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Abstract 
 

 The project is aimed at understanding the existing very deep sub-micron (VDSM) 

implementation of a digital design, analyzing it from the point of view of power, area and 

timing and to come up with solutions and strategies to optimize the implementation in terms 

of power, area and timing. The effort involved, to understand the constraints, reasons and the 

requirements resulting in the existing implementation of the design. Further, various 

experiments were carried out to improve the design in various aspects like power, area and 

timing. The tradeoffs required and the benefits of each of the experiments were contrasted 

and analyzed. The optimum solutions and strategies which balance the requirements were 

tried out and published at the end of the report. 
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1. INTRODUCTION 
 

1.1 INTRODUCTION:   

             Due to the evolution of Very-Deep-Submicron (VDSM) technology, the 

semiconductor industry is facing exciting new challenges all the time. As minimum layout 

dimensions continue to shrink and the number of functions that can be put on a SOC 

continues to grow, signal integrity has become a major issue causing chip failures. Large 

power dissipation in the chip due to sub-threshold leakage is becoming uncontrollable. 

Leakage power is taking more importance as it becomes a dominant component of the overall 

power in a chip.  

 

           Physical design of VLSI systems is the process of transforming structural 

representation of a VLSI system into layout representation. The objective of physical design 

automation is to carry out such transformation efficiently using place & route tool so that the 

resulting layout satisfies the topological, geometric, timing and power-consumption 

constraints of the design. This thesis throws light on various design automation problems in 

the physical design process of VLSI circuits, including floorplanning, routing, compaction, 

leakage power reduction and signal integrity effects. Physical implementation of a design has 

been considered in the purview of the various design and automation constraints, alternate 

methods of implementations analysed and the optimal solutions recommended. 

 

1.2 MOTIVATION:   

 Conventionally, the challenge in VLSI design was to write the RTL code that would 

result in the most efficient gate level implementation of the logic. With the advancements in 

the Electronic Design Automation (EDA), the synthesis tools have become sophisticated 

enough to map an RTL description to an efficient gate level implementation based on the 

constraints given to them. Also with the shrinking transistor sizes and the corresponding 

reduction in the physical area of logic gates, the worries of having a few extra gates have 

disappeared as the differential gate area is negligible. On the other hand, the challenges in the 

physical design has been increasing with the decrease in the transistor sizes, especially in 

relation to the interconnect sizes. This has resulted in a focus shift from logic design to 

physical design in the chip design world and most of the research work is going in the 

physical design of integrated circuits. This thesis aims at analyzing some of these physical 

design parameters and techniques using EDA tools. 
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1.3 BACKGROUND LITERATURE SURVEY: 

 In the late 1980s, when the average chip contained fewer than 10,000 gates, logic 

synthesis tools arrived in the marketplace. To decide whether or not a synthesis result was 

good, designers looked at the speed and area reported by the synthesis tool. Thus, the Quality 

of Results goodness measure was born. The ever increasing demand for integrated circuits, 

strict price/performance goals, time-to-market pressures and rapid developments in 

semiconductor process technologies are driving designs of 0.35 micron and below. These 

processes have come to be known as deep sub-micron technologies or very deep sub-micron, 

with the rapid shrinking of process technologies, an entire range of issues including signal 

integrity [13],[15] problems such as on-chip crosstalk [21], IR drop [9],[14], power 

consumption [22] and accurate parasitic extraction need to be addressed. Whenever the 

industry moves from one technology node to another, existing power constraints are 

tightened and new constraints emerge. Power-related constraints are now being imposed 

throughout the entire design flow in order to maximize the performance and reliability of 

devices. In the case of today's extremely large and complex designs, implementing reliable 

power network and minimizing power dissipation [19] have become major challenges. 

Smaller process geometries have led to a dramatic increase in problems due to IR drop i.e. the 

voltage drop [20] across in a chip’s power network. As the term implies, IR drop results from 

the current and resistance associated with the power network. Also the number of metal 

layers [18] will increase to 8 in the near future and will even grow to 10 or more. The high 

packing density of the transistors and the many levels of metal interconnect lead to all kinds 

of electrical problems that have to be solved. These problems are grouped as deep-submicron 

problems. Typical examples are, cross talk between neighboring interconnects lines, parasitic 

capacitors, resistors and inductors in wires, electro-migration etc. In the past, most of the 

delay [16] was caused in the logic cells. Today and certainly in the next generation processes, 

80% or more of the total delay is due to interconnects. 

 

1.4 THESIS CONTRIBUTION:   

          The physical design flow and the concepts behind each step of the process have been 

studied. Then the constraints, reasons and the requirements resulting in the existing 

implementation of the physical design have been studied. Further, various experiments have 

been carried out to improve the design in various aspects like power, area and timing. The 

tradeoffs required and the benefits of each of the experiments have been contrasted and 

analyzed. 
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1.5 THESIS OUTLINE: 

Following this introduction the remaining part of the thesis is organized as under, 

Chapter 2 provides the industry standard physical design flow and brief description of 

physical design methodology. Chapter 3 provides design details used for physical design 

implementation. Chapter 4 discusses the significance of different parameters associated with 

physical design flow. Chapter 5 discusses the limitations and constraints of block level 

physical design implementation. Chapter 6 discusses the various experiments carried out to 

improve the design performance and also provides the analysis and importance of each 

experiment. Chapter 7 summarizes the work undertaken in this thesis and points to possible 

directions for future work. 
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2. PHYSICAL DESIGN FLOW 

 
2.1 INTRODUCTION: 

 Physical design of VLSI systems is the process of transforming structural 

representation of a VLSI system into layout representation. The objective of physical design 

automation is to carry out such transformation efficiently using EDA tools so that the 

resulting layout satisfies topological, geometric, timing and power-consumption constraints 

of the design. 

 

2.2 CHALLENGES IN PHYSICAL DESIGN IMPLEMENTATION: 

 Designing a high performance VLSI chip using process technologies at 0.35um or 

below is a tremendous challenge. While market windows continue to shrink, design 

complexity is rapidly increasing due to the combination of finer geometries, design size, 

higher clock frequency and lower voltage. As a result, interconnect and signal integrity has 

emerged as dominant factors to be managed in order to successfully complete designs. This 

renders obsolete most of the conventional design flows that have not been designed to 

address all of these new effects. Simply making incremental improvements to existing tools 

and methods will not address the full extent of the issues.  

  

New technologies and flows are required that have been designed from the ground up 

for challenges associated with design done at 0.35um and below. Challenges in physical 

design accelerating advances in process technology have resulted in a number of key 

challenges facing designers of multi-million gate chips today: timing closure, signal integrity, 

design variable interdependence, clock and power routing, design sign-off and design size. 

Timing closure continues to be an illusive goal. Today, timing closure is very complex and 

can only be assured by accurately modeling and evaluating the propagation delays of the 

library cells, the physical placement of the cells and the electrical characteristics of the 

interconnect. Signal integrity has emerged as a determining factor to not only the timing, but 

to the functional integrity of the chip as well. As the ratio of cross-coupling capacitance to 

inter-layer capacitance increases, the rate of timing and functional violations due to signal 

integrity problems also rises.  
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Signal integrity (SI) issues such as crosstalk delay and noise become critical for 

system-on-chip (SoC) designs at about the 150-nanometer (nm) technology node and 

unavoidable at 130-nm and below. These SI issues can lead to major timing-closure 

difficulties. Fortunately, several years of experience with SI at very deep submicron 

geometries have led to efficient methodologies throughout the design flow for preventing, 

detecting and fixing SI effects. Given the extent of the SI design challenge, designers must 

take steps to ensure signal integrity throughout the design cycle. With feature sizes ranging 

from 180 to 65nm, today's very deep submicron (VDSM) semiconductor technologies pose 

new modeling challenges to design closure and timing sign-off. To quickly achieve timing 

closure and sign-off, Spice-level accuracy at higher levels of abstraction (starting with cell 

level) is required. However, problems with inconsistent use and inaccuracies of current cell 

library formats make this difficult. Because delay calculation is responsible for timing closure 

and sign-off throughout the design flow, it is important to consider the impact of library 

model accuracy and consistency on delay calculation.  

