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Abstract

Now a day, there is a great deal of interest in the study of control systems on matrix Lie

groups in connection with their deep applications in robotics, classical mechanics and

engineering. In our study an optimal control problem on the special unitary lie group

SU(3) is discussed and some of its geometrical and dynamical properties are point out.



Chapter 1

Introduction to control theory

1.1 Basic Definitions

1.1.0.1 What do you mean by Control ??

A mathematical control is a time-dependent function u(t) that influences a dynamical

system dy/dt = F (u, y), with the ’u’ such that to minimize some value of the solution

for the optimization of some related quantity.

1.1.0.2 What is Control theory ??

The mathematical programming robots and other machines to respond to changing

conditions so that they maintain self-control. A Variety of physical systems are controlled

by manipulation of their inputs based simultaneous observation of their outputs.

For example, the problem of programming an automatic pilot of an airplane so that the

plane doesn’t crash. The Control problem is to determine on the basis of available data,

the inputs required to achieve a given goal.

1.1.0.3 What Is Mathematical Control Theory?

It is the area of applied mathematics that deals with the fundamental principles under-

lying the analysis and design of control systems by influencing object behaviours.

1.1.1 System classifications

1. Linear systems control

2
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2. Nonlinear systems control

3. Decentralized/distributed systems control

1.1.2 Main control strategies

• Adaptive control : It uses on-line identification of the process parameters, or mod-

ification of controller gains to obtain better robustness properties. The Aerospace

industry first used this in the 1950s, and have found particular success in that

field.

• Hierarchical control :A Hierarchical control system is arranged in a hierarchical

tree for a set of devices and governing software is a type of Control System. Some

links in the tree are implemented by a computer network, with a hierarchical

control system is also a form of Networked control system.

• Intelligent control :It uses various artificial Intelligence computing approaches like

Bayesian probability, machine learning, evolutionary computation and algorithms

for genetic to control a dynamic system.

• Optimal control : It is the process of determining control and state trajectories

on a dynamic system over a repeated duration of time to minimise a performance

index.

• Robust control :Robust control is a branch of control theory that explicitly deals

with uncertainty in its approach to controller design. Different robust control

methods are designed to function to restrict the uncertain parameters or distur-

bances.

• Stochastic control :Stochastic control deals with control design with uncertainty

in the model. In particular stochastic control problems, initially there exist as-

sumption for random noise and disturbances in the model , one should taken the

controller, and the control design for these random deviations.

1.1.3 Control Systems

Definition :A system is an combination of physical components connected or related in

a manner as to act as an entire unit. A control system is an arrangement of physical

components connected in a way to command, regulate itself or other system. The input

is the stimulus with excitation appiled to a control system from an external energy

source, generally to produce a particular response from the control system.
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1.1.3.1 There are three type of control systems :

• Man-made control system.

• Natural control systems.

• Control systems whose components are both the above.

Example 1.1. Electric switch is a man-made control system, guiding the flow of elec-

tricity, where inputs is on or off condition of the switch and ouput is the state of flow or

non-flow of electricity. The control system consisiting of a man driving an automobile

has components which are clearly both, biological and man-made.

1.1.4 Classification of Control systems:

Control sytem are classified into two catagorioes:

1. Open-loop

2. Closed-loop(also known as feedback control system)

Definition 1.1. An open-loop control system is the output independence.

Definition 1.2. Definition : A closed-loop(feedback)control system is one in which

action is somehow dependent on the output.

Example 1.2. A automatic toaster is an open-loop control system because it is controlled

by a timer. We just have to set the input time to make the good toast which is determined

by the user which is not the part of the system and after which control over the quality

of toast(the output) is removed once the time is set.

Example 1.3. An automatic mechanism and the airplane it controls is a closed-loop

control system. Its purpose is to maintain a specified airplane heading, in a state of

atmospheric changes. It performs this task by continously measuring the actual airplane

heading and automatic adjusting the air plane control surfaces , hence to bring the actual

airplane heading in accordance with the specified heading.

1.1.5 Feedback:

Feedback is that characteristics of closed-loop control systems which distinguish them

from open-loop systems.
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Definition 1.3. Feedback is that criteria on a closed-loop system which allows the

output to be compared to the system for the appropriate control action may be created,

this gives some function of the output and input.

• The concept of the feedback can be understood from the above example of the

airplane auto mechanism where the continous checking of the actual heading com-

pared with asked one(input) and according to that the difference is given as the

feedback to the system to achieve the desired effect.

• Till now we have seen the basic defination of the control theory but how it is

related to mathematics ??

Because, we know that the main theme of getting the concept control theory is to creat

and design a control system which can control and ambient a dynamical systems, but,

if we recall the characterised the application of differential equation to every dynamical

systems c. The process is involved, that is the use of physical laws (Newton’s, Kirch-

hoff’s etc) together with various assumptions of linearity etc is known as mathematical

modelling.

That is, why it is the interdiscplinary branch of the mathematics and engineering.

1.1.6 The control theory is classified into two catagories:

1. Classical Control theory

2. Modern Control theory

• Classical Control theory

It is based on Laplace transforms and applies to linear autonomous (time-invariant)

systems having single input and output. A function called the transfer function

relating to the system is defined.

– Modern Control theory

It is not only applicable to linear autonomous systems but also to time-varying 
systems and is useful when dealing with nonlinear systems. In particularly it 
is applicable to multiple-input and multiple-output systems in contrast to the 
classical control theory. Modern Control theory is based on the concept of state.
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1.1.7 State-space formulation

The state-space approach is applicable to multivariable systems in contrast to the 
transfer function techniques(used in classical control theory) which are generally 
used for single-input, single-output systems.

