
IMPROVED QUERY PLANS FOR UNNESTING

SQL NESTED QUERIES

THESIS REPORT SUBMITTED IN PARTIAL FULFILLMENT

OF THE REQUIREMENTS FOR THE DEGREE OF

Master of Technology

in

Computer Science and Engineering

by

SATHISH KUMAR M

Department of Computer Science and Engineering

National Institute of Technology

Rourkela

2007

IMPROVED QUERY PLANS FOR UNNESTING

SQL NESTED QUERIES

THESIS REPORT SUBMITTED IN PARTIAL FULFILLMENT

OF THE REQUIREMENTS FOR THE DEGREE OF

Master of Technology

in

Computer Science and Engineering

by

SATHISH KUMAR M

Under the guidance of

Prof. S. K. JENA

Department of Computer Science and Engineering

National Institute of Technology

Rourkela

2007

National Institute of Technology

Rourkela

CERTIFICATE

This is to certify the thesis entitled, Improved Query plans for Unnesting SQL

Nested Queries submitted by Sri.Sathish Kumar M in partial fulfillment of the

requirements for the award of Master of Technology Degree in Computer Science

and Engineering at National Institute of Technology, Rourkela (Deemed Univer-

sity) is an authentic work carried out by him under my supervision and guidance.

To the best of my knowledge, the matter embodied in the thesis has not

been submitted to any other University / Institute for the award of any Degree

or Diploma.

Prof. S. K. Jena

Dept. of Computer Science and Engg.

National Institute of Technology

Rourkela - 769008

Date:

Acknowledgements
I take this opportunity to express my gratitude towards my thesis guide Prof.

S. K. Jena for showing the way and guiding me constantly at all stages, while

working on this thesis. In fact the sound understanding of the problems and

clearer communication of ideas and suggestions by him can said to have done

much of this thesis work.

I also extend my sincere thanks to all Professors in Computer Science and En-

gineering department for all the help and support during this thesis. I would also

like to give special thanks to my batch mates and other friends in the institute,

who by way of their little advice and suggestions. Many of their suggestions have

found a way in the final form of the thesis also.

At last, but not the least, I deeply appreciate all my family members and all

my cousins for their emotional support during the entire course work.

Sathish Kumar M

(20506013)

May 2007

i

Contents

1 Introduction to Nested Queries 1

2 Types of Nested Queries 5

2.1 Type-A Nesting . 6

2.2 Type-N Nesting . 6

2.3 Type-J Nesting . 7

2.4 Type-JA Nesting . 7

2.5 Evaluation of Type-J and Type-JA Nested Queries 7

3 A Review on Unnesting Nested Queries 9

3.1 Kim’s Algorithms for Processing Nested Queries 10

3.1.1 Processing a Type-N or Type-J Nested Query 10

3.1.2 Processing a Type-JA Nested Query 11

3.2 Bugs in Kim’s Algorithm NEST-JA and their Solutions 13

3.2.1 The COUNT bug . 13

3.2.2 Solution to the COUNT bug using outer joins 15

3.2.3 Query Blocks with COUNT(*) 18

3.2.4 A Problem with Relations other than Equality 18

3.2.5 Solution to the problem with Relations other than Equality 20

3.2.6 A Problem with Duplicates 21

3.2.7 Solution to the Duplicates Problem 23

3.2.8 Modified algorithm NEST-JA2 24

3.3 Linear Queries with Multiple Blocks 26

3.3.1 A Few Subtleties . 28

3.3.2 An Improved Dataflow Algorithm 29

ii

4 Modified Query plans 32

4.1 Queries with two blocks . 33

4.2 Queries with three blocks . 35

4.3 Queries with non neighbor predicates 37

4.3.1 Precomputing the last aggregate 41

4.3.2 Performing outer joins before joins 42

4.4 An integrated algorithm . 44

4.5 Flaws in Integrated Algorithm 49

4.6 Solutions to the flaws in Integrated algorithm 54

5 Implementation 59

5.1 Performance analysis . 60

6 Conclusions and Future work 64

6.1 Conclusions . 65

6.2 Future work . 65

iii

Abstract

The SQL language allows users to express queries that have nested subqueries

in them. Optimization of nested queries has received considerable attention over

the last few years. The first algorithm for unnesting nested queries was Kim’s

algorithm, but this technique had a COUNT bug for JA type queries. Later few

researchers gave more general strategies to avoid the COUNT bug. Finally to

all this M. Muralikrishna modified Kim’s algorithm so that it avoids the COUNT

bug. The modified algorithm may be used when it is more efficient than the

general strategy. In addition, he presented a couple of enhancements that pre-

compute aggregates and evaluate joins and outer joins in a top down order. These

enhancements eliminated Cartesian products when certain correlation predicates

are absent and enabled us to employ Kim’s method for more blocks. Apart from

this he proposed the Integrated algorithm for generating query plans for a given

input query.

In this thesis we have given a new solution for implementing the Kim’s modi-

fied algorithm of unnesting nested queries and this also avoids the COUNT bug

convincingly. Integrated algorithm generates flaws query plans, which has been

modified in this thesis. We have also shown experimental results proving one

query plan among the all other as computationally better one. These computa-

tions are in terms of elapsed time. We have carried out experiments for different

data sets of varying sizes from 100 to 1000 tuples in each relation. These re-

sults are taken as average of some possible iterative execution of each query

plan. Finally, we incorporate the above improved merits into a new unnesting

algorithm.

iv

List of Figures

3.1 Conventional Routing Method 30

3.2 Improved Routing Method . 31

4.1 Modified Kim’s Method Vs Ganski’s Method 35

4.2 Graphical Representation of Integrated Algorihm 47

4.3 Query plan (a) . 49

4.4 Query plan (b) . 50

4.5 Query plan (c) . 51

4.6 Query plan (d) . 52

4.7 Query plan (e) . 53

4.8 Query plan (f) . 54

4.9 Modified Query plan (b) . 56

4.10 Modified Query plan (c) . 57

4.11 Modified Query plan (d) . 58

5.1 Performance show of Kim’s modified algorithm 61

5.2 Nested iteration Vs unnesting query plans 62

5.3 Nested iteration Vs query plans (a),(b),(c) and (f) 63

5.4 Performance show of query plans (a),(b),(c) and (f) 63

v

List of Tables

3.1 PARTS table . 13

3.2 SUPPLY table . 13

3.3 PARTS LEFT OUTER JOIN SUPPLY 16

3.4 TEMP3 . 17

3.5 TEMP3 with COUNT(*) . 18

3.6 PARTS table for relations other than equality 19

3.7 SUPPLY table for relations other than equality 19

3.8 TEMP5 . 20

3.9 FINAL RESULT with other than equality bug 20

3.10 TEMP6 . 21

3.11 FINAL OUTCOME with the solution for other than equality

bug . 21

3.12 PARTS with duplicates . 22

3.13 SUPPLY with duplicates . 22

3.14 RESULT BY NESTED ITERATION 22

3.15 TEMP3 for Kim’s algorithm 22

3.16 FINAL RESULT with duplicates problem 22

3.17 TEMP1 . 24

3.18 TEMP3 with no duplicates problem 24

3.19 FINAL OUTCOME . 24

3.20 TEMP1 of Modified NEST-JA2 25

3.21 TEMP3 of Modified NEST-JA2 25

3.22 FINAL OUTCOME of Modified NEST-JA2 25

4.1 Table S . 38

4.2 Table T . 38

vi

4.3 TEMP1 . 40

4.4 TEMP2 . 41

vii

Chapter 1

Introduction to Nested Queries

1

SQL is a block-structured query language for data retrieval and manipulation

developed at the IBM Research Laboratory in San Jose, California [1] SQL was

incorporated into System R, the relational data base management system, also

developed at the IBM San Jose Research Laboratory [2]. One of the most

powerful features of SQL is the nesting of query blocks. Traditionally, database

systems have executed nested SQL [1] queries using Tuple Iteration Semantics

(TIS). It was analytically shown in [8] that executing queries by TIS can be very

inefficient. It was first pointed out in [5] and then in [8] that nested queries can

be evaluated very efficiently using relational algebra or set-oriented operators.

”The process of obtaining set-oriented operators to evaluate nested queries is

known as unnesting”.

It was later pointed out in [7] and [6] that the unnesting techniques presented

in [8] do not always yield the correct results for nested queries that have non

equi-join correlation predicates or for queries that have the COUNT aggregate

between nested blocks. Unnesting solutions for these types of queries were pro-

vided in [6]. These solutions were further refined and extended in [4]. An

important contribution of the current thesis is a successful implementation for

Kim’s modified algorithm that avoids the COUNT bug. Under certain conditions,

Kim’s approach may be more efficient than the general solution and hence worth

considering.

In this thesis, we focus our attention on unnesting Join-Aggregate (JA) type of

SQL queries [8]. These queries have correlation join predicates and an aggregate

(AVG, SUM, MIN, MAX, or COUNT) between the nested blocks. The reason

for focusing on JA type queries is that many other nesting predicates (such as

EXISTS, NOT EXISTS, ALL, ANY) can be reduced to JA type queries [6], [4].

An example of a 2 block JA type query is:

SELECT R1.a

FROM R1

WHERE F1(R1)

AND R1.b OP1 (SELECT COUNT (R2.*)

FROM R2

WHERE F2(R2) AND F2(R2,R1))

2

F1(R1) and F2(R2) are selection predicates on R1 and R2 respectively, while

F2(R2, R1) is a correlation join predicate between R1 and R2.