  

While there are many design variable interdependencies to be dealt with, perhaps the 

most important is the trade-off between routability, timing, and power consumption. 

Optimizing for any one may cause problems with the others. Clock and power networks 

consume massive amounts of routing resources. Their construction and analysis must be 

started early and they must be tailored for an individual chip’s requirements. Clock trees are 

frequently inserted after detailed placement is complete. Power networks are frequently pre-

determined based on statistical or empirical estimates. Physical design is now as important as 

logic design in determining whether the requirements are achievable. Design size has 

exceeded the limitations of gate-level design tools. It is not possible to design and implement 

a multi-million gate chip as an indivisible whole. The chip must be planned at a high level, 

partitioned into smaller pieces, and then completed using lower level tools. 

 
 
2.3 INDUSTRY STANDARD PHYSICAL DESIGN FLOW: 
 
 The following diagram describes the industry standard physical design flow. The 

detailed description of each step has given in the next sessions. 
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Libraries 
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Fig 2.1: Industry standard physical design flow 
 
2.4 INPUTS TO PHYSICAL DESIGN: 
 

2.4.1 Netlist:  

 Synthesizing a design results in a transformation from an HDL description into a 

netlist. A netlist is a list of necessary gates needed to implement the RTL architecture and 

how they are connected (taken from a technology and vendor dependent library). A netlist is 

used as input to the Place and Route (P&R) process and to verify functionality after synthesis 

when the gate delays are included. Since a netlist does not contain any information about 

physical placement of the gates on the chip or the lengths of the connecting wires, wire 

delays can not be simulated using a netlist.  

2.4.2 Generating a Technology File: 

 The technology files provides the software with design rules for placement and 

routing, and interconnect resistance and capacitance data for generating RC values and 
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wireload models for the design. The technology file also contains process information for the 

metals interconnect layers, including metal thickness, metal resistance, and line-to-line 

capacitance values of metal layers, for determining coupling capacitance. 

2.4.3 Preparing Timing Libraries 

 Timing library files contain timing information in ASCII format for all of the standard 

cells, blocks and I/O pad cells. 

2.4.5 Design Constraints: 

 Maximum fanout, maximum transition time, clock definitions, clock uncertainties for 

setup/hold times, size of the floor plan, I/O pin locations, input/output delays for the design. 

 
2.5 FLOORPLANNING: 

 As the focus shifts from logic to interconnect, floor planning assumes an increasingly 

important role. Floorplanning is the process of identifying cells/structures that need to be 

placed close together in order to meet the design objectives such as die-size and performance. 

At the same time we allocate space for clock and power wiring and decide on the location of 

the I/O and power pads. At the start of floorplanning we have a netlist describing memory 

modules, the logic cells within the block, and their connections. The input to a floorplanning 

tool is a hierarchical netlist that describes the interconnection of the memory modules, the 

logic cells (NAND, NOR, D flip-flop, and so on) within the block, and the logic cell 

connectors.  The netlist is a logical description of the ASIC, the floorplan is a physical 

description of an ASIC. Floorplanning is thus a mapping between the logical description (the 

netlist) and the physical description (the floorplan).  

2.5.1 Macro placement: 

Macros are generally placed around the peripheral of the block because: 

 To provide a contiguous area for standard cells. 

 Higher freedom for place-and-route tools during placement and routing of the 

standard cells. 

The goal of macro placement is to: 

 Reduce timing-critical paths between the macros and interfacing logic. 

 Reduce interconnections in the following order: 

 Input/Output pins to macros. 

 Macro to macro. 

 Macro to standard cells  
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2.5.2 Power Planning: 

 Power planning is the process of defining the power and ground nets of design and 

specifying their structures, which distribute power through your design: 

• Power rings 

• Power mesh 

• Power Rails 

2.5.2.1 Power rings: 

Two types of power ring structures are, 

1. Core ring 

2. Macro ring 

Core ring:  

 A ring that encloses the core with one or more sets of power and ground rings and 

provides external power from the pad ring to core structures. Typically, the top and bottom 

sides and any other horizontal segments of a core ring are located on a horizontal metal layer; 

while the left, right, and any other vertical segments are on a vertical layer. Vias connect the 

ring sides, if necessary. 

Macro ring:  

 A ring that encloses one or more macros with power and ground rings, providing 

those macros with power. Macro rings do not always have four sides, and they often have 

wire extensions from one or more sides that connect to nearby power and ground wires of the 

same net. 

2.5.2.2 Power mesh:  

 One or two repeated sets of pairs of parallel (vertical or horizontal) power and ground 

wires that supply power to the core. The mesh can consist of a single net or a pattern of two 

or more nets that repeat at regular intervals across the design. 

2.5.2.3 Power rails:  

 Power and ground wires that supply power to the standard cells that are placed in 

standard cell rows. Power rails draw power from rings and mesh to which they are connected. 

Power rail wires are on a single layer. 
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Fig 2.2: Different types of power structures 

 

2.6 PLACEMENT: 

 During placement, all standard cells are positioned automatically within the block 

based on timing, size, and power constraints. Placement determines the utilization of the 

block, where utilization factor is defined as the ratio of gate and routing areas to the total area 

of the block. The goal of a placement is to arrange all the logic cells within the block. Ideally, 

the objectives of the placement step are to 

• Guarantee the router can complete the routing step  

• Minimize all the critical net delays  

• Make the chip as dense as possible  

The placement of the standard cells can be controlled by the user depends upon either 

timing driven placement or congestion driven placement.  

2.6.1 Timing-Driven Placement: 

 During timing-driven placement, the placement program balances the importance of 

meeting setup timing constraints with routability. It identifies the most critical nets in the 

design and runs placement to meet the constraints. For less critical nets, Placement gives less 
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attention to meeting timing constraints and more attention to enhancing routability. A 

complete constraints file is essential for running timing-driven placement.  

2.6.2 Congestion-Driven Placement: 

 During congestion-driven placement, the Placement program reduces the placement 

congestion after placement. This automatically applies to the whole block, and can be applied 

after global placement, timing optimization, or clock tree synthesis, when routability becomes 

the ultimate goal. Timing is not considered, therefore, the preservation of timing is not 

guaranteed, although it usually results in better timing due to the improvement in congestion 

and the reduction in wire length.  

 

2.7 PLACE OPTIMIZATION: 

 The place & route tool uses some or all of the following techniques when optimizing 

the design, depending on the design stage and the parameters specified. 

 Adding buffers 

 Deleting buffers 

 Upsizing gates 

 Down sizing gates 

 Moving instances 

 

 This first optimization step identifies and repairs a large number of timing problems 

occurring in the early stages of the implementation process. The optimization step first 

globally reduces delays on all nets by buffering and gate sizing. Then the tool identifies and 

repairs design rule violations (DRV) such as maximum capacitance, maximum transition and 

maximum fanout.  

 

2.8 CLOCK TREE SYNTHESIS: 

 High-performance ASICs require careful clock design to achieve full performance. 

They distribute clock signals based on user-defined specifications, such as target clock delay 

(that is, the delay between the root-clock net and leaf-cell clock), clock buffer types, and 

maximum clock load. Effective clock tree synthesis results in minimal prelayout clock skew. 

