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Abstract  

 
 

The dynamic stability of functionally graded material (FGM) beams 

subjected to parametric excitation is studied using finite element method. First 

order shear deformation theory (Timoshenko beam theory) is used for the 

analysis of the beams. The shape functions for the beam element are 

established from the differential equation of static equilibrium. Floquetôs theory 

is used to establish the stability boundaries. A steel-alumina functionally 

graded ordinary (FGO) beam with steel-rich bottom is considered for the 

analysis. For the analysis of functionally graded sandwich (FGSW) beam, 

alumina and steel are chosen as top and bottom skin respectively and the 

core is FGM with steel and alumina as constituent phases. The material 

properties in the direction of thickness of FGM are assumed to vary as per 

power law and exponential law.  

The effect of property distribution laws on critical buckling load, natural 

frequencies and parametric instability of the beams is investigated. Also, the 

effect of variation of power law index on the critical buckling load, natural 

frequencies and dynamic stability of beams is determined. It is found that the 

property variation as per exponential law ensures better dynamic stability than 

property variation as per power law. Increase in the value of power law index 

is found to have detrimental effect on the dynamic stability of the beams. 

Influence of the elastic foundations on the dynamic stability of the 

beams is studied. Pasternak elastic foundation is found to have more 

enhancing effect on the dynamic stability of the beam than Winkler elastic 

foundation.  

The dynamic stability of FGO and FGSW beams used in high 

temperature environment is investigated. It is observed that increase in 

environmental temperature has an enhancing effect on the instability of the 

beams. 

 The effect of beam geometry, rotary inertia, hub radius and rotational 

speed on natural frequencies as well as on the parametric instability of 
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rotating FGO and FGSW cantilever beams is studied. It is observed that 

increase in rotational speed enhances the dynamic stability of the beams. 

Parametric instability of a pre-twisted FGO cantilever beam is 

investigated. The effect of property distribution laws and pre-twist angle on 

critical buckling load, natural frequencies and parametric instability of the 

beam is studied. The increase in the value of power law index is found to 

have enhancing effect on the parametric instability of the beam. The increase 

in pre-twisting of the beam reduces the chance of parametric instability of the 

beam with respect to the first principal instability region. But the increase in 

pre-twist angle has a detrimental effect on the stability of the beam for second 

principal instability region.  

Keywords: FGM; FGO; FGSW; Exponential law; Power law; Dynamic 

Stability; Dynamic load factor; Static load factor; Pre-twist angle; Rotary 

inertia; Foundation shear modulus; Winklerôs constant.  
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CHAPTER 1  

 

Background and 

Motivation  

 

1.1 Introduction 

Many failures of engineering structures have been attributed to structural 

instability, in which large deformations of the structures are observed. It is the nature 

of loading that characterizes the nature of the problem of structural stability to be 

solved. The loading may be either static or dynamic. The static loads are dead loads, 

which donôt change their direction during the process of deformation caused by them. 

In contrary, the dynamic loads are dependent on time, and may change their 

direction. Moreover, the dynamic loadings on structures can either be deterministic or 

random. The deterministic loading may consist of either a harmonic function or a 

superposition of several harmonic functions, such as the excitation arising from 

unbalanced masses in rotating machinery. In engineering applications, loadings are 

quite often random forces, for example, those from earthquakes, wind, and ocean 

waves, in on-shore and off-shore structures. These forces can be described 

satisfactorily in probabilistic terms. There are also engineering systems which are 

subjected to loadings that contain both periodic components and stochastic 

fluctuations. An example of such a system is the uncoupled flapping motion of rotor 

blades in forward flight under the effect of atmospheric turbulence. 

Very often elastic systems are loaded in such a way that the excitations 

appear as forcing terms on the right side of the equations of motion of the systems. 

The phenomenon of ordinary or main resonance occurs when the excitation 

frequency coincides with the natural frequency of the systems. The response 
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amplitudes that grow linearly with time can be reduced by damping. When the 

externally applied loads on an elastic system appear as coefficients or parameters in 

the equations of motion, the system is called a parametrically excited system and the 

instability is called as parametric instability or parametric resonance. The 

phenomenon of parametric resonance which is of practical importance occurs when 

the excitation frequency is equal to twice the natural frequency. Parametric 

resonance is characterized by an unbounded exponential build up of the response 

even in the presence of damping. Fig. 1.1 (a) shows the variation of the response 

with time of a dynamically unstable system under parametric excitation. Moreover the 

parametric instability occurs over area in parameter space rather than at discrete 

excitation frequencies as in the case of ordinary resonance.  

One of the main objectives of the analysis of parametrically excited systems 

is to establish the regions in the parameter space in which the system becomes 

unstable. These regions are known as regions of dynamic instability. The boundary 

separating a stable region from an unstable one is called a stability boundary. Plot of 

these boundaries on the parameter space i.e. dynamic load amplitude, excitation 

frequency and static load component is called a stability diagram. Figure 1.1(b) 

shows a typical stability diagram. The dynamic load component is the time 

dependent component of the axial force. It  can  be  seen  from  the  figure  that  the    
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Fig. 1.1(a) Response variation with time of a 

parametrically excited unstable system. 
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Fig. 1.1 (b) Stability diagram of a parametrically 

excited system. 

instability of  the  system  doesnôt  occur at a single  frequency rather occurs over a 

range of frequencies which makes the parametrically excited systems more 

dangerous than ordinary resonant systems. Moreover, as the amplitude of the time 

dependent component of the axial force increases the range of frequencies over 

which the system becomes unstable increases. The location of the unstable region 
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nearer to the dynamic load axis indicates that the system is more prone to dynamic 

instability, as the instability occurs at lower excitation frequencies. Similarly if the 

unstable region is located farther from the dynamic load axis, it indicates that the 

system is less prone to dynamic instability. If the area of the instability region is large, 

it indicates instability over a wider frequency range. Hence if the instability region 

shifts towards the dynamic load axis or there is an increase in its area, the instability 

of the system is said to be enhanced and when contrary to it happens, the stability is 

said to be improved. 

Functionally graded materials (FGMs) consisting of two or more dissimilar 

materials posses properties which vary continuously with respect to spatial 

coordinates. The material properties of an FGM [162] can be designed by varying the 

volume fractions of its constituent phases along spatial coordinates so as to improve 

the strength, toughness and high temperature withstanding ability. FGMs are 

regarded as one of the most promising candidates for advanced composites in many 

engineering sectors such as aerospace, aircraft, automobile, defence, biomedical 

and electronic industries. Now a days FGMs are being preferred over traditional 

composites due to the fact that FGMs ensure smooth transition of stress 

distributions, minimization or elimination of stress concentration, and increased 

bonding strength along the interface of two dissimilar materials. Also, improved 

fracture toughness can be achieved by using an FGM at the interface. As the 

applications of FGMs are gaining increasing importance in the aforesaid sectors, 

wherein, these components are subjected to vibration and instability, a thorough 

investigation of the effect of FGM on vibration and instability characteristics of the 

structures may be worth of a research work. 

1.2 Need for the research 

Laminated composite materials attract the attention of designers due to their 

characteristics of high stiffness and strength to weight ratio. But they suffer an 

inherent problem of de-bonding and de-lamination resulting from large inter-laminar 

stress. FGMs having gradual variation of properties are out of the problems of 

laminated composite materials and can replace them successfully. The conventional 

armours are manufactured having compromised with toughness. FGMs can be used 

for manufacturing modern armours without compromising with hardness of ceramics 

and toughness of metals. These materials can also be used as ultrahigh temperature 

resistant materials for various engineering applications such as aircraft, space 

vehicles, engine combustion chamber and fusion reactors. FGMs with continuous 
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variation of thermo-mechanical properties possess various advantages over the 

conventional composite laminates, such as smaller thermal stresses, and stress 

concentrations. FGM can be used as a thermal barrier coating to improve the 

performance. FGMs as thermal barrier coating are attractive due to the potential for a 

reduction in thermal stresses, avoiding de-lamination and spallation tendencies and 

prevention of oxidation. FGM coating may result in a multifold increase in the 

resistance to thermal fatigue compared to a conventional counterpart. Many primary 

and secondary structural elements, such as helicopter rotor blades, turbine blades, 

robot arms and space erectable booms, can be idealised as beams. The vibration 

and stability analysis of FGM beams represents, therefore, an interesting and 

important research topic. 

1.3 Research objective 

Though FGMs have many potential applications in various engineering fields, 

it may pose difficulties in manufacturing and design. It is important to overcome them 

by developing proper understanding of mechanics of these materials. In this 

direction, Chapter 2 describes the efforts devoted by various researchers to reinforce 

the stand of FGMs as one of the fittest candidates for several applications. 

Exhaustive literature review reveals that vibration and dynamic stability of FGM is 

moderately explored. In this direction, present work emphasises on the study of 

dynamic behaviour of functionally graded ordinary (FGO) and functionally graded 

sandwich (FGSW) beams to understand the phenomenon of parametric resonance 

and make FGMs reliable and predictable in their applications. 

Based on these guiding principles, the objectives of present research are as 

follows: 

ü Study on the effect of different property distribution laws on critical buckling 

load, natural frequencies and dynamic instability zones of FGO and FGSW 

beams.  

ü Investigation on the effect of property distribution laws, foundation stiffness 

and shear layer interaction on the critical buckling load, natural frequencies 

and dynamic instability zones of FGO and FGSW beams supported on 

foundation. 

ü Determination of effect of various property distribution laws and thermal 

environment on the critical buckling load, natural frequencies and dynamic 

instability of FGO and FGSW beams in high temperature environment. 
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ü Study on the effect of different property distribution laws, rotational speed, 

and hub radius on critical buckling load, natural frequencies and dynamic 

instability of rotating FGO and FGSW beams. 

ü Study on the effect of different property distribution laws, static load 

component and pre-twist angle on critical buckling load, natural frequencies 

and dynamic instability of pre-twisted FGO beam. 

1.4 Thesis outline 

The remainder of this thesis is organized as follows: 

ü Chapter 2: Literature review. 

It includes a literature review to provide a summary of the base of knowledge 

already available involving the issues of interest. 

ü Chapter 3: Dynamic stability of functionally graded Timoshenko beam under 

parametric excitation. 

This part of the thesis includes an analysis involving critical buckling load, free 

vibration and dynamic stability of a functionally graded Timoshenko beam having 

properties along thickness of beam according to exponential and power law.  

ü Chapter 4: Dynamic stability of functionally graded Timoshenko beam on elastic 

foundations under parametric excitation. 

This chapter presents the study of static buckling load, vibration and dynamic 

stability of functionally graded Timoshenko beam resting on Winklerôs and 

Pasternak elastic foundations. 

ü Chapter 5: Dynamic stability of functionally graded Timoshenko beams in high 

temperature environment under parametric excitation. 

It presents vibration and dynamic stability study of functionally graded 

Timoshenko beam in thermal environment. 

ü Chapter 6: Dynamic stability of rotating functionally graded Timoshenko beam 

under parametric excitation. 

The chapter involves the study of effect of the hub radius, rotary inertia and 

angular speed of functionally graded rotating Timoshenko beams on their 

dynamic stability. 

ü Chapter 7: Dynamic stability of pre-twisted functionally graded Timoshenko beam 

under parametric excitation. 

This chapter deals with the study of dynamic stability of pre-twisted 

functionally graded Timoshenko beam. 

ü Chapter 8: Conclusion and scope for future work. 

The conclusion and scope for future work are given in this part of thesis. 
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1.5 Closure 

Present chapter provides a food for thought of an advanced material suitable 

for numerous applications.  

ü A material advantageous over composite materials having distinct interface. 

ü A material, the properties of constituent phases of which can be utilized fully 

without any compromise. 

ü A material suitable in application of extreme operating conditions. 

ü A material having improved residual stress distribution. 

ü A material with higher fracture toughness and reduced stress intensity factor. 

The above characteristics provide the scope for various potential applications. 

To have an understanding of the static and dynamic response of these materials, 

research objective along with the work outline is presented in this chapter. 

In next chapter, the literature review is presented through exhaustive study.  
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CHAPTER 2  

 

Literature Review  

 

2.1 Introduction 

The first scientist to observe the parametric resonance was Faraday [49] in 

1831 who could notice the oscillation of wine at half the frequency of containing 

glass. Melde [103] in 1859 generated parametric oscillations in a string by employing 

a tuning fork to periodically vary the tension at twice the resonance frequency of the 

string. The work of Rayleigh [148-150] on parametric oscillations is worth reading for 

researchers. Beliaev [18] presented a theoretical analysis for parametric instability of 

prismatic rods. Alexanderson [5] was the first to use parametric amplifiers for radio 

telephony from Berlin to Vienna and Moscow.  

The literature is classified into an assortment of sections dealing with 

development of theory of parametric resonance as presented in section 2.1. The 

section 2.2 presents some review works describing an exhaustive amount of 

literature on vibration and dynamic stability of structural components made of alloys, 

composites and FGMs. Section 2.3 describes briefly about the classifications of 

parametric resonances. The various methods which have been used to study about 

the parametric instability are explained in section 2.4. The next section gives the 

reported literatures describing the effects of various parameters on vibration and 

dynamic stability of structures especially beams. Finally in section 2.6, chapter is 

concluded by summarizing the advancement taken place in the chosen area and 

possible literature gap so that relevance of the present study can be emphasized. 

2.2 Review of literature  

Several researchers have contributed a lot towards the study of parametric 

resonance by presenting a good amount of literature already reported. Evan ï 

Iwanowski [47] has presented a review of researches carried out on parametric 

resonance of structures. Ibrahim and co-workers [64-70] have provided an 
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exhaustive amount of work carried out by various eminent researchers on linear as 

well as non-linear parametric vibration of both deterministic and stochastic type. 

Ariaratnam [9] and Simitses [139] have given an extensive account of literature on 

vibration and stability of parametrically excited systems. Nakra [109-111] has 

provided a good account of literature on vibration control by viscoelastic materials. 

An exhaustive review work on FGM encompassing its various aspects like stress, 

stability, manufacturing and design, applications, testing, and fracture is given by 

Victor [159] and his co-workers. Moreover, books by Bolotin [21], Schmidt [134] and 

Neyfeh and Mook [112] deals extensively on the basic theory of dynamic stability of 

systems under parametric excitations.  

 

2.3 Classification of parametric resonance 

 A system with multi degree of freedom can exhibit simple resonance, sum 

type or difference type resonance depending on the type of loading, support 

conditions and system parameters. 

Mettler [103] presented a classification for various types of resonances 

exhibited by linear periodic system. Iwatsubo and his co-workers [72-73] maintained 

that uniform columns with simple supported ends would not exhibit combination type 

resonances. Saito and Otomi [129] found that viscoelastic beams with viscoelastic 

support did not exhibit combination resonances of difference type for axial loading, 

but those did exhibit the aforesaid resonance for tangential type of loading. Celep 

[29] working on stability of simply supported pre-twisted column found that 

combination resonances of the sum type may exist or disappear depending on the 

pre-twist angle and rigidity ratio of the cross-section. ñElastic shaft with a disk can 

exhibit only difference type combination resonanceò was revealed by Ishida et al. 

[71]. Chen and Ku [35] studied the effect of the gyroscopic moment on the principal 

region of instability of a cantilever shaft disk system.     

2.4 Methods of stability analysis of parametrically excited systems 

Parametrically excited systems are represented by second order differential 

equations with periodic coefficients. The exact solutions for these systems are not 

available. The researchers have always been interested to explore the existence of 

periodic solutions and their stability. Several methods have been applied for the 

solutions of the governing equations of parametrically excited systems. The most 

common among them are method proposed by Bolotin based on Floquetôs theory, 

perturbation and iteration techniques, the Galerkinôs method, the Lyapunov second 

method  and  the  asymptotic  technique  by  Krylov,  Bogoliubov  and  Mitroploskii. 
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Bolotinôs [21] method based on Floquetôs theory is suitable for simple 

resonance only. Burney and Jaeger [24] used this method to determine the region of 

dynamic instability of a uniform column subjected to different end conditions. They 

assumed the column to be consisting of different segment, each segment being 

considered as a mass less spring with lumped masses. Piovan and Machado [118] 

have used the method to determine dynamic instability regions of a functionally 

graded thin-walled beam subjected to heat conduction. Machado et al. [100] have 

also used the Bolotinôs method for the parametric instability of a thin-walled 

composite beam. This method has been modified by Steven [147] for system with 

complex differential equations of motion. Hsu [58-59] proposed an   approximate 

method of stability analysis of systems having small parameter excitations. Hsuôs 

method can be used to obtain instability zones of main, combination and difference 

types. Later Saito and Otomi [129] modified Hsuôs method to suit systems with 

complex differential equations of motion. Ray and Kar [124] used the modified Hsuôs 

method for the parametric instability analysis of a sandwich beam. Chung and Chen 

[39] also used this method to investigate the effect of core thickness, shear 

parameter, core loss factor and stiffness of constraining layer on the unstable region 

of a spinning pre-twisted sandwich beam with a constrained damping layer. 