A run time system that would execute the above query using TIS would pro-

ceed as follows: A tuple r1 from R1 would be fetched. If F1(R1) is false for r1,

tuple r1 will not be present in the result. Assuming F1(R1) is true, the values of

the relevant attributes of r1 would be substituted into predicates at deeper levels

(F2(R2, R1)). The two block query now becomes a single block query

SELECT COUNT (R2.*)

FROM R2

WHERE F2’(R2)

F2’(R2) is a predicate on R2 and is equivalent to F2(R2) AND F2(R2, R1)

after values of r1’s attributes have been substituted in F2(R2, R1).

Let the COUNT value returned by this block be C (C ≤ 0). C represents the

number of tuples of R2 that satisfy F2’(R2). If (r1.b OP1 C) is true, rl will be in

the result. Notice that each tuple of R1 can occur in the result at most once. Us-

ing TIS, the system executes a query on R2 (the inner relation) for every tuple of

R1 (the outer relation) leading to a very inefficient execution strategy [8]. Blocks

in the above nested query may be nested within each other to any arbitrary depth.

There are two types of nested queries and they are defined as follows:

Nested Linear Query: is a JA type query in which at most one block is nested

within any block.

Nested Tree Query: is a JA type query in which there is at least one block

which has two or more blocks nested within it at the same level.

In this thesis, we focus our attention on linear queries only.The techniques for

unnesting tree queries presented in [10] were not as general as the ones we are

3

developing in the current thesis. For example, [10] did not consider Kim’s algo-

rithm at all. For ease of notation, we shall assume that there is only one relation

in the FROM clause of each block. The algorithms presented in this thesis can

be easily extended to the case when there are multiple relations in any FROM

clause.

The reader is advised that we shall not adhere to strict SQL syntax when

writing queries in this thesis. The SQL syntax for expressing outer joins is fairly

cumbersome. Instead, we shall write queries in a syntax that is fairly intuitive.

4

Chapter 2

Types of Nested Queries

5

Won Kim developed a classification of nested query types, four of which are

relevant to this thesis. They are described here briefly for single-level nested

queries, as presented in [8].

2.1 Type-A Nesting

A nested predicate is type-A if the inner query block Q does not contain a Join

predicate that references a relation in the outer query block, and if the SELECT

clause of Q consists of an aggregate function over a column in an inner relation

[8]. The following is an example of a type-A nested query of depth one.

SELECT SNO

FROM SP

WHERE PNO = (SELECT MAX(PNO)

FROM P)

Since the inner query block of a type-A nested query does not reference a relation

of the outer query block. It may be evaluated independently of the outer query

block, and the result of its evaluation will be a single constant.

2.2 Type-N Nesting

A nested predicate is type-N if the inner query block Q does not contain a join

predicate which references a relation m the outer block, and the SELECT clause

of Q does not contain an aggregate function [8]. The following is an example

of a type-N nested query.

Evaluation of a Type-N Nested Query. This kind of nested query would be

processed in System R by first processing the inner query block Q, resulting in

a list of values X which can then be substituted for the inner query block in the

nested predicate, so that PNO IS IN Q becomes PNO IS IN X The resulting

query is then evaluated by nested iteration.

6

2.3 Type-J Nesting

A type-J nested predicate results when the WHERE clause of the inner query

block contains a join predicate which references the relation of an outer query

block, and the relation is not mentioned in the inner FROM clause. Another

condition is that the SELECT clause of the inner query block does not contain

an aggregate function [8]. The following is an example of type-J nesting.

SELECT SNAME

FROM S

WHERE SNO IS IN (SELECT SNO

FROM SP

WHERE QTY > 100 AND

SP.ORIGIN = S.CITY)

2.4 Type-JA Nesting

Type-JA nesting is present when the WHERE clause of the inner query block

contains a join predicate which references the relation of an outer query block,

and the inner SELECT clause consists of an aggregate function over an inner

relation [8]. Select names of parts which have the highest part number in the

city from which they are supplied.

SELECT PNAME

FROM P

WHERE PNO = (SELECT MAX(PNO)

FROM SP

WHERE SP.ORIGIN = P.CITY)

2.5 Evaluation of Type-J and Type-JA Nested

Queries

Type-J and type-JA nesting are processed in System R by the nested iteration

method the inner query block is processed once for each tuple of the outer relation

7

which satisfies all simple predicates on the outer relation. This method has the

obvious disadvantage that the inner relation (SP in above example) may have to

be retrieved many times. It must be retrieved once for each tuple of the outer

relation S, since there are no simple predicates in the outer query block. It is this

inefficiency which motivated Kim to develop alternative algorithms for processing

nested queries.

8

Chapter 3

A Review on Unnesting Nested

Queries

9

3.1 Kim’s Algorithms for Processing Nested

Queries

Kim observed that for type-N and type-J nested queries, the nested iteration

method for processing nested queries is equivalent to performing a join between

the outer and inner relations [8]. But nested iteration is only one way of per-

forming a join, for single-level queries System R also performs joins by the merge

join method, with the decision as to which method to use made by the query

optimizer. Kim showed that nested queries could be transformed to logically

equivalent single-level queries containing single-level join predicates explicitly,

and that now the query optimizer can choose a merge join method in imple-

menting the joins, often at a great reduction of cost over the nested iteration

method [8]. Kim’s transformation algorithms are summarized in the present

chapter.

3.1.1 Processing a Type-N or Type-J Nested Query

In his Lemma 1 [8], Kim states that a type-N nested two-relation query is

equivalent to a canonical two-relation query with a join predicate.

Let Q1 be

SELECT Ri.Ck

FROM Ri,Rj

WHERE Ri.Ch = Rj.Cm

and Let Q2 be

SELECT Ri.Ck

FROM Ri

WHERE Ri.Ch IS IN (SELECT Rj.Cm

FROM Rj)

Kim’s Lemma 1 states that Ql and Q2 are equivalent, that is, they yield the

same result [8]. Kim’s proof of lemma 1 calls attention to the fact that by

definition the inner block of Q2 can be evaluated independently of the outer

block, resulting in a list of values. Since this list contains values from column

10

Rj.Cm, the predicate is equivalent to the join predicate Ri.Ch = Rj.Cm [8]. From

Lemma 1 Kim develops the following algorithm

Algorithm NEST-N-J

1. Combine the FROM clauses of all query blocks into one FROM clause

2. AND together the WHERE clauses of all query blocks, replacing IS IN by

=

3. Retain the SELECT clause of the outermost query block

The result is a canonical query logically equivalent to the original nested query.

The algorithm applies to type-N or type-J nested queries with one or more levels

of nesting.

3.1.2 Processing a Type-JA Nested Query

In his Lemma 2 [8], Kim asserts that a type-JA nested query can be transformed

to a type-J nested query which references a new temporary relation

Let Q3 be

SELECT Ri.Ck

FROM Ri

WHERE Ri.Ch = (SELECT AGG(Rj.Cm)

FROM Rj

WHERE Rj.Cn = Ri.Cp)

and Let Q4 be

SELECT Ri.Ck

FROM Ri

WHERE Ri.Ch = (SELECT Rt.C2

FROM Rt

WHERE Rt.C1 = Ri.Cp)

where Rt is a temporary table obtained by

Rt(C1,C2)= (SELECT Rj.Cn, AGG(Rj.Cm)

FROM Rj

GROUP BY Rj.Cn)

11

Kims Lemma 2 states that Q3 and Q4 are equivalent [8]. His proof postulates

that the action of the nested iteration processing of a type-JA query can be

captured in a temporary table formed with a GROUP BY clause, as in Rt for

each tuple of Ri, a tuple is retrieved from Rt whose C1 (formerly Cn) value

matches the Cp value of the Rt tuple. The C2 value of the Rt tuple will contain

the aggregate value obtained by the GROUP BY clause, and this can be matched

with Ri.Ch [8].

Lemma 2 leads to an algorithm which transforms a type-JA nested query of depth

one to an equivalent type-J nested query of depth one. Assume a type-JA nested

query as follows

SELECT R1.Cn+2

FROM R1

WHERE R1.Cn+1 = (SELECT AGG(R2.Cn+1)

FROM R2

WHERE R2.C1=R1.C1 AND

R2.C2=R1.C2 AND

R2.Cn = R1.Cn)

Algorithm NEST-JA

1. Generate a temporary relation Rt(C1, ,Cn,Cn+l) from R2 such that Rt.Cn+l

is the result of applymg the aggregate function AGG on the Cn+l column

of R2 which have matching values in R1 for C1, C2, etc

2. Transform the inner query block of the initial query by changing all ref-

erences to R2 columns in join predicates which also reference R1 to the

corresponding Rt columns. The result is a type-J nested query, which

can be passed to algorithm NEST-N-J for transformation to its canonical

equivalent.

12

3.2 Bugs in Kim’s Algorithm NEST-JA and

their Solutions

3.2.1 The COUNT bug

In a 1984 U C Berkeley Memorandum [7], Werner Kiessling revealed a problem

with Kim’s algorithm NEST-JA. The problem arises when a type-JA nested query

contains the COUNT function. To illustrate his arguments, Kiessling defines two

relations.