To get a well-balanced tree with low skew and steep clock edges, we wanted to limit the cell 

fanout to a lower value than for the synthesis of the rest of the design. We did so to ensure 

that the buffers used in the clock nets would drive only a limited number of flip-flops. 
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Major clock design goals are  

 Minimize clock skew and optimize clock buffers to meet skew specifications and 

minimize clock-tree power dissipation. 

 Designing clock distribution networks for high-speed chips is more complex than just 

meeting design specifications. 

 Clock networks are very power hungry, so power dissipation should be kept in mind 

 The dynamic switching currents that cause the high power dissipation also affect 

interconnect reliability – so wide wire widths may have to be used. 

 Clock-to-signal net coupling can cause excessive on-chip noise  

 Main job of clock-design tools is to vary routing paths and placement of the clocked 

cells and buffers to meet skew specifications. 

Many Considerations for clock tree building: 

• Timing-related specifications: 

o Latency (clock input to clocked element delay) 

o Skew (variation in arrival time to clocked elements) 

• Non-timing specifications: 

o Power dissipation (static and dynamic) 

o Signal integrity (noise resulting from clock-to-signal coupling) 

2.9 CTS OPTIMIZATION: 

The goals of CTS optimization include: 

 Fixing remaining DRVs 

 Fixing hold time violations 

 Optimizing remaining setup violations 

 Correcting timing with propagated clocks 

 

2.10 ROUTING: 

 Once the designer has floorplanned a block and the logic cells within the flexible 

regions of the block have been placed, it is time to make the connections by routing the 

block. This is still a hard problem that is made easier by dividing it into smaller problems. 

Routing is usually split into global routing followed by detailed routing. 
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2.10.1 Global Routing: 

 A global router does not make any connections, it just plans them. We typically global 

route the whole block before detail routing the whole block. The input to the global router is a 

floorplan that includes the locations of all the fixed and flexible macros, the placement 

information of all the logic cells. The goal of global routing is to provide complete 

instructions to the detailed router on where to route every net. The common objectives of the 

global routing are of the following: 

• Minimize the total interconnect length.  

• Maximize the probability that the detailed router can complete the routing.  

• Minimize the critical path delay.  

2.10.2 Detailed Routing: 

 The global routing step determines the channels to be used for each interconnect. 

Using this information the detailed router decides the exact location and layers for each 

interconnect.  The goal of detailed routing is to complete all the connections between logic 

cells. The most common objective is to minimize one or more of the following: 

• The total interconnect length  

• The number of layer changes that the connections have to make  

• The delay of critical paths  

• Minimizing the number of layer changes corresponds to minimizing the number of 

vias that add parasitic resistance and capacitance to a connection.  

2.11 ROUTING OPTIMIZATION: 

The goals of post-route optimization include: 

 Analyses cross coupling capacitance effects on glitch and noise  

 Repairing DRVs 

 Reruns timing analysis  

 Repairs setup violations  

 Repairs hold violations 

 Leakage power reduction  
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2.12 PARASITIC EXTRACTION: 

 Parasitic extraction is the calculation of the per net capacitance and resistance values 

that are required for such things as delay calculation, timing analysis, and signal integrity. 

Parasitic extraction is performed by analyzing each net and taking into account many 

important effects through the use of 3D-characterized rules. These effects are mostly due to 

the dielectric stack, the net’s proximity to other neighboring nets, and the net’s own topology. 

Sheet resistance is the parasitic resistance defined for each conductor layer and via. Net 

capacitance is calculated by adding the capacitive sub components of the net and then 

multiplying the sum by the total length of the net. The following are the different components 

taken into consideration for total capacitance calculation: 

2.12.1 Area and Lateral Cap Components: 

• Area capacitance is defined as the capacitance from the top/bottom of the conductor 

surface to the bottom/top of another conductor or substrate. 

• Lateral capacitance is defined as the capacitance between two adjacent wires on the 

same metal layer. 

 

2.12.2 Fringe and Cross Cap Components: 

• Fringe capacitance is calculated from the sidewall to the top and bottom of another 

conductor. 

• Cross capacitance is defined as the capacitance of a conductor to an array of wires 

crossing above or below it. 

 

2.13 TIMING ANALYSIS: 

 In a synchronous digital system, data is supposed to move in lockstep, advancing one 

stage on each tick of the clock signal. This is enforced by synchronizing elements such as 

flip-flops or latches, which copy their input to their output when instructed to do so by the 

clock. In such a system only two kinds of timing errors are possible. One is setup time 

violation and another one is hold time violation. The time when a signal arrives can vary due 

to many reasons - the input data may vary, the circuit may perform different operations, the 

temperature and voltage may change, and there are manufacturing differences in the exact 

construction of each part. The main goal of timing analysis is to verify that despite these 

possible variations, all signals will arrive neither too early nor too late and hence proper 

circuit operation can be assured. The following are some of the terms used while analyzing a 

path for timing.  
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Critical path: 

 The critical path is defined as the path between an input and an output with the 

maximum delay. Once the circuit timing has been computed, the critical path can easily be 

found by using a trace back method.  

Arrival timing: 

 The arrival time of a signal is the time elapsed for a signal to arrive at a certain point. 

The reference, or time 0.0, is often taken as the arrival time of a clock signal. To calculate the 

arrival time, delay calculation of all the component of the path will be required. Arrival times, 

and indeed almost all times in timing analysis, are normally kept as a pair of values - the 

earliest possible time at which a signal can change, and the latest.  

Required time: 

 This is the latest time at which a signal can arrive without making the clock cycle 

longer than desired. The computation of the required time proceeds as follows. At each 

primary output, the required times for rise/fall are set according to the specifications provided 

to the circuit. Next, a backward topological traversal is carried out, processing each gate 

when the required times at all of its fanouts are known.  

Slack:  

 The slack associated with each connection is the difference between the required time 

and the arrival time. A positive slack s at a node implies that the arrival time at that node may 

be increased by s without affecting the overall delay of the circuit. Conversely, negative slack 

implies that a path is too slow, and the path must speed up if the whole circuit is to work at 

the desired speed.  

 

2.14 CROSSTALK ANALYSIS: 

As chip designers migrate to nanometer technologies, the interconnect wires become 

taller and thinner, with closer wire spacing and higher sidewalls similar to parallel plate 

capacitors. As a result, the on-chip coupling capacitance between the wires now contributes 

to more than 50 percent of the total wire capacitance. This is increasingly causing chips to 

fail, under-perform, or suffer from low yields.  

2.14.1 Setup Failure: 

Consider the circuit shown in Figure. When there is no crosstalk, the green line shows 

the waveform at the victim net. But, when the aggressor net a1 switches in the opposite 

direction of the victim net, the crosstalk increases the delay at the victim net as shown by the 
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yellow line. This increase in delay can cause the signal to arrive too late at a latch or a flip-

flop, resulting in a setup failure. 

 
Fig 2.3:  Crosstalk Induced Delay Push-Out 

 

2.14.2 Hold Failure: 

When the aggressor net a1 switches in the same direction as the victim net, the 

crosstalk decreases the delay at the victim net as shown by the yellow line in Figure. This 

decrease in delay can cause the signal to arrive too early at a latch or flip-flop resulting in a 

hold failure. 

 
Fig 2.4:  Crosstalk Induced Delay Pull-In 

 

2.14.3 Glitch Noise: 

                  
Fig 2.5: Crosstalk Induced Functional Failures 
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Crosstalk noise can also cause functional failures. For instance, in Figure, the 

crosstalk-induced glitch on the reset line can cause the intended steady-state logic value of 1 

at the flip-flop Q output to be reset to an unintended logic value of 0. 