Takahashi [153] has proposed a method free from the limitations of small parameter 

assumption. This method establishes both the simple and combination type instability 

zones. Lau et al. [84] proposed a variable parameter increment method, which is free 

from limitations of small excitation parameters. It has the advantage of treating non-

linear systems. 

Most of the recent works on parametric instability have been done by using 

finite element method (FEM). Brown et al. [23] studied the dynamic stability of 

uniform bars by applying this method. Abbas and Thomas [1] used finite element 

method to study the dynamic stability of beams for different end conditions. Shastry 

and Rao [135-136] plotted the stability boundaries for a cantilever column acted upon 

by an intermediate periodic concentrated load for various load positions. The 

parametric instability behaviour of a non-prismatic bar with localized zone of damage 

and supported on an elastic foundation was studied by Dutta and Nagraj [43] using 

finite element analysis. Svensson [153] applied this method to investigate the stability 

properties of a periodically loaded non-linear dynamic system, giving special 

attention to damping effects. Ozturk and Sabuncu [116] have used finite element 

method to study the dynamic stability of beams on elastic supports. Mohanty [105] 

used this method to study the effect of localised damage on the dynamic stability of a 
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pretwisted cantilever beam. Chen [37] employed the method of finite element to 

study the influence of spinning speed, twist angle and aspect ratio on the dynamic 

instability zone of a spinning twisted Timoshenko beam. Mohanty et al. [106, 107] 

have investigated the static and dynamic behaviour of functionally graded 

Timoshenko beams using this method also. Tylikowski [158] derived stochastic 

stability criteria for a first order shear deformable beam using the Liapunov direct 

method. The effect of shear deformation, rotary inertia and the gain factors on 

dynamic stability was predicted. The dynamic response of eccentrically pre-stressed 

viscoelastic Timoshenko beam under a moving harmonic load was studied by 

Kocaturk and Simsek [83] using Lagrange equation. 

2.5 Effect of system parameters 

2.5.1 Effect of property distribution along coordinates 

 Santare and Lambros [133] have developed integral finite elements to 

estimate the dynamic characteristics of elastic-viscoelastic composite (EVC) 

structures such as sandwich beam, plate and shell structures with viscoelastic 

material as core layer. Paulino and Jin [117] have made an attempt to show that the 

correspondence principle can be applied to the study of viscoelastic FGM under the 

assumption that the relaxation moduli for shear dilation are separable functions in 

space and time. Chakraborty et al [30] have developed a beam finite element to 

study the thermoelastic behaviour of functionally graded beam structures with 

exponential and power law variation of material properties along thickness. Zhu and 

Shankar [171] have developed a method to solve two-dimensional elasticity 

equations for an FGM beam. The Fourier series method along with Galerkin method 

is used for the analysis. It has been shown that the choice of polynomial for the 

variation of properties along the direction of thickness enables the method to be 

applied to the functionally graded structures with arbitrary variation of properties. 

Chaofeng et. al, [31] have investigated the stress distribution in thick FGM beam 

subjected to mechanical and thermal loads with arbitrary end conditions. Nirmala et 

al. [113] have derived an analytical expression to determine the thermoelastic 

stresses in a three layered composite beam system having an FGM as the middle 

layer. It has been shown that the method can be applicable where the gradation of 

the FGM is such that it may not be possible to express the volume fraction changes 

of the FGM constituents as a function of spatial coordinates. Moreover, the method 

can be useful where more than one layer of FGMs are used in a single composite 

beam structure as stated by the authors. Bhangale and Ganeshan [20] have studied 
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the static and dynamic behaviour of FGM sandwich beam in thermal environment 

having constrained viscoelastic layer using finite element method. It is found that 

materials with lower thermal coefficient of expansion possess high thermal buckling 

temperature. The critical buckling temperature for an FGM sandwich beam increases 

as the value of power law index increases. Li [92] has developed a unified approach 

to analyze static and dynamic behaviour of FGM beam of Timoshenko, Euler-

Bernoulli and Rayleigh type. A single governing differential equation for an FGM 

Timoshenko beam has been derived from which the governing equation for Rayleigh 

as well as for Euler-Bernoulli beam can be deduced analytically. Salai et al, [131] 

have presented a theoretical analysis of FGM beams using sigmoid function. 

Aydogdu and Taskin [13] studied free vibration analysis of functionally graded beams 

with simply supported edges. Kapuria et al, [78] have used zigzag theory to  

investigate both the static and dynamic behaviour of beams made of FGM such as 

Al/SiC and Ni/Al2 O3 for different end conditions. Free and forced vibration of a 

functionally graded beam subjected to a concentrated moving harmonic load was 

investigated by Simsek and Kocatürk [143]. The effects of material properties and 

inertia of the moving load on the dynamic behaviour of an FGM beam were studied 

by Khalili et al. [81] using a mixed Ritz-DQ method. Simsek [140-142] presented the 

dynamic analysis of FGM beams using different higher order theories. Akhtar and 

Kadoli [4] presented the static behaviour of various FGM beams. Emam [45] 

investigated the static and dynamic response of imperfect composite beams 

considering imperfection as control parameter. A detailed parametric study was 

conducted by Ke et al. [80] to study the influences of crack depth, crack location, 

material property gradient, and slenderness ratio on the postbuckling behaviour of 

cracked FGM beams. Arnaldo and Richard [11] have studied the effect of functionally 

graded materials on resonance of bending shafts under time dependent axial 

loading. It is observed that metal-ceramic FGM beams show substantial improvement 

in parametric resonance compared to metallic beams. Aminbaghai et al. [8] have 

carried out the modal analysis of second order shear deformable FGM-beams 

considering property variations in both transverse and longitudinal directions. 

2.5.2 Effect of foundation 

Ahuja and Duffield [3] studied the dynamic stability of beams having variable 

cross-sections and resting on elastic foundation. The effect of elastic foundation was 

found to have a decreasing effect on the width of the instability regions and the 

amplitude of parametric response. The authors had also conducted experiments to 

verify their results. Eisenberger and Clastronik [44] studied the dynamic stability of 
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beams on elastic foundation. Engel [46] investigated the dynamic stability of bars on 

elastic foundation with damping. It was found that the critical mode becomes a higher 

mode instead of fundamental mode when the foundation parameter had exceeded a 

certain value. Lee and Yang [88] and Matsunaga [102] investigated the dynamic 

behaviour of Timoshenko beams resting on elastic foundations. Morfidis [108] 

developed stiffness and transfer matrices and load vectors of Timoshenko beam 

resting on Kerr type 3-parameter elastic foundation. Pradhan and Murmu [121] 

investigated the effect of various parameters on the dynamic response of FGM 

beams resting on variable elastic foundation. The chosen parameters were 

temperature distribution, power law index, variable Winkler foundation modulus, 

elastic foundation modulus and the normalized core thickness. Aminbaghai et al. [7] 

have studied free vibration of multilayer FGM beams under longitudinal variable 

elastic foundation with effect of large axial force.  

2.5.3 Effect of thermal environment  

Sladek et al. [144] have developed an efficient numerical method to calculate 

the fracture parameters such as stress intensity factor and T-stresses of a 

functionally graded orthotropic beam subjected to thermal and impact mechanical 

load. The fact that getting fundamental solution for non-homogeneous anisotropic 

and linear elastic solid is very difficult can be circumvented by using the proposed 

local integration method. Huang et al. [61] investigated the bending problem of a 

functionally graded anisotropic beam subjected to thermal and uniformly distributed 

load using a polynomial stress function. Jian and Li [76] have investigated the static 

and the active vibration control of a piezothermoelastic composite beam using a finite 

element model. The dynamic behaviour of a rotating thin-walled blade made of 

functionally graded material under high temperature supersonic flow has been 

investigated by Fazelzadeh et al. [50] using differential quadrature method (DQM). 

Accurate results have been obtained using only a few grid points with consequent 

low computational expense. It has been seen from the equation of motion that DQM 

can be applied to the analysis of damped vibration. Jurij and Maks [77] have 

investigated the effect of thermal load on the natural frequencies of simply supported 

beam and clamped beam. They have applied the theory of vibration and statistical 

thermodynamics simultaneously for the purpose. A study of thermal buckling and 

vibration of sandwich beam with composite facings and viscoelastic core is carried 

out by Pradeep et al. [120]. Evandro and Joao [48] have used finite element method 

to evaluate nonlinear response of structures subjected to thermo-mechanical loading. 

A beam made up of functionally graded material simply supported at both the ends 
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and subjected to lateral thermal shock loads is investigated by Babai et al. [14]. It is 

found that there is an optimum value of power law index for which the beamôs lateral 

deflection is the minimum. In addition the amplitude of lateral vibration increases 

considerably as the aspect ratio of the beam decrease. The effect of coupling is to 

decrease the amplitude of vibration and increase the frequency of the vibration. Guo 

et al. [56] have investigated the coupled thermoelastic vibration characteristics of 

axially moving beams using differential quadrature (DQ) method. The effects of the 

dimensionless coupled thermoelastic factor, the ratio of length to height, the 

dimensionless moving speed on the stability of the beam are analyzed. The bending 

response of sandwich plates subjected to thermomechanical loads is studied by 

Zenkour and Alghamdi [170]. Mahi et al. [101] have studied the free vibration of 

functionally graded beams with temperature dependent properties. The effects of 

material constants, transverse shear deformation, temperature-dependent material 

properties, in-plane loading and boundary conditions on the nonlinear behaviour of 

FGM beams are investigated by Ma and Lee [99] using a shooting method. Chen and 

Levy [34] studied the effect of temperature on frequency, loss factor and control of a 

flexible beam with a constrained viscoelastic layer and shape memory alloy layer. 

Piovan and Machado [109] have explored the influence of longitudinal vibration on 

the dynamic stability of functionally graded thin-walled beams allowing for shear 

deformability. The effects of material composition, temperature dependent properties, 

slenderness ratio on thermal buckling and vibration of functionally graded beams are 

investigated by Wattanasakulpong et al. [163]. The third order shear deformation 

theory is considered by the authors. 

2.5.4 Effect of rotation 

Stafford and Giurdiutiu [146] have developed a simplified model of helicopter 

blade considering shear deformation and rotary inertia corrections and investigated 

the natural frequencies using transfer matrix method. Yoo and Shin [167] have used 

Rayleigh-Ritz method to determine the effect of gyroscopic couple on the natural 

frequencies of rotating cantilever beam. They have also computed the tuned angular 

velocity of the beam. Chung and Yoo [38] investigated the effect of angular speed on 

the natural frequency of a rotating cantilever beam. They have used finite element 

method considering stretch deformation of the beam. Different models for 

investigation of rotating cantilever beams are compared by the authors. Telli and 

Kopmaz [157], Sabuncu and Evran [125] have studied static and dynamic stability of 

a blade having asymmetric aerofoil cross-section subjected to an axial periodic force 

using the finite element method. The effects of shear deformation and rotary inertia 
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are included in the analysis. It is found that as the length of the beam decreases, the 

effect of rotation on the static buckling load parameters decreases and the effects of 

coupling and the shear coefficient on the stability become significant. Yoo et al. [166] 

have investigated the flap-wise bending vibration analysis of a rotating multi-layered 

composite beam considering the shear deformation and the rotary inertia effects. 

Kaya [79] has studied the flapwise bending vibration analysis of a rotating cantilever 

Timoshenko beam using Differential transform method. Vinod et al. [161] have 

formulated an approximate spectral element for uniform as well as tapered rotating 

Euler-Bernouli beam in order to carry out both free vibration and wave propagation 

analysis. A super element having shape functions as a combination of polynomials 

and trigonometric functions is used by Gunda et al. [55] to study the dynamic 

analysis of rotating tapered beams. Comparable results are obtained using one super 

element with only 14 degrees of freedom compared to 50 conventional finite 

elements with cubic shape functions with a total of 100 degrees of freedom for a 

rotating cantilever beam. Bazoune [17] has investigated the problem of free vibration 

of a rotating tapered beam by developing explicit expressions for the mass, elastic 

and centrifugal stiffness matrices in terms of the taper ratios. Lesaffre et al. [90] have 

done the stability analysis of rotating beams using the Routh-Hurwitz criterion. Lee 

and Sheu [87] have developed an exact power-series solution for free vibration of a 

rotating inclined Timoshenko beam. It is shown that both the extensional deformation 

and the Coriolis force have significant influence on the natural frequencies of the 

rotating beam when the dimensionless rotating extension parameter is large. The 

effects of Mach number, rotating speed, geometric parameters and material 

properties on the natural frequencies are examined. Das et al. [41] have studied the 

large displacement free vibration analysis of linearly tapered rotating beam. Ouyang 

and Wang [115] have presented a dynamic model for the vibration of a rotating 

Timoshenko beam subjected to a three-directional load moving in the axial direction. 

Attarnejad and Shahba [12] have studied free vibration of non-prismatic rotating 

Euler-Bernoulli beams using differential transform method. The effects of rotational 

speed parameter and taper ratio on natural frequencies have been investigated. Lin 

et al. [96] have modelled the blade of a horizontal-axis wind power turbine as a 

rotating Bernoulli-Euler beam with pre-cone angles and setting angles. The 

influences of the pre-cone angle, the angular speed and the setting angle on the 

natural frequencies of the beam are explored. The phenomenon of divergence 

instability is also discussed. A rotating beam finite element is developed by Gunda 

and Ganguli [54] in which the basis functions are obtained by the exact solution of 

the governing static homogenous differential equation of a stiff string. Piovan and 
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Sampaio [119] have developed a rotating non-linear beam model accounting for 

arbitrary axial deformation to study the dynamics of rotating beams made of FGM. 

Yuksel and Aksoy [169] have studied bending vibrations of a radially rotating beam 

with end mass subjected to different base excitations using the Lagrangianôs 

approach. Ahmad and Naeem [2] have investigated the vibration characteristics of 

rotating FGM cylindrical shells using Budiansky and Sanders, thin shell theory. 

Hosseini and Khadem [57] have used multi-scale method to investigate free vibration 

analysis of simply supported rotating shaft with nonlinear curvature. Huang et al. [61] 

have provided a power series solution to free vibration of rotating inclined Euler 

beam. Divergence instability and vibration of a rotating Timoshenko beam with pre-

cone and pitch angles are investigated by Lee et al. [86]. Yardimoglu [164] has used 

a finite element model based on the coupled displacement field for vibration analysis 

of rotating Timoshenko beam of equal strength. Chattopadhyay et al. [32] developed 

a composite box beam model to investigate the behaviour of helicopter rotor blades 

built around the active box beam. Piezoelectric actuators and sensors which were 

surface bonded at the walls of the composite beam were found to have significantly 

reduced the deflection along the span of box beam. 

2.5.5 Effect of pre-twist angle 

Jensen [74] used perturbation technique to analyse free vibration of thin 

rectangular plate with small pre-twist. The author used shell theory for the purpose 

and observed that the effect of pre-twist angle depended on the geometry of the 

plate. Subrahmanyam and Rao [152] applied Reisner method to study the vibration 

of tapered pre-twisted cantilever beam. Liao and Huang [93] investigated the effect of 

pre-twist angle, spinning speed and steady-state part of end axial force on the 

instability zone of a cantilever beam. Onipede and Dong [114] studied vibration of 

pre-twisted inhomogeneous beam of arbitrary cross-section by using variational 

method. Dynamic instability of a pre-twisted beam due to both the summed and 

difference type resonances is studied by Tan et. al. [155]. It is observed that the 

narrower regions flutter instability separate the stable critical speed zones into 

smaller stable sub-regions. The authors [156] also investigated the dynamic 

instability zones of a spinning pre-twisted beam. The multiple scale method was used 

to determine the regions of instability due to the resulting parametric excitations. As 

the spin speed varied within the stable sub-regions, consistent shifts and widening of 

unstable regions due to axial load perturbation were observed. Widths of the 

unstable regions were found to decrease with decreasing pre-twist angle and 

compressive axial force as well as increasing aspect ratio towards unity. Vibration 
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and stability of a spinning pre-twisted thin walled composite beam were studied by 

Song et al. [145] considering a number of non-classical features such as transverse 

shear, anisotropy and pre-twist. Vielsack [160] has shown that the influence of small 

pre-twist on lateral vibration of beams depends on the ratio of bending stiffness about 

principal axes. It is observed that the deep-webbed beams are mostly affected. Lin 

et. al. [97] have studied the coupled bendingïbending vibration of a rotating pre-

twisted beam with an elastically restrained root and a tip mass, subjected to the 

external transverse forces and rotating at a constant angular velocity. Young and 

Gau [168] have investigated the dynamic stability of a spinning pre-twisted beam 

subjected to random axial force by using stochastic averaging method along with 

mean square stability criterion. The effect of pre-twist angle of an aerofoil blade 

simplified as a rotating Euler as well as Timoshenko beam has been investigated by 

Subuncu and Ervan [127-128] using finite element method. Jhung and Jo [75] have 

studied the vibration characteristics of a rectangular twisted beam with pins 

surrounded with liquid and the safety assessment of the potential for fretting-wear 

damages caused by foreign particles. Mohanty [105] has studied parametric 

instability of pre-twisted cantilever beam with localized damage. The effects of 

various parameters such as shroud dimensions, pre-twist angle, stagger angle, 

rotational speed and distance of shear centre from the centroid on the stability of the 

rotating pre-twisted blade packets of aerofoil cross-section are investigated by Sakar 

and Sabunku [130] using finite element method. Hsu [60] has investigated dynamic 

behaviour of pre-twisted beams using spline collocation method. Liu et al. [98] have 

carried out an investigation on the coupled axial-torsional vibration of pre-twisted 

beams. Leung and Fan [91] have studied the influence of multiple kinds of initial 

stresses due to compression, shears, moments and torque on the natural vibration of 

pre-twisted straight beam based on the Timoshenko theory. Chen [36, 37] has found 

the influence of thickness-to-width ratio, twist angle, spinning speed and axial load on 

the natural frequency, buckling load and instability zone of a pre-twisted Timoshenko 

beam by using finite element method. 