Consider a system characterised by an nth order differential equation.Assume that the 
systems  are autonomous,which implies that the free system doesnot depend explicitly on 

time.

Let

ẏ =
dy

dt
, ÿ =

d2y

dt2
............., y(n) =

dny

dtn

The system equation has the form :

y(n) + a1y
(n−1) + a2y

(n−2) + ...........+ an−1ẏ + any = u; ............(1)

it is assumed that

y(0), ẏ(0), ......., y(n−1)(0)

are known.

If we define

x1 = y,
˙

x2 = y˙ , .......xn = y(n−1)

.

then we can write equation(1) as a system of a n simultaneousw differntial equations,each

of order 1,namley

ẋ1 = x2

ẋ2 = x3

.
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.

ẋ(n−1) = xn

ẋn = −anx1 − an−1x2 − .........− a1xn + u

the last one is form (1). This can be wriiten as a vector as a vector-matrix differential

equation



ẋ1

ẋ2

.

.

.

ẋn−1

ẋn


=



0 1 . . . 0 0

0 0 . . . 0 0

. . . . . . .

. . . . . . .

. . . . . . .

. . . . . . .

. . . . . . .

0 0 . . . 0 1

−an −an−1 . . . −a2 −a1





x1

x2

.

.

.

xn−1

xn


+



0

0

.

.

.

.

.

0

1



u .......(2)

that is, as

ẋ = Ax+Bu

where x,A and B are defined in equation(2). The output of the system is y, which was

defined as x1above and is written in matrix form as
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y =
[

1 0 0 0 . . . . 0
]


x1

x2

.

.

.

xn


............(3)

that is, as

y = Cx

Where C = [1 0 0 . . . 0 ]

The combination of equations(2)and(3) in the form

ẋ = Ax+Bu

y = Cx

....................(4)

are known as the state equations of the system considered.The matrix A in equation

(2)is said to be in companion form.

The component of x are the state variables x1, x2......xn.They can be considered as the

coordinate’s axes of an n-imensional state-space system which can be represented by a

point in the state space.

Example 1.4. Obtain the forms of state equations of the system defined by

...
y − 2ÿ + ẏ − 2y = u

A companion form; Using the state variables defined above, we have

x1 = y, x2 = ẏ, x3 = ÿ

, then

ẋ1 = x2
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ẋ2 = x3

ẋ3 = 2x1 − x2 + 2x3 + u

Hence 
ẋ1

ẋ2

ẋ3

 =


0 1 0

0 0 1

2 −1 2



x1

x2

x3

+


0

0

1

u
and

y =
[

1 0 0
]

x1

x2

x3



1.1.8 Topic in control theory:

1. Stability

2. Controllabilty and Observability

1.1.8.1 Stability

Stability is possibly the most important consideration when designing a control sys-

tem.The problems involved are not only important but extremly complicated indeed

much present day research in control is concerned with stability.

It would intuitively reasonable to define a linear system to be stable if its output is

bounded for every bounded input.

There are variety methods which determine the stability of the system but we would

not discuss here as it is not necessary for our topic.

1.1.8.2 Controllability and Observability

Kalman introduced in 1960s the concept of Controllability and Observability, the fun-

damental questions to be answered for a system, in particular in a multivariable system

are :
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• Can a control function u(t) be found which will transform the initial state x0 of a

system to some desired final state xf in finite time ??

• Can the state of the system be determined by measuring the system output over

a finite time interval ?

The two concepts involved are called controllabilty and observability respectively.So, if

the answer is yes to first question ,then the system is Controllable.

Similarly if the answer is yes to second question,then the system is Observable.



Chapter 2

Introduction to Lie algebra and

Matrix Exponential

In this section we are going to discuss first about the Matrix exponential and then the

Lie algebra. Lie algebra is an indispensable tool in studying with matrix Lie groups.

It is well known in one hand that the Lie algebras are simpler than matrix Lie groups,

since it is a linear space. Thus, we can understand a lot about Lie algebras doing linear

algebra. While on the other way, a matrix Lie group contains much information about

that group.

2.0.9 Matrix Lie Groups Definition

The general linear group over the real numbers, denoted by GL(n,R),is the group of all

nxn invertible matrices with real entries. The general linear group denoted GL(n;C)

over a complex field, is the group of all nxn invertible matrices with complex entries.

These are indeed groups under the operation of matrix multiplication: The product of

two invertible matrices is invertible, the identity matrix is an identity element for the

group, an invertible matrix has an inverse and matrix multiplication is associative.

Definition 2.1. A matrix Lie group G is a subgroup of GL(n,C) in addition to the

following properties: Suppose Am is any sequence of matrices in G, and Am converges

to particular matrix A then either A ∈ G, or A is not invertible.

Counter Examples of a subgroup of GL(n,C) which is not closed is the set of all nxn

invertible matrices all of whose entries are real and rational. This is indeed a

11
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subgroup of GL(n,C) without the condition of a closed subgroup. Which is one

can easily have a sequence of invertible matrices with rational entries convert to

an invertible matrix.

2.0.9.1 Properties of matric Lie group

• ‖AB‖ ≤ ‖A‖‖B‖, ‖tA‖ =| t |‖ A‖, and ‖An‖ ≤ ‖A‖n

• GL(V )is a dense open subset of End(V ).

• The multiplication and inversion on GL(V ) are analytic.

• Let G be a matrix Lie group, and X an element of its Lie algebra. Then, eX is an

element of the identity component of G.

• Let G be a matrix Lie group, with Lie algebra g. Let X be an element of g, and

A an element of G. Then, AXA−1is in g.

2.0.10 The Matrix Exponential

The exponential of a matrix plays a important role in Lie groups.

