
ADEQUATE TEST DATA GENERATION

USING

EVOLUTIONARY ALGORITHMS

Swagatika Swain

Department of Computer Science and Engineering

National Institute of Technology Rourkela

Rourkela, Odisha, 769 008, India

Adequate Test Data Generation

Using Evolutionary Algorithms

Thesis submitted in

partial fulfillment of the requirements

for the degree of

Master of Technology

by

SWAGATIKA SWAIN
(Roll 211CS3302)

under the supervision of

PROF. D. P. MOHAPATRA

Department of Computer Science and Engineering

National Institute of Technology Rourkela

Rourkela, Odisha, 769 008, India

Department of Computer Science and Engineering
National Institute of Technology Rourkela
Rourkela-769 008, Odisha, India.

Certificate

This is to certify that the work in the thesis entitled Adequate Test Data Gen-

eration using Evolutionary Algorithms by Swagatika Swain is a record

of an original research work carried out by her under my supervision and guidance

in partial fulfillment of the requirements for the award of the degree of Master

of Technology with the specialization of Software Engineering in the department

of Computer Science and Engineering, National Institute of Technology Rourkela.

Neither this thesis nor any part of it has been submitted for any degree or aca-

demic award elsewhere.

Place: NIT Rourkela Dr. D.P. Mohapatra
Date: 30 May 2013 Associate Professor, CSE Department

NIT Rourkela, Odisha

Acknowledgment

First of all, I would like to thank my supervisor Dr. Durga Prasad Mohapatra

for giving me supervision, encouragement and support throughout the work and

painstakingly correcting the numerous reports. It is because of his advice and

patronage, I am able to complete my thesis.

I take this opportunity to express my gratitude towards Dr. S.K. Rath, who

has always been a guiding force and encouraged me to do hard work to achieve

my goals. I am thankful to Prof B.D. Sahoo, Prof P.M. Khillar, Prof S.k. Jena,

Prof S. Chinara, Prof K. Sathyababu, Prof B. Majhi, Prof S. Mohanty, Prof P.K.

Sa and Prof M.N. Sahoo for their guidance and motivated me to work hard.

I extend my thanks to our HOD, Prof. A.K Turuk for his valuable advices and

encouragement and comments to improve my work.

I would like to thnak all members of Department of Computer Science and

Engineering, for providing the academic resources that I have got from here and

in other various ways to complete my thesis.

I am really thankful to my all friends who are always there in need. My sincere

thanks to everyone who has provided me with kind words, a welcome ear, new

ideas, useful criticism, or their invaluable time, I am truly indebted. I want to

specially thank Subhrakant Sir for his comments and support.

Last, but not the least, I would like to dedicate this thesis to my family, for

their love, patience, and understanding.

Swagatika Swain

Roll: 211CS3302

Abstract

Software Testing is a approach where different errors and bugs in the software

are identified. To test a software we need the test data. In this thesis, we have

developed the approach to generate test data automatically from some initial

random test data using Evolutionary Algorithms (EA) and test the software to

detect the presence of errors, if any. We have taken two measures, they are path

coverage and adequecy criterion to test the validation of our approach. In our first

approach, we have used simple Genetic Algorithm (GA) to find the test data. We

then used an memtic algorithm to curb the difficulties faced by using GA.

We are using the instrumented program to find the paths. We then represent

the program into a Control Flow Graph (CFG). We have used genetic algorithm

to find the more optimal test data that covers all the feasible test paths from some

initial random test data automatically.

Path coverage based testing approach generates reliable test cases. A test

case set is reliable if it’s execution ensures that the program is correct on all

its inputs. But, Adequacy requires that the test case set detect faults rather

than show correctness. Hence, for adequacy based testing we uses the concept of

mutation analysis. Here, we have taken the mutation score as our fitness function

in the approach. We find out the mutation score from using mutation testing

based tool called ”MuJava”. And then generate test data accordingly.

We applied a more complex hybrid approach to generate test data. This algo-

rithm is a hybrid version of genetic algorithm. It produces better results than the

results generated by using GA. Also it curbs various problems faced by GA.

Keywords. Adequacy, Control Flow Graph, cyclomatic complexity, fitness

function, mutation analysis, mutation score, path coverage, reliability, software

development life cycle, test data.

Contents

Certificate ii

Acknowledgement iii

Abstract iv

List of Figures viii

List of Tables ix

1 Introduction 2

1.1 Motivation of our work . 3

1.2 Objective of our work . 4

1.3 Organization of the Thesis . 4

2 Background 7

2.1 Software Testing . 7

2.1.1 Terminologies used . 8

2.1.2 Black-Box Testing . 9

2.1.3 White-Box Testing . 9

2.2 Mutation Testing . 12

2.2.1 Mutation Operators . 12

2.2.2 Types of Mutants . 13

2.2.3 Mutation Score . 14

2.2.4 Mutation Testing Tools . 14

2.3 Metaheuristic Techniques . 15

2.3.1 Genetic Algorithm . 15

2.3.2 Working of the Genetic Algorithm 18

2.3.3 Memtic Algorithm . 19

v

2.4 Summary . 20

3 Review of Related Work 22

3.1 Related work on Test Data Generation using Genetic Algorithm . . 22

3.2 Test Data Generation using Hybrid algorithms 25

4 Genetic Algorithm Based Approach for Test Data Generation 28

4.1 Basic Concepts and Definitions . 29

4.1.1 Control Flow Graph . 29

4.1.2 Path Testing Terminologies 29

4.1.3 Cyclomatic Complexity . 30

4.1.4 Mutation Testing . 30

4.2 Genetic Algorithm . 30

4.2.1 Selection . 31

4.2.2 Crossover . 32

4.2.3 Mutation . 32

4.3 Implementation . 32

4.3.1 Steps in our Approach . 33

4.3.2 Explanation to our approach 33

4.3.3 Working of the algorithm . 33

4.3.4 Applying Genetic Algorithm 34

4.3.5 Genetic Operators . 36

4.4 Experiment and Results . 37

4.4.1 Assumptions . 37

4.4.2 Results . 38

4.5 Case Study . 41

4.6 Comparision to Related work . 43

4.7 Conclusion . 44

5 Test Data generation Using Hybrid GA 46

5.1 Basic Concepts and Terminologies 46

5.1.1 Search Technique . 46

5.1.2 Objective Function . 47

5.1.3 Selection . 47

5.1.4 Recombination . 48

5.1.5 Mutation . 48

5.1.6 Termination Criteria . 48

5.1.7 Steps of Memtic Algorithm 48

5.2 Proposed Methodology . 49

5.2.1 Steps for our approach . 49

5.3 Implementation . 50

5.4 Results . 51

5.5 Comparision with related work . 52

5.6 Conclusion . 53

6 Conclusion 55

6.1 Contribution . 55

6.1.1 Automated Test Data generation showing path coverage of

the structured program using Genetic Algorithm 55

6.1.2 Automated Test Data generation of the structured program

using Hybrid Evolutionary Algorithm 56

Dissemination of Work 57

Bibliography 58

List of Figures

2.1 A simple CFG . 11

2.2 Different Classification of Metaheuristic Techniques 16

2.3 Flow Graph of Genetic Algorithm 18

4.1 GCD program for two numbers . 34

4.2 Instrumented GCD program . 34

4.3 Control Flow Graph of the above program 35

4.4 Double Crossover at position 2 and 6 36

4.5 Mutation done at position 5 . 37

4.6 Output of our approach . 39

4.7 Distribution of fitness function within the range 1-15 39

4.8 Result of the 2nd method . 41

4.9 Mutation Score result using Muclipse 41

4.10 The program of withdraw module 41

4.11 Instrumented program of the withdrawl module 42

4.12 Control Flow Graph of the above program 42

5.1 Screen shot of result of our approach 52

viii

List of Tables

4.1 Initial population . 38

4.2 Population at 6th Generation . 38

4.3 Initial population using MS as fitness function 40

4.4 4th generation population using MS as fitness function 40

4.5 Initial population of Withdraw module 43

4.6 Population at 10th Generation . 43

5.1 Initial population . 52

5.2 2nd generation population . 52

5.3 3rd generation population . 53

5.4 4th generation population . 53

ix

Chapter 1

Introduction

Software development consists of various phases to construct a software. These

phases combinely called as Software Development Life Cycle (SDLC). It is very dif-

ficult to construct a fault free software in a single iteration of SDLC. The software

that have been developed must have some errors and bugs due to poor under-

standing of requirements, or developers state of mind during development, and

other factors. Due to this it is necessary to test the software after coding phase

to detect the errors and faults present in the software. So that the customers are

satisfied with the delivered product.

Software Testing is a phase in SDLC where the software is analyzed to detect

the difference between the existing and required results, to find anomalies and bugs

and to evaluate features of the software. It is also used to determine the quality

of the software [1]. Software reliability can be defined as probability of error-free

software to perform for a specified period of time under specified environment.