2.6 Closure 

This chapter provides the insight into various past developments in the area 

of structural mechanics. For the sake of simplicity, it is divided into six main sections. 

In section 2.2, a review of literature on parametric resonance is presented. Section 

2.3 depicts a brief classification of parametric resonance. Various methods used by 

several researchers for the analysis of dynamic stability are described in section 2.4. 

The section 2.5 is devoted to the findings regarding the effect of various system 
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parameters on vibration and stability of structural elements. The effect of spatial 

variation of properties on the static and dynamic behaviour is explained in section 

2.5.1. The effect of foundation stiffness on natural frequencies and instability zones is 

presented in section 2.5.2. The interaction of the shear layer is also described. The 

section 2.5.3 presents an exhaustive review of literature on vibration and stability of 

structures in thermal environment. Turbine blades, helicopter blades are idealised as 

rotating cantilever beams. The influence of rotating speed and hub radius on dynamic 

response is given in section 2.5.4. The blades are twisted as a functional 

requirement. The vibration and stability of pre-twisted beams are presented in section 

2.5.5. The effect of pre-twist on natural frequencies and instability zones are 

revealed. It is observed from the reported literature that a great deal of work is done 

on dynamic stability of structural components made of metals, alloys and composites. 

Also a good account of research on vibration of structural elements made of FGMs 

has been carried out. But the amount of work done on dynamic stability of FGM 

beams is found to be very less as realized from the reviewed literature. Therefore, it 

may be concluded in this section that dynamic stability study of FGM beams remains 

an open problem to be taken up.  
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CHAPTER 3  

 

Dynamic stability of 

F unctionally graded 

timoshenko  beam under 

parametric excitation  

 

3.1 Introduction 

The dynamic stability of structures is a subject of considerable engineering 

importance and many investigations have been carried out in this regard. The study 

of behaviour of functionally graded materials (FGMs) has been an interesting topic of 

considerable research interest during the past decade. The intensity and rapid 

growth of research on this class of materials is actually due to their continuously 

varying material properties, which give great advantages over the conventional 

homogeneous and layered materials. The weakness of conventional laminated 

composite materials, such as debonding, huge residual stress, locally large plastic 

deformations can be eliminated by using FGM. FGMs are regarded as one of the 

most promising candidates for advanced composites in many engineering sectors 

such as the aerospace, aircraft, automobile and defence industries and most recently 

the electronic and the biomedical sectors. Application of FGM is gaining increasing 

importance in the aforesaid sectors, wherein, these components are subjected to 

vibration and dynamic stability. The blades of turbine, helicopter and spacecraft, rail 

etc. can be modelled as beams to investigate their dynamic behaviour. 

Iwatsubo et al. [73] have calculated the regions of instability for columns by 

solving Mathieu equations obtained by applying Galerkin method to governing 
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equations of motion. The effects of internal and external damping on stability of the 

column are also determined. Abbas and Thomas [1], Aristizabal-Ochoa[10], 

Briseghella et. al. [22] and Ozturk and Sabuncu [116] have used finite element 

method to study the dynamic stability of beams. Shastry and Rao [137] have 

compared the stability parameter of simply supported beam and clamped beam for 

different locations of two symmetrically placed intermediate supports. It is found that 

the stability parameter of simply supported beam approaches that of clamped beam 

when the intermediate supports are placed at a distance equal to one eighth of beam 

length from ends. Zhu and Shankar [171] have developed a method to solve two-

dimensional elasticity equations for an FGM beam. Fourier series method along with 

Galerkin method is used for the analysis. It has been shown that the choice of 

polynomial for the variation of properties along the direction of thickness enables the 

method to be applied to the functionally graded structures with arbitrary variation of 

properties. Lim et al. [95] have studied the static failure modes and load capabilities 

of foam core composite sandwich beams both analytically and experimentally. Li [92] 

has developed a unified approach to analyze static and dynamic behaviour of FGM 

beam of Timoshenko, Euler-Bernoulli and Rayleigh type. A single governing 

differential equation for an FGM Timoshenko beam has been derived from which the 

governing equation for Rayleigh as well as for Euler-Bernoulli beam can be deduced 

analytically. Babai et al. [14], Gharib et al. [52], and Benatta et al. [19] have studied 

the static response of a functionally graded beam under external excitation. Salai et 

al. [131] have presented a theoretical analysis of FGM beams using sigmoid function. 

Kapuria et al. [78] have used zigzag theory to investigate both the static and dynamic 

behaviour of beams made of FGM such as Al/SiC and Ni/Al2 O3 for different end 

conditions. Alshorbagy et al. [6] have studied the dynamic characteristics of a 

functionally graded Euler-Bernoulli beam applying principle of virtual work. Several 

models have been compared by Giunta et al [53] for the free vibration analysis of 

functionally graded beams. Multiple time scale solutions are presented by Shooshtari 

and Rafiee [138] to study the nonlinear forced vibration of a beam made of symmetric 

functionally graded (FG) materials based on EulerïBernoulli beam theory and von 

Kármán geometric nonlinearity. Arnaldo and Richard [11] have studied the effect of 

functionally graded materials on resonance of bending shafts under time dependent 

axial loading. It is observed that metal-ceramic FGM beams show substantial 

improvement in parametric resonance compared to metallic beams. The effects of 

material composition, temperature dependent properties, slenderness ratio on 

thermal buckling and vibration of functionally graded beams are investigated by 

Wattanasakulpong et al. [163]. The third order shear deformation theory is 
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considered by the authors. Aminbaghai et al. [8] have carried out the modal analysis 

of second order shear deformable FGM-beams considering property variations in 

both transverse and longitudinal directions. 

  

It is learnt from the reported literature that FGMs [159] have scope for numerous 

applications in diversified fields. These materials should be predictable as regards 

their behaviour under parametric resonance before use in related applications. The 

present chapter is devoted to the study of dynamic stability of FGO and FGSW 

beams under parametric excitation.   

3.2 Formulation 

A functionally graded sandwich beam with top skin as alumina, bottom skin as 

steel and core as FGM is shown in figure 3.1(a). The beam, hinged at both the ends 

is subjected to a pulsating axial force P(t) = Ps + Pt cos tW , acting along its un-

deformed axis. The static component of the axial force is 
sP . The amplitude and 

frequency of the dynamic component of the force are 
tP  and Wrespectively, and t is 

time. The coordinate system of a typical two noded beam element used to derive the 

governing equations of motion is shown in figure 3.1(b). The mid-longitudinal(x-y) 

plane is chosen as the reference plane for expressing the displacements as shown in 

figure 3.1(b).  

 
The thickness coordinate is measured as z from the reference plane. Figure 

3.1(c) shows the beam element with three degrees of freedom per node. The axial 

displacement, the transverse displacement, and the rotation of the cross-section are 

u , wand f respectively.  

                                                                                     

 

 

 

 

 

Figure 3.1(a) Functionally graded sandwich beam subjected to dynamic axial load. 
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Figure 3.1(b) The coordinate system with generalized forces and displacements for the FGSW beam 

element.                                                                                                   

 
 
 
 
 
 
 
 
 
 
 

Figure 3.1(c) Beam element showing generalized degrees of freedom for i
th
 element. 

The element matrices for the functionally graded sandwich (FGSW) beam 

element are derived following the method as proposed by Chakraborty et al. [30]. 

Moreover the same element can be used for the analysis of a functionally graded 

ordinary beam by making the thickness of the skins equal to zero. 

3.2.1 Shape functions 

The displacement fields considering first order shear deformation 

(Timoshenko beam theory) is expressed as  

),,(),,,(),,(),(),,,( txwtzyxWtxztxutzyxU =-= f    (3.1) 

The corresponding linear strains are expressed as  
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The stress-strain relation in matrix form can be given by 
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where 
xxs and 

xxe are normal stress and normal strains in xdirection, 
xzt and 

xzg are 

shear stress and shear strain in x-z plane. )(zE , )(zG  and k are Youngôs modulus, 

shear modulus along thickness and shear correction factor respectively. The material 

properties of the FGM [82,162] that varies along the thickness of the beam are 

assumed to follow exponential law given by 
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and power law given by 
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)()( ,      (3.5) 

 where, )(zR  denotes a material property such as, E , G , r etc., 
tR  and 

bR denote 

the values of the properties at topmost and bottommost layer of the beam 

respectively, and n is an index. The variation of Youngôs modulus along the thickness 

is shown in Figure 3.1(d) for different laws and other properties follow the same type 

of variation. 
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Figure 3.1(d) Variation of Youngôs modulus along the thickness of steel-alumina FGM with steel-rich 

bottom according to different laws. 
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The kinetic energy T  and the strain energy Sof the beam element can be expressed 

as  
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Substituting eq. (3.1) into eq. (3.6) we get 

dAdx
t

w

tt

u
z

t
z

t

u
zT

l

A ù
ù
ú

ø

é
é
ê

è
ö
÷

õ
æ
ç

å

µ

µ
+ö
÷

õ
æ
ç

å

µ

µ
ö
÷

õ
æ
ç

å

µ

µ
-ö

÷

õ
æ
ç

å

µ

µ
+ö

÷

õ
æ
ç

å

µ

µ
= ññ

22

2

2

0

2)(
2

1 ff
r

   (3.8) 

Substituting eq. (3.3) and eq. (3.2) into eq. (3.7) subsequently we get 
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where, )(zr , l  and A  are density, length and area of cross-section of the element 

respectively. The governing differential equation can be derived by applying 

Hamiltonôs principle which states that 
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The governing differential equations in terms of the degrees of freedom u , w and f 

can be written as 
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where, [ ] [ ]dAzzzEDBA
A

ñ=
2

111111 1)( , 

[ ] [ ]dAzzzIII
A

ñ=
2

210 1)(r , and      (3.12) 

dAzGkA
A

ñ= )(55             

The shape functions for the displacement field for finite element formulation are 

obtained by solving the static part of the eq. (3.11) with the following consideration. 

,2
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.2

1098 xaxaa ++=f         (3.13) 

Substituting eq. (3.13) into the static part of eq. (3.11) we get 

{} [ ] ()[ ]{}axNwuu
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== f        (3.14) 
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The coefficients {}a  can be found in terms of nodal displacements by substituting 

x=0 and x= l  in eq. (3.14) and can be expressed as 

{}[]{}uGa Ĕ=          (3.18) 

where []
()
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ú

ø
é
ê

è
=

lN

N
G         (3.19) 

Now substituting eq. (3.18) into eq. (3.14) we get 

{} ()[ ]{}uxu Ĕ¿=         (3.20) 

where, ()[ ] ()[ ][]GxNx =¿ , a 3x6 matrix is the required shape function matrix.  

{} [ ]111
Ĕ

+++= iiiiii wuwuu ff       (3.21) 

Now ()x¿  can be expressed in the following form 
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() () () ()[ ]Twu xxxx f¿¿¿=¿
      (3.22)

 

where, ()xu¿ , ()xw¿ , ()xf¿  are the shape functions for the axial, transverse and 

rotational degree of freedom respectively. The shape function matrix is given in 

appendix. 

It is seen above that unlike the conventional elements the shape function not 

only depends on x and l but it also depends on cross-sectional area and material 

properties which ensures better accuracy. Moreover, better convergence can be 

achieved as the shape functions are obtained from the exact solution of static part of 

the governing differential equation.
 

3.2.2 Element elastic stiffness matrix 

The general force boundary conditions for the element can be given as 
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where, N , zV , yM are axial force, shear force and bending moment respectively 

acting at the boundary nodes. 

Similarly substituting eq. (3.14) into eq. (3.23) we get   
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        (3.24) 
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and (){ }[ ]Tyz MVNxF =  is the element load vector   (3.26) 

By substitution of x=0 and x= l into eq. (3.24) we can have 

[]{} {}FaG =
$

         (3.27) 

so that  

{}[ ]Tyzyz lMlVlNMVNF )()()()0()0()0( ---=    (3.28) 

 is the nodal load vector. 
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Now substituting eq. (3.18) into eq. (3.27) we get 

[]{}{}Fuke =Ĕ          (3.30) 

[][][]GGke

$
=   is the required element elastic stiffness matrix.  

The elastic strain energy of the element can also be expressed as  

{}[]{}ukuS e

T
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2

1
=         (3.31) 

3.2.3 Element mass matrix 

The element mass matrix is derived by substituting eq. (3.20) into eq. (3.8). 
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= , where                   (3.32) 

][][][][][ ff uwu mmmmm +++= , is the element mass matrix.  
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um , 
wm , fm , represent the contribution of u , w, f degree of freedom to the mass 

matrix and fum  represents the mass matrix arising due to the coupling between 

uand f.  

 

3.2.4 Element geometric stiffness matrix 

 When the axial load ()tP  is applied on the beam element, the work done by 

the load can be expressed as 
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Substituting the value of w from eq. (3.20) into eq. (3.34) the work done can be 

expressed as 

()
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where, [] [ ][ ]ñ ¿¿=
l

w

T

wg dxk
0

''
 is called the element geometric stiffness matrix. 

3.3 Governing equations of motion 

The element equation of motion for a beam subjected to axial force is 

obtained by using Hamilton's principle. 

( ) 0
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)()()( =+-ñ dtWST
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e
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eed                                                                          (3.36) 

Substituting eqs.(3.32, 3.31 and 3.35 ) in to eq. (3.36) the equation of motion for the 

beam element is obtained as follows 

[]{} [] ()[][ ]{} 0ĔĔ =-+ uktPkum ge
##       (3.37) 

The axial load ()tP  is taken as () tPPtP d W+= ÄÄ cosba ,  (3.38) 

ÄP is the critical buckling load of a isotropic steel beam with similar geometrical 

dimensions and end conditions,  a, 
db  are called static and dynamic load factors 

respectively and W is the frequency of the applied load ()tP . Substituting eq.(3.38) in 

eq (3.37) we get 

[]{} [] ( )[][ ]{} 0ĔcosĔ =W+-+ Ä uktPkum gde ba##     (3.39) 

Assembling the element matrices as used in eq. (3.39), the equation in global matrix 

form which is the equation of motion for the beam, can be expressed as     

[]{} [ ] ( )[ ][ ]{} 0ĔcosĔ =W+-+ Ä UKtPKUM gde ba
##

     (3.40) 

[]M , [ ]eK , [ ]gK are global mass, elastic stiffness, and geometric stiffness matrices 

respectively and []UĔ  is global displacement vector. Equation (3.40) represents a 

system of second order differential equations with periodic coefficients of the 

Mathieu-Hill type. The periodic solutions for the boundary between the dynamic 

stability and instability zones can be obtained from Floquetôs theory [21] as follows. 

From the theory of Mathieu functions [21], it is evident that the nature of solution is 
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dependent on the choice of load frequency and load amplitude. The frequency 

amplitude domain is divided in to regions, which give rise to stable solutions and to 

regions, which cause unstable solutions.  

The eq.(3.40) does not change its form on addition of the period, 
W

=
p2

T to t. This 

follows from the fact that ( )Ttt +W=W coscos . Therefore if ()tUĔ  is a solution of the 

eq.(3.26), then ( )TtU +Ĕ  is also its solution.  

According to the Floquet solutions the kth solution of eq.(3.40) can be written as,  

( ) ()tUTtU kkk
ĔĔ m=+         (3.41)  

where  
km  the characteristic constant.  

These solutions which acquire a constant multiplier by the addition of the period T to 

t, can be represented in the form  

() ()( ) kTt

kk ettU
mc ln/Ĕ =         (3.42)  

where ()tkc  is a periodic function of period T.  

It follows from the eq.(3.42) that the behaviour of the solutions as t Ÿ Ð, depends on 

the value of the characteristic roots, more precisely, on the value of its moduli.  

