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ABSTRACT 

 

Composites have increasing applications in aerospace, civil, automobile and marine 

engineering.  Structural components are often subjected to in-plane periodic loads which may 

lead to parametric instability, due to certain combinations of the applied in-plane forcing 

parameters and natural frequency of transverse vibrations. This phenomenon is called parametric 

instability or parametric resonance and is often studied in the spectrum of natural frequency and 

buckling load of structures.  

The present study deals with free vibration, buckling and parametric instability behavior of 

industry driven laminated woven fiber composite plates under harmonic in-plane periodic loads. 

In this analysis, the effects of various parameters such as increase in number of layers, aspect 

ratios, side-to thickness ratios, ply-orientations, and increase in static load factors, lamination 

angle and the degree of orthotropic are studied.  

The study is experimental but also includes numerical analysis using finite element method 

(FEM). A simple laminated plate model based on first order shear deformation theory (FSDT) is 

developed for the free vibration, buckling and parametric instability effects of composite plates 

subjected to in-plane loading. The principal instability regions are obtained using Bolotinôs 

approach employing finite element method (FEM). An eight-node isoparametric quadratic 

element is employed in the present analysis with five degree of freedom per node considering the 

effects of transverse shear deformation and rotary inertia. The elastic stiffness matrix, geometric 

stiffness matrix and mass matrix of the element are derived using the principle of minimum 

potential energy.  They are evaluated using the Gauss quadrature numerical integration 

technique. A computer program based on FEM in MATLAB environment is developed to 

perform all necessary computations.  

The composite plates of different layers with different dimension are manufactured using woven 

glass fiber and epoxy matrices. The experiments are performed for vibration and buckling (both 

static and dynamic approach) on the industry driven woven fiber Glass/Epoxy plates after tensile 

testing, used for characterization. Free vibration characteristics are studied using FFT analyzer, 

accelerometer using impact hammer excitation.  
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ABSTRACT 

The FRFs are studied to obtain a clear understanding of the vibration characteristics of the 

specimens. The buckling loads of specimen are found by both static and dynamic approach. 

Finally, parametric instability experiment is conducted and the effects of increase in static load 

factor on excitation frequency are studied. Dynamic instability regions (DIR) are plotted for 

different plate specimens, applying both static and dynamic loading numerically.  

The numerical and experimental result shows that the natural frequency is the least for cantilever 

and highest for fully clamped boundary conditions. Comparisons between experimental and 

FEM results are much better for the free-free and cantilever boundary conditions than other 

boundary conditions. The different fiber orientation angle affects the buckling load. When ply 

orientation is increased from 0
0
 to 45

0
 fiber orientation angles, then the buckling load values are 

observed to decrease in both experimental method and FEM.  So the composite plate with [0]8 

layup shows highest buckling load and with [45/-45]2s layup had lowest buckling load. The 

critical/buckling loads reduce significantly depending upon the side-to-thickness ratios and 

aspect ratios. It is observed that with the increase of static load factor from 0 to 0.8, the 

excitation frequencies decrease both numerically and experimentally. The excitation frequencies 

decrease with increase in lamination angle due to reduction of stiffness and strength of laminated 

plates. The onset of instability, the width of instability region and its strength are highly 

dependent on lamination angle. The greater the lamination angle the smaller is the width of 

instability region for this geometry and material properties. 

From the above studies, it can be concluded that the parametric instability behavior of woven 

fiber composite plates is greatly influenced by different parameters such as number of layers, 

aspect ratios, side-to thickness ratios, ply-orientations, increase in static load factors and dynamic 

load factors. So, designer has to be cautious while dealing with structures subjected to dynamic 

loading.This can be used to the advantage of tailoring during design of composite structures. 

The thesis is presented in six chapters. Chapter 1 deals with the general introduction and 

importance of the present structural stability studies. In chapter 2, a detailed review of the 

literature pertinent to the previous works done in this field is listed. A critical discussion of the 

earlier studies is done. The aim and scope of the present study is also outlined in this chapter.  
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ABSTRACT 

In chapter 3, a description of the theory and formulation of the problem and the finite element 

procedure used to analyze the vibration, buckling and parametric instability characteristics of 

laminated composite panels and it is explained in detail. The computer program based on 

MATLAB environment used to implement the formulation is also briefly described. In chapter 

4, all the experimental work related to fabrication of laminated industry driven woven fiber 

composite plates, their material constants determination and free vibration test, buckling test and 

parametric instability  test set up and test procedure are well documented. In chapter 5, the 

results of experimental investigation obtained in the study are presented in detail. The effects of 

various parameters like lamination sequence, ply orientation, degree of orthotropy, aspect ratio, 

width to thickness ratio and in-plane load parameters on the vibration, buckling and dynamic 

instability regions is investigated. The studies have been done separately. Finally, in chapter 6, 

the conclusions drawn from the above studies are described. There is also a brief note on the 

scope for further study in this field. At the end, some important publications and books referred 

during the present investigation have been listed in Bibliography  section. 

The programme features along with flow chart are presented in Appendix. 

 

  

Keywords: Finite Element Method, Woven fiber composite, Vibration, Stability, 

Parametric instability , Natural frequency, Critical Buckling load, Excitation Frequency, 

Periodic load. 
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Chapter-1 

INTRODUCTION  

 
1.1 Introduction  

Composite materials are ingenious invention that provided immense benefits in the 

application of different engineering design of structures such as aerospace, civil, marine, 

automobiles, biomedical and sports equipments because of their ability to offer outstanding 

strength, high specific stiffness and strength, excellent fatigue resistance, high hygroscopic 

sensitivity, high resistance to impact damage and longer durability.  

1.2 Importance of the Present Structural Parametric Instability Studies 

Plate structures are an important class of structural system, since they are major load-carrying 

components.  Structural elements subjected to in-plane periodic loads may undergo unstable 

transverse vibration, leading to parametric instability due to certain combinations of in-plane 

load parameters and natural frequency of transverse vibrations. This type of resonance is 

known as dynamic instability or parametric instability or parametric resonance. A number of 

catastrophic incidents can be traced to parametric resonance. Several means of combating 

parametric instability such as damping and vibration isolation may be inadequate and 

sometimes dangerous with reverse results.   

In structural mechanics, dynamic stability has received considerable attention over the years 

and encompasses many classes of problems. The parametric instability may arise not merely 

at a single excitation frequency but even for small excitation amplitudes and combination of 

frequencies. The primary instability region is the most dangerous and has greatest practical 

importance. The distinction between stable and unstable vibration regimes of a structure, 

subjected to in-plane periodic loading can be distinguished through an analysis of dynamic 

instability region (DIR) spectra. The calculation of these spectra is often provided in terms of 

natural frequencies and the static buckling loads. So, the calculation of these parameters with 

high precision is an integral part of parametric instability analysis of laminated composite 

plates. Thus the vibration, buckling and parametric instability characteristics are of great 

technical importance for understanding the dynamic system under in-plane periodic loading.  
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Introduction  
 

A comprehensive analysis of the vibration and buckling effects of plates is studied 

exhaustively. Most of the studies on dynamic stability of composite plates are done either 

analytically or by different numerical methods. Woven fabric composites is a class of textile 

composite materials with a fully integrated, continuous spatial fiber network oriented on at 

least two axes, in order to provide excellent integrity and conformability for advanced 

structural composite applications. For a two-dimensional woven-fabric composite, the 

reinforcing element is a fabric preform typically consisting of two orthogonal families of 

fiber bundles. Woven glass fibers is used to achieve higher reinforcement loading and 

consequently, higher strength. Woven roving are plainly woven from roving, with higher 

dimensional properties and regular distribution of glass fiber with excellent bonding strength 

among laminates possesses higher fiber content, tensile strength, impact resistance. It is being 

used as the new industrial composites in many structural applications. Most of them focused 

on the impact response, damage initiation or failure mode of woven composite plates. So far, 

no previous experimental work has been reported on instability of woven composite plates 

subjected to in-plane harmonic loading. The study of dynamic stability itself requires 

investigation on vibration and buckling load of structures. A thorough review of earlier works 

done in this area becomes essential to arrive at the objective and scope of the present 

investigation. The detailed review of literature along with critical discussions is presented in 

the next chapter.  

 

 

 

 

 

 

 

 

 

 



3 

 

Chapter-2 

REVIEW OF LITERATURE  

2.1       Introduction  

As laminated composite materials are increasingly used in structural applications, there arises 

a need for more information on the behavior of structural components, such as plates. The 

vast uses of composite materials in plates are subjected of research for many years. Though 

the investigations is mainly focused on parametric instability analysis of structures especially 

composite plates, some relevant researches on vibration, static stability or buckling of plate 

are also studied for the sake of its relevance and completeness. Some of the pertinent studies 

done recently are reviewed elaborately and critically discussed to identify the lacunae in the 

existing literature. The study of parametric instability itself requires investigation on vibration 

and buckling load of structures.  