Software quality is the pattern that shows the software conforms to the given

design, functional and non-functional requirements and given specifications. A

software goes through rigorous phase of software testing before delivery to ensure

the quality and reliability of the software.

Software testing constitute about 50% of the software development cost. Hence,

Automated testing has taken the place of manual Testing. It has two main activ-

ities: test data generation and test execution. It is an important task to generate

test data to check the validity of software. For that, a bulk of test data are re-

quired. To generate test data manually is a very tedious task. Hence, there is

2

1.1 Motivation of our work

a need of automated test data generator. There are several techniques to gen-

erate test data. One of the technique is to generate test data automatically by

using Evolutionary Algorithms (EA). The use of genetic algorithm(GA) in test

case generation become focus of many research studies [2].

GA is a metaheuristic optimization technique that is robust, effective and

adaptive to the environment. It is usually applied to large and complex search

spaces. It is an artificial intelligence technique that based on the process of natural

selection and genetic.

For better reults, Hybrid Genetic Algorithm is applied to generate test data.

It is also called as Memetic Algorithm. It is a class of stochastic global search

heuristic. It is a combination of two Evolutionary Algorithms for problem specific

solver. The hybridization is used to discover good solutions, for which evolution

will take a lot of time to discover or reach a solution that would otherwise be

unreachable [3]. This approach is based on a population of solutions or agents

and can be used successfully in a variety of problem specific domains and for

sub-optimal solutions for NP problems [4].

1.1 Motivation of our work

In recent times, researchers and academicians want to focus more on automated

testing rather than manual one, because it consumes more time and effort. For

this reason, more and more test data are required for testing. It is a very tedious

task to generate such a large number of data manually.

The input domain for particular program can be very large and it is not possible

to generate such a large numbers of test data in practice. So, an appropriate

strategy has to be developed for test data generation.

To find optimized test data by using Evolutionary algorithms like Genetic

Algorithm and Memtic Algorithm.

Requirement of Adequate test data in comparision to reliable test data. Hence,

it motivated us to generate adequate test data using Evolutionary Algorithms.

3

1.3 Organization of the Thesis

1.2 Objective of our work

The main objective of our research work is to automatically generate test data

which could be used for testing structured programs. For addressing this objective,

we identify the following goals:

We want to apply genetic algorithm for generating test data and then we

apply path coverage testing criterion and adequacy criterion for better test data

and testing. We have following assumptions:

� Procedural programs mainly consist of selection, condition, iteration and

loop structure. We have used example containing above statements, and

generate test data for path coverage.

We have represented the program into an intermediate representation called

Control Flow Graph (CFG). We generated the basic paths from CFG and

compared our results with the McCabe’s Complexity. Then we assigned

weights to each edge in the CFG. And calculate the sum of weights in a

path.

� Then we applied Genetic Algorithm (GA) in our program and take the

summation of weight each path as the fitness function. And generate the

test data for each path in a optimized way.

� To find better solutions using hybrid evolutionary algorithms like Memtic

Algorithm.

1.3 Organization of the Thesis

Our thesis is divided into chapters and each chapter is organized as follows:

Chapter 2 supplies the background concepts used in the rest chapters. We

have discussed some basic concepts on software testing. Then we described

some basic concepts on GAs, which will help us to better understand our

topic. Then we have described Mutation Testing and its concepts so that it

will be easier to understand our extended work.

4

1.3 Organization of the Thesis

Chapter 3 provides a brief review of the related work relevant to our con-

cept. We first discuss the work on test data generation using simple genetic

algorithm and then we describe the work of generating test data using other

approaches like Bacteriology Algorithm.

Chapter 4 presents the path coverage and adequacy criterion to generate

test data. We introduced some basic concepts. We then developed interme-

diate representation of the structured program. and found out the paths.

Then we implemented our approach using GA for performing path coverage

and adequacy criterion.

Chapter 5 deals with generation of test data using Memtic Algorithm. It

produces better result than the GA approach.

Chapter 6 concludes the thesis with a summary of our contributions. We

also give a brief idea towards the possible future extension of our work.

5

Chapter 2

Background

This chapter provides the basic concepts, definitions and importants terms and

approaches used in subsequent chapters. Section 2.1 describe some common terms

related software testing which are required to understand our concept. Section 2.2

contains terms and definitions useful in understanding used in Mutation Testing.

Section 2.3 are used to describe the metaheuristic techniques.

2.1 Software Testing

Software testing is the process of analyzing a software item to detect the differ-

ences between existing and required conditions (that is, bugs) and to evaluate the

features of the software item [IEEE]. It is process in which each piece of code is

analyzed and executed to test that the piece of code produces the required output.

The goals of software testing are Bug discovery and prevention, Reliability and

quality assurance of the software and the main is the customer satisfaction [5].

The test configuration includes test cases, test data, test plans, test oracles

and testing tools. Testing of software is divided into various levels like, unit

testing, integration testing, system testing and the last acceptance testing. These

testing techniques have different objectives and they performed in various stages

in software testing life cycle (STLC). But in general, software testing is divided

into two broad categories, they are Functional Testing and Structural Testing.

7

2.1 Software Testing

2.1.1 Terminologies used

The terminologies used in our work are explained below. So, that it will be helpful

in clearly understand the concept of testing.

� Test Case: It is a case or circumstance where tester will decide if the Soft-

ware under Test satisfies the required condition. It consist of three variables

i.e. input, expected output and the real output.

� Test Data: The data entered in the actual software to test it are called

test data. Some of the data are used to test the correct functioning of the

software, some are used to test the boundary conditions and some data are

used to test the response of the software in case of any errors or faults.

� Test Suite: A combination of test cases. It may contains all the test cases

that are used to test the software.

� Error: It is a mistake that made by the developer knowingly or unknowingly

while developing the system. The error can be requirement analysis, design

or in coding phase. It may lead to one or more faults.

� Faults: An incorrect step, process, or data definition in a computer program

which causes the program to perform in an unintended or unanticipated

manner.

� Test Adequacy Criterion: An empirical technique to provide adequacy of

the test cases in testing software under test (SUT). This may be statement

coverage, branch coverage,etc [6]. De- Millo and Offutt [7] has rightly stated

that A test case set is adequate if it causes all the incorrect versions of the

program to fail to execute successfully. Adequacy requires that the test case

set detects faults rather than show correctness.

� Test Optimization: To find maximum errors and faults with least number

of test cases.

8

2.1 Software Testing

� Reliability Criterion: A test data is said to be reliable if it shows the

correctness of the program [21].

2.1.2 Black-Box Testing

It is the type of testing where simply input data is given to the system and the real

output is compared with expected output. If both the outputs are same then the

system is working properly or else some errors are there in the SUT. It is mainly

of two types Equivalence class Partitioning and Boundary value analysis.

2.1.3 White-Box Testing

It is also called Structural Testing. Rather than just testing the software with the

input and output, it considers the internal structure of the software. It mainly

considers the code of the SUT. It is divided into two broad categories Reliabil-

ity testing and Adequacy Testing. There exist several popular white-box testing

methodologies. Some of them are:

Statement Coverage

Here test cases are designed so that every statement in the program is atleast exe-

cuted once. Coverage can be measured as the ratio between number of statements

executed to total number of statement in the program.

Branch coverage

Test cases designed such that different branch conditions given true and false must

be executed atleast once, to determine the errors if any. Coverage can be measured

as the ratio between the number of branches executed to the total number of

branches.

Condition Coverage

Test cases designed so that each component of a composite conditional expressions

given true and false values should be executed atleast once. Its coverage can be

9

2.1 Software Testing

calculated as ratio between number of truth values taken by all basic conditions

to the double of number of basic conditions.

Path Coverage

Test cases are so designed that all linearly independent paths in the program are

executed atleast once. To understand the path coverage based testing, it is needed

to learn the control flow graph.

Control Flow Graph

The Control Flow Graph (CFG) is a flow graph that represents the control flow

of the program. Flow graph is a directed graph that constitute of some nodes

and directed edges. In CFG, the nodes represent the statement of the program

and the edges represent the control flow. CFG can be generated easily from any

structured program. It includes the basic flow for sequence, selection, iteration and

switch statements. We mostly draw CFG, to better understand the complexity of

the program. And it is easier to trace the the number of possible paths that the

program can follow.

Path: A path through a program is a node and edge sequence from the starting

node to a terminal node of CFG. There may be several terminal nodes for a

program.

Linearly Independent path: Any path through the program introduces atleast

one new edge not included in any other independent paths.It is easier to identify

linearly independent paths of simple program, but for complicated program it is

rather a very difficult task.