Taking in to account that kkk i mmm arglnln +=   

() ()( ) kTt

kk ettU
mln/Ĕ F=         (3.43)  

() ()( ) kTit

kk ett
mc arg/

=F
       

(3.44) 

If the characteristic number 
km  is greater than unity, then the corresponding solution, 

eq.(3.43) will have an unbounded exponential multiplier, hence the solution is 

unlimited. If the same characteristic number is less than unity, then the 

corresponding solution is damped as t increases. Finally, if the characteristic number 

is equal to unity, then the solution is periodic, i.e. it will be bounded in time. These 

are the conclusions of the Floquetôs theory.  

Thus the periodic solutions characterize the boundary conditions between the 

dynamic stability and instability zones. So the periodic solution can be expressed as 

Fourier series.  

A solution with period 2T is represented by:  
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A solution with period T is represented by:  
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  The boundaries of the principal instability regions with period 2T are of 

practical importance [21]. If the series expansions of eq.(3.45) are used in eq.(3.40), 

term wise comparison of the sine and cosine coefficients will give infinite systems of 

homogeneous algebraic equations for the vectors {}kc  and {}kd  for the solutions on 

the stability borders. Non-trivial solutions exist if the determinant of the coefficient 

matrices of these equation systems of infinite order vanishes. When looking for 

numerical solutions, systems of finite order are required and as it is shown in 

reference [21], a sufficiently close approximation of the infinite eigen value problem is 

obtained by taking k=1 in the expansion in eq.(3.45) and putting the determinant of 

the coefficient matrices of the first order equal to zero. This technique is adopted 

originally in reference [21]. The first order expansion of eq. (3.45) gives 

()
2
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2
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11

t
d

t
ctU

W
+

W
=         (3.47) 

Substituting eq. (3.47) into eq. (3.40) and comparing the coefficients of 
2

sin
tW

 and 

2
cos

tW
 terms the condition for existence of these boundary solutions with period 2T 

is given by  
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å W
-°- Ä UMKPK gde ba      (3.48) 

Equation (3.48) represents an eigen value problem for known values ofa, 
db , and 

ÄP . This equation gives two sets of eigen values ()W binding the regions of 

instability due to the presence of plus and minus sign. The instability boundaries can 

be determined from the solution of the equation 

[ ]( ) [ ] [] 0
4

2/
2

=
W
-°- Ä MKPK gde ba      (3.49) 

3.3.1 Free vibration 

When a=0, 
db=0, and w2=W , eq. (3.49) is reduced to a problem of free 

vibration as 
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[ ] [] 02 =- MKe w         (3.50) 

The solution of eq. (3.50) gives the value of natural frequencies {}.w  

3.3.2 Static stability 

When a=1, 
db=0, and 0=W , eq. (3.49) is reduced to the problem of static 

stability as 

[ ] [ ] 0=- Ä

ge KPK         (3.51) 

The solution of eq. (3.51) gives the values of buckling loads. 

3.3.3 Regions of instability 

The fundamental natural frequency 1w  and the critical buckling load ÄP  of an 

isotropic steel beam with similar geometrical dimensions and end conditions as that 

of FGO beam are calculated from eq. (3.50) and eq. (3.51) respectively.  

Choosing 1

1

w
wö
ö
÷

õ
ææ
ç

åW
=W , eq. (3.49) can be rewritten as 
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The solution of eq. (3.52) gives two sets of values of öö
÷

õ
ææ
ç

åW

1w
 for given values of a, 

db , ÄP , and 1w . The plot between 
db  and öö

÷

õ
ææ
ç

åW

1w
 gives the regions of dynamic 

instability. 

3.4 Results and discussion        

The numerical study is carried out for a beam, simply supported at both the 

ends. The beam is discretized into 100 elements. A typical discretization of the beam 

is given in Appendix. The boundary conditions used for the numerical study are as 

given below. 

At 0,0 == wx  and 0=u , at 0, == wLx .  
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A FGO beam with steel and alumina as its constituent phases is considered 

for the analysis followed by the investigation of an FGSW beam made up of steel and 

alumina.  

3.4.1 Validation of the formulation  

The FGSW beam becomes functionally graded ordinary (FGO) beam when 

the thickness of the skins are made equal to zero. In order to establish the 

correctness of calculation, the first five natural frequencies of a steel aluminum FGO 

beam are calculated and compared with Li [92]. The dimensions of the beam [92] 

are, Length, L=0.5m, breadth, b=0.1m and thickness h=0.125m. The comparison is 

provided in table 3.1. It is found that the present results are in good agreement. 

 

Table 3.1 Comparison of first five natural frequencies 

Natural Frequencies  Present Method X. F. Li [92] difference (%) 

(rad/s) 

  1w       6431.54     6457.93     -0.41 

              2w       21699.29     21603.18     0.44 

             
3w       40007.90     40145.42     -0.34 

             4w       59728.3     59779.01     -0.08 

             
5w       80153.98     79686.16     0.58 

 

Table 3.2 Comparison of buckling load parameter. 

r

L
   Critical buckling load parameter ( EILP /2Ä

 ) 

             Present      Raju and Rao [122]       difference (%) 

10  7.575   7.546   0.38 

25  9.4206   9.406   0.15 

50  9.753   9.750   0.03 

100  9.839   9.839   0.0 

The FGO beam reduces to a homogeneous beam when the value of power 

law index (n) is made equal to zero. The critical buckling load parameter for various 
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( rL / ) ratios is computed and compared with the result of Raju and Rao [122] and 

are found to be in good agreement as shown in table 3.2. Here, órô corresponds to 

radius of gyration. 

 
3.4.2 Functionally graded ordinary beam  

A steel-alumina FGO beam with steel-rich bottom is considered for vibration 

and dynamic stability analysis. The properties of constituent phases are:  

Steel: E=2.1x1011 Pa, G=0.8x1011 Pa r=7.85x103kg/m3,  

Alumina: E=3.9x1011 Pa, G=1.37x1011 Pa, r=3.9x103kg/m3, k=0.8667. 

The shear correction factor is chosen as k=(5+ɜ)/(6+ɜ)=0.8667 as mentioned by 

Hutchinson [63], where ɜ, the poissonôs ratio and is assumed as 0.3 in the present 

case. 

The effect of variation of power law index on first two natural frequencies of 

FGO beam are presented in figures 3.2(a) and 3.2(b). The corresponding data are 

presented in table 3.3. It is found for both the modes that the frequency decreases as 

the power law index (n) increases from one to fifteen. This may be attributed to the 

following fact. The composition of the constituent phases at a given point changes as 

the power law index varies. The material properties at the point such as E  , r and 

G are dependent on composition of the phases. As the elements of stiffness and 

mass matrices are functions of these coordinate dependent properties, so variation in 

power law index alters the stiffness matrix [K] and mass matrix [M] and hence the 

natural frequencies. 
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Figure 3.2(a) Variation of the first mode frequency 
with power law index for steel-rich bottom FGO 
beam 
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Figure 3.2(b) Variation of the second mode 
frequency with power law index for steel-rich 
bottom FGO beam 
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Table 3.3 Variation of natural frequencies with power law index for steel-alumina FGO beam (steel-
rich bottom). 

Power index (n) Natural frequencies (rad/s) 

1w  2w  3w  

1 9106.78 30117.72 55123.50 

1.5 8424.07 28007.59 51402.84 

2 8168.70 27120.25 49694.54 

2.5 7979.96 26468.72 48490.07 

3 7850.75 26005.89 47659.08 

5 7683.84 25270.87 46180.58 

7 7481.00 24613.57 45015.09 

8 7412.18 24388.93 44630.19 

9 7352.96 24198.53 44306.63 

10 7356.02 24169.83 44215.63 

11 7314.84 24037.99 43992.39 

12 7278.29 23922.06 43796.71 

13 7245.71 23819.61 43624.67 

14 7210.69 23715.94 43445.77 

15 7185.05 23635.69 43311.06 

 

Table 3.4 Critical buckling loads for FGO beam (steel-rich bottom). 

Power law index (n) Critical buckling load 
ÄP (x10

7
 N) 

1 16.561 

2 14,908 

5 14.166 

10 13.412 

25 12.552 

50 12.157 

The effect of variation of power law index on critical buckling load is evaluated 

and is presented in Tables 3.4. It is found that, the critical buckling load decreases 

with increase in the value of power law index. This is due to the fact that the FGO 

beam with steel-rich bottom becomes richer in steel as the power law index becomes 

higher. FGO beam rich in steel implies beam with lower effective material properties 

as steel has got lower E  and G as compared to alumina. The lower values of 
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effective material properties of the beam reduce its stiffness which in turn decreases 

the critical buckling load. 

The additional data for dynamic stability analysis are taken as follows. 

ÄP =11.37x107 N, 1w=6724.9 rad/s. ÄP  and 1w  corresponds to the critical buckling 

load and fundamental natural frequency of a homogenous steel beam of same 

dimensions and end conditions as of the FGO beam.  

The effect of property distribution laws on the dynamic stability of FGO beam 

is studied. The first two principal regions of instability are shown in figure 3.3(a) and 

figure 3.3(b) respectively. The static load factor, a=0.1 is used for the analysis. The 

instability regions of beam having properties along thickness according to power law 

with index n=1.5 (FGO-1.5) beam, with index n=2.5 (FGO-2.5) beam and properties 

according to exponential law (e-FGO) beam are superimposed for the purpose of 

comparison. It is clear from the figures 3.3(a) and 3.3(b) that the e-FGO beam is the 

most stable among the three as its instability region is located at farthest from the 

dynamic load factor axis. The first and second mode instability regions are shifted 

towards the dynamic load factor axis as the power law index increases from 1.5 to 

2.5 thereby enhancing the chance of parametric instability. The relative amount of 

alumina is highest in e-FGO beam and this causes the beamôs stiffness to be of 

highest magnitude. As the stiffness of the e-FGO beam happens to be the highest, 

the dynamic instability occurs at the highest excitation frequency thereby reducing 

the chance of instability. Similarly, as the value of power law index increases, the 

stiffness of the beam reduces and hence the excitation frequency to cause instability 

decreases making the beam more prone to instability. 
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Figure 3.3(a) The first mode instability regions of 
FGO (steel-rich bottom) beam, +exp. law, *n=1.5 
O
n=2.5. 
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Figure 3.3(b) The second mode instability regions 
of FGO (steel-rich bottom) beam, +exp. law,  
*n=1.5, 

O
n=2.5. 

Figures 3.4(a) and 3.4(b) depict the effect of static load factor aon the first and 

second principal regions of instability of the FGO-2.5 beam respectively. The values 



 

35 

 

of static load factor are taken as 0.1 and 0.5. Figures 3.4(c) and 3.4(d) show the 

corresponding plots for e-FGO beam. It is observed that more the static load factor, 

more prone to dynamic instability is the beam and it happens for both the laws of 

property distribution. This is expected as the increase of static load factor means the 

increase of the time independent component of the axial load.  
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Figure 3.4(a) The effect of static load factor on first 
mode instability regions for FGO-2.5 beam, 
*Ŭ=0.1,  

O
Ŭ=0.5. 
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Figure 3.4(b) The effect of static load factor on 
second mode instability regions for FGO-2.5 
beam, *Ŭ=0.1, 

O
Ŭ=0.5 
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Figure 3.4(c) The effect of static load factor on first 
mode instability regions of e-FGO beam, 

O
Ŭ=0.1, 

O
Ŭ=0.5. 
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Figure 3.4(d) The effect of static load factor on 
second mode instability regions of e-FGO beam, 
*Ŭ=0.1, 

O
Ŭ=0.5. 

 

3.4.3 Functionally graded sandwich beam 

 A functionally graded sandwich (FGSW) beam of length 0.5m, thickness 

0.125m and width 0.1m with core as FGM is chosen for analysis. The top layer is 

alumina, bottom layer is steel and core is mixture of steel and alumina whose 

properties along the thickness are assumed to follow power law as well as 

exponential law. 

The effect of FGM content (d/h) on the natural frequencies of the beam is 

shown in figures 3.5(a) and 3.5(b). FGSW beam having properties along core 

thickness according to power law with index n=1.5(FGSW-1.5) beam, n=2.5(FGSW-

2.5) beam and according to exponential law (e-FGSW) is considered for the analysis. 
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It is found that the natural frequencies decrease with the increase of FGM content in 

FGSW beams having properties along thickness of core according to power law 

whereas the frequencies increase with increase of FGM content for e-FGSW beam. 

Moreover, the increase in power law index causes decrease in frequencies of the 

FGSW beam. 
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Figure 3.5(a) The effect of FGM content on the 
first mode frequency of FGSW beams. 
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Figure 3.5(b) The effect of FGM content on the 
second mode frequency of FGSW beams. 
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Figure 3.6 The effect of FGM content on the critical buckling load of FGSW beams. 

 

Figure 3.6 shows the effect of FGM content on the static buckling load. It is 

seen that the critical buckling load decreases with increase in FGM content 

irrespective of the kind of property variation along the thickness of core of the beam. 

Effect of different property distribution laws on the first two principal instability regions 

of the beam are depicted in figure 3.7(a) and 3.7(b) respectively. The static load 

factor(a) and FGM content(d/h) are taken as 0.1 and 0.3 respectively. The e-FGSW 

beam is the most stable and FGSW-2.5 beam is the least stable beam. This is due to 

the fact that the FGM core becomes richest in alumina in former case and least rich 

in alumina in later case. Enrichment of  the core with alumina  enhances the effective   
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Figure  3.7 (a) The first mode instability regions for 
FGSW beam, n=1.5 (*), n=2.5 (

O
), exp. Law (

+
) 
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Figure 3.7 (b) The second mode instability regions 
for FGSW beam, n=1.5 (*), n=2.5 (

O
), exp.law (

+
). 
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Figure 3.8(a) The effect of static load factor on the 
first mode instability region of FGSW-2.5 beam, 
Ŭ=0.1 (*), Ŭ=0.5 (

O
). 
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Figure 3.8(b) The effect of static load factor on the 
second mode instability region of FGSW-2.5 
beam, Ŭ=0.1 (*), Ŭ=0.5 (

O
). 
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Figure 3.8(c) The effect of static load factor on the 
first mode instability region of e-FGSW beam, 
Ŭ=0.1 (*), Ŭ=0.5 (

O
). 
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Figure 3.8(d) The effect of static load factor on the 
second mode instability region of e-FGSW beam, 
Ŭ=0.1 (*), Ŭ=0.5 (

O
). 
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Figure 3.9 (a) The effect of FGM content on the 
first mode instability regions of FGSW-2.5 beam, 
*d/h=0.3, 

O
d/h=0.8. 
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Figure 3.9 (b) The effect of FGM content on the 
second mode instability regions of FGSW-2.5 
beam, *d/h=0.3, 

O
d/h=0.8. 
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Figure 3.9 (c) The effect of FGM content on the 
first mode instability regions of e-FGSW beam, 
*d/h=0.3, 

O
d/h=0.8. 
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Figure 3.9 (d) The effect of FGM content on the 
second mode instability regions of e-FGSW beam, 
*d/h=0.3, 

O
d/h=0.8. 

value of E and leads to increase in natural frequencies. The trend of results obtained 

in this case is similar to that obtained in case of FGO beam. 

Figure 3.8(a) and figure 3.8(b) show the effect of static load component on 

the dynamic instability of FGSW-2.5 beam for first and second principal modes 

respectively. The static load factor of values 0.1 and 0.5 are taken for the 

comparison. The case with =a 0.5 is found to be more prone to dynamic instability 

compared to the case with =a 0.1 as obtained earlier for the FGO beams. Similar 

trend of the results are observed for e-FGSW beam as shown in figures 3.8(c) and 

3.8(d) for first and second main mode respectively.  

The effect of FGM content (d/h) on dynamic instability of FGSW beams is 

investigated. Figure 3.9(a) and figure 3.9(b) show the plots of first two main regions 

of instabilities of FGSW-2.5 beam with different FGM contents respectively. FGM 

content of 30% (d/h=0.3) and 80% (d/h=0.8) are considered for the purpose. Figure 

3.9(a) shows the plot of FGSW-2.5 beam for first mode and Figure 3.9(b) shows the 

corresponding plot for second mode. For both the cases, =a 0.1 is taken for the 

calculation. It is obvious from the plots that the beam with higher value of (d/h) is less 

stable. The effect of FGM content on stability of e-FGSW beam is opposite to that of 

FGSW-2.5 beam. In this case, the stability of the beam is enhanced with the increase 

of FGM content as shown in figures 3.9(c) and 3.9(d) for first and second mode 

respectively. Moreover, it is learnt, that the effect of FGM content on the principal 

instability regions of FGSW-2.5 beam is more prominent as compared to that of e-

FGSW beam. This is due to the fact that increase in FGM content increases relative 

amount of steel in FGSW-2.5 beam compared to e-FGSW beam. As steel has lower 

value of Youngôs modulus compared to alumina, so increase in steel phase causes 

more prominent effect on instability regions of FGSW-2.5 beam compared to e-

FGSW beam. 



 

39 

 

3.5 Closure 

 The effect of various system parameters on dynamic stability behaviour of 

both FGO and FGSW beams have been studied using finite element method. The 

important conclusions are outlined below.   
 