PARTS(PNUM,QOH)

SUPPLY(PNUM,QUAN,SHIPDATE)

The following instantiations of these relations are assumed in figures 3.1 and

3.2.

PNUM QOH

3 6

10 1

8 0

Table 3.1: PARTS table

PNUM QUAN SHIPDATE

3 4 7-3-79

3 2 10-1-78

10 1 6-8-78

10 2 8-10-81

8 5 5-7-83

Table 3.2: SUPPLY table

Kiessling defines Query Q2 as follows:

Query Q2:

Find the part numbers of those parts whose quantities on

hand equal the number of shipments of those parts before l-l-80.

SELECT PNUM

FROM PARTS

WHERE QOH = (SELECT COUNT(SHIPDATE)

FROM SUPPLY

13

WHERE SUPPLY.PNUM = PARTS.PNUM AND

SHIPDATE < 1-1-80)

Given the example tables PARTS and SUPPLY shown in Figures 3.1 and 3.2 ,

query Q2 will give the following result when evaluated using nested iteration.

RESULT

PARTS.PNUM

10

8

Application of Kim’s algorithm NEST-JA to Query Q2 results in the following

transformation.

TEMP’(SUPPNUM,CT) = (SELECT PNUM,COUNT(SHIPDATE)

FROM SUPPLY

WHERE SHIPDATE < 1-1-80

GROUP BY PNUM)

SELECT PNUM

FROM PARTS,TEMP’

WHERE PARTS.QOH = TEMP’.CT AND

PARTS.PNUM = TEMP’.SUPPNUM

TEMP’ evaluates to

SUPPNUM CT

3 2

10 1

14

and final result is

PARTS.PNUM

10

This result offers from that obtained using nested iteration. The reason why

the transformation fails is that in the formation of the temporary relation, no

tuples appear which do not match the predicates applied to the inner relation.

Thus, the COUNT function will never return zero, since the only groups it is ap-

plied to are groups of tuples matching the predicates. Thus CT in the temporary

relation will never be zero.

Kiessling explored a trial correction of the bug which involved ORing a predicate

to the WHERE clause of the transformed query in order to a posteriori find where

an empty set occurs to satisfy the predicate, but the final correction failed on

a query with more than one level of nesting [7]. Kiessling concludes that in

attempting to use Kim’s algorithm NEST-JA for transforming type-JA nested

queries, ”there seems to be no general way to recover values lost by COUNTS

on a correlation level greater than one” [7]. While this does seem to be true in

the context of the SQL language as specified in [1], the problem can be solved

if the outer join operation is available in the processing of the query.

3.2.2 Solution to the COUNT bug using outer joins

If either internally or through extensions to the query language an outer join

operation may be specified as the join operation, the COUNT bug can be solved

by performing an outer join in the creation of the temporary relation. The

operation of outer join is defined in [3] . The outer join includes all values from

columns participating in join with NULLS in the opposite column if there is no

match for a column value.

15

In 1987 Richard A Ganski gave a solution for COUNT bug mentioned above.

To solve the COUNT bug an outer join may be used in the creation of the tem-

porary relation Kiessling’s query Q2 could be transformed to give the following

TEMP3(SUPPNUM,CT) = (SELECT PARTS.PNUM,COUNT(SHIPDATE)

FROM PARTS P, SUPPLY S

WHERE S.SHIPDATE < 1-1-80 AND

P.PNUM =+ S.PNUM

GROUP BY P.PNUM)

Query T3

SELECT PNUM

FROM PARTS P, TEMP3

WHERE P.QOH = TEMP3.CT AND

P.PNUM = TEMP3.SUPPNUM

Before looking at the result of this new query, let us look at the result of the

outer join between PARTS and SUPPLY with the conditions given in the creation

of the temporary relation TEMP3 shown in Figure 3.3

P.PNUM P.QOH S.PNUM S.QUAN S.SHIPDATE

3 6 3 4 7-3-79

3 6 3 2 10-1-78

10 1 10 1 6-8-78

8 0 NULL NULL NULL

Table 3.3: PARTS LEFT OUTER JOIN SUPPLY

Note that the condition which applies to only one relation (SUPPLY.SHIPDATE

< l-l-80) must be applied before the join is performed. Otherwise the join would

not contain the last row, and the result would be incorrect. This may happen

if the join is performed first to take advantage of indices on the join columns.

To ensure restriction, we can explicitly build a temporary table applying simple

16

predicates. This temporary table will be a restriction and projection of the inner

table.

TEMP2(PNUM) (SELECT PNUM

FROM SUPPLY

WHERE SHIPDATE < 1-1-80)

and TEMP3 changed to

TEMP3(SUPPNUM,CT) = (SELECT PARTS.PNUM,COUNT(TEMP2.SHIPDATE)

FROM PARTS P, TEMP2

WHERE P.PNUM =+ TEMP2.PNUM

GROUP BY P.PNUM)

Thus, TEMP3 will look like this

SUPPNUM CT

3 2

10 1

8 0

Table 3.4: TEMP3

and the result of T3 will be

PARTS.PNUM

10

8

which matches the result obtained by nested iteration. This solution has been

tested successfully on queries with more than a single level of nesting.

17

If the type-JA query with a COUNT function contains a nested join predi-

cate with a scalar comparison operator other than equality, the correct result

is obtained, if the scalar operator is used in the outer join operation to create

the temporary relation and the join predicate in the original query is changed to

equality.

3.2.3 Query Blocks with COUNT(*)

If the SELECT clause of the inner query block contains COUNT(*) instead of

COUNT(column name) then this approach must be modified. For example, if

query Q2 contained a COUNT(*) instead of a COUNT(SHIPDATE), then the

temporary table would look like this

SUPPNUM CT

3 2

10 1

8 1

Table 3.5: TEMP3 with COUNT(*)

This would be semantically incorrect, and the final result would be incorrect.

To avoid this error the SELECT clause used in the creation of the table must

contain COUNT(col-name) instead of COUNT(*), where col-name is the name

of some column in the inner relation. Since the join column of the inner relation

will always be present in the original query and may be the only one that is, let

col-name be the name of the join column of the inner relation. In our example

it would be COUNT(TEMP2.PNUM).

3.2.4 A Problem with Relations other than Equality

For aggregate functions other than COUNT, Kim’s algorithm NEST-JA works

correctly for nested join predicates containing the equality operator. However, If

we consider other operators, we discover another bug in Kim’s algorithm.

Assume the PARTS and SUPPLY tables shown in Figures 3.6 and 3.7

18

PNUM QOH

3 0

10 4

8 4

Table 3.6: PARTS table for re-

lations other than equality

PNUM QUAN SHIPDATE

3 4 7-3-79

3 2 10-1-78

10 1 6-8-78

9 5 3-2-79

Table 3.7: SUPPLY table for

relations other than equality

and the following type-JA query

Query Q5

SELECT PNUM

FROM PARTS

WHERE QOH = (SELECT MAX(QUAN)

FROM SUPPLY

WHERE SHIPDATE < PARTS.PNUM AND

SHIPDATE < 1-1-80)

This is the same as Kiessling’s query Q1 [7] except for the substitution of the

”<” operator for ”=” operator in the join predicate. The result according to

nested iteration semantics, assuming MAX({}) = NULL, is

PARTS.PNUM

8

Kim’s algorithm results in the following temporary table and transformed query

TEMP5(SUPPNUM,MAXQUAN) = (SELCT PNUM,MAX(QUAN)

FROM SUPPLY

WHERE SHIPDATE < 1-1-80

GROUP BY PNUM

19

Query T5:

SELECT PNUM

FROM PARTS P, TEMP T

WHERE P.QOH = T.MAXQUAN AND

T.SUPPNUM < P.PNUM

and the following results shown in Figures 3.8 and 3.9.

SUPPNUM MAXQUAN

3 4

10 1

9 5

Table 3.8: TEMP5

PARTS.PNUM

10

8

Table 3.9: FINAL RESULT with other

than equality bug

which does not match the results obtained by nested iteration. The problem is

that the temporary table created by Kim’s algorithm contains only aggregate in-

formation about tuples with the same join column value, whereas query Q5 asks

for aggregate information about a range of join column values.This was noticed

by the same Richard A Ganski and gave the solution described below.

3.2.5 Solution to the problem with Relations other

than Equality

The solution to this bug is similar to the solution to the COUNT bug perform a

join in the creation of the temporary relation, only this time it need not be an

outer join, unless the aggregate function is COUNT. The join in effect causes the

temporary table to include aggregate values over the proper range of join column

values. As before, the join predicate in the original query must be changed to

equality. This implies that only the equality operator may be the outer relation

and the temporary relation.

20

If this solution is applied to query Q5 and the last SUPPLY table, the outcome

is

TEMP6(SUPPNUM,MAXQUAN) = SELECT P.NUM, MAX(S.QUAN)

FROM PARTS P, SUPPLY S

WHERE SHIPDATE < 1-1-80 AND

S.PNUM < P.PNUM

GROUP BY P.PNUM

and query Q5 is transformed to

Query T6

SELECT PNUM

FROM PARTS P, TEMP T

WHERE P.QOH = T.MAXQUAN AND

P.PNUM = T.SUPPNUM

with the following results shown in Figures 3.10 and 3.11.