Cyclomatic Complexity Metric

It is a measurement metric developed by Thomas McCabe. It is also called Mc-

Cabe Cyclomatic Complexity or structural complexity. It measures the number

of linearly-independent paths of a structured program. Programs with lower cy-

clomatic complexity are easier to understand. It provides the upper bound of

the number of test cases that must be designed to satisfy that all statements are

10

2.1 Software Testing

executed once and conditions are atleast covered. There are mostly three ways to

calculate the cyclomatic complexity they are:

V (G) = E −N + 2 (2.1)

where V(G) is the Cyclomatic complexity metric.

E is the number of edges in the CFG.

N is the number of nodes in the CFG.

Or,

V (G) = Totalnumberofboundedareas + 1 (2.2)

The bounded areas are the region surrounded by nodes and edges in a CFG.

Or,

V (G) = Numberofconditionalstatements + 1 (2.3)

The number of conditional statements in the program. A simple example to

calculate the Cyclomatic Complexity. For that we must have a CFG. Let the

CFG be shown in figure 2.1.3.

0

1

2 3

4

5

Figure 2.1: A simple CFG

The Number of nodes in the CFG is 6, and number of edges in the CFG is 7.

Hence, Cyclomatic complexity V(G)=7-6+2=3.

11

2.2 Mutation Testing

2.2 Mutation Testing

It is also known as program mutation or mutation analysis. It is a method in test-

ing, where the software is modified slightly. It also assesses the quality of test input

data by examining whether the test data can distinguish a set of alternate pro-

grams (representing specific types of faults) from the program under test.Mutation

method is a fault-based testing strategy that measures the quality\adequacy of

testing by examining whether the test set (test input data) used in testing can

reveal certain types of faults.

The method used in mutation testing is, a simple syntactic deviations (mu-

tants) of the original program, representing typical programming errors is gener-

ated. Then the current test sets are tested. If a test set can distinguish a mutant

from the original program (i.e. produce different execution results), the mutant

is said to be killed. Otherwise, the mutant is called a live mutant. A mutant

may remain live because either it is equivalent to the original program (i.e. it

is functionally identical to the original program although syntactically different)

or the test set is inadequate to kill the mutant. If the mutant is an equivalent

mutant, it would always produce the same output, hence it cannot be killed. If

a test set is inadequate, it can be improved by adding test cases to kill the (non-

equivalent) live mutant. A test set that can kill all non-equivalent mutants is said

to be adequate.

Mutation testing was originally proposed by Richard Lipton as a student in

1971.

2.2.1 Mutation Operators

Mutation Operators are the operators that can be applied to the original pro-

gram to make it amutated one. Since we are considering object oriented pro-

gramming(OOP) now a days like Java and C++ etc, some of the OOP mutation

operators are:

� Access Modifiers

12

2.2 Mutation Testing

� Argument order change

� Super keyword deletion

� Arithmatic and Relational Operator change.

� Parameter Change

2.2.2 Types of Mutants

Primary Mutants

When the mutant is a single modification of the initial program using some of the

above mentioned operators, then it is called Primary mutant.

Eg:

Original LOC:

i f (a>b)

x=x+y ;

else

x=y ;

p r i n t f (”%d” , x) ;

Mutants can be:

M1: x=x-y;

M2: x=x÷y;

M3: x=x∗y;

M4: Printf(”%d”,y);

Secondary Mutants

When multiple levels of mutation are applied on the initial program, then this

class of mutation is called Secondary Mutants. In this case, it is quite difficult to

identify the initial program from of its mutation.

Eg:

Original LOC:

13

2.2 Mutation Testing

i f (a<b)

c=a ;

Mutants are:

M1: if(a≤b)

c=a;

M2: if(a+1≤b)

c=a;

M3: if(a==b)

c=a+1;

M4: if(a>b)

c=a-1;

2.2.3 Mutation Score

Mutation score(MS) is the ratio of the number of Dead Mutants over the number

of Non Equivalent Mutants. The goal is to have a sore of one 100%, which means

that all faults in all mutants have been detected; the more dead mutants the higher

the score will be. This technique is used for adequacy testing. The formulae for

mutation score is given below:

MS =
killedMutants

TotalMutants− EquivalentMutants
∗ 100% (2.4)

2.2.4 Mutation Testing Tools

The tools are automated version for Mutation Testing and generally determine

the Mutation Score(MS). Some of the Mutation Testing Tools are:

Jumble

Jumble is a Java application that mutates a Java class at the bytecode level and

runs its corresponding unit test to determine the number of killed mutants. If no

tests failed, the mutant lives.

After all the results have been tabulated, Jumble returns a mutation score

which is a percentage of all the generated mutants that have been killed. Addi-

14

2.3 Metaheuristic Techniques

tionally, your console output will tell you the details regarding each live mutant.

It is plug-in of eclipse and can be easily downloaded from the internet since it’s

free software.

MuJava

It is a mutation system for java programs. It automatically generates mutants

for both traditional mutation testing and class-level mutation testing. MuJava

was built by Ma, Offutt and Kwon [8]. It can be used as a plug-in in eclipse

environment and called as Mueclipse.

Javalanche

It is a framework for mutation testing of Java Programs. It addresses both the

problem of efficiency and equivalent mutants. It manipulates at the bytecode level.

Javalanche addresses the problem of equivalent mutants by assessing the impact

of mutations on dynamic invariants: The more invariants impacted by a mutation,

the more likely it is to be useful for improving test suites [9].

2.3 Metaheuristic Techniques

Metaheuristic techniques are optimization techniques that are used to find good

solutions [10]. Hence, they are search techniques. When it is not possible to find

exact optimal solutions within specified time limit and space complexity, these

algorithm helps to find sub optimal solutions within specified time limit. The

classification of metaheuristic techniques are shown in the figure 2.2. Of all the

metaheuristic techniques, the most commonly used one is Genetic algorithm.

2.3.1 Genetic Algorithm

It is an evolutionary approach, that depends on the process of natural selection

and genetics. It is invented in early 1970’s by John Holland. He is also known

as father of Genetic Algorithm. They represent the intelligent exploitation of

random search for optimization. The basic idea of genetic algorithm is laid by

Charles Darwin of ”Survival of the Fittest” and the idea is ”Those are fitter and

15

2.3 Metaheuristic Techniques

Figure 2.2: Different Classification of Metaheuristic Techniques

better survives and weaker ones are eliminated”. This idea is the basis of GA

technique.

GA is a robust technique, and better than the conventional Artificial Intelli-

gence (AI) techniques. GA is a reliable technique that can be used while a little

noise is present or there is slight changes in the input domain. Also they can be

applied to large search-spaces, multi modal and n-dimensional surface problems.

Some of the terms used in Genetic Algorithm are:

� Population Size: Number of candidate solutions in one generation. The

larger the population size, the more is the search intensive.

� Search Space: For solving the problem, we are looking into some solutions.

The space for all feasible solutions for the problem is called the search space

of the problem. Each solution or point in the search space is a feasible

solution and we have to find the best among them.

� Genetic operators: These are the operators that are used to select new

solutions, combine or alter the current solutions to get new solutions for

16

2.3 Metaheuristic Techniques

better result. The Genetic Operators are: selection, Crossover and Mutation.

They are discussed in the next section.

� Chromosomes: Also called genome, is a set of parameters which define a

solution. It can be represented by simple bit strings or some times with a

varied datastructures.

� Genes: In biology, gene represents a specific traits of the organism. Simi-

larly here it describes a specific characteristic of the solution and a combi-

nation of genes constitute a chromosome.

� Fitness Function: It is an objective Function. Its works is to evaluate

the performance of the given chromosome. It is problem specific and user

defined. In GA, the fittest members are propagated to the next generation

and weaker one are gradually discarded.

� Random Number: A random number is a number generated by a pro-

cess, whose outcome is unpredictable, and which cannot be subsequentially

reliably reproduced. It mostly generate within a range.

Selection

It is the technique used in GA to chose between the solutions according to their

fitness value. Two commonly used selection technique used are ’Roulette Wheel’

and ’Tournament’ selection. In Roulette wheel, each individual is assigned a slice

of a wheel. The size of the slice is proportional to the fitness of the individual.

Crossover

It is a genetic operator that is used to combine two chromosomes/solutions to

get better candidate solutions for next generation. It can be implemented bt

exchanging intenal structure or informations among two individuals to produce

two new children that contains information from both the parents. Mostly one

point crossover is used, but it is more suitable when string length is small.

17

2.3 Metaheuristic Techniques

Mutation

Mostly, the new solutions generated are trapped at local optima. To overcome

such problems, a single information or bit is changed in the solution in a random

way to get a new solution. It causes the child generation to be different from the

parent generation. But the occurence of mutation is very low.

2.3.2 Working of the Genetic Algorithm

The flow graph of Genetic Algorithm is given in the figure 2.3. The steps used in

Figure 2.3: Flow Graph of Genetic Algorithm

GA optimization process are broadly described below:

1. Randomly generate an initial population.

2. Then calculate the fitness value of each individual in the population using

Fitness Function.