3.5.1 Functionally graded ordinary beam 

(i) Critical buckling load decreases with increase of power law index for FGO 

beam with steel-rich bottom. 

(ii) The natural frequencies of first two modes decrease with increase in the 

value of power law index. 

(iii) The FGO beam with properties along thickness according to exponential 

law is found to be the most stable beam. 

(iv) The stability of FGO beam decreases as the value of power law index 

increases from 1.5 to 2.5.  

(v) Increase in static load factor enhances the instability. 

 

3.5.2 Functionally graded sandwich beam 

(i) Critical buckling load decreases with increase of FGM content for the 

FGSW beams with exponential and power law distribution of properties. 

(ii)  The first two mode natural frequencies increase with increase of FGM 

content for beam with exponential distribution of properties. 

(iii)  The first two natural frequencies decrease with increase of FGM content 

for beam with power law distribution of properties. 

(iv) Increase in core thickness enhances the stability of beam with exponential 

distribution of properties, whereas it reduces the stability of beam with 

power law distribution of properties.  

(v) The FGSW beam with properties along thickness of the core according to 

exponential law is found to be the most stable. The stability of the beam 

decreases as the value of power law index increases.  

(vi) Increase in static load component enhances the instability. 

The property distribution laws are found to have a prominent role on the dynamic 

stability behaviour of the beam. 
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CHAPTER 4  

 

d ynamic stability of 

f unctionally graded 

timoshenko  beam on 

elastic foundations under 

parametric excitation  

 

4.1 Introduction 

The theory of beams on elastic foundation was conceived to face the practical 

problem of railway track. A long rail that has to sustain the large wheel loads is a 

beam of moderate bending stiffness. The rail is supported almost along its entire 

length by closely spaced crossties in order to sustain the large loads. The 

investigation of the problem of interaction between a beam of moderate bending 

stiffness and the supporting foundation was done by Winkler. Winkler has developed 

a mathematical model wherein it is assumed that the foundation imposes reaction 

forces on the beam that are proportional to the deflection of the foundation. The 

model is named as Winklerôs elastic foundation model. The railway tracks can be 

made of functionally graded materials with its constituent phases as metal and 

ceramic. The ceramic-rich surface can be used for frictional contact ensuring 

minimum wear and tear. Large scale cost effective commercial manufacturing of 

such rails can be possible in future with advancement of FGM manufacturing 
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technology. An extensive literature survey is carried out on work on beams on elastic 

foundations and presented below.  

Ahuja and Duffield [3] investigated both theoretically and experimentally the 

dynamic stability of beams having variable cross-sections and resting on elastic 

foundation. The effect of elastic foundation was found to have a decreasing effect on 

the width of the instability regions and the amplitude of parametric response. Abbas 

and Thomas [1], Briseghella et al. [22] and Ozturk and Sabuncu [116] used finite 

element method to study the dynamic stability of beams. Eisenberger and Clastronik 

[44], Dutta and Nagraj [43] and Engel [46] studied the dynamic stability of beams on 

elastic foundation. The parametric instability behaviour of a non-prismatic bar with 

localized zone of damage and supported on an elastic foundation was studied by 

Dutta and Nagraj [43] using finite element analysis. It is found that a flaw in the beam 

near the narrow end affects the static and dynamic behaviour more than a flaw does 

near the wider end. Engel [46] investigated the dynamic stability of bars on elastic 

foundation with damping. It was found that the critical mode became a higher mode 

instead of fundamental mode when the foundation parameter exceeded a certain 

value. Lee and Yang [88] and Matsunaga [102] investigated the dynamic behaviour 

of Timoshenko beams resting on elastic foundations. Morfidis [108] developed 

stiffness and transfer matrices and load vectors of Timoshenko beam resting on Kerr 

type 3-parameter elastic foundation. Pradhan and Murmu [121] investigated the 

effect of various parameters on the dynamic response of FGM beams and 

functionally graded sand witch (FGSW) beam resting on variable elastic foundation. 

The parameters chosen were temperature distribution, power law index, variable 

Winkler foundation modulus, elastic foundation modulus and the normalized core 

thickness of the FGSW beam. Baghani et al. [15] have used variational iteration 

method to study the free vibration and pust-buckling analysis of a laminated 

composite beam considering both geometric and foundation nonlinearity. Calim and 

Akurt [25] have investigated the static and free vibration of circular straight beam on 

elastic foundation. The authors have used complementary function method for the 

solution of governing differential equations in Laplace domain. 

There are many engineering applications of beam structures resting on 

foundations, such as highway pavement, building structures, offshore structures, 

transmission towers and transversely supported pipe lines. In the present chapter the 

dynamic stability of FGO and FGSW beams supported on Winkler and Pasternak 

foundation is studied. Effect of foundation parameters on dynamic stability is 

investigated. 
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4.2 Formulation 

The FGSW beam is supported on elastic foundation as shown in figure 4.1. 

The beam, hinged at both the ends is subjected to a pulsating axial force P(t). The 

coordinate system of a typical two noded beam element used to derive the governing 

equations of motion is shown in figure 3.1(b) in chapter 3. The mid-longitudinal(x-y) 

plane is chosen as the reference plane for expressing the displacements.  

 
 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.1 Functionally graded sandwich beam resting on Pasternak elastic foundation and subjected to 

dynamic axial load. 

 

The thickness coordinate is measured as z from the reference plane. The 

beam with three degrees of freedom adopted in this case is same as that shown in 

Figure 3.1(c) and described in chapter 3. The axial displacement, the transverse 

displacement, and the rotation of the cross-section are u , wand f respectively.  

The elastic stiffness matrix and mass matrix for the FGSW beam element 

derived in section 3.2 are also applicable in this case and hence have not been 

repeated. 

The effect of foundation is introduced as foundation stiffness matrix which is derived 

from the work done by the foundation and is presented in the next section.   

4.2.1 Element elastic foundation stiffness matrix 

The work done by the foundation against transverse deflection is given by the 

expression 

ñ=

l

dxwkW
0

2

11
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1
        (4.1) 

Substituting the value of w from eq. (3.20) in eq. (4.1) we get 
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is element foundation stiffness matrix without considering the interaction of the shear 

layer. This is also called as Winklerôs foundation stiffness matrix and 1k  is the 

Winklerôs foundation constant per unit length of the beam. 

The work done due to the interaction of shear layer can be given as  

dx
x
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Similarly substituting w from eq. (3.20) in eq. (4.4) we get 
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''

2        (4.6) 

where 2k is foundation shear layer constant per unit length of the beam. The element 

elastic foundation matrix is given as 

[] [] []pwf kkk +=         (4.7) 

where [ ]fk  is the Pasternak foundation stiffness matrix. 

 

4.3 Governing equations of motion 

The total work done on the beam is the sum of work done by axial force as 

given in eq. (3.35), work done by foundation as given in eq. (4.2) and work done by 

the shear layer as given in eq. (4.4). The equation of motion for the beam element 

referring section 3.3 can be modified for the present case and given as 

[]{} [ ] ( )[][ ]{} 0ĔcosĔ =W+-+ Ä uktPkum gdef ba##     (4.8) 

Where [ ] [] []feef kkk +=        (4.9) 

[ ]efk is the element effective stiffness matrix and []ek , []fk
, 
[]m  and [ ]gk  are 

element elastic stiffness matrix, Pasternak foundation stiffness matrix, mass matrix 

and geometric stiffness matrix respectively. 
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Assembling the element matrices as used in eq. (4.8), the equation in global matrix 

form which is the equation of motion for the beam on elastic foundation, can be 

expressed as     

[]{} [ ] ( )[ ][ ]{} 0ĔcosĔ =W+-+ Ä UKtPKUM gdef ba
##

     (4.10) 

[ ] [ ][ ]feef KKK += and [ ] [ ][ ]pwf KKK +=     (4.11) 

[]M , [ ]eK , [ ]fK
, 
[ ]gK are global mass, elastic stiffness, foundation stiffness and 

geometric stiffness matrices respectively and []UĔ  is global displacement vector.  

The condition for existence of the boundary solutions with period 2T is given by 

[ ]( ) [ ] []{} 0Ĕ
4

2/
2

=öö
÷

õ
ææ
ç

å W
-°- Ä UMKPK gdef ba     (4.12) 

The instability boundaries can be determined from the solution of the equation 

[ ]( ) [ ] [] 0
4

2/
2

=
W
-°- Ä MKPK gdef ba      (4.13) 

Following the procedure described in section 3.3.1-3.3.3, the natural frequencies, 

critical buckling load and instability regions of the beam on elastic foundation are 

determined.  

4.4 Results and discussion 

The numerical calculation has been carried out for the beam, simply 

supported at both the ends. The beam is discretized into 100 elements. The 

boundary conditions used for the numerical study are as given below. 

At 0,0 == wx  and 0=u , at 0, == wLx . 

FGO and FGSW beams with steel and alumina as their constituent phases 

have been considered for the analysis. 

4.4.1 Validation of the formulation 

In the present formulation the FGSW beam becomes FGO beam when the 

thickness of the skins are made equal to zero and the FGO beam reduces to a 

homogeneous beam when the power law index (n) for the property distribution is 

made equal to zero. In order to establish the correctness of calculation, the first mode 
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Table 4.1 Comparison of fundamental non-dimensional frequency 

L/h Winkler 

Modulus 

EI

Lk
K

4

1
1 =  

Foundation shear 

modulus
EI

Lk
K

2

2

2
2
p
=  

Non-dimensional 

frequency                  

EI

AL4

11

r
wh= (present) 

 1h 

Matsunaga 

[102] 

1h 

TBT 

[102] 

2 

0 0 7.4493 7.4664 7.4127 

10 0 8.0435 8.0102 8.0106 

100 0 12.1243 11.2820 12.1084 

0 1 12.0268 11.2136 12.0106 

10 1 12.3987 11.4721 12.3836 

100 1 15.3231 13.2672 15.3153 

5 

0 0 9.2861 9.2903 9.2740 

10 0 9.7962 9.7912 9.7848 

100 0 13.5485 13.4726 13.5408 

0 1 13.4551 13.3812 13.4473 

10 1 13.8120 13.7307 13.8045 

100 1 16.6839 16.5354 16.6781 

10 

0 0 9.7109 9.7121 9.7071 

10 0 10.2091 10.2078 10.2057 

100 0 13.9113 13.8941 13.9086 

0 1 13.8186 13.8018 13.8162 

10 1 14.1731 14.1548 14.1709 

100 1 17.0346 17.0046 17.0326 

 

 

Table 4.2 Comparison of first five natural frequencies 

Natural 

Frequencies 

(rad/s) 
Present Method X. F. Li [92] Simsek M [141] 

1w 6431.54 6457.93 6443.08 

2w  21699.29 21603.18 21470.95 

3w 40007.90 40145.42 39775.55 

4w  59728.3 59779.01 59092.37 

5w 80153.98 79686.16 8638.36 
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Table 4.3 Fundamental natural frequency of a steel-alumina simply supported-simply supported FGO 

beam (steel-rich bottom) of length L=0.5 m. 

L/h Fundamental Natural frequencies 1w  (x10
4
 rad/s) 

Variation of properties along thickness as per power law with different 

indices 

Exp. 

law 

 n=0 n=0.5 n=1 n=2 n=3 n=5 n=10 

2 2.121 1.601 1.519 1.371 1.310 1.247 1.204 1.514 

5 1.068 0.7899 0.7623 0.6855 0.6564 0.6396 0.6098 0.7699 

10 0.5601 0.4314 0.3992 0.3668 0.3523 0.3369 0.3202 0.4033 

 

Table 4.4 Fundamental natural frequency of a steel-alumina simply supported-simply supported FGO 

beam (steel-rich bottom) on Winkler and Pasternak elastic foundations ( length L=0.5 m) 

L/h 

 

 

Winkler 

Modulus 

EI

Lk
K

4

1
1 =  

 

Foundation 

shear 

modulus 

EI

Lk
K

2

2

2
2
p
=  

 

Fundamental natural frequency 1w  (x10
4
 rad/s) 

Power law indices 

Exponential 

law 

 

n=1 

 

n=2 

 

n=3 

 

n=5 

 

2 

0 0 1.519 1.371 1.310 1.247 1.514 

5 0 1.564 1.415 1.355 1.291 1.561 

10 0 1.607 1.458 1.397 1.334 1.606 

5 1 2.260 2.098 2.031 1.963 2.279 

10 1 2.290 2.127 2.059 1.991 2.309 

5 

0 0 0.7623 0.6855 0.6564 0.6396 0.7699 

5 0 0.7774 0.7006 0.6714 0.6543 0.7854 

10 0 0.7921 0.7153 0.6860 0.6686 0.8006 

5 1 1.028 0.9473 0.9155 0.8933 1.042 

10 1 1.039 0.9583 0.9263 0.9038 1.054 

10 

0 0 0.3992 0.3668 0.3523 0.3369 0.4033 

5 0 0.4066 0.3739 0.3594 0.3441 0.4108 

10 0 0.4138 0.3809 0.3664 0.3510 0.4183 

5 1 0.5296 0.4934 0.4773 0.4610 0.5372 

10 1 0.5351 0.4987 0.4826 0.4662 0.5429 
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fundamental non-dimensional natural frequencies of a homogenous steel beam 

simply supported at both the ends are calculated for different (L/h) ratio of the beam 

and compared with the results of Matsunaga [102]. The comparison has been 

provided in table 4.1. It is found that the present results are in good agreement with 

that of Timoshenko Beam Theory (TBT) and Matsunaga for all the chosen values of 

(L/h). In order to further establish the correctness of the calculations, the first five 

natural frequencies of a steel-aluminum FGO beam are calculated and compared 

with [92, 141]. The present results are in good agreement as shown in table 4.1. 

Table 4.3 shows the fundamental frequency of a steel-alumina FGO beam 

simply supported at both ends, with various L/h ratios considering different property 

distribution laws along the thickness of beam and table 4.4 shows the fundamental 

frequency of the beam resting on Winkler and Pasternak elastic foundations. 

4.4.2 Functionally graded ordinary beam  

A steel-alumina functionally graded ordinary beams with steel-rich bottom 

resting on Pasternak foundation is considered for the dynamic analysis. The length, 

breadth and thickness of the beam are 0.5m, 0.1m and 0.25m respectively. The 

frequencies of the FGO and FGSW beams are normalized with respect to the 

frequency of first mode of a steel beam of similar geometrical dimensions and end 

conditions. The properties of constituent phases are:  

Steel: E=2.1x1011 Pa, G=0.8x1011 Pa r=7.85x103kg/m3,  

Alumina: E=3.9x1011 Pa, G=1.37x1011 Pa, r=3.9x103kg/m3, k=0.8667. 

The effects of Pasternak foundation on non-dimensional natural frequencies 

of beam for different laws of property distribution are shown in figures 4.2(a) and 

4.2(b). Figure 4.2(a) shows the variation of first mode non-dimensional frequency 

with Winkler modulus (K1), the foundation shear modulus (K2) being one. It is 

observed that the frequency increases with increase in Winkler modulus for all the 

cases of property distribution. The frequency corresponding to any foundation 

stiffness is the highest for e-FGO beam and it is the lowest for FGO-2.5 beam. Figure 

4.2(b) represents the effect of foundation on second mode frequency of the beams. A 

similar trend of results is obtained as obtained for first mode.  

The effect of Winkler foundation on first two mode natural frequencies of the 

beam is shown in figures 4(c) and 4(d) for first and second mode respectively. A 

similar trend of variation of frequencies with foundation stiffness is observed as found 
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in case of Pasternak foundation. However the frequency of the beam on Pasternak 

foundation is found to be higher than that on Winkler foundation which is observed 

for all the kinds of beams considered.  
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Figure 4.2(a) Effect of Pasternak foundation on 
first mode frequency of FGO beam with Steel-rich 
bottom having properties according to exponential 
as well as power law (K2=1). 
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Figure 4.2(b) Effect of Pasternak foundation on 
second mode frequency of FGO beam with Steel-
rich bottom having properties according to 
exponential as well as power law (K2=1). 
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Figure 4.2(c) Effect of Winkler foundation on first 
mode frequency of FGO beam with steel-rich 
bottom having properties according to exponential 
as well as power law.  
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Figure 4.2(d) Effect of Winkler foundation on 
second mode frequency of FGO beam with steel-
rich bottom having properties according to 
exponential as well as power law. 

 

This may be due to the fact that the Pasternak foundation has an additional 

contribution to increase of the effective stiffness of beam in the form of interaction of 

the shear layer that causes a higher frequency of the beam than the frequency of the 

beam resting on Winklerôs elastic foundation. 

For dynamic stability study of beam, the following parameters are considered. 

The fundamental natural frequency 1w  =6724.9 rad/s and the critical buckling load 

ÄP =11.37x108 N of an isotropic steel beam (L=0.5m, b=0.1m, h=0.125m) of similar 

end conditions are calculated from eq. (4.19) and eq. (4.20) respectively without 

considering the effect of foundation. 