The exponential enters into the different definition of the Lie algebra of a matrix Lie

group with different mechanism for going into information from the Lie algebra to the

Lie group.

We know many computations are done easily at level of the Lie algebra, some exponential

are the indispensable for matrix Lie groups.

Let an nxn real or complex matrix be X . We wish to define the exponential of X,

denoted eXor expX, by the usual power series

ex =
n∑

m=0

xm

m!
................(1)

Here the general convention of using letters such as X and Y for the variable in the

matrix exponential.
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2.0.10.1 Some elementary or basic properties of the matrix exponential

Let X and Y be arbitrarynxn matrices. Then, we have the following:

1. e0 = I.

2. adj(eX) = eadj(X).

3. eX is invertible and (eX)−1 = e−X .

4. for all and in C.

5. If XY = Y X, then eX+Y = eXeY = eY eX .

6. If C is invertible, then eCXC
−1

= CeXC−1.

7. ||ex||≤e||X||

Let V be a fnite dimensional vector space equipped with a complete norm ‖.‖over the

field F , where F = R or F = C. Let End(V ) denote the algebra of linear self-maps

on V and let GL(V ) denote the general linear group, the group (under composition) of

invertible self-maps. If V = Rn, then End(V ) may be identied with Mn(R), the n × n
matrices, and GL(V ) = GLn(R), the matrices of nonvanishing determinant. We endow

End(V ) with the usual with the usually the operator and a complete norms, are defined

by

‖A‖ = sup {‖AV ‖ : ‖V ‖ = 1} = sup

{
‖AV ‖
‖V ‖

: V 6= 0

}
; which gives rise to the metric d(A,B) = ‖B − A‖ on End(V ) and, by restriction, on

GL(V ).

LetΩ be some nonempty subset of Mn(R), called the controls. For any interval J of

real numbers we consider the set U(J ; Ω) of locally bounded measurable functions which

in generally defined as control functions, from J into Ω . Each member UεU(J ; Ω) deter-

mines a corresponding time varying linear differential equation, called the fundamental control equation,

Ẋ(t) = U(t)X(t)

. The function U is called a control or steering function and the resulting solutions

trajectories. we have the solution of
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Ẋ(t) = U(t)X(t), X(t0) = X0

is given by X(t) = ΦU (t, t0)X0, where ΦU is the the fundamental solution for the

fundamental equation associated to the coefficient function U . The control set and the

dierential equation Ẋ = UX determine a control system.

Given a control system arising from Ω and A,BεGL(V ), we say that B is reachable or

attainable from A if there exists an interval [a, b] such that a solution of the fundamental

control equation X satisfies X(a) = A and X(b) = B for some control function U .

The set of all points reachable from A (including A itself) is called the reachable set to

A, and denoted RA. If we put the focus on B instead of A, then instead of saying that

B is reachable from A, we say that A is controllable to B or can be steered to B. The

controllability set of B consists of all A that can be steered to B.
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Concept about Unitary and

Special unitary group and

Hamiltonian system

3.0.11 Hamiltonian systems

A dynamical system of 2n , is an ordinary differential equations

Z . = J∇H(z, t),

where

J =

(
0 I

−I 0

)

is an n degree-of-freedom (d.o.f.) Hamiltonian system (when it is non-autonomous it

has n+ 1/2 d.o.f.).

Here H is the ”Hamiltonian” with smooth scalar function of the extended phase space

variables z and time t, the 2n × 2n matrix J is the Poisson matrix andI is the n × n
identity matrix.

These equations eagerlly split into two sets of n equations for canonically conjugate

variables z = (q, p) ,

i.e. q. = ∂H/∂p, ṗ = ∂H/∂q.

15
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Here the n coordinatesq represent the configuration variables of the system (e.g. posi-

tions of the component parts) and their canonically conjugate momenta p represent the

impetus gained by movement.

3.0.12 Calculation of a Hamiltonian from a Lagrangian

Given a Lagrangian with the generalized coordinates qi and generalized velocities q̇i and

time:

1. The momenta are calculated simply by differentiating the Lagrangian with respect

to the velocites (generalized) : pi(qi, q̇i, t) = ∂L
∂q̇i

.

2. The velocities or generalised velocites q̇i are expressed in terms of the momenta pi by

inverting the previous expression.

3. The Hamiltonian is calculated using the usual definition of H as the Legendre trans-

formation of L:

H =
∑
i

q̇i
∂L

∂q̇i
− L =

∑
i

q̇ipi − L

Then the velocities or generalised velocites are substituted for using the previous results.

4. Hamilton’s equations are used with efficient to obtain the equations of motion of the

system.

3.0.13 Deriving Hamilton’s equations

Hamilton’s equations are derived by the total differential of the Lagrangian depends on

(t), qi and qi.

dL =
∑
i

(
∂L

∂qi
dqi +

∂L

∂q̇i
dq̇i) +

∂L

∂t
dt
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Hence the generalized momenta were defined as

pi =
∂L

∂q̇i

By substituted the above into the total differential of the Lagrangian gives one about

∂L =
∑
i

(
∂L

∂qi
dqi + pi

∂L

∂q̇i
dq̇i) +

∂L

∂t
dt

We can rewrite this as

∂L =
∑
i

(
∂L

∂qi
dqi + d(piq̇i)− ˙qidpi) +

∂L

∂t
dt

and rearrange again to get

d(
∑
i

piq̇i − L) =
∑
i

(−∂L
∂qi

dqi ˙+qidpi)−
∂L

∂t
dt

The term on the left-hand side is just the Hamiltonian that we have defined before, so

we find that

∂H =
∑
i

(−∂L
∂qi

dqi + ˙qidpi)−
∂L

∂t
dt

Similarly to the total differential with respect to time of the Lagrangian (with which

we started above), independently from the above derivations the total differential of the