3. Evaluate the individuals from the fitness values.

4. Check the condition satisfying the stopping criteria.

i. Select the best solutions from the population.

18

2.3 Metaheuristic Techniques

ii. Apply crossover to the solutions at random points.

iii. Apply mutation to the new solution according to mutation probability.

iv. Goto step 2.

5. Return the current generation of solutions.

2.3.3 Memtic Algorithm

It is a Hybrid Evolutionary Algorithm. This is the combination of two evolu-

tionary algorithms. Memtic Algorithm (MA) is the combination of a local search

optimization technique and a global search optimization technique. A local search

technique in combination with genetic algorithm forms Memetic Algorithm. The

local search algorithm we used is the Hill Climibing Algorithm.

The basis of MA is ”meme”. Meme is defined as a unit for carrying cul-

tural ideas, symbols or practises that can be transmitted from one to another [3].

Memtic Algorithm is characterized by two ideas.

Lamarkian Vs Baldwinian

Lamarkian: Traits acquired by an individual during its lifetime can be transmit-

ted to its offspring [3].

Eg: Replace individual with fitter neighbour.

Baldwinian: Traits acquired by an individual cannot be transmiited to its off-

spring.

E.g. Individuals receive fitness (but not genotype) of fitter neighbour.

Hill Climbing Algorithm

It belongs to the family of local search optimization technique. It is an iterative

algorithm that starts with random initial population, then finds better solution by

replacing the solution with its neighbour. In our case, by changing a single element

in the solution. This process repeats untill no better solution can be found. This

algorithm is divided into three types:

� Steepest Ascent Hill Climbing (SAHC)

19

2.4 Summary

� Next Ascent Hill Climbing (NAHC)

� Random Mutation Hill Climbing (RMHC)

In SAHC, systematically each bit is mutated from left to right untill no better

solutions are found.

In NAHC, systematically each bit is interchanged untill a fitter solution is

found. Then mutate the new string from left to right starting the interchange

after the bit where the better solution was found [11].

In RMHC,randomly a bit is changed in the solution to find better solutions.

Steps of Memtic Algorithm

-Generate a initial population

-While stopping condition not satisfied

-Evalute all the individuals in the population

-Select a subset of the individuals that should undergo individual improvement

program

For all individuals in the subset

-perform individual learning using meme with probability fil within a

time period til

-Proceed with Lamarkian or Baldwinian Learning

End For

End While

2.4 Summary

In this chapter, we have discussed some definitions and concepts that will be

used later in our approach and implementations. We have also described all the

techniques used in a detailed manner.

20

Chapter 3

Review of Related Work

This chapter presents an overview of the existing method to generate test data

using Evolutionary algorithms. First, we discuss the previous related work done by

researchers on the topic of test data generation using genetic algorithm and then

proceed to discuss the related work done for Test data generation using Hybrid

Evolutionary Algorithm.

3.1 Related work on Test Data Generation using

Genetic Algorithm

Alsmadi [12] generated test cases that provide good coverage for path coverage or

visits within the application. The idea of encoding the location of controls and

representing them in binary format allowed to test the overall sequence by the test

case generated. The goal is to generate ”new” test case each time. Another goal

is to make the fitness function to find an error. This approach generate unique

test sequences or scenarios until the errors are found.

Khamis et al. [13] developed a technique that combines the concept of span-

ning set with GA to automatically generate test data for spanning set coverage.

The technique applies the algorithm introduced by Marre and Bertolino to auto-

matically generate the spanning sets of program entities that satisfy a vast array

of control flow and data flow-based test coverage criteria. Then, it uses GA to au-

tomatically generate sets of test data to cover these spanning sets. The proposed

technique employed the concepts of spanning sets to set a bound to the number

22

3.1 Related work on Test Data Generation using Genetic Algorithm

of test cases. Also, this technique overcomes the problem of the redundant test

cases and guides the test case selection by concentrating only on the elements of

the spanning set.

Michael et al. [14] have extended the work of dynamic test data generation

by using function minimization method. They have used genetic algorithm to

minimize the fitness function. They have also examined the effect of program

complexity on test data generation process. They have suggested that satisfying

individual test requirement is harder in large programs than in small ones. More-

over, as program complexity increases, non random test generation techniques

become increasingly desirable. They have also mentioned that most of the de-

cisions are not covered when they contain a single Boolean variable, signifying

a condition that can be either TRUE or FALSE. The technique they have used

to define fitness function seems inadequate when the condition contains Boolean

variables or enumerated types. But the approach will be able to cover condi-

tions containing Boolean value and multiple paths as that are using the weighted

approach i.e. we are assigning weights to each path covered.

Srivastava et al. [15] demonstrated a technique for path testing using genetic

algorithm. It involves testing the critical paths, since it involves the looping struc-

ture of the program. It uses the weight of the path as the fitness function and

select parents based on the highest fitness value.

Dong et al. [16] used improved genetic algorithm by modifying the basic genetic

algorithm. The generated test cases by using the improved genetic algorithm. It

involves encoding and decoding method. Encoding method shows the solution

of the targeted problem with a particular string and code space of the genetic

algorithm. Decoding process is the inverse of encoding process. The fitness func-

tion depends on the branch functions of the instrumented program. It has proved

that the improved genetic algorithm is superior to the basic genetic algorithm on

effectiveness and efficiency of automatic testcase generation.

Xibo et al. [17] makes some variation in the basic genetic algorithm and uses the

fitness scaling algorithm. They statically analyze the tested program, analyze the

23

3.1 Related work on Test Data Generation using Genetic Algorithm

variables affecting the execution path. They generated the fitness values derived

from the tested program. Then apply the genetic operators of selection, crossover

and mutation and map the generated string to a test data and repeat the steps

to generate the test data until it can cover the designated path or branch which

need to be tested. This approach can avoid certain precocius phenomenon upto

certain extent and has higher rate of convergence.

Mohapatra et al. [18] used genetic algorithm to optimize the test cases that

are generated using the category-partition and test harness patterns. Category

partition pattern is used for unit testing. Test Harness pattern is used to provide

automation by passing some test cases from the driver. GA is used to cover all

the paths of a graph-equivalent of Unit Under Test (UUT). The test set passed

are provided to GA. Then it compels the test set to cover all the paths. Optimal

test suites are derived by using the method of sampling statistics. It is efficient

approach of optimization using both genetic algorithm and sampling strategy.

Ghiduk et al. [19] discussed an automatic test data generation technique. It

generate test data to satisfy the data-flow coverage criteria using genetic algo-

rithm. They defined a new fitness function to evaluate the test data. The new

fitness function is multi-objective and depends on the relations between different

nodes. The advantage of this technique is to reduce test suite and achieve effec-

tive coverage, and reduce iterations to satisfy data-flow criteria. It is too difficult

to generate test cases for problems having loops, arrays and pointers using this

method.

Pargus et al. [20] implemented a tool called TGen that generates test data

using genetic algorithm. The tool uses the process of parallel processing so that

the performance of search improves. In this method in place of using control flow

graph, they used control dependence graph. Control dependence graph based on

control flow graph and post dominance relation. But currently the prototype of

TGen is implemented for only statement and branch coverage.

Malhotra et al. [21] proposed a test generation technique which give more em-

phasis on adequacy based testing rather than reliability based testing. Adequacy

24

3.2 Test Data Generation using Hybrid algorithms

based testing criteria uses the concept of mutation analysis to check the adequacy

of each test data. This approach provides near global optimum solutions. And

save time and effort as in traditional methods more time and effort are required

to test the adequacy of the test data after testing it.

3.2 Test Data Generation using Hybrid algorithms

Harman et al. [22] presented an empirical study on local search, global search and

hybrid algorithm. They used genetic algorithm for global search, and compared

both the results of local and global search. Also defined the working of memtic

algorithm which is hybrid algorithm. They combined evolutionary testing with

hill climbing to find the required results. They claimed that the results are better

than only using a single search based technique. They used Royal road and Non-

royal road fitness functions. But there is a threat to this as there is no automated

decision procedure exits for finding royal roads.

Acruri et al. [23] used memtic algorithm to generate test data for object ori-

ented software. They have focussed on container classes as they are used in every

type of software. The fitness function depends on test sequence, the quality of the

test sequence and branch distance. For local search they have used Hill Climb-

ing and for global search they have used genetic algorithm. They also compared

individual results of hill climbing, genetic algorithm and memtic algorithm. And

found out that memtic algorithm gives better result than hill climbing and genetic

algorithm.

Keyvanpour et al. [24] developed the technique in which they used a local

search technique, Hill climbing algorithm in each generation of genetic algorithm.