 
2.15 IR-DROP ANALYSIS: 
  
 Due to Very-Deep-Submicron (VDSM) technology evolution the semiconductor 

industry is facing exciting new challenges all the time. As minimum layout dimensions 

continue to shrink and the number of functions that can be put on a SOC continues to grow, 

creating signal integrity as a major issue causing chip failures. IR drop is a signal integrity 

effect caused by wire resistance and current drawn off from the power and ground grids. If 

the wire resistance is too high or the cell current larger than predicted, an unacceptable 

voltage drop may occur. Nanometer designs are extremely susceptible to IR drop because 

power and ground wire resistivity increases with decreasing geometries, while the overall 

power supply voltage decreases. This results in poor performance and increased noise 

susceptibility. Furthermore, gates with different voltage levels communicating with each 

other across the chip can propagate erroneous data, causing a malfunction. Gate delays 

increase non-linearly as voltage at gates decrease. This may lead to setup or hold timing 

violations depending on which path these gates are residing. The increase in gate delay due to 

IR-drop on the data path can ultimately lead to setup timing violations. On the contrary, the 

voltage drop on the buffers and inverter cells of the clock path will cause the delay in arrival 

of clock signal, resulting in a hold violation. The following figure illustrates the IR Drop 

concept: 

 

         
Fig 2.6: Typical Power Grid Structure 

 
This figure shows a power supply connected to the power pads. The power 

distribution system (generally a grid) is illustrated by the R11-R14 resistors for VDD and 

R21-R24 resistors for VSS. G1-G4 are the connections between logic gates on the power 

distribution system. Typically, when you perform transistor-level simulation, these voltages 

(V1- V4) are assumed to be equal. In other words, all R11-R14 and R21-R24 resistances 
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would be 0.0 ohms, so all G1-G4 gates would have ideal power supply voltages, VDD and 

VSS. In reality, the power grid resistances of a chip are non-zero. For example, gate G4 never 

has an ideal VDD voltage at its power pin when it is active, it has a lower voltage. The 

current flowing from the power supply to G4 must flow through the power distribution 

network. A current, I, flowing through an effective resistance, R, introduces a voltage drop, V 

= IR. IR drop on the VSS power grid distribution network is an increase in the VSS voltage at 

gates G1-G4. 

Figure 2.6 also illustrates the complexity of power grids and IR drop. Assume that 

gate G4 has a VDD power grid current of I4 amperes. No other gate has current. The I4 

current flows from the power supply through the power grid to G4. The IR drop at gate G4 is 

then I4 (R11+R12+R13+R14). In addition, because of the I4 current at gate G4, gate G2 does 

not have an ideal power supply. It has an IR drop of I4 (R11+R12). Therefore, the current of 

each gate in a design causes some type of IR drop for all other gates in the design. If the gates 

along the metal line switch together, the IR drop can be large. Given simultaneous currents 

I1-I4 for the G1-G4 gates, respectively, in Figure 2.15, the IR drop at gate G4 would be the 

following: 

I1(R11)+I2(R11+R12)+I3(R11+R12+R13)+I4(R11+R12+R13+R14) 
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3. SECURITY PROTOCOL ENGINE 
 
3.1 INTRODUCTION: 

The physical design implementation presented in this thesis was developed over a 

period of time based on actual design experience from a SoC block called Security Protocol 

Engine (SPE) of Ikanos network processor. A network processor is an integrated circuit 

which has a feature set specifically targeted at the networking application domain. Network 

processors are typically software programmable devices and would have generic 

characteristics similar to general purpose central processing units that are commonly used in 

many different types of equipment and products.  

The Security Protocol Engine supports industry accepted hashing algorithms and 

encryption algorithms. 

 

The supported hashing algorithms are: 

 Message Digest Algorithm (MD5) 

 Secure Hash Algorithm-1 (SHA1) 

 

The supported encryption algorithms are: 

 Data Encryption Standard (DES) 

 Triple Data Encryption standard (TDES) 

 Advanced encryption Standard (AES) 

 

3.2 HASHING ALGORITHMS: 

 A hashing algorithm takes a variable length data message and creates a fixed size 

message digest. The message digest is the output of a hashing algorithm.  

3.2.1 Message Digest Algorithm (MD5):  

 The algorithm takes as input a message of arbitrary length and produces as output a 

128-bit message digest of the input. It is conjectured that it is computationally infeasible to 

produce two messages having the same message digest, or to produce any message having a 

given prespecified target message digest. The MD5 algorithm is intended for digital signature 

applications, where a large file must be compressed in a secure manner before being 

encrypted with a secret key. The MD5 algorithm is designed to be quite fast on 32-bit 

machines. In addition, the MD5 algorithm does not require any large substitution tables, the 

algorithm can be coded quite compactly. 
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 3.2.2 Secure Hash Algorithm-1 (SHA-1): 

 The algorithm is used for computing a condensed representation of a message or a 

data file. When a message of any length less than 264 bits is input, the SHA-1 produces a 160-

bit output called a message digest.  The message digest can then, for example, be input to a 

signature algorithm which generates or verifies the signature for the message.  Signing the 

message digest rather than the message often improves the efficiency of the process because 

the message digest is usually much smaller in size than the message.  The same hash 

algorithm must be used by the verifier of a digital signature as was used by the creator of the 

digital signature.  Any change to the message in transit will, with very high probability, result 

in a different message digest, and the signature will fail to verify. The SHA-1 is called secure 

because it is computationally infeasible to find a message which corresponds to a given 

message digest, or to find two different messages which produce the same message digest.  

 

3.3 ENCRYPTION ALGORITHMS: 

 Encryption is the process of converting a plaintext message into cipher text which can 

be decoded back into the original message. An encryption algorithm along with a key is used 

in the encryption and decryption of data. There are several types of data encryptions which 

form the basis of network security. Encryption schemes are based on block or stream ciphers. 

 The type and length of the keys utilized depend upon the encryption algorithm and the 

amount of security needed. In conventional symmetric encryption a single key is used. With 

this key, the sender can encrypt a message and a recipient can decrypt the message but the 

security of the key becomes problematic. In asymmetric encryption, the encryption key and 

the decryption key are different. One is a public key by which the sender can encrypt the 

message and the other is a private key by which a recipient can decrypt the message.

 Encrypting data converts it to an unintelligible form called cipher. Decrypting cipher 

converts the data back to its original form called plaintext. The algorithm described in this 

standard specifies both enciphering and deciphering operations which are based on a binary 

number called a key. 

3.3.1 Data Encryption Standard (DES):  

 A key consists of 64 binary digits ("O"s or "1"s) of which 56 bits are randomly 

generated and used directly by the algorithm. The other 8 bits, which are not used by the 

algorithm, are used for error detection. The 8 error detecting bits are set to make the parity of 

each 8-bit byte of the key odd, i.e., there is an odd number of "1"s in each 8-bit byte. 

Authorized users of encrypted computer data must have the key that was used to encipher the 
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data in order to decrypt it. The encryption algorithm specified in this standard is commonly 

known among those using the standard. The unique key chosen for use in a particular 

application makes the results of encrypting data using the algorithm unique. Selection of a 

different key causes the cipher that is produced for any given set of inputs to be different. The 

cryptographic security of the data depends on the security provided for the key used to 

encipher and decipher the data.  

  

 Data can be recovered from cipher only by using exactly the same key used to 

encipher it. Unauthorized recipients of the cipher who know the algorithm but do not have the 

correct key cannot derive the original data algorithmically. However, anyone who does have 

the key and the algorithm can easily decipher the cipher and obtain the original data. A 

standard algorithm based on a secure key thus provides a basis for exchanging encrypted 

computer data by issuing the key used to encipher it to those authorized to have the data. Data 

that is considered sensitive by the responsible authority, data that has a high value, or data 

that represents a high value should be cryptographically protected if it is vulnerable to 

unauthorized disclosure or undetected modification during transmission or while in storage.  