Hamiltonian is equal to

∂H =
∑
i

(
∂H

∂qi
dqi +

∂H

∂pi
dpi) +

∂H

∂t
dt

It dramatically follows the path from the previous two independent equations that their

right-hand sides are equal with different corresponding. Thus we obtain the equation

∑
i

(−∂L
∂qi

dqi + ˙qidpi)−
∂L

∂t
dt =

∑
i

(
∂H

∂qi
dqi +

∂H

∂pi
dpi) +

∂H

∂t
dt

Since this calculation can associate corresponding terms from both sides of this equation

to yield:
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∂H

∂qj
= −∂L

∂qi
,

∂H

∂pj
=

˙
qj ,

∂H

∂t
= −∂L

∂t
.

On-shell, Lagrange’s equations tell us that

d

dt

∂L

∂q̇i
− ∂L

∂qi
= 0.

We can rearrange this to get

∂L

∂qi
= ṗi

Thus Hamilton’s equations for many hold on shell:

∂H

∂qj
= −ṗj ,

∂H

∂pj
= q̇j ,

∂H

∂t
= −∂L

∂t

3.0.14 Unitary Matrix :

A square matrix U is a unitary matrix if U (H)=U (−1),

where U (H) denotes the conjugate transpose and U (−1) is the matrix inverse.

For example,

[ 2
−1
2 2

−1
2 0

−2
−1
2 i 2

−1
2 i 0

0 0 i

]

3.0.15 Unitary group:

In mathematics, the unitary group of degree n, denoted U(n), is the group of n × n
unitary matrices, with as usual matrix multiplication group operation.

The unitary group is a subgroup of GL(n,C). A unitary group U(n) is a real Lie group

of dimension n2.

The Lie algebra of U(n) consists of n×n skew-Hermitian matrices, with the Lie bracket

given by the commutator.
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3.0.16 Special Unitary Matrix:

A square matrix U is a special unitary matrix if UU∗ = I,

where I is the identity matrix and U∗ is the adjoint matrix with determinant is detU = 1.

The first condition means that U is a unitary matrix, and the second condition provides

a restriction beyond a general unitary matrix, with determinant eiθ for θ any R real

number.

For example, 1√
2

[
i i

i −i

]

3.0.17 Special unitary group:

The special unitary group of degree n, denoted SU(n), is the group of n × n unitary

matrices with determinant 1.

The group operation is matrix multiplication.

The special unitary group is a subgroup of the unitary group U(n), consisting of all

n× n unitary matrices, which is itself a subgroup of the general linear group GL(n,C).

The simplest case, SU(1), is the trivial group, having only a single element.

3.0.17.1 Properties :

The special unitary group SU(n) is a real matrix Lie group of dimension n21.

Topologically, it is compact with simply connected domain but algebraically, it is a

simple Lie group.The center of SU(n) is isomorphic to the cyclic group zn.

Its outer automorphism group, for n≥ 3, is z2, while the outer automorphism group of

SU(2) is the trivial group.

The Lie algebra of SU(n), denoted by su(n) is generated by n2operators, which satisfy

the commutator relationship (for i, j, k, ` = 1, 2, ..., n).[
Ôij , Ôkl

]
= δjkôil−δilôkj

Additionally, the operator

N̂ =

n∑
i=1

ôii
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satisfies [
N̂ , Ôij

]
= 0

This implies the number of independent generators is n21.

3.0.18 The Lie Algebra of a Matrix Lie Group

Definition 3.1. Let G be a matrix Lie group. The Lie algebra of G, denoted g, is the

set of all matrices X such that etX is in G for all real numbers t.

This implies that X is in g iff parametric subgroup generated by X stays in G. Note

that even though G is a subgroup of GL(n, c) (and not essentially for GL(n,R)), we do

not require that etX be in G for all complex numbers t, it is purpose only for all real

numbers t. Also, it is definitely not enough to have just eX in G. i.e, it has easy to gain

an example of an X and a G such that eX ∈ G but such that etX /∈ G for some real

values of t. Such an X is not in the Lie algebra of G.

3.0.19 Lie algebra of the unitary groups

We know that a matrix is unitary iff adj(U) = U − 1.

Thus, etX is unitary iff

adj(etX) = (etX)− 1 = e−tX .............(3)

we know that

adj(e(tX)) = eadj(tX),

so, equation (3) becomes adj(e(tX)) = e−tX .....................(4)

Clearly, a sufficient condition for (4) to hold is that adj(X) = −X.

On the other hand, if (4) holds for all t, then by differentiating at t = 0,

we see that adj(X) = −X is necessary.

Thus, the Lie algebra of U(n) is the space of all nxn complex matrices X such that

adj(X) = −X, denoted u(n).

By combining the 2 previous computational approach,
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we see that the Lie algebra of SU(n) is the space of all nxn complex matrices X such

that adj(X) = −X and trace(X) = 0, denoted su(n).



Chapter 4

Optimal Control and Calculus of

Variations

Definition 4.1. Optimal control : This is the process of getting control and state

trajectories for a dynamic system over a span of time to minimise a performance index.

Example 4.1. Optimal control problem’s examples:

1. paths of vehicles between two points to minimize fuel or time can be determined.

2. feedback control logic for vehicles or industrial processes to keep them near a

theshold operating point in the enviornment of disturbances with acceptable con-

trol magnitudes can be determined.

4.0.20 Formulation of optimal control problems

There are different types of optimal control problems based on the performance index,

the type of time domain (continuous, discrete),different types of constraints with varities

of variables are free to be chosen.