SUPPNUM MAXQUAN

10 5

8 4

Table 3.10: TEMP6

PARTS.PNUM

8

Table 3.11: FINAL OUTCOME with

the solution for other than equality bug

This matches the result obtained by nested iteration.

3.2.6 A Problem with Duplicates

The methods outlined above to solve the COUNT bug work correctly, if the

outer relation of the nested query contains no duplicates in the join column, but

a problem arises if it does contain duplicates. Assume the following PARTS and

SUPPLY relations shown in Figures 3.12 and 3.13.

21

PNUM QOH

3 6

3 2

10 1

10 0

8 0

Table 3.12: PARTS with dupli-

cates

PNUM QUAN SHIPDATE

3 4 8-14-77

3 2 11-11-78

10 1 6-2-76

Table 3.13: SUPPLY with dupli-

cates

For this example let us again assume Kiessling’s query Q2 if we apply query Q2 to

the above relations, the result by nested iteration would be shown in Figure 3.14.

PARTS.PNUM

3

10

8

Table 3.14: RESULT BY NESTED ITERATION

If we apply our new modified version of Kim’s algorithm, the results would be

as shown in Figures 3.15 and 3.16.

SUPPNUM CT

3 4

10 2

8 0

Table 3.15: TEMP3 for Kim’s algorithm

PARTS.PNUM

8

Table 3.16: FINAL RESULT with du-

plicates problem

This does not match the result obtained by nested iteration. The problem arises

because duplicates in the outer relation increase the COUNT over that column

in the temporary relation. This problem does not arise with the MAX and MIN

22

functions, but it does arise with the COUNT, AVG and SUM functions.This was

also noticed by the same Richard A Ganski and gave the solution described below.

3.2.7 Solution to the Duplicates Problem

In order to match the results obtained by nested iteration semantics for rela-

tions with duplicates in the outer join column, our algorithm must be modified

to remove duplicates before the join in the creation of the temporary table is

performed. This can be accomplished by projecting the join column of the outer

relation, and using the projection instead of the outer relation in any join required

to build a temporary table. The efficiency of the algorithm can be improved by

applying all simple predicates to the outer relation in the creation of the projec-

tion. In query Q2 this rule will have no effect since there are no simple predicates

in the outer query block.

Using Kesslings query Q2 as an example again, let TEMPl be defined as follows

TEMP1(PNUM) = (SELECT DISTINCT PNUM

FROM PARTS)

TEMPl is the projection of the PNUM column from PARTS TEMP3 will now be

defined as

TEMP3(SUPPNUM,CT) = SELECT T1.PNUM, COUNT(S.SHIPDATE)

FROM TEMP1 T1, SUPPLY S

WHERE S.SHIPDATE < 1-1-80 AND

T1.PNUM = + S.PNUM

GROUP BY T1.PNUM

and query T3 remains the same. The results are as shown in Figures 3.17, 3.18

and 3.19.

which matches the result obtained by nested iteration.

23

PNUM

3

10

8

Table 3.17: TEMP1

SUPPNUM CT

3 2

10 1

8 0

Table 3.18: TEMP3

with no duplicates

problem

PARTS.PNUM

3

10

8

Table 3.19: FINAL

OUTCOME

3.2.8 Modified algorithm NEST-JA2

The solutions to the bugs described in the previous section suggest a modified

algorithm for transforming type-JA nested queries, which shall be called algo-

rithm NEST-JA2. Thus algorithm consists of three major parts.

Algorithm NEST-JA2

1. Project the join column of the outer relation, and restrict it with any simple

predicates applying to the outer relation.

2. Create a temporary relation, joining the inner relation with the projection

of the outer relation. If the aggregate function is COUNT, the join must be

an outer join, and the inner relation must be restricted and projected before

the join is performed. If the aggregate function is COUNT(*), compute

the COUNT function over the join column. The join predicate must use

the same operator as the join predicate in the original query (except that

it must be converted to the corresponding outer operator in the case of

COUNT), and the join predicate in the original query must be changed to

=. In the SELECT clause, select the join column from the outer table in

the join predicate instead of the inner table. The GROUP BY clause will

also contain columns from the outer relation.

3. Join the outer relation with the temporary relation, according to the trans-

formed version of the original query.

To illustrate the action of algorithm NEST-JA2, let us apply it to Kiessling’s

query Q2 The three steps are then as follows

24

TEMP1(PNUM)= SELECT DISTINCT PNUM

FROM PARTS,

TEMP2(PNUM)= (SELECT PNUM

FROM SUPPLY

WHERE SHIPDATE < 1-1-80),

TEMP3(PNUM,CT) = (SELECT T1.PNUM,COUNT(T2.SHIPDATE)

FROM TEMP1 T1,TEMP2 T2

WHERE T1.PNUM = + T2.PNUM

GROUP BY T1.PNUM),

SELECT PNUM

FROM PARTS P,TEMP3 T3

WHERE P.QOH = T3.CT AND

P.PNUM = T3.PNUM

If these three steps are applied to the PARTS and SUPPLY relations with du-

plicates considered above, the results are shown in Figures 3.20, 3.21 and 3.22.

These match with the result obtained by nested iteration.

PNUM

3

10

8

Table 3.20: TEMP1 of

Modified NEST-JA2

SUPPNUM CT

3 2

10 1

8 0

Table 3.21: TEMP3 of

Modified NEST-JA2

PARTS.PNUM

3

10

8

Table 3.22: FINAL

OUTCOME of Modi-

fied NEST-JA2

25

3.3 Linear Queries with Multiple Blocks

The solution in [4] generalizes Ganski’s solution for queries with more than 2

blocks. A linear query with multiple blocks gives rise to a ’ linear J/OJ expres-

sion ’ where each instance of an operator is either a join or an outer join. A

general linear J/OJ expression would look like:

R1 J/OJ R2 J/OJ R3 J/OJ . . . J/OJ Rn

Relation R1 is associated with the outermost block, relation R2 with the next

inner block and so on. An outer join is required if there is a COUNT between

the respective blocks. In all other cases (AV G, MAX, MIN, SUM), we need

perform only a join. The joins and outer joins are evaluated using the appropriate

predicates. Since joins and outer joins do not commute with each other, a legal

order may be obtained by computing all the joins first and then computing the

outer joins in a left to right order (top to bottom if you like) [4]. Thus, the

expression R1 OJ R2 J R3 J R4 OJ R5 J R6 can be legally evaluated as ((RI OJ

(R2 J R3 J R4)) OJ (R5 J R6)). Since we can evaluate joins in any order, we

can choose the cheapest join order to join R2, R3, and R4.

It is worth pointing out here that the solution presented in [6] for multiple level

queries was incomplete in the sense that it does not discuss legal orderings when

joins and outer joins are present in the same expression.

After all the joins and outer joins have been evaluated, the aggregate functions

are evaluated in a bottom-up order after grouping the result by the appropriate

unique keys. This is best illustrated with an example.

Consider the three block linear query Example 1

SELECT R1.a

FROM R1

WHERE F1(R1)

AND R1.b OP1 (SELECT COUNT(R2.*)

FROM R2

26

WHERE F2(R2) AND F2(R2, R1)

AND R2.c OP2 (SELECT (COUNT(R3.*))

FROM R3

WHERE F3(R3) AND F3(R3, R2)

AND F3(R3, R1)))

The relation associated with block (or node) i is represented by Ri (i > 0). Lower

case letters (a, b, etc.) represent attribute names. A ’*’ is used to denote all

the attributes of a relation. Ri.# is some unique key of Ri. ri, ri’, ri” are each

used to denote a tuple of relation Ri. OPn (n > 0) is any one of the following

operators (<, 6=, <,≤, >,≥). Fi(Rj) represents a selection predicate in the ith

block on Rj. To simplify the notation, we will assume that all join predicates am

binary. A join predicate in the ith block is then represented as Fi(Rj, Rk), where

j, k > 0 and j 6= k.

In the above Example F1(R1), F2(R2) and F3(R3) are selection predicates

on R1,R2 and R3 respectively, while F2(R2, R1) is a correlation join predicate

between R1 and R2, F3(R3, R2) is a correlation join predicate between R3 and

R2, F3(R3, R1) is a correlation join predicate between R3 and R1.

The corresponding linear expression is R1 OJ R2 OJ R3 and hence a legal

order is (R1 OJ R2) OJ R3. The predicate for R1 OJ R2 is F2(R2, R1) and

the predicate for the outer join with R3 is F3(R3, R2) AND F3(R3, R1). We

now show how the query of above Example can be evaluated using set-oriented

operations. The result is obtained by executing more than one query. The result

from one query may be pipelined to the next query. The two queries in this case

are (not in strict SQL syntax!):

Query A:

SELECT INTO TEMP(R1.#, R1.a, R1.b, R2.*)

FROM R1, R2, R3

WHERE (R1 OJ R2) OJ R3

GROUP BY R1.#, R2.#

HAVING R2.c OP2 COUNT(R3.*)

27

Query B:

SELECT R1.a

FROM TEMP

GROUP BY R1.#

HAVING R1.b OP1 COUNT(R2.*)

The results from Query A are fed into Query B. Even though the selection

predicates (Fi(Ri), i = 1, 2, 3) have not been shown in Query A, they are applied

to the respective relations before they participate in the outer joins. The outer

join predicates are also implicit in Query A.