3.3.2 Triple Data Encryption standard (TDES): 

 Triple DES is simply another mode of DES operation. It takes three 64-bit keys, for 

an overall key length of 192 bits. The Triple DES breaks the user provided key into three sub 

keys, padding the keys if necessary so they are each 64 bits long. The procedure for 

encryption is exactly the same as regular DES, but it is repeated three times. Hence the name 

Triple DES. The data is encrypted with the first key, decrypted with the second key, and 

finally encrypted again with the third key. 

 Consequently, Triple DES runs three times slower than standard DES, but is much 

more secure if used properly. The procedure for decrypting something is the same as the 

procedure for encryption, except it is executed in reverse. Like DES, data is encrypted and 

decrypted in 64-bit chunks. Unfortunately, there are some weak keys that one should be 

aware of, if all three keys, the first and second keys, or the second and third keys are the 

same, then the encryption procedure is essentially the same as standard DES. This situation is 

to be avoided because it is the same as using a really slow version of regular DES.  

 Note that although the input key for DES is 64 bits long, the actual key used by DES 

is only 56 bits in length. The least significant (right-most) bit in each byte is a parity bit, and 

should be set so that there are always an odd number of 1s in every byte. These parity bits are 

ignored, so only the seven most significant bits of each byte are used, resulting in a key 
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length of 56 bits. This means that the effective key strength for Triple DES is actually 168 

bits because each of the three keys contains 8 parity bits that are not used during the 

encryption process. 

3.3.3 Advanced encryption standard (AES): 

 AES has a fixed block size of 128 bits and a key size of 128, 192 or 256 bits. Most of 

AES calculations are done in a special finite field. AES operates on a 4×4 array of bytes, 

termed the state. For encryption, each round of AES (except the last round) consists of four 

stages: 

1. AddRoundKey — each byte of the state is combined with the round key; each round 

key is derived from the cipher key using a key schedule.  

2. SubBytes — a non-linear substitution step where each byte is replaced with another 

according to a lookup table.  

3. ShiftRows — a transposition step where each row of the state is shifted cyclically a 

certain number of steps.  

4. MixColumns — a mixing operation which operates on the columns of the state, 

combining the four bytes in each column using a linear transformation.  

The final round replaces the MixColumns stage with another instance of AddRoundKey. 

 

3.4 PHYSICAL DESIGN IMPLEMENTATION OF BLOCK: 

a) 90 nm implementation 

b) 333 MHz clock frequency 

c) Gate count of the design is 480K  

d) Area used for block implementation is 1.498 mm2    

e) EDA tools used for the block implementation are 

 

  Tool EDA Vendor Purpose 

SOC Encounter Cadence Design Systems Place & Route 

RedHawk Apache Design Solutions IR-drop Analysis 

Celtic Cadence Design Systems Crosstalk Analysis 

 

 

  

 

Table 3.1: EDA tools used for block implementation 
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4. SIGNIFICANCE OF PARAMETERS 
 
4.1 POWER DISSIPATION: 

 As the design size is shrinking to the ultra deep sub microns and density is increasing 

to millions of gates in a system on chip, large power dissipation in the chip due to sub-

threshold leakage is becoming uncontrollable in the practical world. It is taking more 

importance as it is becoming dominant component for the overall power in the chip. 

 The power consumption in silicon primarily consists of two main components, 

namely Dynamic power and Static power. The static power constitutes leakage power due to 

sub-threshold current and standby power. This passive energy for leakage dissipation of the 

device is not in active mode of operation for time toff duration.  There will also be some 

percentage of leakage power during the active mode. This passive energy has been emerged 

as one of the important design parameters in the sub micron low power systems where battery 

running life is critical in today’s portable electronic gadgets. This pushes through the design 

performance limits with power-delay product as a measurable parameter. The leakage power 

dissipation can never be made zero but only can be minimized. 

 There have been multiple techniques used in the past to reduce the dynamic power 

dissipation and have been implemented successfully through the different levels of design 

abstraction. The leakage power has been a biggest concern increasing day by day due to 

scaling of process technologies shrinking, with scaling down of supply voltage but without 

the proportionate scaling of threshold voltage, Vt. The sub threshold leakage increases 

exponentially as the threshold voltage is reduced. 

 

 The delay of logical gates increases with the increase in threshold voltage (High Vt), 

whereas the static power decreases with the increase in threshold voltage. This can be 

represented by a simple gate delay equation: 

 

 

Delay, Td = (CLVdd ) / (Vdd – Vt)a ------------- 4.1 

 

 In the equation 4.1, Td represents the propagation delay, CL is the load capacitance, 

Vdd is the supply voltage and Vt is the threshold voltage for the transistor. a is the coefficient 

and represents the effect due to shortening of the device channel length. On the other hand, 

the interconnect delay has been dominating the gate delays causing many issues in meeting 
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the chip performance parameters such as power, delay, area and signal integrity. In order to 

reduce the interconnect delay on a path, this needs to be buffered up using the chain of 

repeaters by accounting for the driver size and the load size in order to meet the delay 

constraint on that path. The repeaters for this chain should be selected with the right size and 

characterized with low power in order to meet not only timing but also to meet the power 

constraints. This is a very tedious task for the EDA tool although it might come up with a 

good trade-off. Designers try different circuit techniques and schemes in order to minimize 

the leakage power to trade off the speed of the circuit. If one tries to control the leakage 

power, there happens the speed degradation of the circuit which is a real problem in any high 

performance design. 

 

4.2 LEAKAGE POWER OPTIMIZATION METHODOLOGY: 

 Considering all the above discussions, a good beginning optimal point is very much 

necessary when the leakage power and speed of the design are critical. When all the required 

work in the architectural abstraction is complete and a qualified RTL for the design is ready, 

then the remaining work is left to the design automation tools right from the synthesis all the 

way to the final routed stage. There are various factors that are considered which affect the 

performance of the low power design. 

4.2.1 Area Reclamation: 

 There has been almost no discussion in the past with respect to the density of the chip 

when it comes to the low power discussions. It is always a very good starting point to reduce 

the density of the chip which directly removes the redundant logic and unused components in 

the design. This has many advantages as it reduces the number of resources used and reduces 

the congestion of overall design. This factor also affects the percentage decrease in 

interconnects thereby reducing the respective delays.  

4.2.2 Characterization of Library Cells: 

 The library cell characterization plays an important role as the design automation 

tools relies on the accuracy of the library. A typical low power library will have not only area 

and delay cost functions, but also will have power cost functions. There will be leakage 

power characterized for each input pin state. The target library for the technology mapping 

for leakage power should have the cells with multiple Vt cells for maximum benefits in order 

to apply the multiple Vt schemes towards the leakage power optimizations. In this flow, two 

combinations of Vt are used: 1. High Vt and 2. Low Vt for the same logic function specified 

in the library. This is the minimum requirement in the technology library in order to pursue 
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the leakage power optimization using the Cadence® tools. No other changes in the design 

procedures are required as the technology mapping handles them in order to utilize the 

multiple Vt technology. Combinations of high Vt and low Vt can be used to characterize the 

complex Vt cells in the library apart from just high Vt and just low Vt cells.  

4.2.3 Gate Sizing: 

 The gates can be sized-resized depending on the fan-out of loads to minimize the 

power dissipation in the design. The static power dissipation of a gate can be expressed as a 

function of delay and also the device geometry represented by W/L ratio. By gate resizing to 

achieve the leakage reduction, the area of the circuit will also be reduced. However, 

decreasing the size of a gate makes it slower as its drive capacity is decreased. So the tool 

should be really capable of finding out the loads, drivers for the entire path and apply the 

transformations accordingly. This technique along with a very good logic restructuring can be 

served towards minimizing the delay and power of a path concurrently with most of the 

energy dissipated near the final load trying to satisfy the input timing constraints and the 

initial timing targets. There should be a good trade-off between power and delay while trying 

to resize the gate. 