Figures 4.3(a) and 4.3(b) show the effect of property distribution laws on the 

main instability regions of FGO beam with steel-rich bottom and resting on Pasternak 
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foundation(K1=5, K2=1) for first and second mode respectively. Figure 4.3(a) shows 

that the first mode instability region of e-FGO beam is situated farthest from the 

dynamic load factor axis. Hence it is the most stable beam. Similarly, the FGO-2.5 

beam is the least stable and FGO-1.5 beam is the intermediate stable beam. The 

effect of foundation on second mode instability regions is found to be similar as found 

in case of first mode which can be noticed from figure 4.3(b).   
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Figure 4.3(a) Region of instability for first mode of 
FGO beam with steel-rich bottom resting on 
Pasternak foundation (K1=5,K2=1):  *n=1.5, 
O
n=2.5, +exp. law. 
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Figure 4.3(b) Region of instability for second 
mode of FGO beam with steel-rich bottom resting 
on Pasternak foundation (K1=5,K2=1):  *n=1.5, 
O
n=2.5, +exp. law. 

 

Figure 4.4 represents the comparison of effect of Winklerôs foundation and 

Pasternak foundation on the stability of FGO beam for first two principal modes. 

Figures 4.4(a) and 4.4(b) show the instability regions of FGO-2.5 beam supported by 

Winkler foundation(K1=10, K2=0), Pasternak foundation(K1=5, K2=1) and no 

foundation(K1=0, K2=0) for first mode and second mode respectively. It is found that 

the beam on Pasternak foundation is more stable as compared to beam on Winklerôs  
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Figure 4.4(a) Effect of foundation on first mode 
instability regions of FGO-2.5 beam: *No foundation 
(K1=0, K2=0), 

O
Winkler foundation (K1=15, K2=0), 

+Pasternak foundation (K1=5, K2=1). 
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Figure 4.4(b) Effect of foundation on second mode 
instability regions of FGO-2.5 beam:  *No foundation 
(K1=0, K2=0), 

O
Winkler foundation (K1=15, K2=0), 

+Pasternak foundation (K1=5, K2=1)
+
. 
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foundation. This may be due to the fact that higher frequency of beam on Pasternak 

foundation as compared to Winklerôs foundation causes the instability to occur at 

higher excitation frequencies.  

The first and second principal instability regions of e-FGO beam resting on 

Winkler foundation(K1=10, K2=0), Pasternak foundation(K1=5, K2=1) and no 

foundation(K1=0, K2=0) are shown in figures 4.4(c) and 4.4(d) respectively. In this 

case also the Pasternak foundation has got more enhancing effect on the stability of 

beam as compared to Winkler foundation. Because, the instability regions of the 

FGO beam on Pasternak foundation are of less width and are located farther from 

the dynamic load factor axis as compared with the corresponding instability regions 

of the beam on Winklerôs foundation.  
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Figure 4.4(c) Effect of foundation on first mode 
instability regions of e-FGO beam:*No foundation 
(K1=0, K2=0), 

O
Winkler foundation (K1=15, K2=0), 

+Pasternak foundation(K1=5, K2=1). 
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Figure 4.4(d) Effect of foundation on second mode 
instability regions of e-FGO beam: *No foundation 
(K1=0, K2=0), 

O
Winkler foundation (K1=15, K2=0), 

+Pasternak foundation(K1=5, K2=1). 
 

4.4.3 Functionally graded sandwich beam 

A functionally graded sandwich (FGSW) beam with steel as bottom skin, 

alumina as top skin and an FGM consisting of steel and alumina as core is chosen 

for dynamic analysis. The length width and thickness of the beam are taken as 0.5m, 

0.1m and 0.25m respectively.  

  The effect of Pasternak foundation on non-dimensional frequency of steel-

alumina FGSW beam for different distribution of properties is presented in figures 

4.5(a) and 4.5(b) for first and second mode respectively. The foundation shear 

modulus(K2) in this case is chosen as one and Winkler modulus(K1) is varied from 5 

to 30. From figures 4.5(a) and 4.5(b) it is found that the frequencies increase with the 

increase of foundation modulus appreciably for first mode. But the increase of 

frequency of second mode with the increase of foundation modulus is very small 
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irrespective of the type of property distribution laws. Moreover, the frequency of the 

e-FGSW beam is the highest corresponding to any foundation modulus (K1). Similarly 

the frequency of FGSW-2.5 beam is the lowest of all. The above effects are observed 

for first two modes.  
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Figure 4.5(a) Effect of Pasternak foundation on 
first mode frequency of steel-alumina FGSW 
beam having properties according to exponential 
as well as power law (K2=1): *n=1.5,  

O
n=2.5, 

+exp law. 
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Figure 4.5(b) Effect of Pasternak foundation on 
second mode frequency of steel-alumina FGSW 
beam having properties according to exponential 
as well as power law (foundation shear modulus 
K2=1): *n=1.5, 

O
n=2.5, +exp law.  
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Figure 4.6(a) Effect of FGM content (d/h) on the 
first mode frequency of a steel-alumina FGSW 
beam resting on Pasternak foundation (K1=5, 
K2=1) and having properties as per exponential as 
well as power law. 
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Figure 4.6(b) Effect of FGM content (d/h) on the 
second mode frequency of a steel-alumina FGSW 
beam resting on Pasternak foundation (K1=5, K2=1) 
and having properties as per exponential as well as 
power law. 
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Figure 4.7(a) Regions of instability of steel-
alumina FGSW beam on Pasternak foundation 
(K1=5, K2=1) for first mode: *n=1.5, 

O
n=2.5, +exp. 

law. 
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Figure 4.7(b) Regions of instability of steel-alumina 
FGSW beam on Pasternak foundation (K1=5, K2=1) 
for second mode: *n=1.5, 

O
n=2.5, +exp. law. 
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Figures 4.6(a) and 4.6(b) show the effect of FGM content (d/h) on the first 

mode and second mode non-dimensional frequencies of steel-alumina FGSW beam 

respectively. It is found that the first two mode frequencies increase nonlinearly with 

the increase of core thickness for all the type of beams. Moreover, the frequency of 

the e-FGSW beam is the highest corresponding to any core thickness. Similarly the 

frequency of FGSW-2.5 beam is the lowest of all. The above effect is found for first 

two modes. 

A comparison of principal instability regions of steel-alumina FGSW beam 

resting on Pasternak foundation and having properties according to power law with 

n=1.5, n=2.5 and exponential law are presented in figures 4.7(a) and 4.7 (b) for first 

mode and second mode respectively. The thickness of the FGM core is taken as 30 

percent of the total thickness of the beam. It is observed that the FGSW-2.5 beam is 

the least stable of all as itôs instability region is situated nearest to the dynamic load 

factor axis. Similarly, the e-FGSW beam is the most stable one and the stability of 

FGSW-1.5 beam lies in between the above two. The above said results are observed 

for both the modes. As the property variation along the core thickness as per 

exponential law renders the core of the beam to be the richest in alumina, so the e-

FGSW beam becomes the beam with highest effective stiffness among all. As a 

result the instability of the beam occurs at the highest excitation frequency. Similarly, 

the effective stiffness of the FGSW-2.5 beam is the lowest due to the presence of 

highest amount of steel which leads to the occurrence of instability of the beam at the 

least excitation frequency. 

A comparison of main instability regions of steel-alumina FGSW-2.5 beam 

resting on Winklerôs foundation(K1=10, K2=0), Pasternak foundation(K1=5, K2=1) and 

no foundation(K1=0, K2=0) are shown in figures 4.8(a) and 4.8(b) for first mode and 

second mode respectively. The stability of the beam on Winklerôs foundation is found 

to be more than that of the beam on no foundation. This may be due to the fact that 

the foundation increases the effective stiffness of beam which leads to the 

occurrence of instability at higher excitation frequencies. The stability of beam on 

Pasternak foundation is found to be more than that of the beam on Winkler 

foundation for both first and second modes. The effect of Winkler and Pasternak 

foundation on the first and second mode principal instability regions of e-FGSW 

beam is shown in figures 4.8(c) and 4.8(d) respectively. In this case also the 

enhancing effect on stability due to Pasternak foundation is found to be more than 

the stability due to Winkler foundation.    
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The effect of FGM content (d/h) in steel-alumina FGSW-1.5 beam is shown in 

figures 4.9(a) and 4.9(b) for first mode and second mode respectively.  The ratio ód/hô 

of values 0.3 and 0.8 are taken for the analysis. It is found that the beam having 80 

percent FGM content (d/h=0.8) is more stable for both the modes as compared to the 
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Figure 4.8(a) Effect of foundation on first mode 
instability regions of FGSW-2.5 beam: *No 
foundation (K1=0, K2=0), 

O
Winkler foundation 

(K1=15, K2=0), +Pasternak foundation(K1=5, 
K2=1). 
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Figure 4.8(b) Effect of foundation on second mode 
instability regions of FGSW-2.5 beam:  *No 
foundation(K1=0, K2=0), 

O
Winkler foundation 

(K1=15, K2=0), +Pasternak foundation(K1=5, K2=1). 
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Figure 4.8(c) Effect of foundation on first mode 
instability regions of e-FGSW beam: *No 
foundation (K1=0, K2=0), 

O
Winkler 

foundation(K1=15, K2=0), +Pasternak foundation 
(K1=5, K2=1). 

11.1 11.2 11.3 11.4 11.5 11.6
0

0.2

0.4

0.6

0.8

1

W/w
1

b
d

a=0.12w
2

 
Figure 4.8(d) Effect of foundation on second mode 
instability regions of e-FGSW beam: *No 
foundation (K1=0, K2=0), 

O
Winkler foundation 

(K1=15, K2=0), +Pasternak foundation(K1=5, K2=1). 
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Figure 4.9(a) Effect of FGM content (d/h) on the 
stability for first mode of steel-alumina FGSW-1.5 
beam resting on Pasternak foundation(K1=5, 
K2=1): 

O
d/h=0.3, +d/h=0.8. 
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Figure 4.9(b) Effect of FGM content (d/h) on the 
stability for second mode of steel-alumina FGSW-
1.5 beam resting on Pasternak foundation(K1=5, 
K2=1) : 

O
d/h=0.3, +d/h=0.8. 
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beam with 30 percent FGM content. This result is in contrast to the results obtained 

in case of FGSW beam shown in figures 3.9(a) and 3.9(b). This may be due to the 

fact that the effect of foundation supersedes the effect of property distribution laws. 

Figures 4.9(c) and 4.9(d) show the effect of FGM content in steel-alumina e-FGSW 

beam for first and second mode respectively. It is clear from figures 4.9(c) and 4.9(d) 

that the beam having 80 per cent FGM (d/h=0.8) is more stable for first and second 

mode as its instability regions are of less width and are situated farther from the axis 

of dynamic load factor as compared to the beam having 30 percent FGM. 

4 4.5 5 5.5 6
0

0.2

0.4

0.6

0.8

1

W/w
1

b
d

a=0.1

2w
1

2w
1

Figure 
4.9(c) Effect of FGM content (d/h) on the stability 
for first mode of steel-alumina e-FGSW beam 
resting on Pasternak foundation(K1=5, K2=1): 
O
d/h=0.3,  +d/h=0.8. 
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Figure 4.9(d) Effect of FGM content (d/h) on the 
stability for second mode of steel-alumina e-FGSW 
beam resting on Pasternak foundation(K1=5, K2=1): 
O
d/h=0.3,  +d/h=0.8. 

4.5 Closure 

The dynamic stability behaviour of FGO beam and FGSW beam resting on 

Winklerôs as well as Pasternak elastic foundations is investigated. The properties in 

the functionally graded material are assumed to vary according to power law as well 

as exponential law.  

The first two natural frequencies of FGO beam increase with increase in 

stiffness of the foundations for both the types of distribution of properties.  

The frequencies of first two modes of FGSW beam resting on Pasternak 

foundation increase with the increase in foundation stiffness for both the types of 

property distribution laws. The frequencies also increase with increase in core 

thickness of the beam.  

The exponential distribution of properties along the thickness of FGO beam 

ensures higher stability as compared to power law distribution of properties. 

For FGSW beam, the exponential distribution of properties along the 

thickness of the core ensures higher stability as compared to power law. Also 

increase in FGM content has a stabilising effect for both the property laws. 

Pasternak foundation has got more dominant effect on the dynamic stability of 

both FGO and FGSW beams as compared to Winkler foundation.  
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CHAPTER 5  

 

dynamic stability of 

f unctional ly graded 

timoshenko  beam In high 

temperature environment 

under parametric 

excitation  

 

5.1 Introduction 

Some components of space structures, fusion reactors, space plane 

structures and turbine engines are used as thermal barriers. There was a need to 

invent an advanced material which could be used as thermal barriers in order to 

sustain surface temperature as high as 18000 C and temperature gradient of about 

13000 C. The concept of FGMs was first proposed by the Japanese Scientist Koizumi 

and his co-researchers in 1984, as a solution to prepare such materials. A review of 

literature on behaviour of materials in thermal environment is presented below. 

Paulino and Jin [117] have made an attempt to show that the correspondence 

principle can be applied to the study of viscoelastic FGM under the assumption that 

the relaxation moduli for shear dilation are separable functions in space and time. It 
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has also been predicted that the correspondence principle can be extended to 

specific instances of thermo-viscoelasticity and fracture of FGMs. Chakraborty et al 

[30] have developed a beam finite element to study the thermo elastic behaviour of 

functionally graded beam structures with exponential and power law variation of 

material properties along thickness. It is found that the presence of FGM in between 

the layers of metal and ceramic smoothens the stress difference. The effect of FGM 

on the natural frequency of beam clamped at both the ends has been investigated for 

both exponential and power law variation of material properties. It is observed that 

the rate of increase of frequencies with increase in FGM content increases with the 

exponent and the rate are higher for higher modes. Chaofeng et al. [31] have 

investigated the stress distribution in thick FGM beam subjected to mechanical and 

thermal loads with arbitrary end conditions. A semi-analytical method i.e. hybrid of 

state space method (SSM) and differential quadrature method (DQM) is developed 

for the analysis. It is observed that the maximum normalized mid-span normal stress 

occurs in the vicinity of neutral axis whereas the maximum shear stress occurs at the 

neutral axis. Sladek et al. [144] have developed an efficient numerical method to 

calculate the fracture parameters such as stress intensity factor and T-stresses of a 

functionally graded orthotropic beam subjected to thermal and impact mechanical 

load. The fact that getting fundamental solution for non-homogeneous anisotropic 

and linear elastic solid is very difficult can be circumvented by using the proposed 

local integration method. Nirmala et al [113] have derived an analytical expression to 

determine the thermoelastic stresses in a three layered composite beam system 

having an FGM as the middle layer. It has been shown that the method can be 

applicable where the gradation of the FGM is such that it may not be possible to 

express the volume fraction changes of the FGM constituents as a function of spatial 

coordinates. Moreover this method can be useful where more than one layer of 

FGMs are used in a single composite beam structure. Bhangale and Ganeshan [20] 

have studied the static and dynamic behaviour of FGM sandwich beam in thermal 

environment having constrained viscoelastic layer by finite element method. It is 

found that materials with lower thermal coefficient of expansion possess high thermal 

buckling temperature. The critical buckling temperature for an FGM sandwich beam 

increases as the power law index increases. Huang et al. [62] investigated the 

bending problem of a functionally graded anisotropic beam subjected to thermal and 

uniformly distributed load using a polynomial stress function. Jian and Li [76] have 

investigated the static and the active vibration control of a piezothermoelastic 

composite beam using a finite element model. Jurij and Maks [77] have investigated 

the effect of thermal load on the natural frequencies of simply supported beam and 
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clamped beam. They have applied the theory of vibration and statistical 

thermodynamics simultaneously for the purpose. A study of thermal buckling and 

vibration of sandwich beam with composite facings and viscoelastic core is carried 

out by Pradeep et al.[120]. Evandro and Joao [48] have used finite element method 

to evaluate nonlinear response of structures subjected to thermo-mechanical loading. 

A beam made up of functionally graded material simply supported at both the ends 

and subjected to lateral thermal shock loads is investigated by Babai et al. [14]. It is 

found that there is an optimum value of power law index for which the beamôs lateral 

deflection is a minimum. In addition the amplitude of lateral vibration increases 

considerably as the aspect ratio of the beam decreases. The effect of coupling is to 

decrease the amplitude of vibration and increase the frequency of the vibration. Guo 

et al. [56] have investigated the coupled thermoelastic vibration characteristics of 

axially moving beams using differential quadrature (DQ) method. The effects of the 

dimensionless coupled thermoelastic factor, the ratio of length to height and the 

dimensionless moving speed on the stability of the beam are analyzed. The bending 

response of sandwich plates subjected to thermomechanical loads is studied by 

Zenkour and Alghamdi [170]. Mahi et al. [101] have studied the free vibration of 

functionally graded beams with temperature dependent properties. The effects of 

material constants, transverse shear deformation, temperature-dependent material 

properties, in-plane loading and boundary conditions on the nonlinear behaviour of 

FGM beams are investigated by Ma and Lee [99] using a shooting method.  