For fitness function they have used the average of three factors i.e likelihood, close

to boundary and branch coverage and analyze the results. They also worked on

a hybrid method called GA-NN i.e combination of genetic algorithm and neural

network. They used neural network as an estimator for the fitness of test suites.

Rajkumari et al. [25] proposed a technique to derive test data automatically

using evolutionary testing. They have used various machine learning techniques

25

3.2 Test Data Generation using Hybrid algorithms

to filter the optimal data values from the generated test data. The evolutionary

testing uses both local search and global search method. Local search uses the

fitness function to evaluate possible moves within the search space from a single

current solution point until a local optimal is reached. They fetches the branch

information. Test cases are then identified basing upon the branching information.

Then algorithm applied to derive new test data.

Mala et al. [26] compared between three algorithm. The first one is simple

genetic algorithm. The second algorithm is bacteriologic algortihm. This algo-

rithm is a improved version of simple genetic algorithm. This algorithm has only

two operations rather than three. The first one is selection and the second one is

mutation. It doesnot have crossover operation. But it has memory capacity, so

the test data are selected not only among the current population but also among

its ancestors. The third algorithm is the memtic algorithm, which has two sub

functions i.e RemoveTop and LocalBest techniques. RemoveTop is the function

that defined as the offsprings having higher mutation score can survive only. Lo-

calBest can be understood as if the offspring having highest fitness as chosen as

the local optimum and then it is compared with the parents. If the parents have

lower fitness than the offspring then the parents are replaced with the offsprings.

26

Chapter 4

Genetic Algorithm Based
Approach for Test Data
Generation

Testing involves two most important activities, they are test data generation and

test execution. Between them, the most important is test data generation. While

we executing the tests on the software under Test (SUT), we gives test data as

input and get the expected output from the system. If the output is not what we

expected then the system fails. This type of testing is mostly done for Black Box

Testing, where the tester does not care about the underlying codes in the system.

But in white box testing, the tester have to test the underlying codes by giving

appropriate values. White box testing consists of many strategies like statement

coverage, branch coverage, decision coverage and path coverage. Path coverage

is most critical approach used for testing that can detect upto 65 percentage of

errors in a software.

In this chapter, we have developed approaches to generate test data for path

coverage based testing using Genetic Algorithm. We have used Control Flow

graph(CFG) and cyclomatic complexity of the example program to find out the

number of feasible paths present in the program and compared it with the actual

number of paths covered by our approach using Genetic Algorithm.

We first introduce some basic concepts and definitions that would be helpful in

understanding our approach better. Then we moved towards our approach used

and then we show the results we found.

28

4.1 Basic Concepts and Definitions

4.1 Basic Concepts and Definitions

In this section we discussed the basic concepts and terminologies used to better

understand our approach.

4.1.1 Control Flow Graph

The Control Flow Graph(CFG) [27] is a flow graph that is used for graphical

representation of control structure of any program. It shows the structure of

flow or the path followed by the program while executing.A directed graph(V,E)

consists of set of vertices V and a set of directed edges E . A CFG consists of

a start node, end nodes, connecting edges, decision nodes, junction nodes, and

bounded regions.

Node: It represents one or more procedural statements of the program. In the

graph, they are represented by oval shape. They are either numbered or labelled.

Edges or links: The edges in the CFG are directed. So, they are denoted by

arrow in the graph. It starts from a node and ends in another, which represent

the control flow from one node to another.

Decision Node: It is a node with more than one arrow leaving from it.

Junction Node: A node with more than one arrow entering into it.

Region The area bounded by some nodes and edges.

4.1.2 Path Testing Terminologies

The terminologies used for path testing are:

Path: A path through a program is a sequence of instructions or statements

covered during its execution. In the graph it starts from the start node and

terminates with the end node with in between other nodes and edges.

Independent Path: It is a path in which there must be atleast a new state-

ment or node or edge is covered which is not covered by any other previous paths.

Path Testing: It is the type of testing in which the tester will examine that

the given input covers the expected path in the program or not.

29

4.2 Genetic Algorithm

4.1.3 Cyclomatic Complexity

McCabe [27] is the one proposed the concept of measuring the logical complexity of

a program by considering its control flow graph. He stated that the complexity of

a program can be calculated by considering the number of paths in the control flow

graoh of the program. In his work, he only considered the independent paths of the

program. The following equation is given for computing cyclomatic complexity.

V (G) = e− n + 2 (4.1)

Where,

V(G) = Number of independent paths in a CFG

e = Number of edges present in the graph

n = Number of nodes of the graph

4.1.4 Mutation Testing

Mutation Testing is the process of mutating some segments code (changing it or

putting some error) and then, testing this mutated version with same data [5]. If

the test data is able to detect the mutations in the code, then the test data is quite

good, otherwise we must focus on to improve the quality of the test data(may be

adding some more test data or modifying the test data). It helps the user to

iteratively strengthen the quality of test data.

Mutation Score

The percentage of non-equivalent mutants killed by a set of test cases represents

Mutation Score(MS) [28]. It is an effective measure for test cases. It is represented

in percentage.

4.2 Genetic Algorithm

Genetic Algorithms are mainly metaheuristic search algorithms inspired from na-

ture [29]. It is based on the process of natural selection and genetics. The al-

gorithm accepts chromosomes as possible set of solutions and apply selection,

30

4.2 Genetic Algorithm

mutation and crossover to choose the best solution among them [29]. Applying

GA on the problem mostly depends on the representation of chromosomes and

then evaluating fitness function. The simplicity of GA depends on its competence

to discover valid solutions to any problem having a large solution space.

The population size is called as the number of candidate solutions in one gen-

eration. In GA, the larger the population size , the larger the solution space and

more is the search. The main aim of GA is to reduce any problem into an spe-

cific form called fitness function. Hence sometimes they are called as function

optimizer. The main objective is to optimize this function.

The main principle in nature is the survival of the fittest. Since this algorithm

is inspired from nature hence its principle is that those solution which have highest

fitness value are selected and solutions having comparatively lower fitness value

are gradually neglected from the solution.

Genetic Algorithm evaluates all possible set of solutions. First an initial popu-

lation having a set of individuals is generated by pseudo random generator. Here

each individual represents a possible solution. This set of initial population in

the solution space is called initial solution. In the next phase each member is

evaluated for its fitness value. This step is exclusively problem specific. The next

step is to applying genetic operators.

The main aim of using genetic algorithm is to create new solutions from current

solution using operators. The new population are evaluated till the termination

condition for each generation.

4.2.1 Selection

It is a procedure where individuals are chosen according to their fitness value.

During each iteration, a portion of the solutions from the existing population are

chosen to generate the new generation of solutions. They are chosen by a fitness

based process, where more fitter solutions are chosen over the others. Some of the

selection based approaches are Roulette wheel selection, Tournament Selection,

Stochastic Remainder selection.

31

4.3 Implementation

4.2.2 Crossover

In crossover, genes are swapped between two individuals to generate better indi-

viduals. This means two parent individuals are chosen. Then the gene pool of

these parents is exchanged or sequence of bits in the string is swapped between

each other so that new fitter individuals are reproduced.

4.2.3 Mutation

Here a new information is added in a random way to the genetic search process and

ultimately helps to avoid getting trapped in the local optima. It alters the genes

in small way to produce new fitter individual. It is applied to bring diversity in

the population. It operates in the bit level. When bits are copied from parents to

child, there is possibility that some bits are mutated. This probability of mutation

is very small and known as mutation probability, pm.

Normally GAs are used in the following conditions,

1. The search space is large, or poorly understood or complex.

2. Domain Knowledge is not efficient to narrow the search space.

3. Existing method is not effective to give better results.

4.3 Implementation

Here, we have described our approach in a detailed manner. We have selected

Control Flow Graph(CFG) as the intermediate representation of our programs.

For testing we are using coverage based criterion. We have considered path based

coverage testing [5] as it render the best code coverage. Here the basic path

set provides the number of test cases to be covered thus making sure for full

coverage. At same time we have used used cyclomatic complexity for basic paths

and comparing our both results. We have used genetic algorithm to generate test

data and it generate test data with 100 % coverage of all paths.

In our other example, we have considered mutation score as our fitness function.

So that, we will find the test data with maximum adequacy criteria.

32

4.3 Implementation

4.3.1 Steps in our Approach

1. Write a program for experimentation.

2. Instrument the lines of code in the program.

3. Generate the Control Flow Graph of the program.

4. Find all the basic path sequences in the program.

5. Use genetic algorithm to generate test data for the program.

6. Stop the execution when stopping condition satifies.

4.3.2 Explanation to our approach

The first step states to write a program for testing. The program written in java.

Accordingly we instrument the lines of code of the program. From the instru-

mented program generate the CFG. Each node in the CFG represents a statement

in the program and the edges represent the control flow between each node ac-

cording to the program.