Formulation of an optimal control problem require the following:

• Mathematical modelling of the system to be controlled,

• criteria of the performance index,

• criteria of all boundary values on states conditions, and constraints to be satisfied

by states and controls,

• statement checking of what variables are free.

22
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4.0.21 Formal Statement and requirement of Optimal Control System

The Optimal control problem is to getting the optimal control u∗(t) which causes the

linear time-invariant system.

ẋ(t) = Ax(t) +Bu(t)

to give the trajectory x ∗ (t) that optimizes or extremizes (minimizes or maximizes) a

performance index

J = x
′
(tf )Fx(tf ) +

tf∫
t0

[x
′
(t)Qx(t) + u

′
(t)Ru(t)]dt

ẋ(t) = f(x(t), u(t), t)

to give the state x∗(t) that optimizes the general performance index

J = S(x(tf ), tf ) +

tf∫
t0

V (x(t), u(t), t)dt

Calculus of variations (CoV) or variational calculus deals with getting the optimum.

4.0.22 Basic Concepts Function and Functional

We discuss some fundamental concepts associated with functionals along side with those

of functions.

• Function: A variable x is a function of a variable quantity t,(written as x(t) =

f(t)), if to every value of t over a certain range of t there corresponds a value x;

i.e. we have a correspondence to a number t there corresponds a number x.

Note that : here t need not be always time but any independent variable.

Example 4.2. consider

x(t) = 2t2 + 1
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For t = 1, x = 3, t = 2, x = 9 and so on.Other functions are x(t) = 2t;x(t1, t2) = t21 + t22.

• Functional: A variable J is a functional dependent on a function f(x), written as

J = J(f(x)), if to each function f(x), there corresponds a value J , i.e., we have a

correspondence: to the function f(x) there corresponds a number J .

Example 4.3. Let x(t) = 2t2 + 1. Then

J(x(t)) =

1∫
0

x(t)dt =

1∫
0

(2t2 + 1)dt =
2

3
+ 1 =

5

3

is the area under the curve x(t). If v(t) is the velocity of a vehicle , then

J(v(t)) =

tf∫
t0

v(t)dt

is the path traversed by the vechicle.Thus, here x(t) and v(t)are functions of t, and J.

• Increment of a Function:

The increment of a function f , denoted by 4f , is defined as

4f 4= f(t+4t)− f(t).

4f depends on both the independent variable t and the increment of the independent

variable 4t.

Example 4.4. If

f(t) = (t1 + t2)2

Find the increment of the function f(t).

solution : The increment 4f becomes

4f 4= f(t+4t)− f(t)

= (t1 +4t1 + t2 +4t2)2 − (t1 + t2)
2

= (t1 +4t1)2 + (t2 +4t2)2 + 2(t1 +4t1)(t2 +4t2)− (t21 + t22 + 2t1t2)

= 2(t1 + t2)4t1 + 2(t1 + t2)4t2 + (4t1)2 + (4t2)2 + 24t14t2.
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• Increment of a Functional:

The increment of the functional J denoted by 4J , is defined as

4J 4= J(x(t) + δx(t))− J(x(t)).

Here δx(t) is called the variation of the function x(t). we also write increment as

4J(x(t), δx(t)).

Example 4.5. Find the increment of the functional

J =

tf∫
t0

[2x2(t) + 1]dt.

solution : The increment of J is given by

4J 4= J(x(t) + δx(t))− J(x(t)),

=
∫ tf
t0

[2x(t) + δx(t))2 + 1]dt−
∫ tf
t0

[2x2(t) + 1]dt,

=
∫ tf
t0

[4x(t)δx(t) + 2(δx(t))2]dt.

4.0.23 Optimization

Optimization is an essential part of design activity in all major disciplines.It is a processes

of search that seek to optimize(maximize or minimize)of a mathematical function of

several variable subject to certain constraints(equality or inequality constraints). The

content of optimization technique is quite general in the sense that it it can be looked

in different ways depending on the approach(algebraic or geometric approach). The

nature of variables may be real,integer,mix of both used in optimization. Again with

the optimization classified in two groups:

1. Static optimization problem

2. Dynamic optimization problem

• Static optimization problem

In Static optimization problem,objective function /cost function involves variables that

are not changing with time.
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Technique to slove static optimization problem:

• Lagrange Multiplier

• Linear/Nonlinear Programming

• Dynamic optimization problem

Dynamic optimization problem is concerned with design variables (involved in objective

function )are changing with respect to time.thus the time is involoved in the problem

statement.

Technique to slove Dynamic optimization problem

• Calculus of Variation

• Dynamic Programming

• Convex Optimization

4.0.24 Optimal control Problem

Optimal Control is the one of getting about control technique in which the control signal

optimizes a certain “cost index”.

Example 4.6. As a simple example, we can considered the problem of a rocket launching

a statellite into an orbit above earth. A interesting problem about control would be that

of choosing the thrust attitude angle and rate emission of the exhaust gases such that the

rocket takes the satellite into its prescribed orbit.An associated optimal control problem

is to choose the controls to affect the transfer rate to minimum expenditure of fuel,and

time.

4.0.25 Functionals

• The integrals of the form

J =

tf∫
t0

F (x,
dx

dt
, t)dt (1)

Where F is a given function of the function x(t), its derivative dx
dt and the indepen-

dent variable t.The path x(t) is defined for t0 ≤ t ≤ t1.For a given path,say x =



Contents 27

x1(t),equation (1) gives the corresponding value of J , say J = J1.For a second path, say

x = x2(t),equation (1) again gives a value of J , say J = J2.

In general, J1 6= J2,and we call integrals of the form (1) functionals.