2.2        Reviews on Laminated composite Plates 

The related literature was critically reviewed so as to provide the background information on 

the problems to be considered in the research work and to emphasize the relevance of the 

present study. The behavior of structures subjected to in-plane loads is less understood in 

comparison with structures under transverse loads. The following areas of analysis pertaining 

to the plate are covered in the review of literature.  

¶ Free vibration of composite plates. 

¶ Buckling of composite plates. 

¶ Parametric instability of composite plates. 

2.2.1        Free Vibration Analysis of Plates 

With the continually increasing use of composites, especially in aerospace and automobile 

sectors, the study of vibration problems arising in laminated plates has become important. 

The prediction of dynamic behavior of laminated composite plates plays a significant role in 

the applications of structural composites. Plenty of analytical and numerical studies on 

vibration of composite plates are available in literature.  
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Review of Literature  
 

A considerable amount of analytical models and numerical analyses is reported for the free 

vibration analysis and is reviewed extensively by Leissa [1987], Kapania [1989], Liew, 

Xiang & Kitipornchai [1995] and Bhat et.al [1999] and Zhang and Yang [2009].  

Bert and Mayberry [1969] presented a linear analysis for determining the natural frequency 

of vibration of laminated anisotropic plates using an approximate solution obtained by the 

Rayleigh-ritz energy method. Numerical results are presented for fully clamped boundary 

conditions and compared with experimental results of symmetrically and unsymmetrically 

laminated plates determined by the peak amplitude response of a small metallic-foil strain 

gauge at the plate center. Ashton and Anderson [1969] investigated experimentally and 

theoretically the natural frequencies and mode shapes of laminated boron-epoxy plates with 

clamped edges. Wu and Vinson [1969] studied the effect of shear deformations on the 

fundamental natural frequency of composite plates with different boundary conditions: 

clamped, simply supported, and combined clamped and simply supported edges. This 

solution was based on Galerkinôs method. Clary [1972] investigated the natural frequencies 

and mode shapes of unidirectional composite material panels. He investigated the change in 

frequencies and mode shapes as the angle between the fibers and boundaries was changed. 

The maximum response amplitude was used to determine the natural frequencies. Clary and 

Cooper [1973] studied the vibration characteristics of aluminum plates reinforced with 

Boron-epoxy composites experimentally and compared with analytical results. To overcome 

the poor correlation, they indicated towards a sophisticated finite element analysis. Bert and 

Chen [1978] presented the effects of shear deformation on vibrations of antisymmetric angle-

ply laminated rectangular plates. The displacement formulation of heterogeneous shear 

deformation plate theory oriented by Yang, Norris, and Stavsky [1966] was used. Numerical 

results were presented showing the parametric effect of aspect ratio, length-to-thickness ratio, 

number of layers and lamination angle.  

Crawley [1979] experimentally and theoretically investigated the natural frequencies and 

mode shapes of composite cantilever plates and shells. He used the 90° phase difference 

between the periodic excitation and the response as a criterion to determine the natural 

frequencies. The natural frequency and mode shapes of a number of Graphite/ Epoxy and 

Graphite/Epoxy-Aluminum plates and shells were experimentally determined by Cawley and  

 



5 

 

Review of Literature  
 

Adams [1978]. The samples tested include eight ply graphite/epoxy plates with different fiber 

orientations and aspect ratios. The natural frequency and mode shape results obtained from 

experiment are compared with finite element method. Bhimaraddi and Stevens [1984] used 

higher order theory for free vibration of orthotropic, homogeneous, and laminated rectangular 

plates. The theory accounts for in-plane inertia, rotary inertia, and shear deformation effects. 

The proposed method used Hamiltonôs principle and assumed parabolic variations for 

transverse shear strains across the thickness of plate. In recent years, the Higher order Shear 

Deformation Theory (HSDT) as well as the Layer-wise Shear Angle Theory (LSAT) was 

developed by Owen and Li [1987] and Kant and Mallikarjuna [1989] to improve the 

predictions of laminate static and dynamic behavior.  The First order Shear Deformation 

Theory [FSDT] was considered more efficient for the prediction of the global responses, i.e., 

the transverse displacements, the free vibration Frequencies, and the buckling loads as 

reported by Reddy [1979]. Reddy [1990] presented a layer wise theory for the analysis of free 

vibration of laminated plates. The elasticity equations were solved by utilizing the state-space 

variables and the transfer matrix. Results were also obtained for symmetric and 

antisymmetric laminates. Narita and Leissa [1992] presented an analytical approach for the 

free vibration of cantilevered, symmetrically laminated rectangular plates. The natural 

frequencies were calculated for a wide range of parameters: e.g., composite material 

constants, fiber angles and stacking sequences.   

An experimental and numerical investigation into the structural behavior of symmetrically 

laminated carbon fiber-epoxy composite rectangular plates subjected to vibration was studied 

by Chai et al. [1993]. The experimental vibrational response was studied using TV-holography 

technique and comparison with finite element results was reasonably good. Chai [1994] 

employed Raleigh-Ritz method to study the free vibration behavior of laminated plates with 

various edge support conditions. In addition experiments were performed using TV-

holography technique to verify the predicted results for a rectangular C-S-C-S laminated 

carbon-fibre reinforced plastic plate of symmetric stacking sequence. Linear vibration 

analysis of laminated rectangular plates was reported by Han and Petyt [1996], who describe 

the free and forced vibration analysis of symmetrically laminated rectangular plates with 

clamped boundary condition using hierarchical finite element techniques. A study on the free 

vibration analysis of orthogonal-woven fabric composites was analyzed by Chen and Chou  
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[1999] analytically. Based upon the one-dimensional (1D) elasto-dynamic analysis developed 

by the authors for such a woven fabric composite, the free vibration problem was formulated 

and solved for four basic boundary conditions. Stanbridge and Ewins [1999] described a 

number of vibration mode-shape measurement techniques, in which the measurement point of a 

laser Doppler vibrometer (LDV) was continuously scanned over the surface of a sinusoidally 

excited structure.  

An experimental procedure to estimate the dynamic damped behavior of woven fiber 

Glass/Epoxy composite cantilever beams in flexural vibrations was given by Tita, Carvalho 

and Lirani [2001]. Berthelot and Sefrani [2006] investigated the damping of unidirectional 

glass fiber composites with a single or two interleaved viscoelastic layers experimentally. 

Laila [2008] presented aeroelastic characteristics of a cantilevered composite wing, idealized 

as a composite flat plate laminate. The composite laminate was made from woven glass fibers 

with epoxy matrix. The elastic and dynamic properties of the laminate were determined 

experimentally for aeroelastic calculations. An experimental amplitude-fluctuation electronic 

speckle pattern interferometry method for out-of-plane displacement measurement was 

employed to investigate the vibration behavior of square and rectangular composite plates 

with different stacking sequences by Ma and Lin [2001]. Both resonant frequencies and 

corresponding mode shapes can be obtained experimentally. Lei et al. [2010] reported the 

effects of woven structures on the vibration properties of the composites. The composites 

plates with adequate thickness were prepared by epoxy resin curing, and their fiber volume 

fractions were examined. Five typical weaving sets including the ordinary plain weaved and 

the warp interlocked were adopted in fabric processing. The result showed that the woven 

structure have a strong effect on the fiber volume fraction, resin-rich area, and the warp 

architectures of the composites, which determined the performances of the composites in 

vibration For laminated plates. Natural frequency with different fiber orientations was studied.  

Due to the advancement in weaving processes, a woven composite evolved as an attractive 

structural material for structural applications and the modeling strategies are reviewed 

recently by Mahmood et al. [2011].  

 

To better understand any structural vibration problem, the resonant frequencies of a structure 

need to be identified and quantified. Today, due to the advancement in computer aided data  
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acquisition systems and instrumentation, experimental modal analysis has become an 

extremely important tool in the hands of an experimentalist. Ewin [1984] has discussed in 

details the technology of modal testing. A combined experimental and numerical study of the 

free vibration of composite GFRP plates was carried out by Chakraborty et.al. [2000]. Modal 

testing was conducted using impact excitation to determine the respective frequency response 

functions. FEM results, NISA package results were compared with experimental results. Dutt 

and Shivanand [2011] studied the free vibration response of C-F-F-F and C-F-C-F woven 

carbon composite laminates using a FFT analyzer and compared with FEM tool ANSYS. 