From the CFG, we can easily find the number of basic independent paths of

the program. Any given test data should follow a path among all these paths.

We have assigned weight to each edge of the graph. The normal edge is assigned

full weight. The edges after the decision node are given weightage according to 80-

20 rule. The more important outgoing edge is given 80% of the weight of incoming

edge and the other edge is given 20% of the weight. If two edges converges at a

node, then the Outgoing edge must contain the sum of weights of both the edges.

We applied genetic algorithm to find more optimized test data. For genetic

algorithm, the fitness function is chosen according to the problem specification.

We continue to implement untill the stopping condition satisfied.

4.3.3 Working of the algorithm

For ease of understanding we have considered a rather easily understandable pro-

gram to find the greatest common divisor of two numbers. We have considered

33

4.3 Implementation

this program because it is small, easy to understand and we can show the loop

structure in the program and can test it too. The Code of the following program

is shown below in the figure 4.1:

Figure 4.1: GCD program for two
numbers

Figure 4.2: Instrumented GCD pro-
gram

The control flow graph for the following program is given by:

The basic independent paths we found out from the cfg are:

1. path 1: 0-1-5-6-10-11-12

2. path 2: 0-1-5-6-7-8-9-6-10-11-12

3. path 3: 0-1-2-3-4-5-6-10-11-12

4. path 4: 0-1-2-3-4-5-6-7-8-9-6-10-11-12

These are the simple paths, but this program may have more paths because of the

loop structure.

4.3.4 Applying Genetic Algorithm

The steps involving GA is as follows:

1. Randomly generate initial population based of potential solutions.

34

4.3 Implementation

0

1

2

3

4

5
6

7

8

9

10

11

12

10

8

2
8

8

8

10

8

2

8

8

8

10

10

Figure 4.3: Control Flow Graph of the above program

2. Evaluate each solution using fitness function.

3. Check whether the solutions are satisfying the the stopping conditions.

� Select two parents from the solution based upon there fitness function.

� Apply double crossover on the parents to produce new offsprings.

� Apply mutation on the solutions based on a mutation probability.

� Goto step 2.

4. If satisfied, then goto next step.

5. Exit.

35

4.3 Implementation

Here we have taken commonly used selection method that is Roulette-Wheel Se-

lection method.

4.3.5 Genetic Operators

Fitness Function

Fitness Function is the function that is used to evaluate the solutions and helps

to choose the parents. It is problem specific. For our problem, since we have

considered the paths, so the fitness function will be:

f(x) =
n∑

i=0

Wi (4.2)

or,

f(x) = MS (4.3)

where, f(x) is the fitness function,

Wi is the weight assigned to each edge in the path followed.

MS is the mutation score.

Crossover

Rather that applying single point crossover, we have applied two point crossover.

As it gives more variation to the children from parents and it does not stuck in

the local optima. We have selected two parents according to their fitness, then

we allowed the parents to interchange substrings information at two points and

produce two new values or children. The figure 4.3 shows the double crossover

method: A random number r is generated for each parent selected within the

Figure 4.4: Double Crossover at position 2 and 6

range [0,1]. The crossover happened according to crossover probability pc. If r <

pc, then parents are selected for crossover.

36

4.4 Experiment and Results

Mutation

It is performed on a bit by bit basis. Every bit has an equal chance to mutate.

Mutation occurs according to mutation probability pm. If r < pm, then we can

change randomly any bit in the parent to generate new offspring. Mostly mutation

probability is as low as 0.2. The figure 4.4 shows mutation done to the string:

Figure 4.5: Mutation done at position 5

4.4 Experiment and Results

To implementation our approach, we have considered simple genetic algorithm. As

we are testing for path coverage in white box testing approach, we renamed our

method as Path Testing Using Simple Genetic Algorithm (PTUSGA). We have

simulated our approach using Java, as the programming language.

4.4.1 Assumptions

The following are the assumptions made for our approach.

� Each chromosome length is represented by n×p bits, where n is the number

of bits and p is number of parameters.

� Range of Random Number is between [0,1].

� Crossover Probability pc, 0.8.

� Mutation Probability pm, 0.2.

� Initial population size is 4.

37

4.4 Experiment and Results

4.4.2 Results

Accordingly, an initial set of solution is provided to our method. The stopping

condition be either it continues to produce solutions according to the number

of generation given or if the fitness values of 3 or more solutions are same in a

generation, then it stops. The table 4.1 shows the initial test data:

We have given the number of generation as 10. But since it satifies the other

Table 4.1: Initial population

Test Data Fitness Value Random No.

(12,4) 44 0.256

(4,5) 106 0.125

(81,9) 44 0.545

(120,20) 44 0.654

stopping condition, it stops at the 6th generation. Due to space constraint, we are

showing the result of the last generation i.e. that 6th generation.

Given below are the snapshot of our results. The figure 4.7 shows the fitness

Table 4.2: Population at 6th Generation

Test Data Fitness Value Random No.

(80,21) 140 0.124

(80,21) 140 0.212

(80,21) 140 0.365

(80,21) 140 0.154

value distribution in a graph representation in the range 1 to 15.

Since, the above method does not checks the adequacy criterion, so we have

considered the next method by taking mutation score (MS) as the fitness func-

38

4.4 Experiment and Results

Figure 4.6: Output of our approach

Figure 4.7: Distribution of fitness function within the range 1-15

39

4.4 Experiment and Results

tion. We have found out the mutation score by using the mutation testing tool

”MuJava”. Here, it considers both path and mutation score. The steps are all

same only in place of weight of the path, we have considered MS as the fitness

function. The initial population is shown in below table 4.3: This method stops

Table 4.3: Initial population using MS as fitness function

Test Data Fitness Value Random No.

(12,4) 28.0 0.256

(4,5) 49.0 0.125

(81,9) 27.0 0.545

(120,20) 28.0 0.654

at the 4th generation due to stopping criteria. The result of the 4th generation is

given in the table 4.4. This method achieves adequate test data in comparision

Table 4.4: 4th generation population using MS as fitness function

Test Data Fitness Value Random No.

(4,5) 49.0 0.116

(68,5) 40.0 0.248

(4,5) 40.0 0.614

(4,5) 40.0 0.239

to the 1st method. And achieves result in less generation than the above method.

The screen shot of the result is given in the figure 4.8. The Mutation Score (MS)

can be found by the MuJava tool i.e. plugged in with eclipse called Mueclipse.

4.9.

40

4.5 Case Study

Figure 4.8: Result of the 2nd method

Figure 4.9: Mutation Score result using Muclipse

4.5 Case Study

Since Banking software is a commercial software and one of the most used soft-

ware. Hence, we have taken the withdraw module of Banking Software for the

case study. The program of the withdraw module is given in the figure 4.10:

Figure 4.10: The program of withdraw module

The corresponding instrumented program is given in the figure 4.11:

41

4.5 Case Study

Figure 4.11: Instrumented program of the withdrawl module

The control flow graph for the following program is given in the figure 4.12:

0

1

2

3

4 5

6

7

8

9

10

11

12

13

10

8

2

8

2

6

2

6

4
2

4

4

2

2

2

2

Figure 4.12: Control Flow Graph of the above program

42

4.6 Comparision to Related work

The paths in the CFG figure are:

Path 1: 0-1-2-4-13

Path 2: 0-1-2-3-5-6-7-8-13

Path 3: 0-1-2-3-5-6-9-10-13

Path 4: 0-1-11-12-13

Now, we randomly generate an initial population i.e shown in the table 4.5:

Table 4.5: Initial population of Withdraw module

Test Data Fitness Value Random No.

(1000,500) 16 0.256

(500,50) 30 0.666

(800,900) 44 0.278

(1000,600) 50 0.446

The last generation i.e. the 10th generation is given in the following table 4.6:

Table 4.6: Population at 10th Generation

Test Data Fitness Value Random No.

(1000,1042) 16 0.123

(1000,1039) 16 0.36

(1000,600) 44 0.85

(1000,500) 50 0.456

4.6 Comparision to Related work

Panda [30] had generated test data using path coverage as the fitness function,

Roulette wheel method for selection and a single crossover. But in our 1st method

we have taken double crossover to bring more variation to the test data. And in

43

4.7 Conclusion

the second method in place of path coverage as the fitness function we have taken

mutation score as the fitness function to find more adequate test data.

Altenberg [31]make a comparison between Hamming-distance based FDC(fitness

distance correlation analysis), crossover-distance based FDC analysis, evolvabil-

ity analysis, and other methods of predicting GA performance. He stated that

the fitness function is found to be easily optimized by a GA using single-point

crossover and roulette wheel selection, and the efficiency of the GA as measured

by the proportion of the search space sampled during the search before finding the

(global optimum) increases with the size of the search space.