3.3.1 A Few Subtleties

In 1989 M. Muralikrishna noticed a few subtleties that were not mentioned in

[4] and deserve to be highlighted. The outer join between R1 and R2 results in

two sets of tuples, viz., (R1- X NULL) and R1R2. R1R2 denotes the set {(r1,

r2): F2(R2) AND F2(R2, R1) AND F1(R1)}, where the r1 tuple ∈ R1 and the

r2 tuple ∈ R2. Let R1+ denote the set of tuples of R1 present in R1R2 (tuples

of R1 that participated in the join with R2). R1- denotes the set R1 - (R1+)

(the tuples of R1 in the anti-join).

Similarly, let R1R2R3 denote the set {(r1, r2, r3): F3(R3) AND F3(R3, R2)

AND F3(R3, R1) AND F2(R2) AND F2(R2, R1) AND F1(R1)}. Let the set

of (r1, r2) tuples in R1R2 that joined with at least one tuple of R3 be denoted

by R1R2+. The set of (r1, r2) tuples that did not join with any tuple of R3 is

denoted by R1R2- and is equal to R1R2 - (R1R2+). Thus, the outer join with

R3 may yield up to three distinct sets of tuples, viz., (R1- X NULL X NULL),

(R1R2- X NULL), and R1R2R3 respectively.

The (GROUP BY . . . HAVING) operation in Query A has special semantics as-

sociated with it. For a given group of (r1.#, r2.#), if (r2.c OP2 COUNT(R3.*))

is true, the (r1.#, r2.#) group is passed along to Query B. However, if (r2.c

OP2 COUNT(R3.*)) is false, the (r1.#, r2.#) group cannot be discarded. If the

(r1.#, r2.#) is discarded and if this is the only group in which r1 was present,

28

COUNT(R2.*) associated with the r1 tuple is 0 and hence should be preserved.

If (r1.b OP1 0) is true, rl will be part of the result. The (r1, r2) tuple that does

not satisfy (r2.c OP2 COUNT(R3.*)) should be passed along to Query B as (r1,

NULL). Similarly, for tuples in the set (R1- X NULL X NULL), the GROUP BY

. . . HAVING operation passes them as (R1- X NULL) to Query B because the

predicate (r2.c OP2 COUNT(R3.*)) is false as (NULL OP 0) is false.

3.3.2 An Improved Dataflow Algorithm

In this subsection, we will discuss a new dataflow algorithm for nested queries with

COUNTS (and hence outer joins). We will illustrate how we would have routed

the three block query presented in Example 1, using the conventional dataflow

algorithm. The execution tree for the query in Example 1 is shown in Figure 3.1.

The nodes in the execution tree represent operations (restriction/join/group by

etc.), while the directed arcs represent information flow. Tuples always flow in an

upward direction. In Figure 3.1, it is important to notice that the conventional

dataflow algorithm sends the joining tuples as well as the anti-join tuples to

the immediate higher (parent) node. The sets that are propagated between the

operators of the execution tree of Figure 3.1 are shown along the respective

edges (using the notation of Section 3.3.1).

The set R1R2’ is derived from those tuples in R1R2R3 and (R1R2- X NULL)

that satisfy the predicate (R2.c OP2 COUNT(R3.*)), while the set (R1’ X NULL)

is derived from those tuples in R1R2R3 and (R1R2- X NULL) that don’t satisfy

the above predicate. Notice that the attributes of R2 have been replaced by

NULL for these tuples.

In the presence of outer joins, a better execution tree may be obtained by

sending the anti-join tuples to a node possibly higher than the parent node in

the execution tree. This will result in savings in message and processing (CPU)

costs. The new execution tree is shown in Figure 3.2.

In the first execution tree (Figure 3.1), we are shipping the (R1- X NULL X

NULL) tuples (from the second outer join node to the first group by node) and

29

Figure 3.1: Conventional Routing Method

the (R1- X NULL) tuples (from the first group by node to the second group by

node) unnecessarily. By doing so, we also incur the cost of processing them. In

the second execution tree (Figure 3.2), the (R1- X NULL) tuples are shipped

directly from the first outer join node to the second group by node.

30

Figure 3.2: Improved Routing Method

31

Chapter 4

Modified Query plans

32

In this Chapter, we describe the modifications to the query plans for unnesting

nested queries which are generated by the Integrated algorithm proposed by M.

Muralikrishna. We first study the Kim’s modified algorithm to avoid the COUNT

bug. This modified Kim’s approach is more efficient than Ganski’s solution. Now

we study queries with two blocks and then study queries with three or more

blocks.

4.1 Queries with two blocks

Now we take the following example of a 2 block JA type nested query:

SELECT R.a

FROM R

WHERE R.b OP1 (SELECT COUNT(S.*)

FROM S

WHERE R.c = S.c)

The temporary table created in Kim’s original unnesting algorithm remains

unchanged. However, base query has to be modified. We know that the COUNT

associated with a tuple of R that does not join with any tuple of S is 0. Thus, a

tuple of r ∈ R that does not join with any tuple of TEMP1 will be a result tuple

if (r.b OP1 0) is true. For a tuple r ∈R that joins with a tuple of TEMPl, r will

be a result tuple if (r.b OP1 TEMP1.count) is true. The join operator in Query

2 is replaced by an outer join. In addition, different predicates are applied to the

join (matching) tuples and the anti-join (non-matching) tuples to determine if

they belong to the result. Notationally, we write this as shown below:

Query 1:

TEMP1(c,count) = SELECT S.c, COUNT(S.*)

FROM S

GROUP BY S.c

Query 2:

SELECT R.a

FROM R, TEMP1

33

WHERE R.c = TEMP1.c - - - - - - OJ

[R.b OP1 TEMP1.count : R.b OP1 0]

The square brackets, in the last line of the above query, enclose the two predicates

which are separated by a colon. The first predicate is applied to the joining tuples

while the second tuple is applied to the anti-join tuples. Here we have proposed

a successful implementation for the above query modifying the kim’s algorithm.

The Query 2 can be written in SQL as follows:

SELECT R.a

FROM R LEFT OUTER JOIN TEMP1 ON R.c=TEMP1.c

WHERE R.b = TEMP1.count OR

(R1.b = 0 AND TEMP1.count IS NULL)

In the above query left outer join is taken as default outer join because we want

to retain the anti join tuples of table R.

We now show that under certain circumstances, the modified Kim’s method

may be more efficient than Ganski’s method. The heuristic argument is based

on (1) the number of tuples that flow from each node in the query plans cor-

responding to the two methods and (2) the number of tuples that have to be

processed at each group by and outer join node. The query plans for the two

methods are shown in Figures 4.1. The edges in Figures 4.1 are labeled by the

number of tuples flowing through those edges. Both methods involve accessing

relations R and S. Clearly |TEMP1| ≤ |S| and |R| ≤ |R OJ S|. Assume that

|S| < |R|. The number of tuples flowing from the group by node to the outer

join node in Kim’s method is equal to |TEMP1|. The number of tuples flowing

from the outer join node to the group by node in Ganski’s method is equal to

|R OJ S|. Clearly |TEMP1| <|R OJ S|. The number of tuples processed by

the groupby node and the outer join node in Kim’s method is each less than the

corresponding number of tuples in Ganski’s method. Hence if |S| < |R|, Kim’s

method should perform better than Ganski’s method. Here we need to notice

one more fact that Ganski’s method joins two base relations, whereas in Kim’s

method, we join a base relation with a temporary relation. As a result, Ganski’s

34

GROUP BY S.c

|TEMP1| =
SELECT S.c, COUNT (S.*)
FROM S

Outer join
R.c = TEMP1.C
[R.b OP1 TEMP1.count : R.b op1 0]

|R|

|S|

|TEMP1| =

|R|
|S|

Outer join
R.c = S.c

|R OJ S|

GROUP BY R.#
HAVING
R.b OP1 COUNT (S.*)

Modified Kim’s Method

Ganski’s Method

Figure 4.1: Modified Kim’s Method Vs Ganski’s Method

method might be able to employ more join methods. Clearly, the optimizer has

to pick the cheaper method more carefully than as outlined above. The impor-

tant point is that we can use Kim’s method even in the presence of the COUNT

aggregate when the correlation predicates are all equi joins.

4.2 Queries with three blocks

We now extend the modified Kim’s algorithm to queries with three blocks. We

first introduce a definition here.

Definition: An equi-join correlation predicate is called a neighbor predicate if

it references the relation in its own block and the relation from the immediately

enclosing block.

Consider the following example in which all the join predicates are neighbor

predicates.

Example 2:

SELECT R.a

FROM R

35

WHERE R.b OP1 (SELECT COUNT(S.*)

FROM S

WHERE R.c = S.c

AND S.d OP2 (SELECT COUNT(T.*)

FROM T

WHERE S.e = T.e))

The algorithm given in [8] worked bottom up. We follow the same approach here.

The result of the query is obtained by evaluating the following three unnested

queries.