• As a simple example, Consider the integral

J =

tf∫
t0

(t2 + t
dx

dt
)dt

where x = x(t), 0 ≤ t ≤ 1,is some path defined from t = 0 to t = 1.

It is clear that the value of J depends on the prescribed path x = x(t) ,0 ≤ t ≤ 1.

For example ,

• x = t, 0 ≤ t ≤ 1 gives J =
∫ 1

0
(t2 + t)dt = 5

6 ;

• x = et, 0 ≤ t ≤ 1 gives J =
∫ 1

0
(e2t + tet)dt = e2

2 + 1;

4.0.26 Basic Optimal Control Problem

• Earlier we have seen that the state of the system is charaterised by n variables,

x1, x2.....xn and we write the state vector as

x = (x1, x2........xn)T ..............(2)

• These variables satisfy the coupled first order differential equations

dxi
dt

= fi(x1, x2, ......xn;u1, u2, .....um; t) (1 ≤ i ≤ n) ...............(3)

on [0, T ] and where the m variables u1, u2, .....um form the control vector u; that is

u = (u1, u2, .....um)T ...................(4)

• We can write the system in the form

ẋ = f(x, u, t), f = (f1, f2, .......fn)T

and if the system is linear

ẋ = Ax+Bu ..................(5)
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where A is an n× n matrix, B is an n×m matrix.

• We assume that uεU , a given control region in m-dimensional space and the ujare

assumed continous,except possibly at a finite number of discontinuties.It is as-

sumed that the fi are contionus with continous partial derivatives. The given

initial value of xi are specified (for example x = x0at time t = 0)which means

that specifying uj , 0 ≤ t ≤ T (j = 1, 2, 3, ....m) determines the xi(i = 1, 2, ......, n)

from equation (3).

• The basic control problem is to choose the control vector uεU such that the state

vector x is transferred from x0 to a terminal point at time T where some of the

state variables are specified; for example suppose xi are specified at a t = T for

t = 1, 2, 3......, q (≤ n).The region U is called admissible control region.

• If the transfer can be accomplished, the problem in optimal control is to effect the

transfer so that the functional

J =

T∫
0

f0(x, u, t)dt ................(6)

is maximised(or minimised or extremum). Here f0is a function of x1, x2, ....., xn;u1, u2, ...., um

and t is continous with partial derivatives.

Example 4.7. Examples of finding extremum of J

Finding the curve y(x) which gives an extremum value to the functional

J =

1∫
0

(y
′2

+ 1)dx

with y(0) = 1, y(1) = 2.

solution :

Before going to the solution one result which is important and to be remembered is the

Euler equation which is satisfied by the path y(x) which yield extremum values of the

functional

J =

b∫
a

F (y, y
′
, x)dx
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and given as follow :

Fy −
d

dx
(Fy′ ) = 0 .......................(7)

Here the integrand F = y
′2

+ 1, so Fy = 0.

Hence the euler equation (7) becomes

d

dx
(Fy′) = 0

and on integrating , Fy′ = A, constant

i.e, 2y
′

= A.

Integrating again,

y =
Ax

2
+B

where B is a constant.To specify the condition y(0) = 1, y(1) = 2 requires B = 1 and

A = 2. so the optimal curve is straight line

y = x+ 1

The corresponding extremum value of J is

J =

1∫
0

2dx = 2.

and this is infact the minimum value of J.

There are different method for determining the extremum of J for different types of

constraints implemented which are like Lagrange Multiplier and Hamiltonian Control

system(method).



Chapter 5

An Optimal control Problem on

the Special Unitary Group SU(3)

Basis Representation for SU(3):

λ1 =

[ 0 1 0

1 0 0

0 0 0

]
, λ2 =

[ 0 −i 0

i 0 0

0 0 0

]
,

λ3 =

[ 1 0 0

0 −1 0

0 0 0

]
, λ4 =

[ 0 0 1

0 0 0

1 0 0

]
,

λ5 =

[ 0 0 −i
0 0 0

i 0 0

]
, λ6 =

[ 0 0 0

0 0 1

0 1 0

]
,

λ7 =

[ 0 0 0

0 0 −i
0 i 0

]
, λ8 = 1√

3

[ 1 0 0

0 1 0

0 0 −2

]

We get the commutation relation by calculating between all the basis can be given below

:

30
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λ1 λ2 λ3 λ4 λ5 λ6 λ7 λ8

λ1 0 2iλ3 −2iλ2 iλ7 −iλ6 iλ5 −iλ4 0

λ2 −2iλ3 0 2iλ1 iλ6 iλ7 λ5 −iλ5 0

λ3 2iλ2 −2iλ1 0 iλ5 −iλ4 −iλ7 iλ6 0

λ4 −iλ7 −iλ6 −iλ5 0 (λ3 + λ8
√
3)i iλ2 iλ1 −

√
3iλ5

λ5 iλ6 −iλ7 iλ4 −(λ3 + λ8
√
3)i 0 −iλ1 λ1

1√
3
(2λ5 + iλ4)

λ6 −iλ5 iλ4 iλ7 −iλ2 iλ1 0 (
√
3λ8 − λ3)i −

√
3iλ7

λ7 iλ4 −iλ5 −iλ6 −iλ1 −iλ2 (λ3 −
√
3λ8)i 0

√
3iλ6

λ8 0 0 0
√
3iλ5 − 1√

3
(2λ5 + iλ4)

√
3iλ7 −

√
3iλ6 0

The minus Lie-Poisson structure on SU(3)

The minus Lie-Poisson structure on SU(3) is given below in the matrix as follow :