B.F Jones et al. [32] stated that the Hamming distance is effective in comparing

patterns rather than values. This fitness function is therefore more suitable for

predicates which rely on characters or of complex data structures (e.g. arrays or

records) rather than primitive data types as integers and floats.

4.7 Conclusion

Here we have used simple genetic algorithm to find a better solution for path

coverage based testing . But since this method is reliable but not adequate we

have used another method where in case of taking the fitness function as the

weightage of each path we have taken mutation score as the fitness function. So

that the test data that will be generated are also adequate in addition to reliable.

Also to get more variation, we have used double point crossover over single point

crossover. We have generates the test data using these methods to get better

results.

44

Chapter 5

Test Data generation Using
Hybrid GA

We have used another algorithm that is a hybrid version of GA to generate test

data. This method is also called as Hybrid GA or also known as Memtic Algorithm.

Some of the basic concepts related to this topic are defined next sections. We have

used this technique because after some point of time the test data we generate

are stuck in the local optimum by using only GA. Hence we have used Hybrid

Evolutionary algorithm called Memtic algorithm to get better solutions and does

not stuck in either in local global optimum.

5.1 Basic Concepts and Terminologies

In this section some basic concepts and terminology used in our proposed work

are given.

5.1.1 Search Technique

The search technique used in this algorithm are both global and loacl search as it

does not want to stuck after getting some particularly optimum solution.

Local Search

It is a metaheuristic optimization technique that is used for computationally hard

problems. It is mainly used when we need to maximize a criterion among the can-

didate solution. It moves from one solution to another neighbouring solution in

46

5.1 Basic Concepts and Terminologies

the search space by applying small changes to the current solution until an optimal

solution is found out. Some of the techniques used for local search are Random

algorithm, Hill Climbing, Simulated Annealing, Tabu search. Local search algo-

rithms are characterized by keeping a single configuration at a time [33]. Hill

Climbing Algorithm: It is an iterative search Algorithm. This algortihm itera-

tively produces results until no further improvement in the solutions can be found

out. It belongs to the family of Local search optimization algorithm.

It is of three types:

� Random Mutation Hill Climbing(RMHC)

� Steepest Ascent Hill Climbing(SAHC)

� Next Ascent Hill Climbing(NAHC)

Global Search

It is characterised by availability of several configurations at a particular time.

The new population created by this method can be recombination and mutation

of the previous populations and it doesnot stick to the local optimums.

5.1.2 Objective Function

In this algorithm rather than fitness function, it is called as the Objective Function.

It deciding factor that decides either the new population generated from current

population having more likelihood to be chosen for the next generation. Here we

have taken Mutation score as the objective function because it satisfy both the

adequacy criterion and the path coverage criteria.

5.1.3 Selection

The solutions in the solution space having better fitness value than others are

selected as the parents.

47

5.1 Basic Concepts and Terminologies

5.1.4 Recombination

For generating new population, we have used recombination operators to generate

new population from the current one. The crossover operator is used for recombi-

nation. We have used uniform crossover to generate new population. Crossover is

mainly used by global search algorithms, that uses the best features of both the

parents.

5.1.5 Mutation

The parents are selected based upon their fitness value. Here, a single bit of

information in the parent are changed to get a new solution that is new but does

not vary much from the parent. It is used for both local search and global search.

5.1.6 Termination Criteria

The technique could terminate after certain number of generations, sfter comple-

tion of given time.

5.1.7 Steps of Memtic Algorithm

-Generate a initial population

While stopping condition not satisfied

-Evalute all the individuals in the population

-Select a subset of the individuals that should

undergo individual improvement program

For all individuals in the subset

-perform individual learning using meme with probability

fil within a timeperiod til

-Proceed with Lamarkian or Baldwinian Learning

End For

End While

48

5.2 Proposed Methodology

5.2 Proposed Methodology

For our proposed approach we have considered the memtic algorithm, which con-

sists of both local search and global search techniques. Hence it is a hybrid evo-

lutionary algorithm. We have used Hill Climbing algorithm for local search and

Genetic algorithm for Global search. The steps of our approach are described in

the section 5.2.1.

5.2.1 Steps for our approach

The following are the steps followed in our approach.

1. Generate an initial random population.

2. Evaluate the each candidate solution in the population.

3. Select the parents based on their fitness value.

4. Begin the local search algorithm.

5. if(local optimum is achieved)

Go for Global search.

6. else

continue with local search.

Since we are using Random Mutation Hill Climbing Algorithm for local search.

The steps for local search is given below:

1. Select the parents according to the fitness value.

2. Mutate the parents randomly.

3. Evaluate the offsprings.

4. Compare children eith the parents.

49

5.3 Implementation

5. if (fp < fc)

Generate new population with respect to offsprings.

Goto step 1.

6. else

Again mutate the parents randomly.

Goto step 3.

We are using genetic algorithm for global search technique. The steps followed in

that approach are given below:

1. Select the parents according to the fitness value.

2. Apply crossover operator on selected parents.

3. Apply mutation operator to get more variation in the offspring.

4. Evaluate the new Generated children.

5. Compare new children with the parents.

6. If(fp < fc)

Generate new population with children.

7. else

Donot change the population.

5.3 Implementation

For ease to relate with previous topics we have taken the same example of finding

gcd of two numbers program. We have used this example as this program gives

a clear view of sequential paths and loop paths. As test data generated should

satisfy the adequacy criterion, we used mutation score as the Objective or fitness

function. Hence the test data we generate satisfy both the basis path testing and

adequacy criterion.

50

5.4 Results

We have used Mueclipse to find the MS of each test data. The parents are

selected on the basis of the fitness value. The candidate solutions having maximum

fitness value are chosen as parents. The reproducion is done by using two operators

i.e. crossover and mutation. Crossover is only used in global search technique.

We have used 2 point crossover in place on single point as it gives more variation

to our candidate solutions. Mutation operator is used in both Local and Global

search tehniques. In Local search technique it used to find the neighbouring nodes

or solutions to the current solution and in global search it helps to generate a more

varied candidate solution to already crossovered solutions.

5.4 Results

We have simulated our approach using Java programming language. And Muclipse

as the tool. The test cases or paths that can be covered by our test data are:

1. path 1: 0-1-5-6-10-11-12

2. path 2: 0-1-5-6-7-8-9-6-10-11-12

3. path 3: 0-1-2-3-4-5-6-10-11-12

4. path 4: 0-1-2-3-4-5-6-7-8-9-6-10-11-12

These paths are derived from the CFG on the figure 4.3. The initial test data

generated randomly are: table 5.1 shows the initial test data.

For the next generation the algorithm applied local search technique on the

parents chosen. The next generation of test data are shown in table 5.2. For the

next generation we have applied local search and found out the population shown

in table 5.3. Since it stuck in local optimum we then applied global search for it.

The next generation is shown in 5.4. Similarly we found out the 10 generation of

population using local search and global search. For the constraint in space we

can not show all the 10 generation of population.

51

5.5 Comparision with related work

Table 5.1: Initial population

Test Data Fitness Value Path covered

(12,4) 28 path 1

(4,5) 49 path 2

(81,9) 27 path 1

(120,20) 28 path 1

Table 5.2: 2nd generation population

Test Data Fitness Value Path covered

(68,5) 40 path 2

(56,20) 56 path 2

(4,5) 49 path 2

(120,20) 28 path 1

Figure 5.1: Screen shot of result of our approach

5.5 Comparision with related work

Rajkumari et al. [25] have used various machine learning techniques to filter the

optimal data values from the generated test data. The evolutionary testing uses

both local search and global search method. Test cases are then identified basing

upon the branching information. They have used branch coverage criteria to find

the test cases. While in our method, we have used path coverage for finding test

data and MS as the fitness value.

52

5.6 Conclusion

Table 5.3: 3rd generation population

Test Data Fitness Value Path covered

(56,20) 56 path 2

(4,5) 49 path 2

(120,20) 28 path 1

(68,5) 40 path 2

Table 5.4: 4th generation population

Test Data Fitness Value Path covered

(32,21) 46 path 2

(60,4) 27 path 1

(56,20) 56 path 2

(4,5) 49 path 2

Mala et al. [26] used two functions RemoveTop and LocalBest techniques to

find the best test data. But we have used Hill climbing algorithm and Genetic

algorithm to find the best test data.

5.6 Conclusion

Here we have used the Hybrid evolutionary algorithm to generate the test data.

The hybrid evolutionary algorithm we used is also called memtic algorithm. It

includes both local search and global search techniques. The local search algorithm

we used is the Hill climbing algorithm and for global search we have used Genetic

algorithm. In this technique we found out better test data generated than the

previous method used.

53

Chapter 6

Conclusion

The primary aim of our work was to generate adequate test data for structured

programs and cover all existing paths in any program. In the following, we sum-

marize the important contributions of our work. Finally, some suggestions for

future work is given.