This work presents an experimental study of modal testing of woven fiber Glass/Epoxy 

laminated composite plates using FFT analyser. Avila et.al [2005] presented vibration 

analysis of fiber glass/epoxy/nanoclay nanocomposites using modal analysis. By performing 

a modal analysis it was be possible to identify crossing modes or changes in the vibration 

frequency sequence of the modes, variations on frequencies and on modal properties for each 

mode for each set of nanocomposites. 

 

2.2.2          Buckling Analysis of Plates 

The static stability or buckling of mechanical, civil engineering structures under 

compressive loading has always been an important field of research with the introduction 

of steel a century ago. Buckling phenomenon is critically dangerous to structural 

components because the buckling of composite plates usually occurs at a lower applied 

stress and generates large deformation. Buckling can cause severe damage in the 

structure before the stresses reach the ultimate strengths. This led to a focus on the study 

of buckling behavior in composite materials. The use of finite-elements analysis for 

investigation of buckling problem of composite panels is becoming popular due to the 

improvement in computational hardware and emergence of highly specialized software. 

Several workers have attempted to model and analyze the buckling problem. The 

relevant theoretical studies have been focused on the formulation of analytical solutions 

to predict the buckling load behavior using perturbation techniques such as the 

BernoulliïEuler beam theory, the von Karman kinetic approach, elliptic integration, 

RayleighïRitz method, thin film model, and differential quadrature method.  
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Most of these methods contain a collection of non-linear equations, or need the support 

of numerical tools. Loading or geometric parameters are not explicitly expressed. In view 

of the difficulty of theoretical analysis for composite laminated structure behaviors, 

numerical and experimental methods have become important in solving the buckling 

problem of a laminated composite plate. 

The initial theoretical research into elastic flexural- torsional buckling was preceded by 

Eulerôs treatise on column flexural buckling, which gave the first analytical method of 

predicting the reduced strengths of slender columns. An experimental study of the uniaxial 

compressive stability of rectangular boron/epoxy laminated plates, clamped on the loaded 

edges and the unloaded edges simply supported was presented by Ashton and Love [1969]. 

Leissa [1987] provided a thorough overview of the countless number of papers available 

which are relevant to the stability of composite plates and shells. The buckling loads were 

determined by means of South well plots. Chai and Khong [1993] investigated the laminated 

plates under unidirectional loading using LVDT and strain gage to measure the out-of-plane 

deflection and in-plane strain respectively. The buckling loads from experiment well correlate 

with finite element solutions. Fleck et al. [1995] studied the effect of fiber architecture upon 

the compressive failure mechanism for fiber composite made up woven fabric. An 

experimental investigation was conducted by Gu and Chattopadyay [1999] to study the 

behavior of delamination buckling, post buckling and delamination growth in composites. 

The variation in structural configurations, such as ply stacking sequence and the location and 

the length of the delamination, were considered. The delamination buckling mode was found 

to be closely related to the location and the length of the delamination. Excellent agreement 

was observed between the experimental values of critical load and those predicted by the 

previously developed new higher-order theory. Good comparisons are also presented for the 

initial post buckling behavior. Shrivastava and Singh [1999] studied experimentally the effect 

of aspect ratio on buckling of composite plates. Buckling loads was determined for different 

aspect ratios. It is observed that the effect of boundary conditions on the buckling load 

increases with increasing aspect ratio. Tuttle et al. [1999] determined buckling loads from 

plots of applied load vs. out-of-plane displacement. Shadow moiré technique method was 

used to monitor the whole-field out-of-plane deflections of the buckled plates. The maximum 

out-of-plane displacement was measured by placing a dial indicator on the specimen.   
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Roberts et al. [1999] found an experimental, numerical and analytical result for bending and 

buckling of rectangular orthotropic plates. There was a reasonably agreement between FEA, 

analytical and experimental buckling stresses for unstiffened solid plates. Shukla et al. [2005] 

proposed a formulation based on the first-order shear deformation theory and von-Karman-

type nonlinearity to estimates the critical/buckling loads of laminated composite rectangular 

plates under in-plane uniaxial and biaxial loadings. Pannok and Singhatanadgid [2006] 

studied the buckling behavior of rectangular and skew thin composite plates with various 

boundary conditions using the Ritz method along with the proposed out-of-plane 

displacement functions. The boundary conditions considered in this study were combinations 

of simple support, clamped support and free edge. The out-of-plane displacement functions in 

form of trigonometric and hyperbolic functions were determined from the Kantorovich 

method. An experimental measurements and Numerical solutions on the buckling of single-

delaminated glass ïfiber composite laminates were carried out on rectangular Plates were 

presented by Pekbey and Sayman [2006]. ANSYS was used to analyze the critical buckling 

load of various laminated plates. Baba [2007] studied the influence of boundary conditions on 

the buckling load for rectangular plates. Numerical and experimental studies were conducted 

to investigate the effect of boundary conditions, length/thickness ratio, and ply orientation on 

the buckling behavior of E-glass/epoxy composite plates under in-plane compression load. 

Pein and Zahari [2007] investigated the structural behaviour of woven fabric composites 

subject to compressive load. The ultimate load and the structural and material behaviour of 

the composite laminated plates under compression were studied. Besides analytical study, 

there are several experimental studies on buckling of rectangular plates. A procedure for 

determining the buckling load of the aluminum rectangular plate was discussed by Supasak 

and Singhatanadgid [2012]. Buckling load of aluminum rectangular plates were determined 

using four different techniques, i.e. plot of applied load vs. out-of-plane displacement,  plot of 

applied load vs. end shortening, plot of applied load vs. average in-plane strain, and the South 

well plot. In this study, the experimental results suggest that a plot of average strain gives the 

most reliable buckling load. The plots of out-of-plane displacement and end shortening 

produce a good tendency of buckling load from specimen to specimen. Analysis of critical 

buckling load of laminated composites plate with different boundary conditions using FEM 

and analytical methods was presented by Ozben [2009].In this study, the critical buckling  
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load of fiber reinforced composite plate was calculated by analytical and finite element 

methods. The critical buckling loads and composite deformations were obtained on the basis 

of plate dimensions ratio (Lx/Ly). The critical buckling loads were obtained for different 

support conditions for the composite plates with symmetric and antisymmetric layup. 

However little attention has been given on experimental static stability analysis of woven 

fiber laminated composite plates. Recently, Zhange and Fu [2000, 2001] have proposed a 

new micromechanical model for predicting the buckling of woven fabrics using a 

combination of the traditional orthotropic model and their developed micromechanical 

model. 

2.2.3          Dynamic Stability Analysis of Plates 

Structural elements subjected to in-plane load may lead to dynamic instability, due to certain 

combinations of the values of load parameters. The instability may occur below the critical 

load of the structure under compressive loads over a range or ranges of excitation 

frequencies. Several means of combating parametric resonance such as damping and 

vibration isolation may be inadequate and sometimes dangerous with reverse results [1965]. 

Dynamic instability was first observed by Faraday [1831]. He observed that the liquid (wine) 

in a cylinder (wineglass) oscillated with half of the frequency of the exciting force movement 

of moist fingers around the glass edge. The first mathematical explanation of the 

phenomenon is given by Rayleigh [1883]. The general theory of dynamic stability of elastic 

systems of deriving the coupled second order differential equations of the Mathiew-Hill type 

and the determination of the regions of instability by seeking a periodic solution using 

Fourier series expansion was explained by Bolotin [1964]. Since Bolotin introduced the 

subject of dynamic stability under periodic loads, the topic has attracted much interest. A 

comprehensive review of early developments in the parametric instability of structural 

elements including plates was presented in the review articles by Simitses [1987] and Sahu 

and Datta [2007]. 

To bypass difficulties obtained due to analytical results, the finite element is proposed for the 

by Hutt and Salam [1971] using four noded thin plate finite element models under few 

boundary conditions, neglecting shear deformation using a four noded thin plate finite  
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element method. Srinivasan and Chellapandi [1986] analyzed laminated composite plates 

under uniaxial loading. The edges were clamped and the finite strip method was used to 

discretize the problem. With damping neglected, a set of coupled Mathieu equations was 

obtained, and Hillôs method of infinite determinants was applied to obtain instability regions. 

Prabhakara and Datta [1993] explained the parametric instability characteristics of 

rectangular plates subjected to in-plane periodic load using finite element method, 

considering shear deformation. Deolasi and Datta [1995] studied the parametric instability 

characteristics of rectangular plates subjected to localized tension and compression edge 

loading using Bolotinôs approach. They presented results of dynamic stability of thin, square, 

isotropic plates for classical simply supported boundary conditions having three degrees of 

freedom per node. 