There has been a good account of work on vibration of structures of metals 

and alloys in high temperature environment. However the amount of work carried out 

on dynamic stability of beam structures especially of FGM beams is meagre. This 

chapter explores the dynamic stability behaviour of FGO and FGSW beams in high 

temperature thermal environment. 

5.2 Formulation 

The FGSW beam simply supported at both ends as shown in figure 3.1(a) of 

chapter 3 is considered to be used in steady state high temperature environment. 

The increase in temperature of the beam causes it to expand freely. If the expansion 

is restricted at the boundaries stress is induced in the beam which decreases the 

stiffness of the beam. As the free expansion of beam with increase in temperature is 

linear the stiffness of beam decreases linearly with increase of temperature. The 

effect of high temperature is evaluated as a thrust and corresponding thermal 
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stiffness matrix is given below. A typical two noded beam element with 3-degrees of 

freedom per node as described in chapter-3 is chosen for the analysis. 

5.2.1 Element thermal stiffness matrix  

The thrust resulted due to non-uniform thermal expansion in FGM is given by 

()ñ D=
A

th TdAzzER )(a        (5.1)  

where, )(za is the co-efficient of thermal expansion of the FGM which varies along 

thickness and TD  is the steady temperature change. It is assumed that no 

temperature gradient exists in any direction. 

 The work done by the thermal load can be expressed as  

ñ ö
÷

õ
æ
ç

å
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w
RW

0

2

2
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       (5.2) 

Substituting the expression of w from eq. (3.20) in eq. (5.2) 

{}[ ]{}ukuW th

T

th
ĔĔ

2

1
=         (5.3) 

Where [ ] [ ][ ]dxRk

l

w

t

wthth ñ ¿¿=
0

''
         (5.4)  

 

5.3 Governing equations of motion 

The total work done on the beam is the sum of work done by axial force as 

given in eq. (3.35) and work done by thermal load as given in eq. (5.3). The elastic 

stiffness matrix and mass matrix for the FGSW beam element derived in section 3.2 

are also applicable in this case and hence have not been repeated. 

The equation of motion for the beam element referring section 3.3 can be 

modified for the present case and given as 

[]{} [ ] ( )[][ ]{} 0ĔcosĔ =W+-+ Ä uktPkum gdef ba##     (5.5) 

where [ ] [] [ ]theef kkk -=        (5.6) 

[ ]efk is the effective stiffness matrix and []ek , [ ]thk
, 
[]m  and [ ]gk  are element 

elastic stiffness matrix, thermal stiffness matrix, mass matrix and geometric stiffness 

matrix respectively.  

Assembling the element matrices as used in eq. (5.5), the equation in global matrix 

form which is the equation of motion for the beam in thermal environment, can be 

expressed as     
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[]{} [ ] ( )[ ][ ]{} 0ĔcosĔ =W+-+ Ä UKtPKUM gdef ba
##

     (5.9) 

[ ] [ ][ ]theef KKK -=         (5.10) 

[]M , [ ]eK , [ ]thK
, 
[ ]gK are global mass, elastic stiffness, thermal stiffness and 

geometric stiffness matrices respectively and []UĔ  is global displacement vector. The 

condition for existence of the boundary solutions with period 2T is given by 

[ ]( ) [ ] []{} 0Ĕ
4

2/
2

=öö
÷

õ
ææ
ç

å W
-°- Ä UMKPK gdef ba     (5.11) 

The instability boundaries can be determined from the solution of the equation 

[ ]( ) [ ] [] 0
4

2/
2

=
W
-°- Ä MKPK gdef ba      (5.12) 

Following the procedure described in section 3.3.1-3.3.3, the natural frequencies, 

critical buckling load and instability regions of the beam in high temperature 

environment are determined. 

5.4 Results and discussion 

The beam is discretized into 100 elements for the numerical study of vibration 

and stability. The boundary conditions used are as given below. 

At 0,0 == wx  and 0=u , at 0, == wLx . 

5.4.1 Functionally graded ordinary beam  

A functionally graded sandwich beam of length 0.5m breadth 0.1m and 

thickness 0.25m, simply supported at both the ends is considered for vibration and 

dynamic stability analysis.  

Figure 5.1(a) and 5.1(b) show the variation of non-dimensional frequency of 

steel-alumina FGO beam with steel-rich bottom for first mode and second mode 

respectively. The properties along the thickness of the beam are assumed to vary as 

per exponential law as well as power law with index n=1.5, and n=2.5. It is observed 

from the plots that increase in temperature decreases the frequency in all the cases. 

It is also observed that the first as well as the second mode frequency of e-FGO 

beam is the highest and that of FGO-2.5 beam is the lowest corresponding to any 

temperature. 
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Figure 5.1(a) Variation of first mode non-
dimensional frequency with temperature of steel-
alumina  FGO beam with steel-rich bottom. 
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Figure 5.1(b) Variation of second mode non-
dimensional frequency with temperature of steel-
alumina  FGO beam with steel-rich bottom. 

For dynamic stability study of the FGO beam the following data are 

considered. The fundamental natural frequency 1w  =6724.9 rad/s and the critical 

buckling load ÄP =11.37x108 N of an isotropic steel beam (L=0.5m, b=0.1m, 

h=0.125m) with similar end conditions are calculated from eq. (5.16) and eq. (5.17) 

respectively without considering the effect of thermal load. 

The principal instability regions of FGO beams having properties along the 

thickness as per exponential law as well as power law are plotted in Figures 5.2(a) 

and 5.2(b) for first mode and second mode respectively. The beam is used in an 

environment of temperature 5000K more than the ambient temperature. The 

instability regions of e-FGO beam are located farthest from the dynamic load factor 

axis. Hence, it is the most stable beam. Similarly the FGSW-2.5 beam and FGSW-

1.5 beam are respectively the least and intermediate stable beams. 
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Figure 5.2(a) Effect of property distribution laws on 
first mode instability region of steel-alumina FGO 
beam: *n=1.5),    

O
n=2.5,   +exp. law. 
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Figure 5.2(b) Effect of property distribution laws on 
second mode instability region of steel-alumina 
FGO beam: *n=1.5,    

O
n=2.5,   +exp. law. 

 

The effect of temperature on the main instability regions of steel-alumina FGO beam 

with steel-rich bottom is shown in figures 5.3(a) through 5.3(d). The main instability 
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regions of beam at ambient temperature, 5000K more and 10000K more than ambient 

temperature are compared using static load factor (a) as 0.1. The beam material is 

assumed to be elastic under the high temperature environment. The instability 

regions of FGO-2.5 beam are shifted towards the axis of dynamic load factor as the 

temperature of environment increases thereby reducing the stability of the beam 

which can be noticed from figures 5.3(a) and 5.3(b) for first mode and second mode 

respectively. 
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Figure 5.3(a) Effect of temperature on first mode 
instability region of steel-alumina FGO-2.5 beam:  
*0
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Figure 5.3(b) Effect of temperature on second mode 
instability region of steel-alumina FGO-2.5 beam:  
*0
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Figure 5.3(c) Effect of temperature on first mode 
instability region of steel-alumina e-FGO beam:  *0

0
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O
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0
,   +1000

0
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Figure 5.3(d) Effect of temperature on second mode 
instability region of steel-alumina e-FGO beam:  *0

0
,    

O
500

0
,   +1000

0
. 

Figure 5.3(c) and 5.3(d) show respectively the first and second mode main 

instability regions of e-FGO beam. Similar trend of results as that of FGO-2.5 beam 

are observed. Since the instability regions occur at lesser value of excitation 

frequency, the chance of occurrence of instability is more. Moreover, there is an 

increase in area of instability region. Hence at higher environmental temperature 

there is enhanced instability of the beam. This may be due to the fact that the high 

temperature of the beam reduces its effective stiffness and hence frequencies. The 

decrease in frequency causes the dynamic instability to occur at lower excitation 

frequencies. 
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5.4.2 Functionally graded sandwich beam 

A functionally graded sandwich beam of length 0.5m breadth 0.1m and 

thickness 0.25m is considered for vibration and dynamic stability analysis. The top 

skin and bottom skin are alumina and steel respectively. The thickness of the core is 

taken as 0.3 times the thickness of the beam. The properties along the thickness of 

the core are assumed to follow exponential law and power law with index n=1.5 and 

n=2.5. The variation of first mode and second mode non-dimensional frequency with 

temperature of the beam is plotted in figures 5.4(a) and 5.4(b) respectively. It is 

observed that the frequency for both the modes decrease with increase of 

temperature. The e-FGSW beam has the highest frequencies and FGSW-2.5 beam 

has the lowest frequencies corresponding to any temperature similar to the results 

obtained in case of FGO beam.  
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Figure 5.4(a) Variation of first mode non-
dimensional frequency of  FGSW beam(d/h=0.3) 
with temperature. 
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Figure 5.4(b) Variation of second mode non-
dimensional frequency of  FGSW beam(d/h=0.3) 
with temperature. 
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Figure 5.5(a) Effect of property distribution laws on 
first mode instability region of steel-alumina FGSW 
beam: *n=1.5,    

O
n=2.5,   +exp. law. 
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Figure 5.5(b) Effect of property distribution laws on 
second mode instability region of steel-alumina 
FGSW beam: *n=1.5,    

O
n=2.5,   +exp. law. 

The effect of property distributions on the principal instability regions of 

FGSW beam is plotted in figures 5.5(a) and 5.5(b) for first mode and second mode 

respectively. The beam is used in an environment of temperature 5000K more than 

the ambient temperature. The instability regions of e-FGSW beam are at the farthest 
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from the axis of dynamic load factor. Therefore, it is the most stable beam. Similarly 

the FGSW-2.5 beam and FGSW-1.5 beam are respectively the least and 

intermediate stable beams. However, the effect of property distributions is less 

prominent as compared to that found in case of FGO beam. 
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Figure 5.6(a) Effect of temperature on first mode 
instability region of steel-alumina FGSW-2.5 beam: 
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Figure 5.6(b) Effect of temperature on second mode 
instability region of steel-alumina FGSW-2.5 beam:  
*0
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Figure 5.6(c) Effect of temperature on first mode 
instability region of steel-alumina e-FGSW beam: 
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Figure 5.6(d) Effect of temperature on second mode 
instability region of steel-alumina e-FGSW beam: *0
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Figure 5.7(a) Effect of ratio (d/h) on the first mode 
instability regions of FGSW-2.5 beam: *d/h=0.3,   
O
d/h=0.5,   +d/h=0.8. 

10 10.5 11 11.5
0

0.2

0.4

0.6

0.8

1

W/w
1

b
d

a=0.12w
2

 
Figure 5.7(b) Effect of ratio (d/h) on the second mode 
instability regions of FGSW-2.5 beam: *d/h=0.3,   
O
d/h=0.5,   +d/h=0.8. 
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Figure 5.7(c) Effect of ratio (d/h) on the first mode 
instability regions of e-FGSW beam: *d/h=0.3,   
O
d/h=0.5,   +d/h=0.8. 
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Figure 5.7(d) Effect of ratio (d/h) on the second mode 
instability regions of e-FGSW beam: *d/h=0.3,  
O
d/h=0.5,   +d/h=0.8. 

Figures 5.6(a) and 5.6(b) represent respectively the first mode and second 

mode main instability regions of FGSW-2.5 beam in thermal environment of different 

temperatures. It is seen that the increase in environment temperature reduces the 

stability of beam. The higher the environmental temperature lower is the stability of e-

FGSW beam which can be clearly noticed from figures 5.6(c) and 5.6(d) for first 

mode and second mode respectively. 

The main instability regions of steel-alumina FGSW beam of different core 

thickness at a temperature 5000K more than the ambient temperature are compared 

and shown in figures 5.7(a) through 5.7(d). The core thickness equal to 30, 50 and 

80 percent of total thickness are chosen for comparison. 

Figures 5.7(a) and 5.7(b) show the principal instability regions of FGSW-2.5 

beam for first and second mode respectively. It is observed that increase in FGM 

content reduces the dynamic stability of the beam. A different result is found for e-

FGSW beam. Figure 5.7(c) shows the instability region of e-FGSW beam for first 

mode. The increase of FGM content from 0.3 to 0.5 enhances the stability of beam 

whereas the stability decreases as the FGM content increases further from 0.5 to 0.8. 

The second mode instability region is shifted away from the dynamic load factor axis 

when the FGM content increases as shown in figure 5.7(d). Therefore it may be 

noted that the property distribution laws along with the high temperature environment 

play an important role on the dynamic stability of the FGSW beam. 

5.5 Closure   

Increase in environmental temperature reduces the frequencies of both FGO 

and FGSW beam for all the kinds of chosen property variation along their thickness. 
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Increase in environment temperature enhances the chance of instability of 

FGO and FGSW beams 

Material property distribution as per exponential law ensures better stability of 

the FGO and FGSW beams compared to material property distribution as per power 

law. 

The property distribution laws along with the high temperature environment 

play a major role on the dynamic stability of FGO and FGSW beams.   
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CHAPTER 6  

 

dynamic stability of 

Rotating f unctionally 

graded  Timoshenko beam 

under parametric 

excitation  

 

6.1 Introduction 

Vibration in rotating structures such as wind turbine and helicopter rotors, turbo 

machinery and rotating space structures is a naturally occurring phenomenon. 

Therefore, the stability and dynamic behaviour of these rotating structures are of 

great practical importance. In practice, the aforesaid rotating components are usually 

pre-twisted and of asymmetric cross-section. However, rotating beams of uniform 

cross-section can be used as simple model to investigate the stability and dynamic 

behaviour of the actual rotating structures. A good account of literature surveyed on 

the research work carried out on rotating structures is reported below.     

The effect of rotational speed and slenderness ratio on the error of the upper 

bound and the influence of root elastic restraints on the fundamental bending 

frequency of a rotating uniform Timoshenko beam with general elastically restrained 

root is studied by Lee and Kuo [85] using Rayleigh's principle. The dynamic stiffness 

matrix of a centrifugally stiffened Timoshenko beam has been developed by Banerjee 

[16] using Forbenus method of series solution with imposed boundary conditions for 
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study of free vibration. WittrickïWilliams algorithm has been applied to find the 

natural frequencies. Rao and Gupta [123] have used finite element method to study 

vibration of rotating Timoshenko beam. Chung and Yoo [38] investigated the effect of 

angular speed on the natural frequency of a rotating cantilever beam. They have 

used finite element method considering stretch deformation of the beam. Kaya [79] 

has studied the flapwise bending vibration analysis of a rotating cantilever 

Timoshenko beam using differential transform method. The effect of pre-twist angle 

of an aerofoil blade simplified as a rotating Timoshenko beam has been investigated 

by Subuncu and Ervan [127]. Fazelzadeh et al. [50] have studied vibration of rotating 

thin walled blades made of FGM operating under high temperature supersonic gas 

flow using differential quadrature method. The effects of Mach number, rotating 

speed, geometric parameters and material properties on the natural frequencies are 

examined. Chhabra and Ganguli [40] have developed a two-nodded twelve degree of 

freedom finite element for study of coupled vibration of rotating blades. Saravia et al. 

[132] have used finite element method to investigate the influence of fiber orientation 

and rotating speeds on the natural frequencies and the unstable regions of rotating 

thin walled composite beam. The phenomenon of modal interchange arising in 

rotating beams is explained by the authors. 

The literatures on dynamic stability of rotating beams made of metals, alloys 

and composites are plenty. But a very less amount of work has been reported on 

dynamic stability of functionally graded beams. This chapter is devoted to the 

investigation of the effect of beam geometry, hub radius and rotating speed on 

dynamic stability of FGO and FGSW beams.  

6.2 Formulation 

A functionally graded sandwich beam with top skin as alumina, bottom skin as 

steel and core as FGM is shown in figure 6.1(a). The beam clamped at one end free 

at the other end is subjected to a pulsating axial force P(t) = Ps + Pt cos tW , acting 

along its un-deformed axis. The static component of the axial force is 
sP . The 

amplitude and frequency of the dynamic component of the force are 
tP  and 

Wrespectively, and t is time. The coordinate system of the typical two noded beam 

element used to derive the governing equations of motion is shown in figure 3.1(b) of 

chapter 3. The mid-longitudinal(x-y) plane is chosen as the reference plane for 

expressing the displacements.  
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The element matrices for the FGSW beam element are derived in section 3.2 

of chapter. Moreover the same element can be used for the analysis of a functionally 

graded ordinary beam by making the thickness of the skins equal to zero. 

 

 

 

 

 

 

 

 

 

Figure 6.1 Rotating functionally graded sandwich beam fixed at one end free at the other.  

The elastic stiffness matrix and mass matrix for the FGSW beam element derived in 

section 3.2 are also applicable in this case and hence the expressions have not been 

repeated. 