Query 3:

TEMP1(e, count) = SELECT T.e, COUNT(T.*)

FROM T

GROUP BY T.e

Query 4:

TEMP2(c,count) = SELECT S.c, COUNT(S.*)

FROM S, TEMP1

WHERE S.e = TEMP1.e - - - - - OJ

[S.d OP2 TEMP1.count : S.d OP2 0]

GROUP BY S.c

Query 5:

SELECT R.a

FROM R, TEMP2

WHERE R.c = TEMP2.c - - - - - - OJ

[R.b OP1 TEMP2.count : R.b OP1 0]

Thus, we were able to extend the same principle to a three block query of

Example 2 and avoid the COUNT bug. It is easy to see how we can extend the

above solution to a query with more than three blocks as long as the correlation

predicates are neighbor predicates. The natural question then is: what happens

when we have non neighbor predicates. We address this in the next section.

36

4.3 Queries with non neighbor predicates

We start with the query shown in Example 3. This query is obtained by adding

the non neighbor predicate, R.f = T.f, in the third block of the query in Example

2. Surprisingly, the query becomes very hard to unnest in the presence of the

COUNT aggregates.

Example 3:

SELECT R.a

FROM R

WHERE R.b OP1 (SELECT COUNT(S.*)

FROM S

WHERE R.c = S.c

AND S.d OP2 (SELECT COUNT(T.*)

FROM T

WHERE S.e = T.e

WHERE R.f = T.f))

Evaluating bottom up, we would expect the three unnested queries to be as

follows:

Query 6:

TEMP1(e, f, count) = SELECT T.e,T.f, COUNT(T.*)

FROM T

GROUP BY T.e, T.f

Query 7:

TEMP2(c, f, count) = SELECT S.c, TEMP1.f, COUNT(S.*)

FROM S, TEMP1

WHERE S.e = TEMP1.e - - - - - OJ

[S.d OP2 TEMP1.count : S.d OP2 0]

GROUP BY S.c, TEMP1.f

Query 8:

SELECT R.a

FROM R, TEMP2

37

WHERE R.c = TEMP2.c AND R.f = TEMP2.f - - - - - - OJ

[R.b OP1 TEMP2.count : R.b OP1 0]

There are no surprises in Queries 6 and 8. In Query 8, each tuple of R joins with

at most one tuple of TEMP2. However, Query 7, as shown above, is incorrect!.

The objective of Query 7 is to compute COUNT (S.*) associated with every (c,

f) pair. Assume then that relations S and T are populated as shown in Figures 4.1

and 4.2.

c d e

10 2 100

10 0 100

10 1 200

10 0 200

10 3 200

10 0 300

Table 4.1: Table S

e f g

100 1000 1

100 1000 2

200 1000 3

200 2000 4

Table 4.2: Table T

Notice that we are selecting attributes from both S and TEMP1 in Query 7. We

are also grouping by attributes from both the relations. In case an S tuple does

not join with any TEMP1 tuples, we cannot meaningfully evaluate the query.

Let us try to understand what happens when an S tuple does not join with any

tuple of TEMP1. It is clear from the query of Example 3 that if an S tuple does

not join with any T tuple, then COUNT (T.*) is 0, irrespective of the value of

R.f. Therefore, such an S tuple will contribute to COUNT (S.*) if (S.d OP, 0)

is true.

There is another subtlety that we need to focus on. Assume that a tuple s

∈ S joins with one or more TEMP1 tuples. Let (TEMP1.f) denote the set of f

values in the joining TEMP1 tuples. We need to decide if s will contribute to

COUNT (S.*). If a tuple r ∈ R has as an f value that is in {TEMP1.f} , we know

that COUNT (T.*) associated with this (r, s) pair will be greater than 0. Then

s will contribute to COUNT (S.*) if (S.d OP2 TEMP1.count) is true. On the

38

other hand, for any tuple r ∈ R that has an f value that is not in {TEMP1.f},
the corresponding COUNT (T.*) will be 0. If (S.d OP2 0) is true, then s will

contribute to COUNT (S.*).

Using these observations, we now describe what the outer join operator of Query

7 must accomplish using the following pseudo code:

1 if no tuple of TEMP1 satisfies (S.e = TEMP1.e)

2 then output (S.c, all)

3 else for each tuple of TEMP1

4 satisfying (s.e = TEMP1.e)

5 {

6 if (S.d OP2 TEMP1.count)

7 then output (S.c, TEMP1.f)

8 else if (S.d OP2 0)

9 then output {S.c, ~{TEMP1.f})

10 }

The pseudo code focuses on one S tuple, s, at a time. The second component

of the tuple in Line 2 is a set that denotes all possible values of f. In Line 7

we output a tuple of the form (S.c, TEMP1.f). Line 9 indicates that we are

outputting one tuple (S.c, v{TEMP1.f}). The second component of the above

tuple is a set of values and is equal to the complement of the values present in set

{TEMP1.f}. It is clear that the outer join operator has become more complex

now! The group by operator in Query 7 is also a lot more complicated. The

group by operator can easily determine the group to which a tuple from Line 7

belongs to as both the c and f values are available. A tuple from Line 2 logically

belongs to all groups that have the same c value as this tuple since its f value

represents all possible values of f. A tuple from Line 9 belongs to all groups that

have the same c value as this tuple but whose (the group’s) f value does not

belong to set {TEMP1.f}. Logically, the number of such groups is bounded by

the size of the domain of f. Potentially, this size could be infinite!

We further illustrate the complexity of the outer join and the group by oper-

ations in Query 7 using the data stored in the relations S and T. We first use

39

Query 6 to compute TEMP1.

e f count

100 1000 2

200 1000 1

200 2000 1

Table 4.3: TEMP1

Assuming OP2 denotes equality, the outer join operator of Query 7 produces the

following output.

c second component comments

10 1000 from the 1st tuple of S

10 v{1000} from the 2nd tuple of S

10 1000 from the 3rd tuple of S

10 2000 from the 3rd tuple of S

10 v{1000,2000} from the 4th tuple of S

10 all from the 6th tuple of S

It should be easy to see that the first, third, and the last tuple in the above

table belong to the (10, 1000) group. The second, the fourth, and the last tuple

belong to the (10,2000) group. Similarly, the second, the fifth, and the last tuple

belong to the (10, x) group where x is any value except 1000 or 2000. The

group by operation of query 7 must take the output of the outer join operator

and produce TEMP2 (an infinite relation!) as shown in Table 4.4.

None of the fi’s in the above table are equal to 1000 or 2000. Notice that in

this example, for every c value we have generated all possible f values, and hence

the predicate (R.f = TEMP2.f) in Query 8 will always be satisfied. However, this

predicate helps us identify the correct matching tuple in TEMP2. We have not

been able to develop an efficient implementation for the group by operator of

Query 7. Perhaps, it might be easier to modify the outer join of Query 8. Until a

reasonable implementation is possible, we cannot employ Kim’s method when a

40

c f count

10 1000 3

10 1000 3

10 f1 3

10 f2 3

10 f3 3

...

Table 4.4: TEMP2

non neighbor predicate (T.f = R.f in this case) is present inside a COUNT block.

However, if the second COUNT in Example 3 is replaced by a non COUNT

aggregate, Query 7 would only have to perform a simple join. As in Dayal’s

solution, an outer join is used only when a COUNT aggregate is present between

the blocks.

In the next two subsections, we shall present a couple of strategies that will

enable us to generate more plans. The goal we are working towards is a new

unnesting algorithm that incorporates the ideas presented above.

4.3.1 Precomputing the last aggregate

As we mentioned in Section 3.3, a valid J/OJ ordering is obtained by performing

all the joins first, followed by the outer joins from left to right. Sometimes, we

can change this order as demonstrated by the next query.

SELECT R.a

FROM R

WHERE R.b OP1 (SELECT COUNT(S.*)

FROM S

AND S.d OP2 (SELECT MAX(T.d)

FROM T

WHERE R.f OP3 T.f))

The J/OJ expression for the above query is R OJ(S J T). Since there is no

correlation predicate between the S and T blocks, we have to perform a cartesian

41

product to compute (S J T). The outer join is then performed using the predicate

(R.f OP3 T.f). However, for each (r, s) pair, where r ∈ R and s ∈ S, MAX (T.d)

depends only on r. Hence, we can precompute MAX(T.d) associated with each

tuple of R as follows:

TEMP1(#, a, b, max)= (SELECT R.#, R.b, MAX(T.d)

FROM R, T

WHERE R.f OP3 T.f - - - - OJ

GROUP BY R.#)

Notice that | TEMP1 | = | R |. Essentially, TEMP1 has all the attributes of R

required for further processing along with the MAX (T.d) associated with each

tuple of R. We were able to compute MAX (T.d) in this fashion only because it

occurred in the last block. Any aggregate that does not occur in the last block

depends on the results of the blocks below it and hence cannot be evaluated

before the blocks below it are evaluated. Also, notice that we performed an

outer join between R and T even though we were computing MAX (T.d). This is

because COUNT (S.*) indirectly depends on each tuple of R as R is referenced

inside the third block which is nested within the second block. Hence we must

preserve all tuples of R. For a tuple of R with no joining tuples in T, the MAX

value is set to NULL. We can now rewrite the original query as follows:

SELECT TEMP1.a

FROM TEMP1

WHERE TEMP1.b OP1(SELECT COUNT(S.*)

FROM S

WHERE S.d OP2 TEMP1.max)

It is clear that it is possible to precompute the bottom most aggregate (BMA)

if the number of outer relations referenced in the last block have already been

joined. In the above example, the BMA depended only on one outer relation.