There is a renewed interest on the subject after Birman [1987] investigated the effect of shear 

deformation on dynamic stability of simply supported antisymmetric angle-ply rectangular 

plateôs neglecting in-plane displacement and rotary inertia. The effect of unsymmetrical 

lamination on the distribution of the instability regions was investigated in this study. Chen 

and Yang [1990] investigated on the dynamic stability of thick anti-symmetric angle-ply 

laminated composite plates subjected to uniform compressive stress and/or bending stress 

using Galerkin's finite element. The thick plate model included the effects of transverse shear 

deformation and rotary inertia. The instability of composite laminated plates under uniaxial 

in-plane loads was investigated by Moorthy et al. [1990] without static load component using 

finite element method. The dynamic instability of antisymmetric angle-ply and cross-ply 

laminated plates subjected to periodic in-plane loads was investigated using a higher order 

shear deformation lamination theory and the method of multiple-scale analysis by Cederbaum 

[1991].  Kwon [1991] studied the dynamic instability of layered composite plates subjected to 

biaxial loading using a high order bending theory. Chattopadhyay and Radu [2000] used the 

higher order shear deformation theory to investigate the dynamic instability of composite 

plates by using the finite element approach. The first two instability regions were determined 

for various loading conditions using both first and second order approximations. Sahu and 

Datta [2000] studied the parametric instability of laminated composite plates subjected to 

non-uniform in-plane periodic loads using finite element, considering static component of  
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load. Extensive results were presented on the effects of different parameters on dynamic 

stability of angle-ply plates. Wang and Dawe [2002] presented B-spline finite strip method 

for the dynamic instability analysis of composite laminated rectangular plates and prismatic 

plate structures, based on the use of first-order shear deformation plate theory. Chakrabarti 

and Sheikh [2006] studied the dynamic instability of laminated sandwich plates subjected to 

inplane partial edge loading by using finite element method. Dey and Singh [2006] examined 

the dynamic stability characteristics of simply supported laminated composite skew plates 

subjected to a periodic in-plane load by using finite element approach. 

Recently an extensive bibliography of earlier works on dynamic stability of plates was given 

by Sahu and Datta [2006]. A review of composite structures subjected to dynamic loading is 

studied by Hampson and Moatamedi [2007]. Particular attention was given to experimental 

apparatus and techniques used for the different impact velocity regimes, and the 

implementation of failure criteria in finite element (FE) methods which predict material 

behavior. However, most of the investigations were limited to the theoretical studies for the 

determination of parametric resonance zones. Chen et al. [2009] studied the dynamic stability 

of laminated hybrid composite plates subjected to periodic uniaxial and bending stress and 

the instability region was marked by Bolotinôs method. 

Experimental investigations of parametrically excited rectangular plates, however, have not 

been too numerous. Apparently, the first experimental studies on plates were conducted by 

Somerset and Evan-Iwanowski [1967] and they pertained mainly nonlinear parametric 

response of simply supported square plates. Dixon and Wright [1972] studied experimentally 

the parametric instability behavior of plates subjected to in-plane periodic forces. In this 

paper, the theoretical and experimental results of an investigation into the parametric 

instability of flat rectangular plates were presented and discussed. Carlson [1974] conducted 

experiments on the parametric response characteristics of a tensioned sheet with a crack like 

opening. Cutouts, cracks and other kinds of discontinuities were inevitable in structures due 

to practical considerations. Nguyen, Ostiguy and Samson [1989] were performed 

experimentally to investigate the dynamic stability and responses of four rectangular plates 

subjected to periodic in-plane loads and under four different sets of boundary conditions. 

Special attention is paid to satisfy the boundary conditions assumed in the analytical models  
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so as to draw conclusion with sufficient degree of confidence.  The results also show that a 

parametric combination resonance is not important as compared with a principal parametric 

resonance for the problem under investigation. Deolasi and Datta [1997] experimentally 

investigated on parametric vibration response characteristics of aluminum plates subjected to 

tensile edge loading. Two distinct types of parametric instability behavior were observed: i.e. 

principal resonance and secondary resonance. The principal resonance was found to be more 

dominant. The location of loading on the edge is found to have a considerable influence on 

natural frequencies and parametric instability behavior of plates. Yang and Huang [2009] 

presents a dynamic stability analysis of a simply supported 3D braided composite laminated 

plate with surface-bonded piezoelectric layers, subjected to electrical and periodic in-plane 

mechanical loads. Theoretical formulations were based on Reddyôs higher order shear 

deformation plate theory and include piezoelectric effects.  

2.3. Critical Discussion 

On the whole, the focus of the research is changing from vibration to buckling effects and 

then to parametric instability. Recently more studies were conducted on woven fiber 

laminated composites than unidirectional composite materials. As regards to the 

methodology, the focus is shifted from analytical methods to numerical method using finite 

element methods and experimental method. 

The study reveals that investigators were now concentrating on analysis of complicated 

aspects of different parameters and different boundary conditions of plates. From the above 

review of literature, the inherent lacunae of earlier investigations which need further attention 

of future researchers are summarized below.    

However, in most of the studies mentioned on dynamic instability of unidirectional 

composite plates were reported. The study of the parametric instability of woven fiber 

laminated composite plates subjected to harmonic in-plane loading is relatively new subject. 

To authorôs knowledge no experiment has been done on parametric instability of woven fiber 

composite plates subjected to harmonic in-plane loading. The effect of different parameters 

on the parametric instability has been studied in details. The laboratory apparatus, plate  
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specimens, boundary conditions of the plate specimen, test procedure and recorded data are 

described in some details. Experimental data compared with FEM results in order to form a 

qualitative and quantitative verification of the solutions. It is found that theoretical results are 

generally in good agreement with experimental results. 

2.4. Objective and Scope of the Present Investigation 

No work is reported in literature on parametric instability of industry driven woven fiber 

laminated composite plates subjected to harmonic in-plane loading. The present study is 

mainly aimed at filling some of the lacunae that exist in the proper understanding of the 

parametric instability of woven fiber composite plates subjected to in plane periodic loads. 

The present research aimed at mostly experimental but also includes numerical study using 

finite element method on parametric instability characteristics of industry driven woven fiber 

composite panels subjected to in plane harmonic loading. The influence of various 

parameters like side to thickness ratios, number of layers, lamination sequence, and ply 

orientation, degree of orthotropy, static and dynamic load factors on the vibration and 

instability behavior of laminated plates is examined.  

Based on the review of literature, the different modules identified for the present 

investigation are presented as follows 

¶ Experimental and Numerical Study on Free vibration of woven fiber composite plates. 

¶ Experimental and Numerical Study on Buckling of woven fiber composite plates. 

¶ Experimental and Numerical Study on Parametric instability of woven fiber 

composite plates. 

Due to its practical importance and uniqueness in the above fields, this influence the various 

parameters such as aspect ratio, side to thickness ratio, static and dynamic load factors, ply-

orientations, lamination angle, orthotropic on the parametric resonance characteristics of 

laminated composite plates are examined in detail. 
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MATHEMATICAL FORMULATION  

3.1     The Basic Problems 

This chapter presents the mathematical formulation for vibration, static and dynamic stability 

analysis of the laminated composite plate structures. So, numerical method like finite element 

method (FEM) is more preferred than analytical method for solving problems involving 

composite laminate. In this method the structure is divided into a finite number of elements 

reducing the structure having infinite degrees of freedom to finite degrees of freedom and 

each element is normally of simple geometry and therefore easier to analyze than the actual 

structure.  

The basic configuration of the problem considered here is a composite laminated plate of 

sides óaô and óbô subjected to harmonic in-plane edge loading N(t) as shown in the Figure 3.1. 

The lamination sequence and Plan-form subjected to in-plane load N(t) is also shown in 

Figure 3.2 and Figure 3.3. 

 

 

Figure 3.1: Laminated Composite Plate under in-plane harmonic Loading 
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Figure 3.2: Lamination sequence     Figure 3.3: Plan-form subjected to in-plane load N (t) 

 

3.2        Proposed Analysis 

The governing equations for the structural behavior of the laminated plates are derived on the 

basis of first order shear deformation theory. The element elastic stiffness, geometric stiffness 

and mass matrices are derived on the basis of principle of minimum potential energy and 

Lagrangeôs equation. The governing equations for the dynamic stability of laminated woven 

fiber composite plate subjected to in-plane loading are developed using first order shear 

deformation theory (FSDT).The equation of motion represents a system of second order 

differential equation with periodic coefficients of the Mathieu-Hill type. The development of 

the regions of instability arises from Floquet's theory and the solution is obtaining using 

Bolotin's approach using finite element method (FEM). The assumptions made in this 

analysis are summarized as follows: 

3.2.1          Assumptions of the Analysis  

¶ The material behavior is linear and elastic. 