4.2.4 Signal Integrity: 

The multiple Vt techniques are applied during the optimization in order to reduce the power 

while meeting the delay constraints at the same time. The high Vt devices are used on the 

slower path to reduce the leakage power whereas the low Vt devices are used for critical path 

where the delay constraint is very tight. Since the low Vt devices can switch faster, they are 

also sensitive to the noise. So one of the factors to keep in mind while optimizing the power 

after the routing would be to consider the noise penalty of low Vt devices on faster paths. 

This is quite interesting as the leakage power reduces due to high Vt cells, the noise also 

reduces.  

 

4.3 IR-DROP: 

 IR drop is a signal integrity effect caused by wire resistance and current draw off of 

the power and ground grids. If the wire resistance is too high or the cell current larger than 

predicted, an unacceptable voltage drop may occur. This voltage drop causes the supply 

voltage to the affected cells to be lower than required, leading to larger gate and signal delays 

that can consequently cause timing degradation in the signal paths as well as clock skew. 

Lowered power supply current due to IR voltage drop also reduces the noise margins and 
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compromises the signal integrity of the design. The following are some tips to deal with IR-

drop issues: 

4.3.1 Proper power-planning: 

 Ensure uniform power distribution throughout the chip area is the key to have 

minimum IR drop in the design. Provide reasonable number of horizontal as well as vertical 

power stripes with appropriate width in the design. 

4.3.2 Increase the width of the power stripes: 

 This will help in decreasing the resistance in the path and hence the voltage drop. But 

this will reduce the routing resource in the design. Apply this option only if you have enough 

routing resources. 

4.3.3 Perform pre-layout signal integrity analysis: 

 In conventional IC design flows signal integrity analysis is performed as a post-layout 

activity. Unfortunately, this is the wrong time to be analyzing for signal integrity effects. 

After doing floor planning perform IR-drop analysis to make sure that your power planning is 

not giving you large IR-drop in the design. If you get dissatisfying result, do power planning 

again and make sure that power is distributed uniformly throughout the design.  

4.3.4 Provide extra power stripes: 

 In the region that experience large IR-drop provide extra power strips. 

4.3.5 Setup positive slack: 

 Try to achieve sensible positive slack(Setup margin) at the end of your final routing 

stage to make sure that final the design will not violate setup timing even if there is slight 

delay due to IR drop. 

 
4.4 CLOCK SKEW:  

 In circuit design, clock skew is a phenomenon in synchronous circuits in which the 

clock signal (sent from the clock circuit) arrives at different components at different times. 

This is typically due to two causes. The first is a material flaw, which causes a signal to travel 

faster or slower than expected. The second is distance: if the signal has to travel the entire 

length of a circuit, it will likely (depending on the circuit's size) arrive at different parts of the 

circuit at different times. 

 Clock skew can cause harm in two ways. Suppose that a logic path travels through 

combinational logic from a source flip-flop to a destination flip-flop. If the destination flip-

flop receives the clock tick later than the source flip-flop, and if the logic path delay is short 

enough, then the data signal might arrive at the destination flip-flop before the clock tick, 
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destroying there the previous data that should have been clocked through. This is called a 

hold violation because the previous data is not held long enough at the destination flip-flop to 

be properly clocked through. If the destination flip-flop receives the clock tick earlier than the 

source flip-flop, then the data signal has that much less time to reach the destination flip-flop 

before the next clock tick. If it fails to do so, a setup violation occurs, so-called because the 

new data was not set up and stable before the next clock tick arrived. A hold violation is more 

serious than a setup violation because it cannot be fixed by increasing the clock period. 

 

4.5 CROSSTALK VICTIM NETS:  

 With process technologies evolving from 0.18 micron to 0.13 micron and on to 90 

nanometers, signal integrity effects are strongly influencing the performance of integrated 

circuits. Two of the key ones are noise and delay due to cross-coupling capacitance. Noise 

may cause functional failures; delay may result in timing violations. When a signal switches, 

it may affect the voltage waveform of a neighboring net. The switching net is typically 

identified as the "aggressor" and the affected net is the "victim." Crosstalk can impair both 

timing and functionality. When the victim net is quiescent, crosstalk can result in a noise-

induced functional failure when the noise is propagated to the input of a register (latch or flip-

flop) and changes the state of the latch. When the switching windows of the aggressor and 

victim nets overlap and the nets switch in opposite directions, crosstalk will increase the 

delay of the victim net, which may result in setup violations. When the nets switch in the 

same directions, crosstalk will reduce the delay of the victim net, which may result in hold 

violations. 

4.5.1 Crosstalk avoidance: 

 Crosstalk delay problems could only be fixed after detailed routing. Typical methods 

included buffer insertion, cell resizing, track reassignment of the victim nets and additional 

wire spacing allocated to victim nets. Cell resizing can be very effective since the 

replacement of cells has a localized effect on the layout and will require only reconnection of 

the signals to the equivalent pins. Inserting a buffer can be difficult since its addition can 

introduce additional delay and may result in a timing violation in the critical path. Buffer 

insertion can also increase power consumption. Track reassignment associates moving a wire 

from one routing track to a different one, can solve the identified crosstalk problem. 

However, this may introduce new crosstalk effects on other nets and create new critical paths.  
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5. LIMITATIONS & CONSTRAINTS 
 

5.1 INTRODUCTION: 

 As designers move to 0.35um technologies and below, the convergence of 

performance-driven design constraints intensifies the demand for new approaches for 

integrated circuit (IC) physical design. At these geometries, more complex manufacturing 

effects dramatically impact the way engineers need to tune physical designs for optimal 

performance. Besides addressing familiar speed and capacity concerns, advanced physical 

design requires an architectural approach that emphasizes quality of results, more effective 

convergence across a broader array of constraints, and significantly greater control by 

designers of the physical design process itself. Faster routing of larger designs is not enough, 

and design convergence means much more than area, timing and power. Instead, designers 

need the ability to analyze routing more effectively, and incrementally improve performance 

with each design iteration. As the electronics industry continues to drive toward more 

advanced manufacturing technologies, semiconductor companies face shrinking product 

lifecycles and rising demand for greater functionality.  

For engineers, each advance in design and manufacturing capabilities brings greater 

challenges in every phase of development, yet dictates a greater need to reach closure on a 

growing list of divergent constraints arising from each stage in the development cycle. As 

engineering teams move designs from high-level and detailed logic design to floorplanning 

and routing in physical design, they must work collaboratively to ensure that physical design 

maintains tight objectives for design performance, functionality and manufacturability. 

Accordingly, physical design and verification needs to work smoothly in the design flow, 

efficiently providing detailed results needed to ensure high quality results within tightening 

product schedules. Yet, as designs move to deep nanometer technologies at 65nm and below, 

designers find that electronic design automation (EDA) tools developed even for 90nm 

designs are unable to address the further challenges associated with these advanced 

technologies. Inevitably, the lack of precise analysis of device performance at these new 

geometries forces design teams to make tradeoffs and concessions to ensure 

manufacturability.  

The experiments and analysis done are constrained by the following: 
 

1. Block level constraints 

2. Chip level constraints 

3. EDA & Foundry based constraints 
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5.2 BLOCK-LEVEL CONSTRAINT ANALYSIS: 

 Today's large chip designs are divided into blocks that are given to different design 

teams. Each team is given a target set of constraints for that particular block. At the block 

level, Design Constraints can find several types of issues. Many of these issues relate to 

timing, a critical challenge for most designs.  