The effect of rotation is introduced as centrifugal stiffness matrix which is derived 

from the work done by the centrifugal force and presented as follows. 

6.2.1 Element centrifugal stiffness matrix 

The centrifugal force on ith element of the beam can be expressed as 
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2wr        (6.1) 

where xi is the distance of ith node from axis of rotation, w (rad/s) is angular velocity 

of beam and R is the radius of hub.  

Work done by the centrifugal force is given by 
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Here, the centrifugal element stiffness matrix is 
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6.2.2 Element effective stiffness matrix 

The stiffness matrix of the beam element is the addition of element elastic 

stiffness matrix and element centrifugal stiffness matrix which is expressed as 

[ ] [][]ceef kkk +=          (6.4) 

6.3 Governing equations of motion 

The equation of motion for the beam element referring section 3.3 can be 

modified for the present case and given as 

[]{} [ ] ( )[][ ]{} 0ĔcosĔ =W+-+ Ä uktPkum gdef ba##     (6.5) 

[ ]efk is the effective stiffness matrix and []ek , []ck
, 
[]m  and [ ]gk  are element 

elastic stiffness matrix, centrifugal stiffness matrix, mass matrix and geometric 

stiffness matrix respectively.  

Assembling the element matrices as used in eq. (6.5), the equation in global matrix 

form which is the equation of motion for the rotating beam, can be expressed as     

[]{} [ ] ( )[ ][ ]{} 0ĔcosĔ =W+-+ Ä UKtPKUM gdef ba
##

     (6.6) 

[ ] [ ][ ]ceef KKK +=         (6.7) 

[]M , [ ]eK , [ ]cK
, 
[ ]gK are global mass, elastic stiffness, centrifugal stiffness and 

geometric stiffness matrices respectively and []UĔ  is global displacement vector. The 

condition for existence of these boundary solutions with period 2T is given by 

[ ]( ) [ ] []{} 0Ĕ
4

2/
2

=öö
÷

õ
ææ
ç

å W
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The instability boundaries can be determined from the solution of the equation 

[ ]( ) [ ] [] 0
4

2/
2

=
W
-°- Ä MKPK gdef ba      (6.9) 

Following the procedure described in section 3.3.1-3.3.3, the natural frequencies, 

critical buckling load and instability regions of the rotating beam are determined. 
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6.4 Results and discussion 

The numerical study is carried out for a cantilever beam using 100 elements. 

The beam is discretized into 100 elements. The boundary conditions used for the 

numerical study are as given below. 

At 0,0 == wx , 0=f and 0=u .  

 An FGO beam with steel and alumina as its constituent phases is considered for the 

analysis followed by the study of an FGSW beam made up of steel and alumina.  

6.4.1 Validation of the formulation 

In order to establish the correctness of calculation, the fundamental non-

dimensional natural frequencies of a homogenous rotating steel beam clamped at 

one end and free at other end are calculated for various rotational speed parameters 

and compared with [79, 16, and 85]. The present results are found to be in good 

agreement as shown in table 6.1.  

The length of the beam is denoted by L . 

Hub radius parameter
L

R
=d , Rotary inertia parameter

A

I

L
r

1
= ,  

Frequency parameter 
EI

AL n
n

24wr
h =  

I is the area moment of inertia of  the cross section about the centroidal axis. ɤn  is 

the nth mode frequency of the beam and 
nh is the nth mode frequency parameter.  

Table 6.1 Variation of fundamental natural frequency of Timoshenko cantilever beam for different 

rotational speed parameters ( 059.3/,30/1,0 === kGErd ) 

n 
Fundamental natural frequency 

1h 

present Ref[79] Ref[16] Ref[85] 

0 3.4798 3.4798 3.4798 3.4798 

1 3.6460 3.6445 3.6445 3.6452 

2 4.1025 4.0971 4.0971 4.0994 

3 4.7617 4.7516 4.7516 4.7558 

4 5.5462 5.5314 5.5314 5.5375 

5 6.4048 6.3858 6.3858 6.3934 

10 11.0971 11.0643 - - 
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The following additional non-dimensional parameters are chosen for the analysis of 

the beam.  

Slenderness parameter s=h/L

                

Rotational speed parameter 
EI

AL 24wr
n=   

E , G and rare the Youngôs modulus, shear modulus and mass density of steel 

respectively and their values are given in the following section. 

6.4.2 Functionally graded ordinary beam 

A steel-alumina FGO rotating cantilever beam of length 1m and width 0.1m is 

considered for the analysis of free vibration and dynamic stability. The thickness of 

the beam is .h
 
The beam is rich in steel at bottom. The properties of constituent 

phases are:  

Steel: E=2.1x1011 Pa, G=0.8x1011 Pa, r=7.85x103kg/m3,  

Alumina: E=3.9x1011 Pa, G=1.37x1011 Pa, r=3.9x103kg/m3, k=0.8667 as explained 

in section 3.4.2. 

The variation of non-dimensional frequency with slenderness parameter(s) is 

shown in figures 6.2(a) and 6.2(b) for first and second mode respectively. The 

property distribution along the thickness is assumed to follow exponential as  well  as  
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Figure 6.2(a) Variation of non-dimensional first mode 
frequency with slenderness parameter of steel-
alumina FGO beam with steel-rich bottom for 
property distribution along thickness according to 
power law as well as exponential law. 

(w=344rad/s, d=0.1) 
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Figure 6.2(b) Variation of non-dimensional second 
mode frequency with slenderness parameter of 
steel-alumina FGO beam with steel-rich bottom for 
property distribution along thickness as per power 

law as well as exponential law. (w=344rad/s, 

d=0.1) 
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Figure 6.3(a) Variation of non-dimensional first mode 
frequency with hub radius parameter of steel-
alumina FGO beam with steel-rich bottom for 
property distribution along thickness as per power 

law as well as exponential law. (w=344rad/s, 

s=0.2) 
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Figure 6.3(b) Variation of non-dimensional second 
mode frequency with hub radius parameter of steel-
alumina FGO beam with steel-rich bottom for 
property distribution along thickness as per power 

law as well as exponential law. (w=344rad/s, 

s=0.2) 
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Figure 6.4(a) Variation of non-dimensional first mode 
frequency with rotational speed parameter of steel-
alumina FGO beam with steel-rich bottom for 
property distribution along thickness as per power 

law as well as exponential law. (d=0.1, s=0.2) 
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Figure 6.4(b) Variation of non-dimensional second 
mode frequency with rotational speed parameter of 
steel-alumina FGO beam with steel-rich bottom for 
property distribution along thickness as per power 

law as well as exponential law. (d=0.1, s=0.2) 

power law with indices n=1.5, and 2.5. The hub radius parameter and angular 

velocity are 0.1 and 344 rad/s respectively. The frequencies for both the modes 

increase with increase in slenderness parameter in all the cases of property 

distribution. The e-FGO beam has distinctly the highest frequency among all for 

higher values of s, where as there is no noticeable difference in frequencies for lower 

values of s. The FGO-2.5 beam has the lowest frequency of all. 

The effect of hub radius parameter on first mode frequency of beam is 

determined and shown in figure 6.3(a). The slenderness parameter and angular 

velocity are 0.2 and 344 rad/s respectively. The e-FGO beam has the highest first 

mode frequency for all the values of hub radius parameters. Similarly, the FGO-2.5 

beam has the lowest frequency of all. The effect of hub radius on the second mode 

frequency of beams is similar to that on the first mode frequency which can be 

noticed from figure 6.3(b). This is due to the fact that increase in hub radius 

parameter increases the centrifugal force on beam, which in turn increases the 
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stiffness of beam. Additionally, exponential distribution as compared to power law 

distribution of properties makes the beam richer in alumina-content thereby making 

the beam stiffer.  

The effect of rotational speed parameter (ɜ) on the non-dimensional 

frequency for first and second mode is shown in figures 6.4(a) and 6.4(b) 

respectively. The hub radius parameter and slenderness parameter are 0.1 and 0.2 

respectively. The frequencies for both the modes increase with rotational speed 

parameter. It is observed that the e-FGO beam and FGO-2.5 beam have respectively 

the highest and lowest frequencies corresponding to any value of rotational speed 

parameter. It is also observed that the first two mode frequencies of all the beams 

increase at increasing rate with rotational speed parameter. This may be due to the 

fact that the increase in rotational speed parameter increases the centrifugal force at 

increasing rate that increases the stiffness matrix accordingly.  

The additional data for dynamic stability analysis are taken as follows. 

ÄP =6.49x107 N, 1w=1253 rad/s. ÄP  and 1w  corresponds to the critical buckling load 

and fundamental natural frequency of a homogenous steel beam of similar end 

conditions as of the FGO beam. The thickness of steel beam used to calculate the 

above two quantities is 0.25m, the length and width remaining the same as that of 

FGO beam.  

Functionally graded ordinary beams having properties along the thickness 

according to power law with index n=1.5 (FGO-1.5), n=2.5 (FGO-2.5) and according 

to exponential law (e-FGO) are considered for dynamic stability analysis. The effect 

of property distribution on the principal instability region for first mode and second 

mode are depicted in figure 6.5(a) and figure 6.5(b) respectively. It is observed that 

the area of the instability region of e-FGO beam is the smallest and situated farthest 

from the dynamic load factor axis. Therefore e-FGO beam is the most stable beam 

for both the modes. The area of instability region of FGO-2.5 beam is the largest for 

both the modes. Hence it is the least stable beam.  

The influence of hub radius on first and second mode main instability zones of FGO-

2.5 beam is shown in figure 6.6(a) and figure 6.6(b) respectively. It is found that the 

presence of hub enhances the stability of the beam. The effect of hub radius on 

dynamic stability of e-FGO beam is similar as that of hub on FGO-2.5 beam which 

can be seen in figures 6.6(c) and 6.6(d) for first and second mode respectively. The 
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increase in hub radius causes increase in centrifugal force. As a result the effective 

stiffness and hence the dynamic stability of the beam is enhanced. 
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Figure 6.5(a). Effect of property distribution laws on 
first mode instability region of steel-alumina FGO 

beam for ŭ=0.1, w=344rad/s, s=0.2: *n=1.5, 
O
n=2.5, +exp. Law.  

9 10 11 12 13
0

0.2

0.4

0.6

0.8

1

W/w
1

b
d

a=0.12w
2

 
Figure 6.5(b). Effect of property distribution laws 
on second mode instability region of steel-alumina 

FGO beam for ŭ=0.1, w=344rad/s, s=0.2:  

*n=1.5, 
O
n=2.5, +exp. Law. 
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Figure 6.6(a). Effect of hub radius parameter on first 
mode instability region of steel-alumina FGO beam 

for n=2.5, s=0.2, w=344 rad/s (
*
ŭ =0.1,  

O
ŭ =0.5) 
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Figure 6.6(b). Effect of hub radius parameter on 
second mode instability region of steel-alumina 

FGO beam for n=2.5, s=0.2, w=344 rad/s (
*
ŭ 

=0.1, 
O
 ŭ =0.5) 
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Figure 6.6(c). Effect of hub radius parameter on first 
mode instability region of steel-alumina FGO beam 

for exp. law s=0.2, w= 344 rad/s (
*
ŭ =0.1, 

O
ŭ 

=0.5) 
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Figure 6.6(d). Effect of hub radius parameter on 
second mode instability region of steel-alumina 

FGO beam for exp. Law, s=0.2, w=344 rad/s  

(
*
ŭ =0.1, 

O
ŭ =0.5) 
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The effect of rotation of FGO-2.5 beam on its dynamic stability is studied and 

presented in figure 6.7(a) and figure 6.7(b) for first and second mode respectively. 

The increase in angular speed increases the stability of the beam for both the modes. 

Figures 6.7(c) and 6.7(d) show the effect of rotation on stability of e-FGO beam for 

first mode and second mode respectively. The stability, in this case, is also enhanced 

as the angular speed increases. The increase in rotational speed of the beam 

increases the centrifugal force acting on it non-linearly which causes the increase of 

the elements of its effective stiffness matrix accordingly. The increase in effective 

stiffness of the beam causes the dynamic instability of the beam to occur at higher 

excitation frequencies. Therefore the dynamic stability of the beam is enhanced. 
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Figure 6.7(a). Effect of rotational speed parameter 
on first mode instability region of steel-alumina FGO 
beam for n=2.5, s=0.2, ŭ=0.1, (

*
ɜ =0.1, 

O
ɜ =0.5, 

+
ɜ=1.0) 
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Figure 6.7(b). Effect of rotational speed parameter on 
second mode instability region of steel-alumina FGO 
beam for n=2.5, s=0.2, ŭ=0.1  (

*
ɜ =0.1, 

O
ɜ =0.5, 

+
ɜ=1.0) 
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Figure 6.7(c). Effect of rotational speed parameter 
on first mode instability region of steel-alumina FGO 
beam for exp. law, s=0.2, ŭ=0.1, (

*
ɜ =0.1,  

O
 ɜ =0.5, 

+
ɜ=1.0) 
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Figure 6.7(d). Effect of rotational speed parameter on 
second mode instability region of steel-alumina FGO 
beam for exp. law, s=0.2, ŭ=0.1, (

*
ɜ =0.1, 

O
ɜ =0.5, 

+
ɜ=1.0) 

The role of geometry of the beam on the first and second mode main instability zones 

of FGO-2.5 beam is presented in figures 6.8(a) and 6.8(b) respectively. The area of 

instability zone becomes narrower and shifts away from the dynamic load factor axis 

as the slenderness parameter increases thereby enhancing the stability of the beam. 

The effect of slenderness parameter on stability of e-FGO beam is similar as on 
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FGO-2.5 beam which can be noticed from figures 6.8(c) and 6.8(d) respectively for 

first and second mode. 
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Figure 6.8(a). Effect of slenderness parameter on 
first mode instability region of steel-alumina FGO 

beam for n=2.5, ŭ=0.1, w=344 rad/s (* s=0.1, 
 

O s=0.3) 
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Figure 6.8(b). Effect of slenderness parameter on 
second mode instability region of steel-alumina FGO 

beam for n=2.5, ŭ=0.1, w=344 rad/s (* s=0.1, 
O s=0.3) 
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Figure 6.8(c). Effect of slenderness parameter on 
first mode instability region of steel-alumina FGO 

beam for exp. law, ŭ=0.1, w=344 rad/s (* s=0.1, 
O s=0.3) 
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Figure 6.8(d). Effect of slenderness parameter on 
second mode instability region of steel-alumina FGO 

beam for exp. law, ŭ=0.1, w=344 rad/s (* s=0.1, 
O s=0.3) 

6.4.3 Functionally graded sandwich beam 

A steel-alumina FGSW rotating cantilever beam of length 1m and width 0.1m 

is considered for the analysis of free vibration and dynamic stability. The bottom and 

top skin of the beam are steel and alumina respectively, whereas the core is the 

mixture of alumina and steel with bottom layer rich in steel. Both the top and bottom 

skin are of same thickness. The thickness of the core ()d is 0.3 times the total 

thickness ().h
 
 

Figure 6.9(a) and figure 6.9(b) show the effect of slenderness parameter( s) 

on first and second mode frequency of the FGSW-2.5 beam. The other parameters 

are as considered for the analysis of the FGO beam in the previous section. Similar 

trends in the results are observed as in the case of FGO beam. But the effect of 
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property distribution laws in this case is not that distinct as observed in case of FGO 

beams.  

The effect of hub radius parameter on first and second mode frequency of 

FGSW beam is shown in figures 6.10(a) and 6.10(b) respectively. The slenderness 

parameter and angular velocity are 0.2 and 344 rad/s respectively. The first two 

mode frequencies increase with increase of hub radius parameter. Moreover, the e-

FGSW beam and FGSW-2.5 beam have respectively the highest and the lowest 

frequency corresponding to any hub radius parameter. 

The effect of rotational speed parameter on first and second mode frequency 

of FGSW beam is shown in figures 6.11(a) and 6.11(b) respectively. The first two 

natural frequencies increase with increase in the rotational  speed parameter for both 

 
Figure 6.9(a) Variation of non-dimensional first mode 
frequency with slenderness parameter of steel-
alumina FGSW beam for property distribution in core 
thickness as per power law as well as exponential 

law. (w=344rad/s, d=0.1, d/h=0.3) 

 
Figure 6.9(b) Variation of non-dimensional second 
mode frequency with slenderness parameter of steel-
alumina FGSW beam for property distribution in core 
thickness as per power law as well as exponential 

law. (w=344rad/s, d=0.1, d/h=0.3) 

 
Figure 6.10(a) Variation of non-dimensional first 
mode frequency with hub radius parameter of steel-
alumina FGSW beam for property distribution in core 
thickness as per power law as well as exponential 

law. (w=344rad/s, s=0.2, d/h=0.3) 

 
Figure 6.10(b) Variation of non-dimensional second 
mode frequency with hub radius parameter of steel-
alumina FGSW beam for property distribution in core 
thickness as per power law as well as exponential 

law. (w=344rad/s, s=0.2, d/h=0.3) 