¶ The thickness of the laminate is small compared to the other dimensions. The 

deflections of the laminated plate are small compared to laminate thickness. 

¶ The loading considered is axial with simple harmonic fluctuation with respect to time. 

¶ Al l damping effects are neglected. 

 

 

N (t) 
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3.3          Governing Equations 

The governing differential equations, the strain energy due to loads, kinetic energy and 

formulation of general buckling problems are derived on the basis of minimum potential 

energy and Lagrangeôs equation.  

 

Figure 3.4 [a]: Inplane Forces on a Laminate 

                                      
                                       Figure 3.4 [b]:  Moments on a Laminate 

 

 
3.3.1           Governing Differential Equation 

The equation of motion is obtained by taking a differential element of plate as shown in 

figure 3.4[a] and 3.4[b]. The figure shows an element with internal forces (Nx, Ny, Nxy), 

shearing forces (Qx and Qy) and the moment resultants (Mx, My and Mxy) on laminate. The 

governing differential equations for vibration of general laminated composite plates derived 

on the basis of first order shear deformation theory (FSDT) subjected to in-plane loading can 

be written as: 
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Where Nx, Ny and Nxy are the in-plane stress resultants, Nx
0 
and Ny

0
 are the external loading in 

X and Y directions respectively.  

Mx, My and Mxy are moment resultants and Qx, Qy= transverse shear stress resultants.  
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(3.3.2) 

Where n= number of layers of laminated composite plates, (ɟ)k= mass density. 

3.4          Dynamic Stability Studies: 

The equation of motion for vibration of a laminated composite panel, subjected to generalized 

in-plane load )(tN May be expressed in the matrix form as: 

g[M]{q} [[K] N(t)[K ]]{q} 0+ - =
                                                                

(3.4.1) 

Where óqô is the vector of degrees of freedoms (u, v, w, qx, qy). The in-plane load óN (t)ô may 

be harmonic and can be expressed in the form: 

s tN(t) N N Cos t= + W
                                                                                       

(3.4.2) 

Where Ns   the static portion of load N (t), Nt the amplitude of the dynamic portion of N (t) 

and  W is the frequency of the excitation. The stress distribution in the panel may be periodic.  
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Considering the static and dynamic component of load as a function of the critical load, 

 

s crN Na=  ,  t crN Nb=
                                                                                                 

(3.4.3) 

Where Ŭ and ɓ are the static and dynamic load factors respectively. Using Eq. (3.4.2), the 

equation of motion for panel in under periodic loads is reduced to: 

 

cr g cr g[M]{q} [[K] N [K ] N [K ]Cos t]{q} 0a b+ - - W =
                                         

(3.4.4) 

The above Eq. (3.4.4) represents a system of differential equations with periodic coefficients 

of the Mathieu-Hill type. The development of regions of instability arises from Floquetôs 

theory which establishes the existence of periodic solutions of periods T and 2T. The 

boundaries of the primary instability regions with period 2T, where T=2 p/ɋ are of practical 

importance and the solution can be achieved in the form of the trigonometric series: 
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Putting this Eq. (3.4.5) in Eq. (3.4.4) and if only first term of the series is considered, 

equating coefficients of Sin ɋt/2 and Cos ɋt/2, the Eq. (3.4.4) reduces to  
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(3.4.6) 

 

Eq. (3.4.6) represents an eigen value problem for known values of Ŭ, ɼ and Ncr, where Ŭ, ɼ 

and Ncr   are static load factor, dynamic load factor and reference load respectively. K, Kg and 

M are elastic stiffness, geometric stiffness and mass matrices respectively. The two 

conditions under the plus and minus sign correspond to two boundaries (upper and lower) of 

the dynamic instability region. The above eigenvalue solution gives of Ý, which give the 

boundary frequencies of the instability regions for the given values of Ŭ and ɼ. In this 

analysis, the computed static buckling load of the panel is considered as the reference load. 

Before solving the above equations, the stiffness matrix [K] is modified through 

incorporation of conditions and imposition of boundary conditions. In this analysis, the  
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computed static buckling load of the panel is considered as the reference load in line with 

many previous investigations (Ganapati et al. [1999], and Moorthy, Reddy and Plaut [1990]). 

This equation represents a solution to a number of related problems: 

(1) Free vibration: Ŭ = 0, ɓ = 0 and ɤ = ɋ/2 

                
2[[K] [M]]{q} 0w- =

  
                                                                             

(3.4.7) 

(2) Vibration with static axial load: ɓ = 0 and ɤ = ɋ/2 

             

2

cr g[[K] N [K ] [M]]{q} 0a w- - =
                                                                

(3.4.8) 

(3) Static stability: Ŭ = 1, ɓ = 0, ɋ = 0    

             
cr g[[K] N [K ]{q} 0a- =

                                                                                
(3.4.9) 

3.5          Finite Element Formulation 

For problems involving complex geometrical and boundary conditions, analytical methods 

are not easily adaptable and numerical methods like finite element methods (FEM) are 

preferred. The finite element formulation is developed hereby for the structural analysis of 

composite plates based on first order shear deformation theory. 

3.5.1         Discretisation of Structure  

The process of modeling a structure using suitable number, shape and size of the elements is 

called discretization. The modeling should be good enough to get the results as close to actual 

behavior of the structure as possible. The continuum is divided into ófiniteô number of 

elements and connected only at the nodal points. 

3.5.2       The Plate Element 

An eight nodded isoparametric element is employed in the present analysis with five degrees 

of freedom u, v, w, ɗx and ɗy per node. A Composite plate of length óaô and width óbô 

consisting of ónô number of thin homogeneous arbitrarily oriented orthotropic layers having a 

total thickness óhô is considered as shown in figure 3.5. The x-y axes refer to the reference 

axes and the principal material axes are indicated by the axes 1-2. The angle óɗô measured in 

the anti-clockwise direction of x-axis represents the fiber orientation. 
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Fig 3.5: N layered laminate configurations 

 

The displacement field assumes that mid-plane normal remains straight before and after 

deformation, but not normal even after deformation so that: 

0

xu(x, y,z) u (x, y) z (x, y)q= +
 

0

yv(x, y,z) v (x, y) z (x, y)q= +
                                                                                     (3.5.1)

 

0w(x, y,z) w (x, y)=  

Where u, v, w are displacements in the x, y, z directions respectively for any point, u
0
,v

0
, w

0
 

are those at the middle plane of the plate. ɗx, ɗy are the rotations of the cross section normal to 

the y and x axis respectively. Assuming small deformations, the generalized linear in-plane 

strains of the laminate at a distance z from the mid-surface is given by: 

{Ůxx Ůyy ɔxy}
T
= {Ůxx Ůyyɔxy}

 T 
+ z{ kxx kyy kxy}

T                                                                           
(3.5.2) 

Where Ůxx, Ůyy, ɔxy are mid-plane strains and kxx, kyy, kxy  are curvatures of the laminated plate. 

The elastic stiffness matrix, geometric stiffness matrix due to applied in-plane loads and mass 

matrices of the elements are derived using the principle of minimum potential energy. The 

shape functions of the element are derived using the interpolation polynomial given below 

based on Pascalôs triangle for convergence criteria. 

2

8

2

7

2

65

2
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(3.5.3) 
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The displacements are expressed in terms of their nodal values by using the element shape 

functions and are given   by. 

 

 

                                                                    (3.5.4) 

 

 

The shape function iN  are defined as
 

( )( )( )111
4

1
111 -+++= hhxxhhxxiiN      For =i 1, 2, 3 & 4

 

( )( )iiN hhx +-= 11
2

1 2

                                  
For =i 5, 7                                                 (3.5.5) 

( )( )2
11

2

1
hxx --= iiN

                                  
For =i 6, 8 

=hx,  Local natural co-ordinates of an element
 

=iN  Shape function at a node  i  

3.5.3      Strain Displacement Relations  

Green-Lagrangeôs strain displacement relations are presented in general throughout the 

analysis. The linear part of the strain is used to derive the elastic stiffness matrix and the non-

linear part of the strain is used to derive the geometric stiffness matrix. The total strain is 

given by 

                     {}{}{ }nll e+e=e                                                                                             (3.5.6)                                    

    The linear generalized shear deformable strain displacement relations are 
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yl y

v
zk

y
e

µ
= +
µ  

xyl xy

u v
zk

y x
g

µ µ
= + +
µ µ                                                                                  (3.5.7) 

xzl x

w

x
g q

µ
= +
µ  

yzl y

w

y
g q

µ
= +
µ  

    

The bending strains kj are expressed as, 

yx
k

yx
x

µ

µ
=

µ

µ
=

qq
yk   ,       

yx
xyk

y x

qq µµ
= +
µ µ                                                                                             (3.5.8) 

The linear strain {}ecan be expressed in terms of displacement as:  

{} []{}eB de=
                                                                                                                     

(3.5.9) 

Where   {} { },,,,,..........,,,, 888881111

T

yxyxe wvuwvu qqqqd =
                                             (3.5.10) 

And [B] = [[B1], [B2]éééééééééééé. [B8]]                                             (3.5.11)   

      

 

 

 

     (3.5.12) 

[B]    is called the strain displacement matrix 
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3.5.4      Constitutive Relations 

A macro-mechanical analysis was carried out to establish the relationship between the forces 

and general strains of a laminate. The elastic behavior of each lamina is essentially two 

dimensional and orthotropic in nature. So the elastic constants for the composite lamina are 

given below. 

