communications of the ACM.

Vol.39,No.3,(March 1996):Page no. 48-53.

[17] bellare mihir,Rogaway Phillip.”Provably secure session

key distribution-the three party case.”Proceedings of the

twenty-seventh annual ACM symposium on Theory of computing STOC ’95,(May

1995):ACM Press.

69

[18] Schneier Bruce.Applied Cryptography: Protocols and Algorithms.John Wiley and

Sons.,1994.

[19] Menezes A.,Oorschot P.van and Vanstone S.”Handbook of Applied Cryptography.

CRC Press, 1996.

[20] Stallings Williams.cryptography and network security.3rd edition, Pearson educa-

tion,2004.

[21] Mel H.X.,Baker Doris.M. and Burnett Steve. Cryptography Decrypted.Addison-

Wesley,2004.

[22] Strangio M.A .”An optimal round two-party password-authenticated key agreement

protocol. ”The First International Conference on Availability, Reliability and Security,

(20-22 April 2006):Page(s):8 pp.

[23] Al Sultan K., Saeb M., El-Raouf Badawi.” A new two-pass key agreement

protocol.”46th IEEE International Midwest Symposium on Circuits and Systems, 2003,

Volume 1,(27-30 Dec):Page(s):509 - 511.

[24] Harn L., Hsin W J., Mehta M.”Authenticated Diffie-Hellman key agreement protocol

using a single cryptographic assumption.” Communications, IEE Proceedings,Volume

152, Issue 4,(Aug 2005):Page(s):404 - 410.

[25] Popescu C.”A secure authenticated key agreement protocol.”

Proceedings of the 12th IEEE Mediterranean Electrotechnical Conference, Vol-

ume 2,(12-15 May 2004):Page(s):783 - 786.

70