5.2.1 Design Rule Constraints: 

 As the synthesis tool translates the RTL into gates, it tries to meet the speed and area 

constraints requested by the designer. If the library is pushed to its limits and the tool must 

choose between meeting an optimization goal or a design rule priority, it satisfies 

the DRCs first. DRCs must take precedence over optimization constraints because if the gates 

of a library cannot meet the designer’s requirements there is nothing that can be done except 

get a higher performance library (in terms of speed) or a library with smaller 

cells (in terms of area). Although the library limitations play a role in forming the DRCs, the 

designer can also set limits on the library by specifying maximum fanout, transition, and 

capacitance to provide margin in the design. The designer must be sure that the DRCs are 

consistent for the entire design by propagating all user-set limits to all levels through 

appropriate use of design constraint files. When setting DRCs, first consult the library to 

understand its limitations. Even if the designer chooses to use the same limits specified by the 

library, put them in the design constraint file that pertains to the design, so there are no 

questions what the limits are and where they are applied. The following are the design 

compiler commands to set DRC limits. 

set_max_fanout:  

 Every input pin of every gate of the library has a fanout-load attribute. The sum of all 

fanout loads connected to an output cannot exceed the max_fanout limit. The command limits 

only the number of gates driven by any given output. Loading from wire capacitance is not 

controlled with this command. 

set_max_transition:  

 The transition time is the amount of time it takes to charge or discharge a node. It is a 

product of the signal-line capacitance and resistance. The command set_max_transition 

watches the RC delay on a wire. In an effort to stay below the max_transition limit, the tool 

may increase the drive capacity of a gate to better swing the load or limit the capacitance and 

resistance by setting constraints that can be passed on to the floor planner. The characteristics 

of the wire, such as area, capacitance, and resistance, are found in the wire-load model. 
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set_max_capacitance:  

 There are two components to a load on a net: fanout (other gates) and interconnect 

capacitance. The command set_max_capacitance checks to see that no gate drives more 

capacitance than the limit. There is no direct correlation between the command and net delay, 

simply between the command and capacitance. The wire-load model details the capacitance 

of a wire. 

 

5.2.2 Optimization Constraints: 

 After the DRCs are met, the tool works on optimizing the design. The most important 

optimization constraint is speed. The tool uses an internal timing analyzer to determine if a 

path meets the required time. It sums up the delays of every element in a path to see if the 

total delay is faster or slower than required. The delay is measured from one sequential 

element to the next. A sequential element is considered to be a flip-flop or a latch. A more 

precise definition of a path is from an output pin to an input pin with a setup-and-hold-time 

requirement. The timing analyzer considers the clock tree to be ideal which means there is no 

delay between the clock source and the input of any gate. In a design where the clock signal 

goes directly from the clock tree to the gates, its operation is nearly ideal. Any design 

technique, such as gated clocks, that places delays in the clock’s path will not work unless the 

amount of delay in the clock is quantified. It is possible to use the clock skew parameter to 

account for the delay in the clock, but it must include both the skew of the tree and the delay 

through gates. The designer can control the speed of the circuit with commands explained 

below. 

create_clock:  

 At a minimum, the tool must know the clock’s period and duty cycle. The clock sets 

the time allowed for signals to propagate between sequential elements. The create_clock 

command also specifies clock skew. 

set_input_delay:  

 Timing constraints can be placed on input ports with set_input_delay command. To 

avoid timing violations, input ports are accommodated with some delay. Similarly 

set_output_delay. 

set_max_delay:  

 Timing constraints can be placed on asynchronous paths with set_max_delay and 

set_min_delay. The values set by these two commands determine the time allowed to 

propagate through a path not controlled by a clock. Similarly set_min_delay.  
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5.3 CHIP LEVEL CONSTRAINTS: 

 The area available for the block implementation and aspect ratio is limited by the chip 

level floorplan. The allowable voltage drop in the block is a chip level constraint. The design 

has specific logic functionalities to be implemented and the users do not have the liberty to 

modify the existing logic. The only flexibility available is to implement the same logic in an 

alternate method. 

5.4 EDA & FOUNDRY CONSTRAINTS: 

 The block outline should be a rectangle and the EDA tools cannot handle shapes other 

than rectangles. The tools available for the implementation are limited in choice. The 

experiments and analysis is time bound and had to be completed within a specific time 

period. The implementation is semi-custom, using the standard cell library and macros 

supplied by the library vendors. Flexibility to change is limited to the granularity of stdcells 

and transistor level optimization and experiments is not possible. The standard cell libraries 

and memory libraries are available from only one vendor and is a hard constraint. The current 

carrying capability of the metal layers is defined by the foundry and has to be met. The 

libraries available are characterized with specific parameters and ranges and may not 

correspond to the most optimum value required for the design. 
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6. EXPERIMENTS & ANALYSIS 
 
 
The following experiments have conducted to improve the implementation: 
 

1. Power grids with various pitch and width combinations 

2. Leakage power optimization  

3. Multiple clock tree strategies 

4. Adding extra metal layers for routing 

5. Design dependant floorplanning techniques 

 
 
6.1 POWER GRID WITH VARIOUS PITCH & WIDTH COMBINATIONS: 
 
 The power grid of the chip is designed in such a way that it can distribute the current 

within the block with every cell in the block getting a standard supply voltage. The power 

grid in the block should align with the chip level power grid and should at the maximum 

allow a drop of 2mV within the block. The width of the strap, the location of the straps and 

the spacing between straps can have a significant impact on the available routing resources in 

the block as the power mesh takes a significant portion of the available routing resources. 

Since the power straps are wide pieces of metal, they also have special routing rules to be 

followed for any routes going in parallel and adjacent to them. In general top layers are 

preferred for power routing. In this block implementation metal 6 & metal 7 layers are used 

for power grid.  

 

 
List of 

Experiments 
Width 
(um) 

Spacing
(um) 

Max. IR 
Drop(mV)

Usage
(%) 

Experiment-1 5.6 14.56 2.46 85.4 
Experiment-2 5.6 7.28 1.24 89.2 
Experiment-3 8.4 14.56 2.14 88.6 
Experiment-4 8.4 7.28 1.19 93.1 
Experiment-5 11.2 14.56 1.99 91.2 
Experiment-6 11.2 7.28 1.14 95.9 

  
Table 6.1: Power grids with various pitch and width combinations  

 

Width    – Width of the power straps 

Spacing – Spacing between two adjacent power straps 

Usage    – Percentage of the available routing resources used 
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 With the increase in the spacing between the power straps, the total straps available to 

distribute the current decreases and results in a higher voltage drop across the block. 

However, the decrease in the number of power straps also results in freeing up more metal for 

the signal routing. Hence the optimum power structure is a tradeoff between routing 

resources available and the maximum IR Drop that can be tolerated within the block. For the 

given design, since the IR-drop limit within the block was set to 2mV, the Experiment-5 is 

recommended which results in a saving of almost 9% of the overall routing resources of the 

design. 

 

 

 
 

Fig 6.1: The color coding of voltage drop distribution 
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Fig 6.2: IR-drop distribution map for Experiment-1 
 
 

 
 

Fig 6.3: IR-drop distribution map for Experiment-2 
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Fig 6.4: IR-drop distribution map for Experiment-3 
 
 

 
 

Fig 6.5: IR-drop distribution map for Experiment-4 
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Fig 6.6: IR-drop distribution map for Experiment-5 
 

 

 
 

Fig 6.7: IR-drop distribution map for Experiment-6 
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6.2 LEAKAGE POWER OPTIMIZATION: 
 
 With the geometries shrinking leakage power is becoming a more significant 

contributor to the total power consumption of the logic. By reducing the threshold voltage of 

transistors we can get a faster switching logic. But the leakage power associated with the 

lower vt cells is higher. One analysis done was to see the reduction of leakage power possible 

by switching the stdcells with their high vt equivalents wherever faster switching logic was 

not required. This had to be done while still respecting the timing constraints of the design. 

Hence the experiment involved implementing the logic with low or high threshold cells as 

required, doing a timing analysis to check if the timing constraints are met and making 

corrections when required and so on. 