E11 = Modulus of Elasticity of Lamina along 1-direction 

E22 = Modulus of Elasticity of Lamina along 2-direction 

G12 = Shear Modulus 

ɜ12= Major Poissonôs ratio 

ɜ21 = Minor Poissonôs ratio 

The stress strain relation for the k
th
 lamina is, 

x x11 12

y y12 22

xy 66 xy

44xz xz

55yz yz

Q Q 0 0 0

Q Q 0 0 0

0 0 Q 0 0

0 0 0 Q 0

0 0 0 0 Q

s e

s e

t g

t g

t g

ë û ë ûè ø
î î î îé ù
î î î îé ù
î î î îé ù=ì ü ì ü

é ùî î î î
é ùî î î î
é ùî î î îê úí ý í ý                                                                 

(3.5.13) 

Where               

11 11 21 22 12 22
11 12 21 22

12 21 12 21 12 21 12 21

66 12

44 13

55 23

E E E E
Q ,Q ,Q ,Q
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(3.5.14) 
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The on-axis elastic constant matrix [Qij]k corresponding to material axes 1-2 for k
th
 layer is 

given by 

[ ]
ù
ù
ù

ú

ø

é
é
é

ê

è

=

66

2212

1211

00

0

0

Q

QQ

QQ

Q
kij For   ji ,  = 1, 2, 6

                                                                    (3.5.15)
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kij      For   ji ,  = 4, 5 

 

For obtaining the off-axis elastic constant matrix, [Qij]k corresponding to any arbitrarily 

oriented reference x-y axes for the k
th
 layer ,appropriate transformation is required. Hence the 

off-axis elastic constant matrix is obtained from the on axis elastic constant matrix by the 

relation: 
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(3.5.16)

 

[ Qij ]k  =    
1 1
1 1

 for  i ,j =4,5 

1
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   (3.5.17)   

Where [T] = Transformation matrix =
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The off-axis stiffness values are: 
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The stiffness corresponding to transverse deformations are: 

   

                                                                                      (3.5.19) 

 

Where m=cosɗ and n=sinɗ; and ɗ=angle between the arbitrary principal axis with the material 

axis in a layer.  

The force and moment resultants are obtained by integrating the stresses and their moments 

through the laminate thickness as given by  

 

 

                                                                              (3.5.20) 
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(3.5.21) 

This can also be stated as  

ji ij ij
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Or  

{} {}F D e=è øê ú                                                                                                                                        (3.5.23) 

Where Aij, Bij  andSi j  are the extensional, bending- stretching coupling, bending and transverse 

shear stiffnesses. They may be defind as 

( )( )1
1

-

=

-=ä kk

n

k
kijij zzQA

 

( )( )
n

2 2

ij ij k k-1
kk=1

1
B = Q z -z

2
ä  

( )( )3

1

3

13

1
-

=

-= ä kk

k

n

k

ijij zzQD          For  ji ,  = 1, 2, 6                                                         (3.5.24) 

( )( )
n

ij ij k k 1
kk 1

S Q z zk -

=

= -ä         For ji ,  = 4, 5  

 



28 

 

MATHEMATICAL FORMULATION  

 

ʆ = shear correction factor =5/6   in-line with previous studies [Whitney and Pagano [1970] 

and Reddy [1979]] 

zk, zk-1= top and bottom distance of lamina from mid-plane. 

3.5.5        Elastic stiffness matrix  

The element matrices in natural coordinate system are derived as 

T1 1

e 1 1
K B D B J d dx h

+ +

- -
=è ø è ø è øè øê ú ê ú ê úê úñ ñ

                                                                                                   
(3.5.25) 

Where   [B]    is called the strain displacement matrix 

3.5.6       Geometric stiffness matrix [Kg]e
 

The element geometric stiffness matrix is derived using the non-linear in-plane strains. The 

strain energy due to initial stresses is 

{ }0 T

nl2
v

U [ ] dVs e=è øê úñ                                                                                           (3.5.26) 

Using non-linear strains, the strain energy can be written in matrix form as 

T

2
v

1
U [f ] [S][f ]dV

2
=è øê ú ñ                                                                                            (3.5.27) 

Where 
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                                                                      (3.5.30) 

The in-plane stress resultants Nx ,Ny, Nxy at each gauss point are obtained by applying uniaxial 

stress in x-direction and the geometric stiffness matrix is formed for these stress resultants. 

{} {}eF G d=è øê ú                                                                                                               (3.5.31) 

The strain energy becomes 

{} {} {} {}
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Where element geometric stiffness matrix  

T1 1

g
1 1e

K G S G J d dx h
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                                                                              (3.5.33) 

where 
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(3.5.34) 

3.5.7       Element mass matrix 

T1 1

e 1 1
M N P N J d dx h
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                                   (3.5.35) 

Where the shape function matrix  
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The element load vector due to external transverse static load ópô per unit area is given by 
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3.6            Computer Program 

A computer program is developed by using MATLAB environment to perform all the 

necessary computations. The element stiffness, geometric stiffness and mass matrices are 

derived using the formulation. Numerical integration technique by Gaussian quadrature is 

adopted for the element matrices. Since the stress field is non-uniform, plane stress analysis is 

carried out using the finite element techniques to determine the stresses and these stresses are 

used to formulate the geometric stiffness matrix. The overall matrices [K], [Kg], and [M] are 

obtained by assembling the corresponding element matrices. The boundary conditions are 

imposed restraining the generalized displacements in different nodes of the discretized 

structure. The program features and flow charts, used in this study are presented in the 

Appendix. 
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Chapter-4 

EXPERIMENTAL PROGRAMME  

4.1      Introduction 

This chapter presents the details of experimental works carried out for vibration, buckling or 

static stability and parametric instability of plate separately. Therefore composite plates with 

different geometry are fabricated and their material properties are found out by tensile test. 

The further studies of this section are grouped into three parts as follows: 

¶ Vibration of woven fiber composite plates 

¶ Buckling of woven fiber composite plates 

¶ Dynamic stability of woven fiber composite plates 

4.2     Materials 

The following constituent materials were used for fabricating the plate: 

¶ Glass woven roving fibers as reinforcement. 

¶ Epoxy as resin 

¶ Hardener as catalyst(10% of the weight of epoxy) 

¶ Polyvinyl Alcohol (PVA) as a releasing agent 

4.3      Fabrication Procedure 

The FRP composite specimens were casted using hand layup technique. In hand lay-up 

method, liquid resin was placed along with reinforcement (woven glass fiber) against finished 

surface of an open mould. Chemical reactions in the resin hardened the material to a strong, 

light weight product. The percentage of fiber and matrix was taken as 50:50 in weight for 

fabrication of the plates.  A flat plywood rigid platform was selected. A plastic sheet i.e. a 

mould releasing sheet was kept on the plywood platform and a thin film of polyvinyl alcohol 

was applied as a releasing agent as shown in Figure 4.1[a]. Laminating started with the 

application of a gel coat (epoxy and hardener) deposited on the mould by brush as shown in 

Figure 4.1[b], whose main purpose was to provide a smooth external surface and to protect  
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the fibers from direct exposure to the environment. Glass fiber was cut from roll of woven 

roving. Layers of reinforcement were placed on the mould at top of the gel coat and gel coat 

was applied again by brush. Any air which may be entrapped was removed using steel rollers 

as shown in Figure 4.1[c]. The process of hand lay-up was the continuation of the above 

process before the gel coat had fully hardened. After completion of all layers, again a plastic 

sheet was covered on the top of last ply by applying polyvinyl alcohol inside the sheet as 

releasing agent. Again one flat ply board and a heavy flat metal rigid platform were kept top 

of the plate for compressing purpose. The plates were left for a minimum of 48 hours in room 

temperature before being transported and cut to exact shape for testing. The fabricated plate 

after drying is shown in Figure 4.1 [d]. 