4.3.2 Performing outer joins before joins

As pointed out repeatedly, one correct evaluation order of a J/OJ expression is

to perform the joins first followed by the outer joins from top to bottom. In this

42

section we show that we may also proceed in a strictly top-down order, performing

the joins and outer joins in the order they occur. As we shall see in Section 4.6,

proceeding in a top down manner may enable us to use Kim’s algorithm for a

larger number of contiguous blocks at the end of the query. However, care must

be taken to ensure that any join that is present just below an outer join is also

evaluated as an outer join. We again illustrate with an example.

SELECT R.a

FROM R

WHERE R.b OP1 (SELECT COUNT(S.*)

FROM S

WHERE R.c OP2 S.c

AND S.d OP2 (SELECT MAX(T.e)

FROM T

WHERE S.e OP4 T.e

AND R.f OP5 T.f))

The J/OJ expression is R OJ (S J T). The join predicate between S and T is

(S.e OP4 T.e) and the outer join predicate is (R.c OP2 S.c AND R.f OP5 T.f).

Assume that the join between S and T is very expensive and should be possibly

avoided. Could we evaluate (R OJ S) first? It turns out that we can indeed

perform (R OJ S) first. However, some precautions/modifications are necessary.

It is clear that if an R tuple has no matching S tuples, the count associated

with that R tuple is 0. As pointed out in [10], this R tuple may be optionally

routed to a higher node in the query tree so that it does not participate in the

next join operation with T. We thus need to consider only the join tuples of the

form (r, s) from the outer join, where r ∈R and s ∈ S. Let us focus our attention

on a single tuple r of R. When the join with T is evaluated using the predicate

(Se OP4 T.e AND R.f OP5 T.f), it is quite possible that none of these (r, s)

tuples join with any tuples of T. In this case, the r tuple will be lost. However,

if (r.b OP1 0) is true, r is a result tuple and hence must be preserved. On the

other hand, if some of the (r, s) tuples do join with some T tuples, it may so

happen that after we do the group by by (R.#, S.#) and evaluate MAX (T.d),

none of the s.d values in the (r, s) tuples satisfy (s.d OP3 MAX (T.d)). We may

43

be tempted to discard all the (r, s) groups. Again if (r.b OP1 0) is true, we need

to preserve r.

We can preserve r if we perform the join between S and T as an outer join.

Also, the group by operator must not discard any (r, s) group not satisfying (s.d

OP3 MAX (T.d)). Instead, it must pass it on preserving the R portion of the

tuple and nulling out the S portion of the tuple.

Similar ideas were used in [10] when unnesting tree queries. Summarizing, if

we encounter the expression R OJ S OJ T J U J V, we could evaluate it as ((R

OJ S) OJ (T J U J V)). The above order corresponds to evaluating all the joins

first. Another evaluation order could be ((((R OJ S) OJ T) OJ (U J V))). Now

we have an outer join between T and U. Carrying this idea one step further, the

above expression may also be evaluated as ((((R OJ S) OJ T) OJ U) OJ V). As

we shall see in the next section, joining relations in a top down order may enable

us to employ Kim’s method for a larger number of blocks.

4.4 An integrated algorithm

In this section we describe a new algorithm that generates execution plans by

combining the ideas presented in above Sections. We have proposed the cheapest

query plan among all others. Before we describe the new algorithm, we introduce

a fairly simple graphical notation for JA type queries. The new algorithm will

operate on graphs.

The graph G = (V, E) for a JA type query consists of a set of vertices V

and a set of directed edges E. There is a one-one correspondence between the

blocks of the query and the elements of V. Each element of V, except for the

first vertex, is labeled either C (COUNT) or NC (Non COUNT). This labeling

is clearly suggestive of the kind of aggregate (COUNT or Non COUNT) present

in that block. The vertices are numbered 1 through d, where d is the current

number of vertices in the graph. A directed edge is drawn from vertex i to j (i

< j) if there is a correlation predicate in the jth block between the relations of

blocks i and j. In essence, the graph is a join graph.

44

Kim’s method may be applied to the last k blocks of a query (0 ≤ k ≤ d) if

the last k vertices of the graph of the query satisfy the following properties:

• The in degree of every C vertex is at most 1.

• The edge incident on a C vertex corresponds to a neighbor predicate.

• All the edges incident with the last k vertices correspond to equi-join cor-

relation predicates.

• The relations in the first d-k blocks have already been joined.

The BMA may be precomputed if the in degree of the last vertex is at most 1.

The operations on the graph are as follows:

• When the relations of two or more blocks are joined, the corresponding

vertices are collapsed into one vertex. The edges adjacent to these vertices

are removed, while all the edges that connect these vertices to other vertices

are preserved. Multiple edges are replaced by a single edge.

• Let d-l and d be the last two vertices in the graph. If the BMA is computed,

the last vertex d is removed from the graph and the edge incident on d is

connected to d-l.

Notice that we may be able to apply Kim’s method only after joining some rela-

tions. For example, we may apply Kim’s method to the last block after joining

R and S in the query of Example 3. This is because the predicate (R.f = T.f)

becomes a neighbor predicate only after relations R and S are joined. Thus, the

number of blocks for which we may apply Kim’s method can change dynamically.

Similarly, the BMA may have originally depended on more than one outer relation

but after these relations have been joined, the in degree of the last vertex will

become 1. The BMA may be precomputed at this point.

When a series of consecutive m joins are encountered in a J/OJ expression,

one may be tempted to evaluate all the joins using the cheapest order. It will

become evident from the example at the end of this paper that we must evaluate

joins incrementally. In other words, we must evaluate the first i joins at a time,

45

where 1 ≤ i ≤ m. This ensures that we may be able to apply Kim’s method to

a larger group of contiguous blocks at the end of the query.

We are finally ready to present the new algorithm, unnest, in pseudo code.

The input to the algorithm is the graph G of the query and the output is a set of

query plans. We shall not describe how the output is specifically constructed as

this is implicit in the operations on the graph and should be fairly self evident.

References to G’ in unnest denote the new graph derived from G.

unnest(G)

{

if (the BMA can be precomputed)

{ compute the aggregate.

unnest (G’);

}

if (Kims method can be applied to the

remaining blocks)

{ apply Kims method

return;

}

if (J--J-----J---OJ---...) is encountered

{ for (i = 1; i <= m; i++)

evaluate the first i joins using the

cheapest join order.

unnest (G’);

}

if (OJ--J---J--.....---J---OJ---...) is encountered

{ for (i = 1; i <= m; i++)

evaluate the first i joins using the

cheapest join order.

unnest (G’);

evaluate the first OJ; replace the

first J by OJ.

unnest (G’);

46

}

}

We illustrate the working of the algorithm on the following query whose graph is

shown in Figure 4.2.

SELECT R.a

FROM R

WHERE R.b OP1 (SELECT COUNT(S.*)

FROM S

WHERE R.c = S.c

AND S.d OP2 (SELECT AVG(T.e)

FROM T

WHERE S.e = T.e

AND R.f = T.f

AND T.g OP3 (SELECT SUM(U.g)

FROM U

WHERE S.h = U.h

AND T.i = U.i)))

1 2 3 4

C NC NC

Figure 4.2: Graphical Representation of Integrated Algorihm

The J/OJ expression is R—OJ—S—J—T—J—U. The following query plans, as

shown in Figures 4.3 to 4.8, are possible:

• (a) Apply Kim’s method to blocks 2, 3, and 4.

47

• (b) Join R and S and apply Kim’s method to blocks 3, and 4. Since the

outer join between R and S is performed before the join, the first join is

now evaluated as an outer join.

• (c) Join R, S, and T and apply Kim’s method to block 4. Notice that both

joins are now replaced by outer joins.

• (d) All joins have been replaced by outer joins, followed by three group by

operations.

• (e) Join relations S, T, and U first, followed by the outer join. This amounts

to applying the general solution for the entire query.

• (f) Join relations S, T, and U first. Since the BMA depends only on

relations S and T, the BMA is computed before the outer join with R.

Notice that it was important to evaluate the joins incrementally. Most of the

outer join nodes in Figures 4.3 to 4.8 have two output edges. The vertical edge

represents the anti-join tuples, while the other edge represents the join tuples.

Similarly, the groupby-having nodes have two output edges. The vertical edge

represents the groups that did not satisfy that condition in the having clause.

These groups have certain portions nulled out. For example, in Figure 4.6, groups

flowing from the first groupby-having node to the topmost groupby-having node

along the vertical edge are of the form (R, NULL) [10]. Also, Figures 4.3 to

4.8 have edges that route tuples to a node much higher in the tree than the

immediate parent. As pointed out in [10], this optional but leads to savings in

message costs.

48

Figure 4.3: Query plan (a)

4.5 Flaws in Integrated Algorithm

The above explained Integrated algorithm contains some flaws in Query plans

(b), (c) and (d). They are described as follows:

1. let us consider a case in Query plan (b) when certain join tuple from the

outer join operation (R OJ S) doesn’t find any match in outer join operation

in the next higher layer and finding the path of anti join tuples to reach the

49

Figure 4.4: Query plan (b)

top most layer. In this case this anti join tuple is certain to come in the

final outcome of the query if R.b is 0. But this not happening here because

this anti tuple is carrying the primary key value of table S(Ex: S.srn here)

to the top most layer. There the predicate (R.b OP1 COUNT(S.srn))

becomes false, since COUNT(S.srn) in not zero for the reason S.srn is not

null.