0 −2ip3 2ip2 −ip7 ip6 −ip5 −ip4 0

2ip3 0 −2ip1 −ip6 −ip7 −p5 ip5 0

−2ip2 2ip1 0 −ip5 ip4 ip7 −ip6 0

ip7 ip6 ip5 0 −(p3 +
√

3p8)i −ip2 −ip1 −
√

3ip5

−ip6 ip7 −ip4 (p3 +
√

3p8)i 0 ip1 −p1 − 1√
3
(2p5 + ip4)

ip5 −ip4 −ip7 ip2 −ip1 0 −(
√

3p8 − p3)i
√

3ip7

−ip4 ip5 ip6 ip1 ip2 −(p3 −
√

3p8)i 0 −
√

3ip6

0 0 0 −
√

3ip5 − 1√
3
(2p5 + ip4) −

√
3ip7

√
3ip6 0



Theorem 5.1. There exist the following type of controllable drift-free left invariant

system on SU(3), namely :

Ẋ = X · (A1u1 +A2u2 +A3u3 +A4u4 +A5u5 +A6u6 +A7u7 +A8u8) . . . . . . . . . (5.1)

5.1 An Optimal Control Problem on SU(3)

Let

J(u1,, u2, u3) =
1

2

tf∫
0

(c1u
2
1 + c2u

2
2 + c3u

2
3 + c4u

2
4 + c5u

2
5 + c6u

2
6 + c7u

2
7 + c8u

2
8)dt
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where c1, c2, c3, c4, c5, c6, c7, c8 > 0 be the cost function.

Then the problem which we intend to slove is to find u1, u2, ......., u8 that maximize J

and steer the system (5.1) from X = 0 at t = 0 to X = Xf at t = tf

Theorem 5.2. The optimal controls problem of the above problem for our system (5.1)

are given by

u1 = p1
c1

u2 = p2
c2

u3 = p3
c3
,

u4 = p4
c4
,

u5 = p5
c5
,

u6 = p6
c6
,

u7 = p7
c7
,

u8 = p8
c8
,

Where the solutions of the system :

ṗ1=− 2ip3p2
c2

+ 2 ip2p3c3
− ip7p4

c4
+ ip6p5

c5
− ip5p6

c6
− ip4p7

c7

ṗ2=
2ip3p1
c1
− 2 ip1p3c3

− ip6p4
c4
− ip7p5

c5
− p5p6

c6
+ ip5p7

c7

ṗ3=− 2ip2p1
c1

+ 2 ip1p2c2
− ip5p4

c4
+ ip4p5

c5
+ ip7p6

c6
− ip6p7

c7

ṗ4=
ip7p1
c1

+ ip6p2
c2

+ ip5p3
c3
− ip2p6

c6
− ip1p7

c7
+
√
3ip5p8
c8

− ip5(p3+
√
3p8)

c5

ṗ5 = − ip6p1
c1

+ ip7p2
c2
− ip4p3

c3
+ ip1p6

c6
− p1p7

c7
− (ip4+2p5)p8√

3c8
− ip4(−p3−

√
3p8)

c4

ṗ6 = ip5p1
c1
− ip4p2

c2
− ip7p3

c3
+ ip2p4

c4
− ip1p5

c5
+
√
3ip7p8
c8

− ip5(−p3+
√
3p8)

c7

ṗ7 = − ip4p1
c1

+ ip5p2
c2

+ ip6p3
c3

+ ip1p4
c4

+ ip2p5
c5
−
√
3ip6p8
c8

− ip6(p3−
√
3p8)

c6

ṗ8 = −
√
3ip5p4
c4

− p5(ip4+2p5)√
3c5

−
√
3ip7p6
c6

+
√
3ip6p7
c7

With taking suitable extended Hamiltonian H given by

H = (p1u1 + p2u2 + p3u3 + p4u4 + p5u5 + p6u6 + p7u7 + p8u8)−

(c1u
2
1 + c2u

2
2 + c3u

2
3 + c4u

2
4 + c5u

2
5 + c6u

2
6 + c7u

2
7 + c8u

2
8)

Proceeding using the maximum principle, we generally get
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∂H

∂u1
= 0

∂H

∂u2
= 0

∂H

∂u3
= 0

∂H

∂u4
= 0

∂H

∂u5
= 0

∂H

∂u6
= 0

∂H

∂u7
= 0

∂H

∂u8
= 0

which leads to

p1 = c1u1

p2 = c2u2

p3 = c3u3

p4 = c4u4

p5 = c5u5

p6 = c6u6

p7 = c7u7

p8 = c8u8

and so reduced Hamiltonian (Optimal Hamiltonian) is given by

H =
1

2
[
p21
c1

+
p22
c2

+
p23
c3

+
p24
c4

+
p25
c5

+
p26
c6

+
p27
c7

+
p28
c8

]

It follows that the reduced Hamiltonian equations have the following expressions
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

ṗ1

ṗ2

ṗ3

ṗ4

ṗ5

ṗ6

ṗ7

ṗ8


=



0 −2ip3 2ip2 −ip7 ip6 −ip5 −ip4 0

2ip3 0 −2ip1 −ip6 −ip7 −p5 ip5 0

−2ip2 2ip1 0 −ip5 ip4 ip7 −ip6 0

ip7 ip6 ip5 0 −(p3 +
√

3p8)i −ip2 −ip1 −
√
3ip5

−ip6 ip7 −ip4 (p3 +
√

3p8)i 0 ip1 −p1 − 1√
3
(2p5 + ip4)