 

                                                     

                     Figure 4.1[a]                                                          Figure 4.1[b] 

                                      

Figure 4.1[c]                                                                Figure 4.1[d] 

Figure 4.1 [a]: Application of gel coat on mould releasing sheet, Figure 4.1 [b]: Placing of 

woven roving glass fiber on gel coat, Figure 4.1 [c]: Removal of air entrapment using 

steel roller, Figure 4.1 [d]: Plate after casting. 
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4.4      Determination of Material constants 

The characteristics of woven fiber Glass/Epoxy composite plate which can be defined 

completely by four material constants: E1, E2, G12, and ɡ12 where the suffixes 1 and2 indicate 

principal material directions. For material characterization, 12 numbers of samples of 8 layer 

Glass/Epoxy plate was tested by INSTRON 1195 machine for determining tensile strength 

and  Youngôs modulus in different  direction. Out of which, 4 number samples are in X-

direction, 4 number samples in Y-direction and 4 numbers of samples in 45
o
 direction. From 

the test data, E1, E2 and G12were calculated for the Glass/Epoxy plate as described in ASTM 

standard: D 3039/D 3039M-2008.The dimensions of the specimen were taken as below as 

given  Table 4.1. 

Table 4.1:     Dimensions of tensile specimens for tensile test 

Angle(degree) Length(mm) Width(mm)  Thickness(mm) Overall Length(mm) 

    0
0
 150 25 3 250 

   90
0
 150 25 3 250 

   45
0
 150 25 3 250 

The specimens were cut from the plates themselves by diamond cutter. At least four replicate 

sample specimens were prepared. The tests specimens are shown in Figure 4.2[a], Figure 

4.2[b] and Figure 4.2[c] for specimen in x, y and 45
0
directions respectively. 

                

Figure 4.2 [a]: Specimens in ñxò direction, [b]  Specimens in ñyô direction, [c] Specimens 

in ñ45
0
ò direction. 
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For measuring the Youngôs modulus, the specimen is loaded in INSTRON 1195 universal 

testing machine as shown in Figure 4.3, monotonically to failure with a recommended rate of 

extension (rate of loading) of 0.2in/minute. Specimens were fixed in the upper jaw first and 

then gripped in the movable jaw (lower jaw).Gripping of the specimen was as much as 

possible to prevent the slippage. Here, it was taken as 50mm in each side for gripping. 

Initially strain was kept at zero. The load, as well as the extension, was recorded digitally 

with the help of a load cell and an extensometer respectively. From these data, engineering 

stress vs. strain curve was plotted; the initial slope of which gives the Youngôs modulus. The 

ratio of transverse to longitudinal strain directly gives the Poissonôs ratio by using two strain 

gauges in longitudinal and transverse direction. 

The shear modulus was determined using the following formula from Jones [1975] as: 

1

12

2145

12 2114

1

EEEE

G
n

+--

=

 

 

Table 4.2:       Material properties of glass/epoxy lamina  

Lay-up N E1(GPa) E2(GPa) E45(GPa) G12(GPa) ɜ12 ɟ(kg/m
3
) 

WR 8 7.4 7.4 5.81 2.15 0.17 1580 

 

Where, WR: - Woven Roving 

 N: - Number of layers 

E1, E2:- Elastic modulus in longitudinal direction (1) and transverse direction (2) respectively.                       

 E45      :- Tensile modulus obtained in 45° tensile test,  

G12      :- In-plane shear modulus  

 ɜ12    :- Poissonôs ratio, ɟ:-Density 
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Figure 4.3: Tensile test of woven fiber Glass/Epoxy composite specimen in INSTRON 

1195 UTM 

                              

Fig 4.4: Failure pattern of woven fiber Glass/Epoxy composite specimen 

4.5:  Description of Test Specimen 

The woven roving Glass/Epoxy composite plates were fabricated for the present experimental 

work. The geometrical dimensions (i.e. Length, breadth, and thickness), and ply orientations 

of the fabricated plates are shown below in Table 4.3. 

For Free vibration and stability (Buckling) study, the plate of dimensions 240mmx240mm 

was considered with different thickness as the no. of layers varies. Only for simply supported 

boundary conditions in free vibration test the plate dimensions is taken as 237mmx237mm  
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due to frame conditions. For Experimental Study of parametric instability plate dimension of 

600mmx350mmx4.7mm and for numerical study of parametric instability again 

240mmx240mm which was same as vibration and buckling considered as plate dimensions. 

Table 4.3:      Geometrical Dimensions of Composite Plate:  

All the specimens described in Table 4.3 were tested for free vibration, buckling and dynamic 

stability study.  

Size of plate  

In ómmô 

No. of layers Thickness 

In ómmô 

Stacking Sequence 

240X240 16 5.6 [0]16 

240X240 12 4.7 [0]12 

240X240 8 3.1 [0]8 

240X240 8 3.1 [(30/-30)2]s 

240X240 8 3.1 [(30/-30)2]s 

240X240 8 3.1 [(45/-45)2]s 

240X240 8 3.1 [(45/-45)2]s 

237X237 8 3.1 [0]8 

600x350 12 4.7 [0]16 
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4.6        Vibrations of woven fiber composite plates 

In order to achieve the right combination of material properties and service performance, the 

dynamic behavior is the main point to be considered. To avoid the typical problems caused 

by vibrations, it is important to determine natural frequency of the structure. 

The fundamental frequency is a key parameter. The natural frequencies are sensitive to the 

orthotropic properties of composite plates and design-tailoring tools may help in controlling 

this fundamental frequency. Due to the advancement in computer aided data acquisition 

systems and instrumentation, experimental modal analysis or free vibration analysis has 

become an extremely important tool in the hands of an experimentalist. 

4.6.1      Equipments Required for Vibration Test 

The apparatus which are used in free vibration test are  

¶ Modal hammer. 

¶ Accelerometer. 

¶ FFT Analyzer. 

¶ PULSE software. 

4.6.1.1       Modal hammer 

The modal hammer excites and measure impact forces on to the specimens. Three interchange 

tips are provided which determine the width of the input pulse and thus the band width of  the 

hammer structure is acceleration compensated to avoid gli tches in the spectrum due to hammer 

structure resonance. For present experiment, modal hammer type 2302-5 was used, which is 

shown in Figure 4.5. 

 

Figure 4.5: Modal Impact Hammer (B&K type 2302-5) 
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4.6.1.2       Accelerometer: 

Miniature DeltaTron Accelerometers is specifically designed to withstand the robust 

environment of the industry. A combination of high sensitivity, low mass and small physical 

dimensions make the accelerometer ideal for modal measurements, such as on aircraft, 

automotives and satellites. It can be easily fitted to different test objects using a selection of 

mounting clips. For the present experiment accelerometer type 4507 was used and which was 

fixed on plates by using bee wax. The accelerometer for free vibration test is shown in Figure 

4.6. 

 

Figure 4.6: Accelerometer (B&K 4507) used in Free Vibration Test. 

4.6.1.3      Portable FFT Analyzer- type (3560B) 

Four channels Bruel &kjaer pulse analyzer systemtype-3560 B as shown in fig.4.7, was 

used to measure the frequency for any structure. It can be used for both free vibration as 

well as forced vibration study.  The system has some channels to connect the cables for 

analyzing both input and output signals. Bruel & Kjaer FFT analyzer 3560-B is shown in 

Figure 4.7. 

 

Figure 4.7: FFT Analyzer (Model B&K3560-B) 
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4.6.1.4        Display unit  

This is mainly in the form of PC (Laptop) as shown in Figure 4.8[a]. When the specimen was 

excited in a selected point by means of Impact hammer (Model 2302-5),  the signal of 

resulting vibrations of the specimens were received to the FFT Analyzer by an accelerometer 

(B&K, Type 4507) mounted on the specimen by means of bees wax. The output from the 

analyzer was displayed on the display unit in the graphical form which includes graph of 

force amplitude spectrum, response amplitude spectrum, coherence and frequency 

response functions as shown in Figure 4.8[b]. 

            

         Figure 4.8 [a]: Display unit                   Figure 4.8 [b]: Various Pulse output windows 

4.6.2:       Setup and Test Procedure for Free Vibration Test 

The vibration test setup is shown in Figure 4.9. The test frame which was fabricated for 

conducting different boundary conditions (B.C) i.e. free-free, four sides simply supported, 

cantilever and fully clamped were shown in Figure 4.10 [a] to Figure 4.10[e].  