50

Figure 4.5: Query plan (c)

2. The same problem in Query plan (c) also, the outer join operation between

the join tuples of outer join (R OJ S) and table T is propagating the primary

key value of table S to the top most layer. There these anti join tuples are

certain to appear in the final outcome of the query if R.b is 0. But this

not happening because the predicate (R.b OP1 COUNT(S.srn)) becomes

false, since COUNT(S.srn) in not zero for the reason S.srn is not null.

51

Figure 4.6: Query plan (d)

3. The same problem in Query plan (d) also, as explained above.

This is a common problem for all types of query plans which join R and S

tables pairwise. The general problem lies when we join two tables which has a

COUNT aggregate function between them. In the above example the problem

has occurred in the query plans when we join tables R and S pairwise as there is

52

Figure 4.7: Query plan (e)

a COUNT aggregate function between them. The solution is given below.

53

Figure 4.8: Query plan (f)

4.6 Solutions to the flaws in Integrated algo-

rithm

Join the tables R, S and the resultant table of the right wing together. Then

propagate the primary key value of 3rd table to the top most layer as it is 2nd

54

table primary key value. This change is only for anti join tuples resulted from

the outer join and where as for join tuples it would be same as it was before.

In this case, S.srn would be null for all anti join tuples and then (R.b OP1

COUNT(S.srn)) becomes true if R.b is zero. Then this tuple appears in the final

outcome of the query as the predicate (R.b OP1 COUNT(S.srn)) becomes true.

Applying the above solution to the Query plan(b) becomes joining(Outer join)

the tables R, S and the resultant table of the right wing together and passing the

primary key value of the 3rd table to the top most layer as it is primary key value

of table S. And also same for Query plans (c) and (d), joining(Outer join) tables

R, S and T together and propagate the primary key value of table T (Ex: T.srn

here) to top most layer. Like this, the solution works fine for all Query plans.

Now the Query plans (b), (c) and (d) are changed to as shown in Figure 4.9,

4.10 and 4.11 respectively.

The general solution is not to join the two tables when there exists a COUNT

aggregate function between them, and to join these two tables with another table

together in a query plan of unnesting a nested query.

55

Figure 4.9: Modified Query plan (b)

56

Figure 4.10: Modified Query plan (c)

57

Figure 4.11: Modified Query plan (d)

58

Chapter 5

Implementation

59

As described in previous chapters, Kim’s modified algorithm is an extension

to original Kim’s algorithm of unnesting the nested queries. This algorithm

avoids the COUNT bug successfully in all cases of nested queries. And also

this shows the better performance as compared to the later advancements so far

after Kim’s original unnesting algorithm. In terms of the execution time, Kim’s

modified algorithm is the computationally better unnesting algorithm over the

techniques presented in [6], [4]. This performance analysis is described in the

following section.

To implement the routing methods shown in Section 3.3.2 we used the tem-

porary tables for the propagation of intermediate data to the upper layers query

execution plan. The data set of tables R, S, T and U is used to implement the

unnesting query plans for the given 4 block nested query in section 4.4. Here

also we used temporary tables for the propagation of intermediate data to the

upper layers in the implementation of query plans. We have carried out these

experiments for different data sets of varying sizes from 100 to 1000 tuples in

each relation. These results are taken as average of some possible iterative exe-

cution of each query plan. The flaws are identified in query plans generated by

integrated algorithm and their solutions are also explained in the Sections 4.5 and

4.6. The performance analysis of all those query plans is described in following

Section.

5.1 Performance analysis

To verify the efficiency of unnesting algorithm Kim’s modified algorithm, we have

taken 3 block nested query and generated the query plans using Nested iteration

approach, Ganski’s approach and Kim’s modified algorithm. For each query, we

measured the average execution time of multiple runs of the query as primary

performance metric. The graphs of the results plot the elapsed time on Y-axis

and the size of the data tables. The size of the tables denotes the number of

tuples in each relation table in the query. Here we have taken nearly same no.of

tuples in each table. We chose the size of the table as a parameter due to the

fact that it directly relates to the intermediate result, which in turn, relates to the

overhead corresponding to fetching tuples from the SQL engine. There by the

60

elapsed time varies relative to the size of the table for all unnesting algorithms.

Implementations are done in DB2 server with the configuration, IBM eServer

POWER5 520, 2-way 64 bit 1.50GHz., L2 cache 1.9MB, L3 cache 32Mb, 2 GB@

266MHz. DDRI SDRAM, 2 X 73.4 GB HS U3 SCSI HDD with RAS features.

Our first experiment was done on 3 block nested query shown in example 2 of

Section 4.2. The experimental results are shown in figure 5.1.

Figure 5.1: Performance show of Kim’s modified algorithm

The next experiment was the performance analysis of all query plans generated

by the integrated algorithm for the given 4 block nested query. The experimental

results are shown in figures 5.2, 5.3 and 5.4. Here we have taken modified query

plan (b), modified query plan (c) and modified query plan (d) as a replacement

for query plans (b), (c) and (d) given in [9] respectively. This is due to the flaws

61

they have, which we have already explained in Section 4.5.

Figure 5.2: Nested iteration Vs unnesting query plans

Figure 5.2 shows the performance comparison of original nested iteration query

with the unnesting the query plans for the same query. Query plans (a) and (b)

shows better performance among all other query plans. Where as Figure 5.3 is

only a comparison plot of Nested iteration query with query plans (a), (b), (c)

and (d), because the other 2 query plans (d) and (f) are more expensive than

the nested query in terms of elapsed time. Thats why for better exploitation of

result we have omitted those 2 query plans from the results. And the same thing

in Figure 5.4 we have shown only query plans (a), (b), (c) and (d). With the

above experimental setup we can conclude that query plans (a) and (b) shows

significantly grater reduction in execution time of unnested query.

62

Figure 5.3: Nested iteration Vs query plans (a),(b),(c) and (f)

Figure 5.4: Performance show of query plans (a),(b),(c) and (f)

63

Chapter 6

Conclusions and Future work

64

6.1 Conclusions

In this thesis, we have given a successful implementation for a proposal made

by M. Muralikrishna to avoid a COUNT bug in Kim’s algorithm. In addition to

this we have also improved the query plans generated by Integrated algorithm

proposed by him, which enhances and incorporates the previously known tech-

niques for unnesting JA type queries. This improvement is by eliminating the

flaws in this algorithm. And also we have proved that one query plan (i.e Query

plan (a)-applying Kim’s method to all query blocks) among the all other as the

cheapest one. There is one more query plan(i.e Query plan(b)-joining R and S

and apply Kim’s method to blocks 3, and 4) which is also giving very close results

to this one, but the former one is the best.

6.2 Future work

As far as now we have not been successful in unnesting queries with non neighbor

predicates, we are in the process of finding a meaningful implementation for this.

It appears that we can unnest the various SQL predicates using the techniques

presented in this thesis. It is hoped that more commercial systems will unnest

SQL queries in the near future by creating an interface to the query optimizer of

commercial database machines with the implementation of Integrated algorithm

explained Chapter 4.

65

Bibliography

[1] Astrahan, M. M, and Chamberlin, “Implementation of a structured english

query language,” ACM, vol. 18, no. 10, pp. 580–588, October 1975.

[2] Astrahn, M. M, B. M. W, Chamberlin, D. D, Eswaran, K. P, Gray, J. N, G. P.

P, K. W. F, Lone.RA, McJones, PR.Mehl, J. W, P. R, T. L, Wade, B. W, and

Watscit, “System r relational approach to database management,” ACM

Trans Database Syst, vol. 1, no. 2, pp. 97–137, June 1976.

[3] Codd and E. F, “Extending the database relational model to capture more

meaning,” ACM Trans Database Syst, vol. 4, no. 4, pp. 397–434, December

1979.

[4] U. Dayal, “Of nests and trees: A unified approach to processing queries

that contain nested subqueries, aggregates, and quantifiers,” Proc. VLDB

Conf., pp. 197–202, September 1987.

[5] R. Epstein, “Techniques for processing of aggregates in relational database

systems,” ERL/UCB Memo M79/8, Electronics Research Laboratory, Univ.

of California, Berkeley, February 1979.

[6] R. A. Ganski, “Optimization of nested sql queries revisited,” Proc. SIGMOD

Conf., vol. 16, pp. 22–33, may 1987.

[7] W. Kiessling, “Sql-like and quel-like correlation queries with aggregates

revisited,” UCB-ERL Memorandum No. 84/75. University of California,

Berkley, September 1984.

[8] W. Kim, “On optimizing an sql-like nested query,” ACM Transactions on

Database Systems (TODS), vol. 7, no. 3, pp. 443 – 469, 1982.

66

[9] M.Muralikrishna, “Improved unnesting algorithms for join aggregate sql

queries,” Proceedings of the 18th International Conference on Very Large

Data Bases, pp. 91 – 102, 1992.

[10] M. Muralikrishna, “Optimization and dataflow algorithms for nested tree

queries,” Very Large Data Bases Proceedings of the 15th international con-

ference on Very Large data bases, pp. 77–89, August 1989.

[11] A. Rosenthal and C. Galindo-Legaria, “Query graphs, implementing tress,

and freelyreorderable outerjoins,” Proc. SIGMOD Conf., pp. 291–299, May

1990.

67