ip5 −ip4 −ip7 ip2 −ip1 0 −(
√

3p8 − p3)i
√
3ip7

−ip4 ip5 ip6 ip1 ip2 −(p3 −
√
3p8)i 0 −

√
3ip6

0 0 0 −
√
3ip5 − 1√

3
(2p5 + ip4) −

√
3ip7

√
3ip6 0





p1
c1
p2
c2
p3
c3
p4
c4
p5
c5
p6
c6
p7
c7
p8
c8


=



−2ip3p2
c2

+ 2 ip2p3c3
− ip7p4

c4
+ ip6p5

c5
− ip5p6

c6
− ip4p7

c7
2ip3p1
c1
− 2 ip1p3c3

− ip6p4
c4
− ip7p5

c5
− p5p6

c6
+ ip5p7

c7

−2ip2p1
c1

+ 2 ip1p2c2
− ip5p4

c4
+ ip4p5

c5
+ ip7p6

c6
− ip6p7

c7
ip7p1
c1

+ ip6p2
c2

+ ip5p3
c3
− ip2p6

c6
− ip1p7

c7
+
√
3ip5p8
c8

− ip5(p3+
√
3p8)

c5

− ip6p1
c1

+ ip7p2
c2
− ip4p3

c3
+ ip1p6

c6
− p1p7

c7
− (ip4+2p5)p8√

3c8
− ip4(−p3−

√
3p8)

c4
ip5p1
c1
− ip4p2

c2
− ip7p3

c3
+ ip2p4

c4
− ip1p5

c5
+
√
3ip7p8
c8

− ip5(−p3+
√
3p8)

c7

− ip4p1
c1

+ ip5p2
c2

+ ip6p3
c3

+ ip1p4
c4

+ ip2p5
c5
−
√
3ip6p8
c8

− ip6(p3−
√
3p8)

c6

−
√
3ip5p4
c4

− p5(ip4+2p5)√
3c5

−
√
3ip7p6
c6

+
√
3ip6p7
c7


as required.

Theorem 5.3. The controls u1, u2, u3, ....., u8 are given by sinusoidals, More exactly

u1 = l1√
c1

cos
√

c2
c1

(
p2ṗ1−p1ṗ2
p21+p

2
2

)
t+ k1

u2 = l2√
c2

sin
√

c4
c3

(
p4ṗ3−p3ṗ4
p23+p

2
4

)
t+ k2

u3 = l3√
c3

cos
√

c6
c5

(
p6ṗ5−p5ṗ6
p25+p

2
6

)
t+ k3

u4 = l4√
c4

sin
√

c8
c7

(
p8ṗ7−p7ṗ8
p27+p

2
8

)
t+ k4

Proof.

Let
p21
c1

+
p22
c2

= l21

p23
c3

+
p24
c4

= l22

p25
c5

+
p26
c6

= l23
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p27
c7

+
p28
c8

= l24

The reduced Hamiltonian is obviously a constant of motion. So we may write

p21
c1

+
p22
c2

+
p23
c3

+
p24
c4

+
p25
c5

+
p26
c6

+
p27
c7

+
p28
c8

= l2

i.e,

l21 + l22 + l23 + l24 + l25 + l26 + l27 + l28 = l2

If we take now :

p1 = l1
√
c1 cos θ1

p2 = l1
√
c2 cos θ2

p3 = l3
√
c3 cos θ3

p4 = l4
√
c4 cos θ4

p5 = l5
√
c5 cos θ5

p6 = l6
√
c6 cos θ6

p7 = l7
√
c7 cos θ7

p8 = l8
√
c8 cos θ8

So, we get

u1 =
p1
c1

=
l1 cos θ1√

c1
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u2 =
l1√
c2

sin θ1

u3 =
l2√
c3

cos θ2

u4 =
l2√
c4

sin θ2

u5 =
l3√
c5

cos θ3

u6 =
l3√
c6

sin θ3

u7 =
l4√
c7

cos θ4

u8 =
l4√
c8

sin θ4

Now ,

p1
p2

=

√
c1
c2

cot θ1 =⇒ θ1 =

√
c2
c1

arctan(
p1
p2

)

θ̇1 =

√
c2
c1

(
p2ṗ1 − p1ṗ2
p21 + p22

)

similarlly

θ̇2 =

√
c2
c1

(
p4ṗ3 − p3ṗ4
p23 + p24

)

θ̇3 =

√
c6
c5

(
p6ṗ5 − p5ṗ6
p25 + p26

)

θ̇4 =

√
c8
c7

(
p6ṗ7 − p7ṗ8
p27 + p28

)
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It follow that

θ1 =

√
c2
c1

(
p2ṗ1 − p1ṗ2
p21 + p22

)
t+ k1

θ2 =

√
c4
c3

(
p4ṗ3 − p3ṗ4
p23 + p24

)
t+ k2

θ3 =

√
c6
c5

(
p6ṗ5 − p5ṗ6
p25 + p26

)
t+ k3

θ4 =

√
c8
c7

(
p8ṗ7 − p7ṗ8
p27 + p28

)
t+ k4

then

u1 =
l1√
c1

cos

√
c2
c1

(
p2ṗ1 − p1ṗ2
p21 + p22

)
t+ k1

u2 =
l2√
c2

sin

√
c4
c3

(
p4ṗ3 − p3ṗ4
p23 + p24

)
t+ k2

u3 =
l3√
c3

cos

√
c6
c5

(
p6ṗ5 − p5ṗ6
p25 + p26

)
t+ k3

u4 =
l3√
c4

sin

√
c8
c7

(
p8ṗ7 − p7ṗ8
p27 + p28

)
t+ k4

Conclusion

In this short project, we have studied mathematical control theory, in more 
particularly optimal control on the compact special unitary group SU(3). We have 
restricted our-selves only in the mathematical aspects. However this group is related with 
many physical problem , which are interesting to physicist .We hope our study will be lead 
to a small step towards such type of investigation.
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