The test specimens were fitted properly to the iron frame. The connections of FFT analyzer, 

laptop, transducers, modal hammer, and cables to the system were done. The plate was 

excited in a selected point by means of Impact hammer (Model 2302-5). The resulting 

vibrations of the specimens on the selected point were measured by an accelerometer (B&K, 

Type 4507), mounted on the specimen by means of bees wax. For FRF, at each singular 

point the modal hammer was struck five times and the average value of the response was 

displayed on the screen of the display unit. 
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Figure 4.9: Vibration Test Set-up 

At the time of striking with modal hammer to the points on the specimen,  precaution were 

taken for making the stroke to be perpendicular to the surface of the plates. Then, by moving 

the cursor to the peaks of the FRF, the frequencies were measured. The output from the 

analyzer was displayed on the analyzer screen by using pulse software.  

                                                    

Figure 4.10 [a] 

For different B.C one iron frame was used. Some of the test specimens with different 

boundary conditions are shown in Figure 4.10. 

 

                                  

                       Figure 4.10 [b]                                                              Figure 4.10 [c] 

 

FREE-FREE  CANTILEVER 

IRON FRAME 
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Figure 4.10[d]                                                                Figure 4.10 [e] 

Figure 4.10:  [a] Iron Frame for making different B.C. Setup, [b] free-free B.C,   [c] 

Cantilever B.C, [d] Clamped B.C, [e] Simply Supported B.C 

 

4.6.3:          Setting up the template in Pulse lab shop 

In order to setup a template, there are four important windows. These are opened by selecting 

'Organizer' from the menu and then clicking on each of the four window titles listed below. 

4.6.3.1:             Configuration 

This window contains details of the inputs and outputs on the Pulse Front-end and to specify 

what components are connected to this Front-end. 

 

Figure 4.11 

4.6.3.2:             Measurement 

This window is used to setup signal grouping and to specify which analyzers are to be used. 

 

 

SIMPLY SUPPORTED FULLY CLAMPED 
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Figure 4.12 

4.6.3.3:              Function 

This window is used to setup the outputs from the analyzers and how they are to be used. The 

function like FRF, response in time domain, coherence and excitation in time domain are 

chosen for the test.  

 

 

Figure 4.13 

 

4.6.3.4:            Display 

This window shows which measurements are currently displayed and allows modifications to 

be made to the way the measurements are displayed. The four windows mentioned previously 

are very important for setting up the Pulse Labshop template. It is important that they are 

easily accessible. This configuration follows the flow that the setup process uses. i.e. 

Configuration Ÿ Measurement Ÿ Function Ÿ Display. 

 



44 

 

EXPERIMENTAL PROGRAMME  

 

4.6.4:        Pulse Report (Frequency Response function): 

A typical FRF (pulse report) of the measurement from FFT analyzer along with coherence 

curve is shown in Figure.4.14.  and Figure 4.15 respectively. As shown in Figure 4.14, the 

different peaks of FRF shows the different modes of vibrations and the coherence value of 

nearly 1 in Figure 4.15 shows the accuracy of the measurement. 

 

Figure 4.14: Typical FRF of test specimen. In X-axis: Frequency in Hz   In Y-axis: 

Acceleration in m/s
2
/Force 

 

Figure 4.15:  Typical coherence  of test specimen. 
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4.7:        Buckling of Woven Fiber Composite Plates 

The complex behavior of woven fabric composite laminates under compressive loading 

conditions is still not well understood and requires further experimental investigations in 

order to better understand their behavior especially buckling load. Studies of buckling 

analysis of woven fabric or bi-directional composite laminates are limited. Therefore, woven 

fabric glass/epoxy composites were used in this study to demonstrate the capability of the 

static stability analysis of woven fiber composite panels. 

There are several techniques of identifying the buckling load in the experiment used in the 

past studies. Four of the methods which are examined in the present study are: Plot of applied 

load vs. out-of-plane displacement, plot of load vs. end shortening, average strain method and 

South well plot. With the available experimental data, a plot of average strain method is the 

most reliable technique, while a plot of out-of-plane displacement and a plot of end 

shortening show a good tendency of determination of buckling loads. In the present study, 

buckling loads of woven fabric composite plates is determined from end shortening method 

and compared to the numerical solutions using present FEM based formulation. 

4.7.1          Buckling Experiment (Static stability) 

In view of difficulty of theoretical and numerical analysis for laminated structure behaviors, 

experimental methods have become important in solving the buckling problem of laminated 

composite plates. The specimens was clamped at two sides and kept free at other two sides. 

The specimens were loaded in axial compression by using an INSTRON universal testing 

machine (SATEC) of 600 kN capacity. 

4.7.1.2         Test Procedure 

The specimens were loaded in axial compression using INSTRON universal testing machine 

(SATEC) of 600 KN capacities as shown in Figure 4.16 [a]. The specimen was clamped at 

two ends and kept free at the other two ends as shown in Figure 4.16 [b]. All specimens were 

loaded slowly until buckling. Clamped boundary conditions were simulated along the top and 

bottom edges, restraining 2.5cm length. For axial loading, the test specimens were placed 

between the two extremely stiff machine heads, of which the lower one was fixed during the  
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test, whereas the upper head was moved downwards by servo hydraulic cylinder. All plates 

were loaded at constant cross-head speed of 0.5mm/min. The load-displacement diagrams for  

all composite configurations were plotted. The motion of the machine was stopped when the 

load dropped. The data acquisition system which was linked with the INSTRON machine 

was used to record all the necessary results and the buckling loads were determined from the 

recorded data.  The plate before buckling and after buckling is shown in fig.4.16[c] and 

fig.4.16 [d]. The load v/s end shortening curve was plotted. The displacement is plotted on 

the x -axis and load was plotted on the y- axis. The load, which is the initial part of the curve 

deviated linearity, is taken as the critical buckling load.  

                                     

                         Figure 4.16 [a]                                                   Figure 4.16 [b] 

 

                                    

                            Figure 4.16 [c]                                                   Figure 4.16 [d] 

Figure 4.16 [a]:  INSTRON universal testing Machine (SATEC) of 600 kN capacities, 

Figure 4.16 [b]: Buckling set up and test frame, Figure 4.16 [c]: specimen before 

buckling, Figure 4.16 [d]: Specimen after buckling    

Hydraulic 

Cylinder  

Load cell 

Specimen 

Plate before 

Buckling  

Buckling 

set up 

Plate after 

Buckling  
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4.7.2           Buckling Experiment (By Dynamic Approach) 

Buckling Test is also conducted by dynamic approach. The test facility used to conduct 

stability test by dynamic approach is shown in Figure 4.17 [a] and Figure 4.17 [b]. 

                             

                    Figure 4.17 [a]                                                           Figure 4.17 [b] 

Figure 4.17[a]: Experimental set up Fabricated for conducting Buckling Test by 

Dynamic approach, Figure 4.17 [b]: Vibration test set up 

 

4.7.2.2 Test Procedure 

The specimens were loaded in the set up fabricated for buckling test in C-F-C-F boundary 

conditions. Load cell was put on the top of the test frame. In-plane static load was given 

manually with the help of the spring attached to the bottom of the specimen in the frame as 

shown in Figure 4.17 [a]. The accelerometer was put on the middle of the specimen and the 

specimen was excited with the help of modal hammer connecting to FFT Analyzer. A 

personal computer loaded with PULSE Labshop software was connected to the FFT analyzer 

to pick up the plate response data as shown in Figure 4.17[b]. After applying the desired 

static load and excited the plate, the response of the plate was constantly monitored on the 

FFT analyzer. All specimens were loaded slowly until buckling. 

The load v/s frequency graph was plotted. The load is plotted on the x -axis and frequency 

was plotted on the y- axis. The first frequency in graph showed a tendency to approach to 

zero at a static load at critical buckling load, indicating the onset of buckling which is called 

critical buckling load. 

 Load Cell 

Specimen in C-F-C-F B.C  

 

 Vibration test set up 
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4.8         Parametric Instability of Woven Fiber Composite Plates 

 Experiments are performed to investigate the parametric instability of rectangular composite 

plate are subjected to periodic in-plane loads under C-F-C-F boundary conditions. Special 

attention is paid to satisfy the boundary conditions considered in experimental models so as 

to draw conclusion with sufficient degree of confidence. In-order to verify the theoretical 

results and to highlight different parameters on the parametric instability of composite plates, 

different plates with different dimensions as given in Table 4.3, in chapter 4 is used in this 

investigation. In general, the experimental data exhibit good agreement with the theoretical 

predictions.  

4.8.1       Parametric Instability Test Setup:  

An overall view of the test facility used in the experimental study is shown in Figure 4.18 [a]-

4.18 [d].The set-up has been designed to accommodate square and rectangular composite 

plate to study different parameter in C-F-C-F boundary condition. 

 

                                        

                     Figure 4.18[a]                                                               Figure 4.18[b] 
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