 

Initial leakage power with only LVT cells: 4.112 mW 

 

List of 
Experiments 

Standard 
Cell Type 

Leakage
(mW) 

Timing 
Violation (ns) 

Leakage Power 
Savings (%) 

Experiment-1  High-Vth 0.534 -1.900 87.02 
Experiment-2 20% Low Vth 1.001 -0.685 75.66 
Experiment-3 40% Low Vth 1.790 0.004 56.47 
Experiment-4 60% Low Vth 2.331  0.054 43.32 
Experiment-5 80% Low Vth 3.273  0.105 20.43 

   
Table 6.2: Leakage power optimization   

 
As can be seen from the table, the most optimum implementation is when 40% of the 

cells are replaced with low Vth equivalents which results in 56.47% saving the leakage power 

and still meets the timing requirements for the block. 

 
6.3 MULTIPLE CLOCK TREE STRATEGIES: 
 
   Clock nets are special nets in the design as they have very high fanout and need to be 

routed all across the block. Also since the clock nets are driven by the high drive clock 

buffers they are typically the crosstalk aggressors. Hence special routing rules are applied to 

clock nets to minimize the degradation of clock signals within the design and also to reduce 

the crosstalk effect of clock nets on the nearby signal nets. These special rules involve using 

extra width and extra spacing for clock nets. The choice of layers used for routing also has a 

significant effect on the available resources for signal nets to be routed as the clock nets 

consume a significant portion of the available routing resources. 
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Experiments and analysis was conducted with the following four cases: 

1) Metal 6 & 7 without special rule 

2) Metal 6 & 7 with special rule 

3) Metal 4 & 5 without special rule 

4) Metal 4 & 5 with special rule 

 

 Special rule means double width for clock nets and double spacing for clock nets with 

respect to signal nets. 

 
Metal 
Layers 

Congestion 
(%) 

Timing  
Violation (ns)

Clock Power 
(mW) 

Crosstalk 
Victim nets 

(6,7) 0.02  0.064 16.131 732 
(6,7) 0.89 -0.038 15.809 933 
(4,5) 0.02   0.019 22.317 760 
(4,5) 0.99 -0.055 21.888 962 

 
Table 6.3: Multiple clock tree strategies 

 
(x,y): x, y layers with special rule used for clock routing 

(x,y): x, y layers without using special rule for clock routing 

 

 For a block with smaller area & higher congestion, it is always better to go for clock 

routing with out using special rule. For a block with sufficient routing resources, it is better 

use special rule for clock routing. But in this case, we have seen that when the special clock 

routing rules are used, even though the effect of the clock nets as crosstalk aggressors has 

come down, the total number of victim nets has increased. This is attributed to the fact that, 

when the clock nets are routed with double the width and double the spacing, the routing 

resources available for the signal nets is reduced drastically resulting in more congested and 

more detoured signal routing, both contributing to higher coupling cap between the signal 

nets. Hence the recommendation for this block is to use the Metal6 and Metal7 for the clock 

routing without any special clock routing rules. 
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6.4 ADDING EXTRA METAL LAYERS FOR ROUTING: 

 Using an extra routing layer would add up to the total routing resources available for 

establishing connectivity between standard cells within the same physical area. However 

adding an extra layer adds to the cost of manufacturing and can be prohibitively high when 

compared to the area reduction possible with each addition of layer. An analysis was done to 

see the area reduction achievable by adding one more layer of routing. However, this is only 

to collect the data as the costing part of the manufacturing involves multiple variables with 

wide ranges and is beyond the scope of this thesis. 

 

 The following table summarizes the area, power and routing wire length distribution 

for six and seven metal layer implementation of the block.  

 
Wire length of metal layers (meters) No of  

layers 
Area 

(mm)^2 
Power 
(mW) 

TW  
(m) M1 M2 M3 M4 M5 M6 M7 

6 1.951 295 7.444 0.344 1.752 2.227 2.646 0.426 0.048 ---- 
7 1.498 260 6.676 0.131 1.261 1.713 2.046 1.420 0.049 0.055

 
Table 6.4: Adding extra metal layers for routing 

 
 
6.5 DESIGN DEPENDANT FLOORPLANNING TECHNIQUES: 
 

1. Region 

2. Density screen 

6.5.1 Region: 

 Regions are used to group the standard cell instances belong to same logic. The area 

and shape of the region depends upon the standard cell count and distribution of that 

particular logic in the block. 

 

 As seen from the below figures, the logic was distributed without the region constraint 

which resulted in a wider distribution of the logic needing longer interconnects resulting in 

routing congestion and more delay in the interconnect between the cells. 
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Fig 6.8: Distribution of logic-A without a region 
 

 
 

Fig 6.9: Distribution of logic-A with a region  
 
 6.5.2 Density Screen: 

 Density screen is used to control standard cell placement density in certain areas 

where there is high routing congestion. The density screen can be provided with maximum 

allowable density value in terms of percentage.  
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Figure 6.10: Distribution of logic-B without a density screen 
 

 
 

Figure 6.11: Distribution of logic-B with a density screen 
 

The distribution of the logic was very compact without the density screen constraint 

as can be seen in the Figure 6.10 .This was resulting in too many wires crossing a small 

region resulting in routing congestion. With the density screen constraint introduced along 

with the timing constraints, the tool moved away the non timing critical logic away from the 

rest of the logic-B resulting in between routability while meeting the timing constraints. 
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7. CONCLUSION 
 

7.1 ACHIEVEMENT OF THE THESIS:  

 The experience from the different experiments conducted and the results analyzed 

proves that the physical implementation is truly a balancing act of various parameters. Very 

careful planning and visualization of the impact on other parameters is required before 

choosing a strategy and while implementing it. Excessive optimization for one parameter 

could result in the worsening and perhaps not meeting the requirements for others.  The same 

design could have various implementations, one of which would result in the minimum 

power consumption, another which would operate the fastest and yet another which would 

take the minimum area. The challenge is in meeting the specifications for all the parameters 

and within the constraints of the design from various aspects in making it the most optimized 

one. 

The results of the various experiments carried out were summarized below, 

 From the power grid experiment, since the IR-drop limit within the block was set to 

2mV, the Experiment-5 is recommended which results in a saving of almost 9% of the 

overall routing resources of the design. 

 From the leakage power optimization experiment, the most optimum implementation 

is when 40% of the cells are replaced with low Vth equivalents which results in 

56.47% saving the leakage power and still meets the timing requirements for the 

block. 

 From the multiple clock tree strategies experiment, the recommendation for this block 

is to use the Metal6 and Metal7 layers for the clock routing without using special rule.  

 From the adding extra metal layers for routing experiment, using an extra routing 

layer would add up to the total routing resources available for establishing 

connectivity between standard cells within the same physical area. However adding 

an extra layer adds to the cost of manufacturing and can be prohibitively high when 

compared to the area reduction possible with each addition of layer.  

 From the floorplanning techniques experiment, using region and density screen 

techniques, the design has improved from the routing congestion with meeting the 

timing requirements. 
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7.2 SCOPE OF FUTURE WORK: 

 Various design techniques that could impact the area, crosstalk, power and 

manufacturability could not be analyzed due to lack of tools and time. Some of these include: 

 Setting a max transition time constraint for all the cells in the design which would 

strengthen the victim nets and reduce the crosstalk effects 

 Adopting different metal layers and combination of width and pitch for the power 

mesh for optimizing the routing resources 

 Optimizing the clock skew for various clocks in the design resulting in more 

optimized insertion of clock buffers which would result in lesser area and power  

 One of the area which is significant for the deep sub-micron technology is the yield in 

manufacturability of a design. However, design technique to improve yield of the 

design and analysis of their effectiveness makes an interesting study. 
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