6.1 Contribution

In this section, we summarize the important contributions of our work. There are

three important contributions, Automated generation of adequate test data showing

path coverage using Genetic Algorithm and Automated generation of adequate test

data using Memtic Algorithm.

6.1.1 Automated Test Data generation showing path cov-
erage of the structured program using Genetic Al-
gorithm

We have developed the algorithm to generate test data using Genetic Algorithm.

In the first method, instrumented version of the program is taken from which

control flow graph of the program is generated. From CFG, we have found the

number of path the program can follow if given an input data. We assigned weight

to each edge in the graph. If two edges originated from a node i.e. decision node,

the weight is divided between the two edges according to 80-20 rule. And if two

edges converges at a given node, the next edge outcoming from that node contains

the sum of weight of both incoming nodes. We apply genetic algorithm to generate

55

6.1 Contribution

test data accordingly. First, we generate an initial population. Evaluate the each

solution in the population. Select the parents having better fitness value. Then, we

apply crossover and mutation to generate new population. This process continues

till stopping condition not satisfied. In the second method, we require adequate

test data rather than reliable test data. For that, we have taken Mutation Score of

test data as the fitness value. And repeat the same method to find the test data.

To find the mutation score of test data we have used MuJava tool. Implementation

of GA is easy but it has slow convergence rate and can trapped into local optimum.

6.1.2 Automated Test Data generation of the structured
program using Hybrid Evolutionary Algorithm

Hybrid Evolutionary Algorithm means combination of two or more Evolutionary

Algorithms. Here we have used Memtic Algorithm for our approach. Memetic

Algorithm is A Hybrid Genetic Algorithm approach. It combines a local search

algorithm with Genetic Algorithm. We have chosen Hill Climbing algorithm for

Local search optimization. In this method we first applied local search algorithm to

find the children. If the Children fitness is less than the parents then we applied

GA for variation in the children and it does not only finds the local optimum

solution. We have used Mutation Score as the fitness value.

For future work, we can combine other local search optimization algorithm

with Genetic Algorithm. The local search algorithm can be Simulated Annealing

or Tabu Search and compare and effectiveness with our proposed techniques.

Another extension will be to study combination of other global optimization

algorithm like Partcle Swarm Optimization with local search algorithm to generate

adequate test data.

56

Dissemination of Work

1. Swagatika Swain and Durga P. Mohapatra, Genetic Algorithm Based Ap-

proach for Adequate Test Data Generation, In Proceedings of International

Conference on Advanced Computing, Networking and Informatics., Raipur,

India, June-2013. (Accepted for Presentation).

57

Bibliography

[1] J. Hassl A. Mette. A guide to Advanced Software Testing. Artech House

Publications, 2008.

[2] R. Moheb Girgis. Automatic test data generation for data flow testing using

a genetic algorithm. Journal of Universal Computer Science, 11(6):898–915,

2005.

[3] Natalio Krasnogor, Alberto Aragón, and Joaquin Pacheco. Memetic Algo-

rithms. Springer, 2006.

[4] Pablo Moscato and Carlos Cotta. A gentle introduction to Memtic Algorithms.

Springer, 2003.

[5] N. Chauhan. Software Testing Principles and Practises. Oxford University

Press,India, 2010.

[6] S. London J.R. Horgan and M.R. Lyu. Achieving software quality with testing

coverage measures. Computer, 27(9):60–69, 1994.

[7] A.J. Offutt R. DeMillo. Constraint-based automatic test data generation.

IEEE Trans. on Software Engineering, 17(9):900–910, 1991.

[8] J. Offutt Y.S. Ma and Y.R. Kwon. Mujava : An automated class mutation

system. Journal of Software Testing, Verification and Reliability, 15(2):97–

133, jun 2005.

[9] D. Schuler and . Zeller. Javalanche: Efficient mutation testing for java. In

ESEC/FSE ’09: Proceedings of the 7th joint meeting of the European Software

58

Bibliography

Engineering Conference and the ACM SIGSOFT International Symposium on

Foundations of Software Engineering, pages 297–298, August 2009.

[10] L. Maria Gambardella W.J. Gutjahr L. Bianchi, M. Dorigo. A survey on

metaheuristics for stochastic combinatorial optimization. Natural Computing,

8(2):239–287, June 2009.

[11] Melanie Mitchell and Stephanie Forrest. B. 2.7. 5: Fitness landscapes: Royal

road functions. Handbook of evolutionary computation, 1997.

[12] Izzat Alsmadi. Using genetic algorithms for test case generation and selection

optimization. In 23rd Canadian Conference on Electrical and Computer En-

gineering (CCECE), 2010 23rd Canadian Conference on, pages 1–4. IEEE,

2010.

[13] Abdelaziz M Khamis, Moheb R Girgis, and Ahmed S Ghiduk. Automatic

software test data generation for spanning sets coverage using genetic algo-

rithms. Computing and Informatics, 26(4):383–401, 2012.

[14] Christoph C. Michael, Gary McGraw, and Michael A. Schatz. Generating

Software Test Data by Evolution, volume 27. Dec 2001.

[15] Praveen Ranjan Srivastava and Tai-hoon Kim. Application of genetic algo-

rithm in software testing. International Journal of software Engineering and

its Applications, 3(4):87–96, 2009.

[16] Yuehua Dong and Jidong Peng. Automatic generation of software test cases

based on improved genetic algorithm. In Multimedia Technology (ICMT),

2011 International Conference on, pages 227–230. IEEE, 2011.

[17] Wang Xibo and Su Na. Automatic test data generation for path testing using

genetic algorithms. In Measuring Technology and Mechatronics Automation

(ICMTMA), 2011 Third International Conference on, volume 1, pages 596–

599. IEEE, 2011.

59

Bibliography

[18] Debasis Mohapatra, Prachet Bhuyan, and Durga P Mohapatra. Automated

test case generation and its optimization for path testing using genetic al-

gorithm and sampling. In Information Engineering, 2009. ICIE’09. WASE

International Conference on, volume 1, pages 643–646. IEEE, 2009.

[19] Ahmed S Ghiduk, Mary Jean Harrold, and Moheb R Girgis. Using genetic

algorithms to aid test-data generation for data-flow coverage. In Software

Engineering Conference, 2007. APSEC 2007. 14th Asia-Pacific, pages 41–48.

IEEE, 2007.

[20] Roy P Pargas, Mary Jean Harrold, and Robert R Peck. Test-data genera-

tion using genetic algorithms. Software Testing Verification and Reliability,

9(4):263–282, 1999.

[21] Ruchika Malhotra and Mohit Garg. An adequacy based test data generation

technique using genetic algorithms. J Inf Process Syst, 7(2):363–384, 2011.

[22] Mark Harman and Phil McMinn. A theoretical and empirical study of search-

based testing: Local, global, and hybrid search. Software Engineering, IEEE

Transactions on, 36(2):226–247, 2010.

[23] Andrea Arcuri and Xin Yao. A memetic algorithm for test data generation

of object-oriented software. In Evolutionary Computation, 2007. CEC 2007.

IEEE Congress on, pages 2048–2055. IEEE, 2007.

[24] MR Keyvanpour, H Homayouni, and Hasein Shirazee. Automatic software

test case generation. Journal of Software Engineering, 5(3):91–101, 2011.

[25] Roshni Rajkumari and BG Geetha. Automated test data generation and

optimization scheme using genetic algorithm. In Proceedings of International

Conference on Software and Computer Applications (ICSCA 2011), 2011.

[26] Dharmalingam Jeya Mala, Elizabeth Ruby, and Vasudev Mohan. A hy-

brid test optimization framework-coupling genetic algorithm with local search

technique. Computing and Informatics, 29(1):133–164, 2012.

60

Bibliography

[27] R. Mall. Fundamentals of Software Engineering. Prentice Hall, India, 2nd

Edition, 2003.

[28] P. Chevalley. Applying mutation analysis for object-oriented programs using

a reflective approach. In Software Engineering Conference, 2001. APSEC

2001. Eighth Asia-Pacific, pages 267–270. IEEE, 2001.

[29] Goldberg. Genetic Algorithms in search, optimization and machine learning.

Adison-Wesley, Massachusetts,1989.

[30] Madhumita Panda. Test data generation for structured programs using ge-

netic algorithm.

[31] Lee Altenberg. Fitness distance correlation analysis: An instructive coun-

terexample. In Proceedings of the Seventh International Conference on Ge-

netic Algorithms, pages 57–64. Citeseer, 1997.

[32] Bryan F Jones, H-H Sthamer, and David E Eyres. Automatic structural

testing using genetic algorithms. Software Engineering Journal, 11(5):299–

306, 1996.

[33] P. Moscato. A gentle introduction to memetic algorithms. In Handbook of

Metaheuristics, pages 105–144. Kluwer Academic Publishers, 2003.

61

